

Vol. 18, No. 2 September 2022 | DOI: 10.33480/pilar.v18i1.3291

93

Parallel Numerical Computation …

PARALLEL NUMERICAL COMPUTATION: A COMPARATIVE STUDY ON
CPU-GPU PERFORMANCE IN PI DIGITS COMPUTATION

Yozef Tjandra1; Sanga Lawalata2

1,2 IT and Big Data Analytics Study Program

Calvin Institute of Technology
www.calvin.ac.id

1*) yozef.tjandra@calvin.ac.id, 2 sanga.lawalata@calvin.ac.id
(*) Corresponding Author

Abstract—As the usage of GPU (Graphical
Processing Unit) for non-graphical computation is
rising, one important area is to study how the device
helps improve numerical calculations. In this work,
we present a time performance comparison
between purely CPU (serial) and GPU-assisted
(parallel) programs in numerical computation.
Specifically, we design and implement the
calculation of the hexadecimal n-digit of the
irrational number Pi in two ways: serial and
parallel. Both programs are based upon the BBP
formula for Pi in the form of infinite series identity.
We then provide a detailed time performance
analysis of both programs based on the magnitude
n. Our result shows that the GPU-assisted parallel
algorithm ran a hundred times faster than the serial
algorithm. To be more precise, we offer that as the
value n grows, the ratio between the execution time
of the serial and parallel algorithms also increases.
Moreover, when n it is large enough, that is n ≥ 3 ×
106This GPU efficiency ratio converges to a constant
105.53, showing the GPU's maximally utilized
capacity. On the other hand, for sufficiently small
enough n, the serial algorithm performed solely on
the CPU works faster since the GPU's small usage of
parallelism does not help much compared to the
arithmetic complexity.

Keywords: GPU, parallel computing, BBP formula,
CPU-GPU comparison, parallel numerical method.

Abstrak—Seiring bertumbuhnya penggunaan GPU
(Graphical Processing Unit) untuk komputasi non-
grafis, salah satu wilayah kajian yang penting adalah
bagaimana piranti tersebut mampu meningkatkan
perhitungan numerik. Dalam artikel ini, akan
dibahas perbandingan kinerja waktu antara dua
program komputer yang murni menggunakan CPU
(seri) dan yang ditingkatkan oleh GPU (paralel),
untuk melakukan perhitungan numerik. Secara
spesifik, penelitian ini memberikan perancangan dan
implementasi dari komputasi digit heksadesimal ke-
𝑛 dari bilangan irasional Pi dalam dua cara: seri dan
paralel. Kedua program berbasiskan pada rumus
BBP untuk Pi dalam bentuk identitas deret tak
hingga. Artikel ini kemudian akan menampilkan

analisis mendetail mengenai kinerja waktu kedua
program berdasarkan tingkat besarnya nilai 𝒏. Hasil
penelitian menunjukkan bahwa algoritma paralel
yang dioptimalkan oleh GPU berhasil bekerja ratusan
kali lebih cepat daripada algoritma seri. Persisnya,
ketika nilai 𝑛 meningkat, maka rasio waktu eksekusi
antara program seri dan paralel juga ikut
meningkat. Lebih lanjut lagi, saat 𝑛 cukup besar,
yaitu ketika 𝑛 ≥ 3 × 106, rasio efisiensi GPU ini
cenderung melandai ke suatu nilai konstanta 105.53,
yang menunjukkan penggunaan kapasitas GPU yang
termaksimalkan. Sementara itu, pada nilai 𝑛 yang
cukup kecil, algoritma seri yang dijalankan murni
oleh CPU bekerja lebih cepat karena paralelisme GPU
dalam skala kecil tidak mampu mengimbangi
kecepatan CPU dalam mengerjakan operasi
aritmatika yang kompleks.

Kata Kunci: GPU, komputasi paralel, rumus BBP,
perbandingan CPU-GPU, metode numerik paralel.

