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Abstract– With the arrival of smart edifications with renewable 

energy generation capacities, new possibilities for optimizing the 

use of the energy network appear. In particular, this work defines 

a system that automatically generates hours of use of the 

controllable load appliances (washing machine, dishwasher, etc.) 

within these edifications, in such a way that the use of renewable 

energy is maximized. To achieve this, we are based on the 

hypothesis that depending on the climate, a prediction can be 

made of how much energy will be generated and, according to the 

behavior of the users, the energy demand required by these 

appliances. Following this hypothesis, we build an autonomous 

cycle of data analysis tasks composed of three tasks, two tasks for 

estimating the required load (demand) and the renewable energy 

produced (supply), coupled with a scheduling task to generate the 

plans of use of appliances. The results indicate that it is possible to 

carry out optimal scheduling of the use of appliances, but that they 
depend on the quality of the predictions of supply and demand.  

Keywords– energy consumption scheduling, smart edifications, 

Smart Grids, artificial intelligence, data analysis.  

INTRODUCTION 

      Approximately 30% of total energy consumption comes 
from the residential sector, and this amount of consumption is 
expected to increase in the coming years [17, 21]. Much of this 
demand comes from the use of household appliances, and in 
particular, some of them whose load can be controllable. On the 
other hand, “Smart Grids” are a recent trend in electrical 
networks that try to respond to the current and projected high 
demand. Smart grids involve two-way communication between 
the consumer and the energy producer, among other things. 
Among its main objectives is the increase in the efficiency of 
the energy network.    
   Additionally, seeking to be more environmentally friendly, 
clean energy sources have grown and will continue to grow as 
energy technology advances [21]. Thus, buildings and homes 
are turning into small power plants, where the inhabitants are 
"active energy prosumers" of clean energy. However, many of 
the technologies used to acquire clean energy (mainly 
photovoltaic cells and wind turbines) depend on the weather, 

are intermittent, and are often available at times when residents 
are not at home or are not using electricity.  
   Derived from the above, as mentioned by the authors [23], the 
electrical network will have to accommodate bidirectional 
energy flows; from the network to the users and from the users 
to the network, taking into account multiple factors, such as 
occupational patterns and environmental conditions. Therefore, 
smart grids are expected to facilitate better integration of 
fluctuating renewable energy with energy from stable sources, 
considering distributed local demands.  
   A particularly attractive way of doing this integration is 
through planning the schedules for the use of the controllable 
load appliances, so that they better align with the productivity 
peaks of the renewable energy sources present in the 
building/home. The objective of this work is to propose a 
solution to the problem of scheduling controllable load 
appliances through artificial intelligence techniques to 
maximize the use of renewable energy and reduce the use and 
dependence on energy from the traditional grid (energy network 
of the city), complying with the energy needs demanded by 
controllable load appliances. 
   For that, this work proposes to use the concept of autonomous 
cycles of data analysis tasks, also called ACODAT. ACODAT 
uses the interaction of different successive analysis tasks to 
extract the necessary knowledge to recommend improvements 
in a given process [2, 3, 4], in our case, the optimal scheduling 
of controllable load appliances. ACODAT has been used in 
different domains such as education [20], telecommunications 
[15], industry 4.0 [22], Smart cities [3], among others.  
   In particular, an ACODAT is proposed for scheduling the 
hours of use of controllable load appliances, composed of three 
tasks, two that predict the required load (demand) and the 
renewable energy that can be produced (offer), and a third 
scheduling task that generates the plan for the use of appliances 
for a given period of time. The three data analysis tasks use 
artificial intelligence techniques for the development of their 
knowledge models, the first two machine learning techniques 
(random forest (RF) and a multi-layer perceptron 
(backpropagation neural network, BNN)) for the construction 



of predictive models, and the last one a meta-heuristic (genetic 
algorithms) for the definition of the optimization model. 

DESIGN OF THE AUTONOMOUS CYCLE 

The design process that has been followed is based on the 
MIDANO methodology [18]. MIDANO allows building an 
ACODAT, in our case, to plan the use of controllable load 
appliances in order to optimize the use of renewable energy. In 
this way, the cycle is made up of three tasks: 

A. Estimation of energy needs (demand) 

   This task has the function of estimating, based on the behavior 
pattern of users, the energy required by each controllable load 
appliance (see table 1). The input information on the behavior of 
the users allows establishing the times and how the appliances 
should be used (frequency of use and how long they should be 
used). For example, if sports activities routinely appear in the 
behavior pattern of users (which could indicate a high frequency 
of very dirty clothes), this task should estimate a continued use 
of the washing machine. Whereas if in this pattern it appears that 
every Friday there is a family reunion at home and the rest of the 
week the habitants eat a few times in it, this task should estimate 
an intense punctual use of the dishwasher. Finally, with this 
information on the use of appliances, this task produces an 
estimation of how much energy will be required to satisfy the 
needs of users (energy demanded by each appliance). In 
particular, this task makes a predictor for each controllable load 
appliance. 

Table 1. Energy demand estimation task 

Data source User behavior pattern (can be 
weekly/biweekly, etc.) 

Data Analytics Task Type  Prediction 

Data analytics techniques RF and BNN 

Result  Energy load demanded by each 
appliance 

 
B. Estimation of energy production (supply) 

    This task estimates the energy contribution (production) of 

renewable energy sources based on environmental factors (see 

table 2). Thus, depending on the environmental conditions 

(sunny, rainy day, with strong winds, high humidity, etc.), it is 

estimated how much energy each renewable source can be 

expected to produce (solar, wind, etc.). 

 
Table 2. Energy Production Estimation Task 

Data source Environmental data 

Data Analytics Task Type  Prediction 

Data analytics techniques RF and BNN 

Result  Produced energy 

 
C. Generation of hours of use of appliances 

   This task is responsible for preparing the scheduling for the 

use of controllable load appliances for a given period of time 

(see table 3). This scheduling is carried out periodically 

according to the estimation range of the predictive models 

elaborated by the previous tasks. If those predictions can be 

made daily, every three days or weekly, that will be the 

scheduling range. The objective is to plan the use of household 

appliances, such that the entire load demanded is covered, 

maximizing the use of renewable energy. Here, we start from 

the assumption that renewable energy cannot be stored in 

batteries nor can it be sold.  