INTRODUCTION

For decades, the emergence of the
Graphical Processing Unit (GPU) had been
extremely successful in helping to boost graphic-
related computation, for example rendering high-
resolution images and videos. Many threads in the
GPU allow many simple arithmetical calculations to
be done massively in parallel. Therefore, this
feature suits the graphical computational demand
very well as many image processing algorithms
include matrix operations which naturally could be
performed using blocks of parallel agents (David
Kirk, 2017).
 It should be noted, however, that GPU does
not provide a universal solution for all types of
problems. For some surveys on challenges in GPU
programming, one could consult (Brodtkorb, Hagen,
& Sætra, 2013). There are three general
characteristics of problems that are well suited to be
computed by GPU: 1) The demand for
computational amount is enormous; 2) Parallel
computation scheme is substantial, and 3)
Throughput is prioritized over latency.

Vol. 18, No. 2 September 2022 | DOI: 10.33480/pilar.v18i1.3291

94

Parallel Numerical Computation …

 Despite the limitation of the GPU-solvable
problem domain, it is apparent that the trend to
harness GPU for non-graphical-related computation
is sharply rising due to its ability to speed up
analysis using relatively affordable devices. It is
often coined the term GPGPU (General Purpose
GPU) Computing. Some possible applications of
GPGPU computing include conducting agent-based
modelling (Baylor G.Fain, 2022), computational
fluid dynamics (Reguly & Mudalige, 2020),
accelerating convolutional neural networks (Hu,
Liu, & Liu, 2022), accelerating data query
(Rosenfeld, Breß, & Markl, 2022), and numerical
computation (Abdelfattah, et al., 2020).
 One possible GPU application of interest is
efficiently computing large amounts of non-
recurrent digits of some irrational numbers. As the
oldest recognized irrational number, the
Archimedes constant Pi (π) might be the one which
generates the most excitement in the scientific
community. Many global attempts had been made to
compute as many digits of the number as possible.
The first ever Pi digits computation using a
computer was done as early as 1950 (Reitwiesner,
1950), with 2.037 digits of Pi presented. The race to
compute greater and greater number of digits was
quickly emerging. It includes the ones which
harness some parallel computation schemes using
GPU and other devices. The latest record holder for
the computation of the longest Pi digits is Emma
Haruka Iwao from Google (Iwao, 2022), which was
just done very recently in June 2022. The work
provided 100 trillion digits of Pi under a
computation time of 158 days and 12.6 hours of
verification. It outnumbered roughly 60% of the
previous record holder, an academics team from the
University of Applied Sciences Grisons in 2021 that
was successfully computed ⌊2𝜋 × 1013⌋ digits of Pi
(Keller, 2021).
 This challenge brings sensation for a
limited ambitious community and provides a useful
application in some areas. It is well known that the
non-recurring digits of many irrational numbers,
including Pi, have been guiding many advanced-
level random number generators (Jeong, Oh, Cho, &
Choi, 2020). Moreover, the infinitude of the
irrational's unorderly digits also recently
inspiredany physicists to suggest a new
interpretation of time (Wolchover, 2022).
 In this paper, we focus on studying the
computational performance comparison between
CPU and GPU in numerical calculations. Many such
comparative studies exist, such as under the context
of Convolutional Neural Networks (Yunus, Kanata,
& Ariessaputra, 2021), solving partial differential
equation problems (Semenenko, Kolesau,
Starikovičius, Mackūnas, & Šešok, 2020), and
Bayesian estimation (Kim, Williams, Hernandez-

Fernandez, & Bjornson, 2022). Specifically, this
paper's contribution is to compare these devices
while computing long hexadecimal digits of Pi.
While the GPU-assisted computation would surely
be faster than the one served by the CPU alone, we
will provide some quantitative data to illustrate the
significance of the GPU power in optimizing
numerical computation tasks.

MATERIALS AND METHODS

The main methods used in this research are
the algorithm design and implementation methods,
equipped with quantitative analysis of the
numerical data obtained from the algorithm
running results. Two approaches to algorithm
computing the 𝑛-th hexadecimal digit of Pi, which
are the serial (CPU only) and the parallel (GPU
assisted), are designed and implemented in this
project. Both algorithms are then run to obtain the
comparison performance data. The running times of
both algorithms are collected for various sizes of the
instance. Those values are then analyzed
quantitatively based on their trend concerning the
instances' small and large variational size.