 

Table 3. Task for scheduling the use of controllable load appliances.  
Data source Estimation of energy needs and 

energy production 

Data Analytics Task Type  Optimization 

Data analytics techniques Genetic algorithms 

Result  Appliance use plan 

 
   The required multidimensional data model is made up of 
three-dimension tables: 

 Environmental Data Dimension: this dimension contains all 
the information to predict the renewable energy that can be 
produced. 

 User Profile Dimension: this dimension contains the 
information that allows describing the behavior of users, 
useful for estimating the use of controllable load appliances. 

 Appliances dimension: this dimension contains the 
information that describes the appliances (characteristics, 
required energy load, etc.).  

EXPERIMENTATION 

A. Experimental Protocol 

    For the experimentation, several conditions will be assumed 

at the environmental level, the behavior of the users, and on the 

controllable load appliances. At the renewable energy level, 

only wind and solar energy will be considered. With regard to 

the environment, only environmental variables that allow 

estimating the production of these renewable energy sources 

will be considered. Finally, with respect to the behavior of 

users, the activities that they carry out at home will be 

estimated, in order to deduce the possible controllable load 

appliances that should be used. 

    On the other hand, to evaluate the predictive models, the 

following quality metrics will be used: Mean Square Error 

(MSE), Mean Absolute Percentage Error (MAPE), and R2, also 

called the coefficient of determination.  

    Regarding the scheduling model, it will be evaluated based 

on the amount of renewable energy used of the possible 

produced. 

 
B. Instantiation of our ACODAT 

Estimation of energy production 

    Regarding the environmental variables that will serve to 

predict the amount of renewable energy that can be produced, 

it is important to note that there are different sources of 

renewable energy: bioenergy, solar energy, geothermal energy, 

hydropower, wind and ocean energy (tide and wave) . In this 

work, we will only consider wind and solar as renewable energy 

sources. 

    The production estimation task receives information from the 

environmental variables for the period of time under study. In 

practice, this can come from weather or environmental 

predictors, or historical data. Then, the production estimator 

produces a “power Schedule” for each renewable energy 

source, an array of 24 positions per day, where each position 



represents one hour and the amount of energy generated at that 

hour. 

    The production estimator for each renewable energy source 

is implemented by two techniques, using RF and BNN. 

Specifically, the BNN was implemented using 3, 4 and 5 layers. 

Let's now describe how each prediction model for each 

renewable energy source was defined. 

 

Solar energy: 

    Solar power is one of the major renewable energy, 

constituting an increasingly important component of the global 

future—low carbon—energy portfolio. Solar photovoltaic (PV) 

systems have largely penetrated the global energy 

market. According to [12], the performance of PV systems is 

influenced by internal and external factors such as structural 

features, visual loss, aging, radiation, shading, temperature, 

wind, pollution, among others. We have considered the 

following environmental variables for the definition of the 

prediction model of PV (power-generated), which is in the 

dataset [16]: distance-to-solar-noon (in radians), temperature 

(daily average temperature, in degrees Celsius), wind-direction 

(daily average wind direction, in degrees, 0-360), wind-speed 

(daily average wind speed, in meters per second), sky-cover (in 

a five-step scale, from 0 to 4, being 0 totally clear and 4 

completely covered, visibility (in kilometers), humidity (in 

percentage), average-wind-speed-(period, average wind speed 

during the 3-hour period de measure was taken in, in meters per 

second), average-pressure-(period, average barometric pressure 

during the 3-hour period de measure was taken in, in mercury 

inches), power-generated (in kW), and irradiance. 

    These variables have undergone a feature engineering 

process to select those correlations to PV, avoiding 

collinearities between them. Below we comment on the quality 

of the predictive models of the amount of solar energy produced 

generated with RF and different BNN configurations used (only 

the results of the best configurations are shown). 

  
Table 4. Results of the prediction of the solar energy produced 

Technique  Number 

of layers  

Number 

of epoch 

SME MAPE R2 

RF   0.07 0.07 0.90 

BNN 3 50 0.09 0.10 0.74 

4 50 0.08 0.06 0.88 

5 100 0.08 0.04 0.89 

 

.  Of all the models, the one with the highest errors, both for 

MSE and MAPE, is the first for BNN, with values of 0.09 and 

0.10, respectively. In addition, the value of R2 indicates that 

only 74% of the predicted results match the actual results. This 

behavior can be explained by the low number of layers and 

training cycles. 

 

Wind Power: 

    A wind power forecast corresponds to an estimate of the 

expected production of one or more wind turbines referred to as 

a wind farm. By production is often meant available power for 

wind farm considered (with units kW or MW depending on the 

wind farm nominal capacity). In our case, forecasts be 

expressed in terms of energy, by integrating power production 

over each hour. 

    For wind power, the next environmental variables are 

considered: wind speed (V), wind direction (D), temperature 

(T), air pressure (P), and humidity (H). Based on the wind speed 

measurements, it is also calculated turbulence intensity (I, equal 

to the standard deviation of short-duration wind speeds divided 

by the average wind speed of the same duration) and wind shear 

(S, using wind speeds measured at different heights). 

    For the construction of the predictive model, we are used the 

ERA-Interim data, which is a global atmospheric reanalysis 

data from 1979, continuously updated in real-time [9], which 

contains the previous variables. These variables have 

undergone a feature engineering process to select those 

correlations to wind power, avoiding collinearities between 

them. 

 
Table 5. Results of the prediction of the wind energy produced 

Technique  Number 

of layers  

Number 

of epoch 

SME MAPE R2 

RF   2.05  0.10 0.88 

[10]   2.56   0.71 

BNN 3 50 2.07 0.12 0.85 

4 50 2.08 0.16 0.78 

5 100 2.08 0.21 0.74 

 

    Comparing the results of this group of models with those of 

the work [10, 19], we can see that our models have lower errors 

and higher precision. However, by increasing the number of 

neurons and the number of training epochs for BNN, no 

improvement is achieved. A different behavior is observed 

from the previous case, that is, a low number of training epochs 

and layers does not reduce the precision of the model. 

 

Estimation of energy demand 

    There are different electrical appliances whose load can be 

controlled (washing machine, dishwasher, tumble dryer, 

electric pressure cooker, microwave, vacuum cleaner, but there 

are also other sources of controllable load that in the future it 

will be interesting to analyze (phone charger, car charge). In our 

case, we will estimate the charges for some appliances based on 

the behavior of the users in the home. For each case, a 

predictive model will be built with said behavior. 

    For this experiment, we have used the CASAS smart home 

dataset [6, 7]. This dataset describes the activity data collected 

from 24 CASAS smart homes for different residents and time-

span. In addition, we are going to associate an activity with a 

requirement to use an appliance (see Table 6). Table 6 gives a 

list of appliances associated with each activity, where some 

appliances are associated with several activities, and an activity 

can have associated several appliances.  

 
Table 6. Appliances associated with each activity [6, 7] 

Activity Associated Appliances  

Cook  Dishwasher, electric pressure cooker 

Eat Dishwasher 

Party Vacuum cleaner 

Enter home, Personal hygiene Washing machine, tumble dryer, 

 



    Now, we are going to use this dataset to predict the 

appliances required to use. The way we organize the data is as 

follows. User activities at home in the dataset are grouped by 

hour. Thus, in each hour, we will know what demand for 

appliances has been generated. This implies that the need to use 

appliances several times accumulates over the hours. In order 

to determine the frequency demanded to use each appliance in 

a day, we use the condition defined in Table 7. 

Table 7. Power Consumption of Typical Household Appliances [8] 

Appliance Power Consumption Frequency 

Dishwasher  1200W -1500W 
 

for every 3 times a cooking-

Eating activity then one 
washed 

Electric 

pressure cooker  
1000W -1000W 

 

for every 3 times of a 

cooking activity then one 
cooked 

Vacuum cleaner 450W -900W 
 

for every 6 times of a party 

activity then one cleaned 

Washing 

machine 
500W - 500W 

 

for every 2 times of an enter 

home-personal hygiene 

activity then one washed 

Tumble dryer 1000W - 4000W 
 

for every 2 times of an enter 

home-personal hygiene 
activity then one dried 

    

    On the other hand, each hour that each appliance is used will 

be multiplied by the load defined in Table 7. This value will be 

used to determine the energy demand that it requires in that 

period of time. 

    Once a new dataset has been generated using the CASAS 

dataset, the required times of use of each appliance organized 

by days, with the respective energy load demanded, we proceed 

to build the prediction models for each appliance daily. 

 

Washing machine: Next, we comment on the quality of the 

predictive model of energy demand for the washing machine 

for RF and the best configurations of the BNN.  

 
Table 8. Washing machine power demand prediction results 

Technique  Number 

of layers  

Number 

of epoch 

SME MAPE R2 

RF   1.7 0.25 0.79 

BNN 3 50 2.1 0.31 0.73 

4 50 2.1 0.36 0.70 

5 100 2.8 0.44 0.69 

 

    Of all the models, the one with the lowest errors, both for 

MSE and MAPE, is RF. The value of R2 indicates that only 79% 

of the predicted results match the actual results. We see that 

more number of layers and epochs does not improve the results. 

 

Dishwasher: Below, we comment on the quality of the 

predictive model of power demand for the Dishwasher using 

RF and the best BNN configurations. 

Table 9. Dishwasher Power Demand Prediction Results 

Technique  Number 

of layers  

Number 

of epoch 

SME MAPE R2 

RF   0.04 0.03 0.92 

BNN 3 50 0.1 0.13 0.83 

4 50 0.1 0.06 0.90 

5 100 0.08 0.04 0.91 

 

    Again, RF gives the best results. On the other hand, these 

predictive models are of better quality because there is more 

data to train this model (more activities generate the use of this 

appliance). On the other hand, the use of BNN with more layers 

and epochs is important in this case, to improve the quality of 

the model. 

 

Electric pressure cooker: Next, we comment on the quality of 

the predictive model for the electric pressure cooker. 

 
Table 10. Electric pressure cooker Power Demand Prediction Results  

Technique  Number 

of layers  

Number 

of epoch 

SME MAPE R2 

RF   0.08 0.06 0.86 

BNN 3 50 0.13 0.13 0.80 

4 50 0.11 0.08 0.83 

5 100 0.07 0.06 0.84 

 

    The models are not as good as those of Dishwasher but it 

follows a very similar behavior. This is because there is less 

data. 

 

Vacuum cleaner: Below, we comment on the quality of the 

predictive model for the Vacuum cleaner. 

 
Table 11. Vacuum cleaner energy demand prediction results 

Technique  Number 

of layers  

Number 

of epoch 

SME MAPE R2 

RF   3.01 0.33 0.76 

BNN 3 50 3.11 0.41 0.75 

4 50 3.10 0.36 0.73 

5 100 3.03 0.33 0.69 

 

    The worst models are obtained in this case, and the reason is 

that this is the appliance with which there is less data for 

training. 

 

Scheduling the use of controllable load appliances 

    The scheduler is implemented using a genetic algorithm. In 

its evaluation function, the algorithm uses the needs (demand) 

and production load generated (supply) estimated by the 

previous tasks. 

 

Representation of the individuals of the genetic algorithm: 

    For its implementation, and to easily use the “crossover” 

operator, the individual was represented by a binary array of N 

* I * 24. N is the maximum number of appliances, N in our case 

is 5 and I is the planning period used (3., 7, 15 days). This 

chromosome can be extended or reduced according to I and N. 