Three main steps to conduct this research are
presented as follows.

1. Numerical Formula Manipulation

Among many mathematical identities of Pi,
we pick a certain formula, commonly known as the
BBP formula, introduced by Bailey-Borwein-Plouffe
in 1997 (Bailey, Borwein, & Plouffe, 1997) and lately
popularised by Takahashi in 2020 (Takahashi,
2020). The following is the expression of the
formula

𝜋 = ∑
1

16𝑘 (
4

8𝑘+1
−

2

8𝑘+4
−

1

8𝑘+5
−

1

8𝑘+6
)∞

𝑘=0 (1)

The main feature of the identity is the factor

16−𝑘 Appearing in each summand of the infinite
sum. We follow some methods and notations taken
from (Bailey D. H., 2006). By this, one could compute
hexadecimal digits of pi starting from the (𝑛 + 1)-th
position effectively without adding any previous
numbers. If 𝑎𝑘 is the 𝑘-th term of the sum, then by
simple manipulation, from equation (1), one could
obtain the following expression

⌊16{16𝑛 ∑ 𝑎𝑘

∞
𝑘=0 }⌋ .. (2)

is exactly the (𝑛 + 1)-th hexadecimal digit of pi
where the notation {𝑎} represents the fractional
part of 𝑎. We will call this expression the Main
Value of Interest for the upcoming sections. For

Vol. 18, No. 2 September 2022 | DOI: 10.33480/pilar.v18i1.3291

95

Parallel Numerical Computation …

convenience, define 𝑆𝑗 = ∑
1

16𝑘(8𝑘+𝑗)
∞
𝑘=0 So that the

curly bracket expression in (2) can be rewritten as
{16𝑛𝜋 } = {4{16𝑛𝑆1} − 2{16𝑛𝑆4} − {16𝑛𝑆5} − {16𝑛𝑆6}} ... (3)

Now, we focus on the expression {16𝑛𝑆𝑗} and

expose some ways to compute it parallelly. After
some manipulations, the expression can be split into
two parts:

{16𝑛𝑆𝑗 } = {{∑
16𝑛−𝑘 𝑚𝑜𝑑 (8𝑘+𝑗)

8𝑘+𝑗
n
𝑘=0 } + ∑

16𝑛−𝑘

8𝑘+𝑗
C
𝑘=𝑛+1 }(4) The

upper bound of the second sum 𝐶, is a constant
independent of 𝑛, chosen large enough to achieve
the desired degree of precision.

We will mainly focus on computing the first
sum in Equation (4) since it involves 𝑂(𝑛) number
of addition and exponentiation operations. We label
this term as the Major Sum. In contrast, the second
summand only accounts for an insignificant fraction
of the algorithm's running time, and we label it the
Minor Sum. It is because the iteration only occurs a
constant number of times that depends only on how
much precision the user desires.

2. Serial and Parallel Schemes Design

To design the algorithm scheme, we first
break down the tasks involved in the computation
based on Equation (4) from the previous subsection.
A high-level overview of the algorithm is also
described in (Bailey D. H., 2006). The breakdown of
the tasks is listed in Table 1 below. It should be
noted that the referenced paper does not provide a
detailed task breakdown since they are merely
labels defined by ourselves for the convenience and
organization of this article.

Table 1. Tasks Breakdown

Task Location Description
Prerequisite Scheme

Design

1
Major
Sum

Computing
summand
terms
16𝑛−𝑘 𝑚𝑜𝑑 (8𝑘+𝑗)

8𝑘+𝑗

N/A

Serial/
Parallel

2
Major
Sum

Summing all
the terms
from Task 1

Task 1
Serial/
Parallel

3
Minor
Sum

Computing
the
summation

N/A
Serial

4
Equation
4

Computing
{16𝑛𝑆𝑗 }

Task 2, Task
3 Serial

5
Equation
3

Computing
the main
value of
interest

Task 4

Serial

Source: Bailey (2006)

The terms "Major Sum", "Minor Sum", and

some other equations on the Location column refer
to the definition in the previous subsection. A
detailed explanation of each task is given in the next
section.