A 1 means that the appliance will be used in that hour and 0 

otherwise. 

 

Fitness function: The optimization process for this case study 

uses as state variables Aij, which means the appliance i will be 

used during the hour j. Once an appliance is activated, it will 

run until one hour and it will consume the nominal load 

required (see Table 7). Also, we suppose that during this hour 

it has finished its task (washing, cooking, etc.).  



    We suppose the next constraint: an appliance must be 

assigned the required load in the period of time of planning 

(described by Eq. 1). 

 

∑ 𝐴𝑖𝑗
𝐼

𝑗=1
= 𝐴𝑖

∗ 
(1) 

 

Where, 𝐴𝑖
∗ is the predicted energy demanded by appliance i in 

I, which is determined using the prediction models for each 

appliance daily defined by the previous task. 

    And the fitness function is defined by Eq. 2: 

 

min(𝑅 + 𝛼𝐹) (2) 

 

Where, R defines the quality of the solution (see Eq. 3), 𝛼 is a 

factor of penalization for a bad solution, and F is the 

penalization function. In our case, 𝛼 is very large. 
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(3) 

 

Where, Pkj is the renewable energy of type k predicted in the 

hour j, 𝛾, 𝛿 , and 𝛽  are penalty factors for the use or not of 

renewable energy, and D is the number of renewable energy 

sources. On the other hand, F is defined according to Eq. 4: 

 

𝐹 = {
(|∑ 𝐴𝑖𝑗

𝐼

𝑗=1
− 𝐴𝑖

∗|) 

0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑖𝑓 ∑ 𝐴𝑖𝑗
𝐼

𝑗=1
≠ 𝐴𝑖

∗ 

 

 

(4) 

    According to our fitness function, if the demand is not 

satisfied with renewable energy, it is penalized with a factor 𝛾, 

if there is more renewable energy than is used according to a 

factor 𝛿 , or intermittency, sometimes being satisfied or not 

through the hours it is penalized by a factor 𝛽. In the case of a 

non-valid solution (F), if it is assigned more than what is 

demanded, it is penalized with a factor 𝛼  (waste of 

assignments), the same as if it assigns less than what is required 

(its demand is not satisfied). 𝛼 guarantees valid solutions with 

the assignment required by each appliance. 

    Normally, less should be penalized when renewable energy 

does not meet demand (γ is small). Next, if there is more 

renewable energy than is used (δ> γ) because it is simply energy 

that is lost (it cannot be stored). It is penalized more when there 

is intermittence (β≫δ), and finally when bad solutions (α≫β) 

are generated. A value of the fitness function closer to 0 

guarantees a correct solution. 

    We also assume that some appliances have to be operated 

several times, the next run can start after the completion of the 

previous if this helps maximize renewable energy usage.  

 

Selection: For the selection, a simple roulette selection was 

used, see [1, 5] for more details of its implementation. 

 

Crossover and mutation operators: For the crossover operator, 

a random point M is selected for two-parent individuals, then a 

new individual is produced that takes its first M-1 elements 

from parent individual 1 and the rest from parent individual 2. 

    The mutation operator randomly changes some of the values 

in the array (it schedules or unplanned the use of an appliance). 

 
C. Experiments and Analysis of Results 

    In this work, we will assume that we have the following 

controllable load cases. 

 
Table 12. Controlled load cases studied 

Case Appliances 

1 Washing machine, Dishwasher 

2 Washing machine, Dishwasher, Vacuum cleaner, Electric 

pressure cooker 

 

    Also, we will assume several runs for different days for 

different values of γ, δ, and β. α was always a very large value 

to eliminate invalid solutions (in our case, 1000). Tables 13-14 

show the results obtained in kW. In Table 14, we see a low 

quality when the number of appliances to be planned is large 

and for several days (always above 3K in case 3) with the 

number of generations to converge larger, but it improves a lot 

for planning for short periods (periods equal to 3 to 7 days), and 

when there are few appliances, converging very quickly. 

 
Table 13. Results for γ = 1, δ = 1, and β = 10 

 Days vs 

Case 

3 7 15 

Value Gener. value Gener. Value Gener. 

1 0 26 0 31 0.2 41 

2 0 28 0.4 41 0.5 53 

 

   In Table 14, the intermittency and the surplus of renewable 

energy are penalized quite a bit. We see that there are even more 

demanding solutions, so it is difficult to obtain good solutions. 

More generations are required, but the quality of the solutions 

is still better for planning with few appliances and periods of 

less than 7 days 

 
Table 14. Results for 𝛾 = 1, 𝛿=10, and 𝛽 = 100  

 Days vs 

Case 

3 7 15 

Value Gener. value Gener. value Gener. 

1 0.4 41 0.8 52 1.2 81 



2 1.2 44 1.2 57 2.5 86 

 

    In general, we see that γ, δ, and β influence the search 

process, since they determine what will be given relevance in 

the final solution to be obtained. This leads us to future studies 

where these values depend on the demand and supply in the 

market (γ, δ, and β adaptive), such that the optimization process 

is adapted according to this relationship. For example, a large γ 

when the external cost of energy is too high to avoid having to 

buy it.  

CONCLUSION 

    It is possible to plan the use of household appliances in such 

a way as to reduce dependence on the city's energy network. 

The autonomous cycle performs the expected task. The 

objective function of the scheduling task tries to guarantee that 

all the available renewable energy load is used and penalizes 

certain situations, for example when this does not happen. It 

also penalizes if the real need for each appliance is not met 

    On the other hand, a feature engineering process was carried 

out to analyze the variables and their correlations in the 

prediction models, but other approaches could be studied to 

determine the behavior of users (for example, to predict 

activities in the building), or the utilization of environmental 

variables to predict energy demand, among other things, to 

improve the quality metrics of these models 

    Finally, future works should test with more appliances, more 

renewable energy sources, consider the costs of traditional 

energy (from the city's energy network), incorporate the 

capacity to store or sell the surplus renewable energy produced, 

define a mechanism adaptive in real-time for γ, δ, and β, and 

improve the prediction models considering other machine 

learning techniques and a more exhaustive analysis of feature 

engineering on the descriptor variables. 
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Abstract– With the arrival of smart edifications with renewable 

energy generation capacities, new possibilities for optimizing the 

use of the energy network appear. In particular, this work defines 

a system that automatically generates hours of use of the 

controllable load appliances (washing machine, dishwasher, etc.) 

within these edifications, in such a way that the use of renewable 

energy is maximized. To achieve this, we are based on the 

hypothesis that depending on the climate, a prediction can be 

made of how much energy will be generated and, according to the 

behavior of the users, the energy demand required by these 

appliances. Following this hypothesis, we build an autonomous 

cycle of data analysis tasks composed of three tasks, two tasks for 

estimating the required load (demand) and the renewable energy 

produced (supply), coupled with a scheduling task to generate the 

plans of use of appliances. The results indicate that it is possible to 

carry out optimal scheduling of the use of appliances, but that they 
depend on the quality of the predictions of supply and demand.  

Keywords– energy consumption scheduling, smart edifications, 

Smart Grids, artificial intelligence, data analysis.  

INTRODUCTION 

      Approximately 30% of total energy consumption comes 
from the residential sector, and this amount of consumption is 
expected to increase in the coming years [17, 21]. Much of this 
demand comes from the use of household appliances, and in 
particular, some of them whose load can be controllable. On the 
other hand, “Smart Grids” are a recent trend in electrical 
networks that try to respond to the current and projected high 
demand. Smart grids involve two-way communication between 
the consumer and the energy producer, among other things. 
Among its main objectives is the increase in the efficiency of 
the energy network.    
   Additionally, seeking to be more environmentally friendly, 
clean energy sources have grown and will continue to grow as 
energy technology advances [21]. Thus, buildings and homes 
are turning into small power plants, where the inhabitants are 
"active energy prosumers" of clean energy. However, many of 
the technologies used to acquire clean energy (mainly 
photovoltaic cells and wind turbines) depend on the weather, 

are intermittent, and are often available at times when residents 
are not at home or are not using electricity.  
   Derived from the above, as mentioned by the authors [23], the 
electrical network will have to accommodate bidirectional 
energy flows; from the network to the users and from the users 
to the network, taking into account multiple factors, such as 
occupational patterns and environmental conditions. Therefore, 
smart grids are expected to facilitate better integration of 
fluctuating renewable energy with energy from stable sources, 
considering distributed local demands.  
   A particularly attractive way of doing this integration is 
through planning the schedules for the use of the controllable 
load appliances, so that they better align with the productivity 
peaks of the renewable energy sources present in the 
building/home. The objective of this work is to propose a 
solution to the problem of scheduling controllable load 
appliances through artificial intelligence techniques to 
maximize the use of renewable energy and reduce the use and 
dependence on energy from the traditional grid (energy network 
of the city), complying with the energy needs demanded by 
controllable load appliances. 
   For that, this work proposes to use the concept of autonomous 
cycles of data analysis tasks, also called ACODAT. ACODAT 
uses the interaction of different successive analysis tasks to 
extract the necessary knowledge to recommend improvements 
in a given process [2, 3, 4], in our case, the optimal scheduling 
of controllable load appliances. ACODAT has been used in 
different domains such as education [20], telecommunications 
[15], industry 4.0 [22], Smart cities [3], among others.  
   In particular, an ACODAT is proposed for scheduling the 
hours of use of controllable load appliances, composed of three 
tasks, two that predict the required load (demand) and the 
renewable energy that can be produced (offer), and a third 
scheduling task that generates the plan for the use of appliances 
for a given period of time. The three data analysis tasks use 
artificial intelligence techniques for the development of their 
knowledge models, the first two machine learning techniques 
(random forest (RF) and a multi-layer perceptron 
(backpropagation neural network, BNN)) for the construction 



of predictive models, and the last one a meta-heuristic (genetic 
algorithms) for the definition of the optimization model. 

DESIGN OF THE AUTONOMOUS CYCLE 

The design process that has been followed is based on the 
MIDANO methodology [18]. MIDANO allows building an 
ACODAT, in our case, to plan the use of controllable load 
appliances in order to optimize the use of renewable energy. In 
this way, the cycle is made up of three tasks: 

A. Estimation of energy needs (demand) 

   This task has the function of estimating, based on the behavior 
pattern of users, the energy required by each controllable load 
appliance (see table 1). The input information on the behavior of 
the users allows establishing the times and how the appliances 
should be used (frequency of use and how long they should be 
used). For example, if sports activities routinely appear in the 
behavior pattern of users (which could indicate a high frequency 
of very dirty clothes), this task should estimate a continued use 
of the washing machine. Whereas if in this pattern it appears that 
every Friday there is a family reunion at home and the rest of the 
week the habitants eat a few times in it, this task should estimate 
an intense punctual use of the dishwasher. Finally, with this 
information on the use of appliances, this task produces an 
estimation of how much energy will be required to satisfy the 
needs of users (energy demanded by each appliance). In 
particular, this task makes a predictor for each controllable load 
appliance. 

Table 1. Energy demand estimation task 

Data source User behavior pattern (can be 
weekly/biweekly, etc.) 

Data Analytics Task Type  Prediction 

Data analytics techniques RF and BNN 

Result  Energy load demanded by each 
appliance 

 
B. Estimation of energy production (supply) 

    This task estimates the energy contribution (production) of 

renewable energy sources based on environmental factors (see 

table 2). Thus, depending on the environmental conditions 

(sunny, rainy day, with strong winds, high humidity, etc.), it is 

estimated how much energy each renewable source can be 

expected to produce (solar, wind, etc.). 

 
Table 2. Energy Production Estimation Task 

Data source Environmental data 

Data Analytics Task Type  Prediction 

Data analytics techniques RF and BNN 

Result  Produced energy 

 
C. Generation of hours of use of appliances 

   This task is responsible for preparing the scheduling for the 

use of controllable load appliances for a given period of time 

(see table 3). This scheduling is carried out periodically 

according to the estimation range of the predictive models 

elaborated by the previous tasks. If those predictions can be 

made daily, every three days or weekly, that will be the 

scheduling range. The objective is to plan the use of household 

appliances, such that the entire load demanded is covered, 

maximizing the use of renewable energy. Here, we start from 

the assumption that renewable energy cannot be stored in 

batteries nor can it be sold.  

 

Table 3. Task for scheduling the use of controllable load appliances.  
Data source Estimation of energy needs and 

energy production 

Data Analytics Task Type  Optimization 

Data analytics techniques Genetic algorithms 

Result  Appliance use plan 

 
   The required multidimensional data model is made up of 
three-dimension tables: 

 Environmental Data Dimension: this dimension contains all 
the information to predict the renewable energy that can be 
produced. 

 User Profile Dimension: this dimension contains the 
information that allows describing the behavior of users, 
useful for estimating the use of controllable load appliances. 

 Appliances dimension: this dimension contains the 
information that describes the appliances (characteristics, 
required energy load, etc.).  

EXPERIMENTATION 

A. Experimental Protocol 

    For the experimentation, several conditions will be assumed 

at the environmental level, the behavior of the users, and on the 

controllable load appliances. At the renewable energy level, 

only wind and solar energy will be considered. With regard to 

the environment, only environmental variables that allow 

estimating the production of these renewable energy sources 

will be considered. Finally, with respect to the behavior of 

users, the activities that they carry out at home will be 

estimated, in order to deduce the possible controllable load 

appliances that should be used. 

    On the other hand, to evaluate the predictive models, the 

following quality metrics will be used: Mean Square Error 

(MSE), Mean Absolute Percentage Error (MAPE), and R2, also 

called the coefficient of determination.  

    Regarding the scheduling model, it will be evaluated based 

on the amount of renewable energy used of the possible 

produced. 

 
B. Instantiation of our ACODAT 

Estimation of energy production 

    Regarding the environmental variables that will serve to 

predict the amount of renewable energy that can be produced, 

it is important to note that there are different sources of 

renewable energy: bioenergy, solar energy, geothermal energy, 

hydropower, wind and ocean energy (tide and wave) . In this 

work, we will only consider wind and solar as renewable energy 

sources. 

    The production estimation task receives information from the 

environmental variables for the period of time under study. In 

practice, this can come from weather or environmental 

predictors, or historical data. Then, the production estimator 

produces a “power Schedule” for each renewable energy 

source, an array of 24 positions per day, where each position 



represents one hour and the amount of energy generated at that 

hour. 

    The production estimator for each renewable energy source 

is implemented by two techniques, using RF and BNN. 

Specifically, the BNN was implemented using 3, 4 and 5 layers. 

Let's now describe how each prediction model for each 

renewable energy source was defined. 

 

Solar energy: 

    Solar power is one of the major renewable energy, 

constituting an increasingly important component of the global 

future—low carbon—energy portfolio. Solar photovoltaic (PV) 

systems have largely penetrated the global energy 

market. According to [12], the performance of PV systems is 

influenced by internal and external factors such as structural 

features, visual loss, aging, radiation, shading, temperature, 

wind, pollution, among others. We have considered the 

following environmental variables for the definition of the 

prediction model of PV (power-generated), which is in the 

dataset [16]: distance-to-solar-noon (in radians), temperature 

(daily average temperature, in degrees Celsius), wind-direction 

(daily average wind direction, in degrees, 0-360), wind-speed 

(daily average wind speed, in meters per second), sky-cover (in 

a five-step scale, from 0 to 4, being 0 totally clear and 4 

completely covered, visibility (in kilometers), humidity (in 

percentage), average-wind-speed-(period, average wind speed 

during the 3-hour period de measure was taken in, in meters per 

second), average-pressure-(period, average barometric pressure 

during the 3-hour period de measure was taken in, in mercury 

inches), power-generated (in kW), and irradiance. 

    These variables have undergone a feature engineering 

process to select those correlations to PV, avoiding 

collinearities between them. Below we comment on the quality 

of the predictive models of the amount of solar energy produced 

generated with RF and different BNN configurations used (only 

the results of the best configurations are shown). 

  
Table 4. Results of the prediction of the solar energy produced 

Technique  Number 

of layers  

Number 

of epoch 

SME MAPE R2 

RF   0.07 0.07 0.90 

BNN 3 50 0.09 0.10 0.74 

4 50 0.08 0.06 0.88 

5 100 0.08 0.04 0.89 

 

.  Of all the models, the one with the highest errors, both for 

MSE and MAPE, is the first for BNN, with values of 0.09 and 

0.10, respectively. In addition, the value of R2 indicates that 

only 74% of the predicted results match the actual results. This 

behavior can be explained by the low number of layers and 

training cycles. 

 

Wind Power: 

    A wind power forecast corresponds to an estimate of the 

expected production of one or more wind turbines referred to as 

a wind farm. By production is often meant available power for 

wind farm considered (with units kW or MW depending on the 

wind farm nominal capacity). In our case, forecasts be 

expressed in terms of energy, by integrating power production 

over each hour. 

    For wind power, the next environmental variables are 

considered: wind speed (V), wind direction (D), temperature 

(T), air pressure (P), and humidity (H). Based on the wind speed 

measurements, it is also calculated turbulence intensity (I, equal 

to the standard deviation of short-duration wind speeds divided 

by the average wind speed of the same duration) and wind shear 

(S, using wind speeds measured at different heights). 

    For the construction of the predictive model, we are used the 

ERA-Interim data, which is a global atmospheric reanalysis 

data from 1979, continuously updated in real-time [9], which 

contains the previous variables. These variables have 

undergone a feature engineering process to select those 

correlations to wind power, avoiding collinearities between 

them. 

 
Table 5. Results of the prediction of the wind energy produced 

Technique  Number 

of layers  

Number 

of epoch 

SME MAPE R2 

RF   2.05  0.10 0.88 

[10]   2.56   0.71 

BNN 3 50 2.07 0.12 0.85 

4 50 2.08 0.16 0.78 

5 100 2.08 0.21 0.74 

 

    Comparing the results of this group of models with those of 

the work [10, 19], we can see that our models have lower errors 

and higher precision. However, by increasing the number of 

neurons and the number of training epochs for BNN, no 

improvement is achieved. A different behavior is observed 

from the previous case, that is, a low number of training epochs 

and layers does not reduce the precision of the model. 

 

Estimation of energy demand 

    There are different electrical appliances whose load can be 

controlled (washing machine, dishwasher, tumble dryer, 

electric pressure cooker, microwave, vacuum cleaner, but there 

are also other sources of controllable load that in the future it 

will be interesting to analyze (phone charger, car charge). In our 

case, we will estimate the charges for some appliances based on 

the behavior of the users in the home. For each case, a 

predictive model will be built with said behavior. 

    For this experiment, we have used the CASAS smart home 

dataset [6, 7]. This dataset describes the activity data collected 

from 24 CASAS smart homes for different residents and time-

span. In addition, we are going to associate an activity with a 

requirement to use an appliance (see Table 6). Table 6 gives a 

list of appliances associated with each activity, where some 

appliances are associated with several activities, and an activity 

can have associated several appliances.  

 
Table 6. Appliances associated with each activity [6, 7] 

Activity Associated Appliances  

Cook  Dishwasher, electric pressure cooker 

Eat Dishwasher 

Party Vacuum cleaner 

Enter home, Personal hygiene Washing machine, tumble dryer, 

 



    Now, we are going to use this dataset to predict the 

appliances required to use. The way we organize the data is as 

follows. User activities at home in the dataset are grouped by 

hour. Thus, in each hour, we will know what demand for 

appliances has been generated. This implies that the need to use 

appliances several times accumulates over the hours. In order 

to determine the frequency demanded to use each appliance in 

a day, we use the condition defined in Table 7. 

Table 7. Power Consumption of Typical Household Appliances [8] 

Appliance Power Consumption Frequency 

Dishwasher  1200W -1500W 
 

for every 3 times a cooking-

Eating activity then one 
washed 

Electric 

pressure cooker  
1000W -1000W 

 

for every 3 times of a 

cooking activity then one 
cooked 

Vacuum cleaner 450W -900W 
 

for every 6 times of a party 

activity then one cleaned 

Washing 

machine 
500W - 500W 

 

for every 2 times of an enter 

home-personal hygiene 

activity then one washed 

Tumble dryer 1000W - 4000W 
 

for every 2 times of an enter 

home-personal hygiene 
activity then one dried 

    

    On the other hand, each hour that each appliance is used will 

be multiplied by the load defined in Table 7. This value will be 

used to determine the energy demand that it requires in that 

period of time. 

    Once a new dataset has been generated using the CASAS 

dataset, the required times of use of each appliance organized 

by days, with the respective energy load demanded, we proceed 

to build the prediction models for each appliance daily. 

 

Washing machine: Next, we comment on the quality of the 

predictive model of energy demand for the washing machine 

for RF and the best configurations of the BNN.  

 
Table 8. Washing machine power demand prediction results 

Technique  Number 

of layers  

Number 

of epoch 

SME MAPE R2 

RF   1.7 0.25 0.79 

BNN 3 50 2.1 0.31 0.73 

4 50 2.1 0.36 0.70 

5 100 2.8 0.44 0.69 

 

    Of all the models, the one with the lowest errors, both for 

MSE and MAPE, is RF. The value of R2 indicates that only 79% 

of the predicted results match the actual results. We see that 

more number of layers and epochs does not improve the results. 

 

Dishwasher: Below, we comment on the quality of the 

predictive model of power demand for the Dishwasher using 

RF and the best BNN configurations. 

Table 9. Dishwasher Power Demand Prediction Results 

Technique  Number 

of layers  

Number 

of epoch 

SME MAPE R2 

RF   0.04 0.03 0.92 

BNN 3 50 0.1 0.13 0.83 

4 50 0.1 0.06 0.90 

5 100 0.08 0.04 0.91 

 

    Again, RF gives the best results. On the other hand, these 

predictive models are of better quality because there is more 

data to train this model (more activities generate the use of this 

appliance). On the other hand, the use of BNN with more layers 

and epochs is important in this case, to improve the quality of 

the model. 

 

Electric pressure cooker: Next, we comment on the quality of 

the predictive model for the electric pressure cooker. 

 
Table 10. Electric pressure cooker Power Demand Prediction Results  

Technique  Number 

of layers  

Number 

of epoch 

SME MAPE R2 

RF   0.08 0.06 0.86 

BNN 3 50 0.13 0.13 0.80 

4 50 0.11 0.08 0.83 

5 100 0.07 0.06 0.84 

 

    The models are not as good as those of Dishwasher but it 

follows a very similar behavior. This is because there is less 

data. 

 

Vacuum cleaner: Below, we comment on the quality of the 

predictive model for the Vacuum cleaner. 

 
Table 11. Vacuum cleaner energy demand prediction results 

Technique  Number 

of layers  

Number 

of epoch 

SME MAPE R2 

RF   3.01 0.33 0.76 

BNN 3 50 3.11 0.41 0.75 

4 50 3.10 0.36 0.73 

5 100 3.03 0.33 0.69 

 

    The worst models are obtained in this case, and the reason is 

that this is the appliance with which there is less data for 

training. 

 

Scheduling the use of controllable load appliances 

    The scheduler is implemented using a genetic algorithm. In 

its evaluation function, the algorithm uses the needs (demand) 

and production load generated (supply) estimated by the 

previous tasks. 

 

Representation of the individuals of the genetic algorithm: 

    For its implementation, and to easily use the “crossover” 

operator, the individual was represented by a binary array of N 

* I * 24. N is the maximum number of appliances, N in our case 

is 5 and I is the planning period used (3., 7, 15 days). This 

chromosome can be extended or reduced according to I and N. 

A 1 means that the appliance will be used in that hour and 0 

otherwise. 

 

Fitness function: The optimization process for this case study 

uses as state variables Aij, which means the appliance i will be 

used during the hour j. Once an appliance is activated, it will 

run until one hour and it will consume the nominal load 

required (see Table 7). Also, we suppose that during this hour 

it has finished its task (washing, cooking, etc.).  



    We suppose the next constraint: an appliance must be 

assigned the required load in the period of time of planning 

(described by Eq. 1). 

 

∑ 𝐴𝑖𝑗
𝐼

𝑗=1
= 𝐴𝑖

∗ 
(1) 

 

Where, 𝐴𝑖
∗ is the predicted energy demanded by appliance i in 

I, which is determined using the prediction models for each 

appliance daily defined by the previous task. 

    And the fitness function is defined by Eq. 2: 

 

min(𝑅 + 𝛼𝐹) (2) 

 

Where, R defines the quality of the solution (see Eq. 3), 𝛼 is a 

factor of penalization for a bad solution, and F is the 

penalization function. In our case, 𝛼 is very large. 
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(3) 

 

Where, Pkj is the renewable energy of type k predicted in the 

hour j, 𝛾, 𝛿 , and 𝛽  are penalty factors for the use or not of 

renewable energy, and D is the number of renewable energy 

sources. On the other hand, F is defined according to Eq. 4: 
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    According to our fitness function, if the demand is not 

satisfied with renewable energy, it is penalized with a factor 𝛾, 

if there is more renewable energy than is used according to a 

factor 𝛿 , or intermittency, sometimes being satisfied or not 

through the hours it is penalized by a factor 𝛽. In the case of a 

non-valid solution (F), if it is assigned more than what is 

demanded, it is penalized with a factor 𝛼  (waste of 

assignments), the same as if it assigns less than what is required 

(its demand is not satisfied). 𝛼 guarantees valid solutions with 

the assignment required by each appliance. 

    Normally, less should be penalized when renewable energy 

does not meet demand (γ is small). Next, if there is more 

renewable energy than is used (δ> γ) because it is simply energy 

that is lost (it cannot be stored). It is penalized more when there 

is intermittence (β≫δ), and finally when bad solutions (α≫β) 

are generated. A value of the fitness function closer to 0 

guarantees a correct solution. 

    We also assume that some appliances have to be operated 

several times, the next run can start after the completion of the 

previous if this helps maximize renewable energy usage.  

 

Selection: For the selection, a simple roulette selection was 

used, see [1, 5] for more details of its implementation. 

 

Crossover and mutation operators: For the crossover operator, 

a random point M is selected for two-parent individuals, then a 

new individual is produced that takes its first M-1 elements 

from parent individual 1 and the rest from parent individual 2. 

    The mutation operator randomly changes some of the values 

in the array (it schedules or unplanned the use of an appliance). 

 
C. Experiments and Analysis of Results 

    In this work, we will assume that we have the following 

controllable load cases. 

 
Table 12. Controlled load cases studied 

Case Appliances 

1 Washing machine, Dishwasher 

2 Washing machine, Dishwasher, Vacuum cleaner, Electric 

pressure cooker 

 

    Also, we will assume several runs for different days for 

different values of γ, δ, and β. α was always a very large value 

to eliminate invalid solutions (in our case, 1000). Tables 13-14 

show the results obtained in kW. In Table 14, we see a low 

quality when the number of appliances to be planned is large 

and for several days (always above 3K in case 3) with the 

number of generations to converge larger, but it improves a lot 

for planning for short periods (periods equal to 3 to 7 days), and 

when there are few appliances, converging very quickly. 

 
Table 13. Results for γ = 1, δ = 1, and β = 10 

 Days vs 

Case 

3 7 15 

Value Gener. value Gener. Value Gener. 

1 0 26 0 31 0.2 41 

2 0 28 0.4 41 0.5 53 

 

   In Table 14, the intermittency and the surplus of renewable 

energy are penalized quite a bit. We see that there are even more 

demanding solutions, so it is difficult to obtain good solutions. 

More generations are required, but the quality of the solutions 

is still better for planning with few appliances and periods of 

less than 7 days 

 
Table 14. Results for 𝛾 = 1, 𝛿=10, and 𝛽 = 100  

 Days vs 

Case 

3 7 15 

Value Gener. value Gener. value Gener. 

1 0.4 41 0.8 52 1.2 81 



2 1.2 44 1.2 57 2.5 86 

 

    In general, we see that γ, δ, and β influence the search 

process, since they determine what will be given relevance in 

the final solution to be obtained. This leads us to future studies 

where these values depend on the demand and supply in the 

market (γ, δ, and β adaptive), such that the optimization process 

is adapted according to this relationship. For example, a large γ 

when the external cost of energy is too high to avoid having to 

buy it.  

CONCLUSION 

    It is possible to plan the use of household appliances in such 

a way as to reduce dependence on the city's energy network. 

The autonomous cycle performs the expected task. The 

objective function of the scheduling task tries to guarantee that 

all the available renewable energy load is used and penalizes 

certain situations, for example when this does not happen. It 

also penalizes if the real need for each appliance is not met 

    On the other hand, a feature engineering process was carried 

out to analyze the variables and their correlations in the 

prediction models, but other approaches could be studied to 

determine the behavior of users (for example, to predict 

activities in the building), or the utilization of environmental 

variables to predict energy demand, among other things, to 

improve the quality metrics of these models 

    Finally, future works should test with more appliances, more 

renewable energy sources, consider the costs of traditional 

energy (from the city's energy network), incorporate the 

capacity to store or sell the surplus renewable energy produced, 

define a mechanism adaptive in real-time for γ, δ, and β, and 

improve the prediction models considering other machine 

learning techniques and a more exhaustive analysis of feature 

engineering on the descriptor variables. 
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