3. Implementation using C and CUDA

We then run two different computer
programs: 1) a purely serial program and 2) the one
enhanced with the GPU parallel scheme. Both
programs receive the same input 𝑛, that is, the
starting digit position, after which the programs are
required to output the hexadecimal digits of pi. All
procedures designed serially are implemented
using C, while the parallel ones use the CUDA
programming language.

The device used to implement the programs
has the specifications described in Table 2 below.

Table 2. Device Specification

Device Details
Processor* Intel Core i5-9400F, 2.90 GHz

RAM** 8 GB
System Type 64-bit
Operating
System

Windows 10 Pro

GPU*** NVIDIA GTX1060 6 GB

Source: *) Intel Corp. (2019) , **) V-gen (n.d.),
***) Nvidia (2016)

RESULTS AND DISCUSSIONS

1. Design of the Algorithms
In this section, we discuss the strategy for

how each task listed in Table 1 is designed. First,
note that the main tasks of interest are Task 1 and
Task 2 because they are the GPU-optimized sub-
hairs. Both charges are responsible for computing
the Major Sum, whose computing performance
depends on 𝑛. On the other hand, all the other tasks
mainly deal with a constant number of operations,
so it seems best to compute these using CPU alone.
Figure 1 below provides the visualization of the
tasks involved.

Figure 1. Tasks Dependency Diagram

Vol. 18, No. 2 September 2022 | DOI: 10.33480/pilar.v18i1.3291

96

Parallel Numerical Computation …

The exponentiation procedure within Task 1
is a common computational problem solved by the
Divide and Conquer strategy (Kumar & Sen, 2019).
It results in 𝑂(log 𝑛) number of multiplication and
modulo operations. Now, we have 𝑛 typical
procedures to compute the 𝑘-th term for 𝑘 =

 0, 1, . . . , 𝑛. To compute all the summand terms
serially, one could simply iterate each
exponentiation computation. Meanwhile, for the
parallel scheme, these 𝑛 subtasks are to be split into
several batches, each of which has a size of the
number of GPU threads to be computed
simultaneously.

Task 2, which is performing a sum of a finite
sequence of numbers, is a classic task to conduct in
a parallel scheme. It is often given as a standard
exercise for undergraduate-level similar
programming courses. The main idea used in the
algorithm design is Parallel Prefix Computation. For
reference, one could consult many textbooks, for
instance (Hockney & Jesshope, 2019). Here, the
summands are stored in an array partitioned into
several blocks of subarrays. Using a divide and
conquer paradigm, the algorithm keeps breaking
down those subarray blocks until they are small
enough to be computed for each of their paired
summations. The results are then summed from
other blocks in a balanced-binary-tree-like
structure. Thus, if there are 𝑛 numbers to be
summed, then the complexity of the task is roughly
𝑂(𝑛 log 𝑛).

On the other hand, Task 3, Task 4, and Task 5
are handled solely on the CPU due to their
complexity's independence of 𝑛, which means that
the tasks are relatively not demanding. The number
of operations (the number 𝐶 of the sum upper
bound) taken to perform Task 3 depends only on
the degree of accuracy, the number of digits for
which the result assures the exact value. The
number 𝐶 would not grow big as 𝑛 would, so this
task is not very suitable to be done in parallel.
Finally, Task 4 and Task 5 are small single sets of
arithmetical operations combining all other results
from previous tasks. It explains the reason why both
studies are naturally designed in serial schemes.

2. CUDA Implementation Details

While the algorithm implementation in the
serial scheme using CPU programming is a standard
exercise in terms of algorithm design, the parallel
version is the main interest of this paper. In this
subsection, we present the CUDA kernel functions
used in this project, that is, the function to instruct
how the host feeds the input data for the
computation process done in the kernels, which are
the heart of the parallelism.

Before exposing each of the details, it is
worth noting that we use some special bit operation

commands replacing routine arithmetic procedures
on the kernel functions to optimize the
computation. It is because the bitwise operations
are substantially faster than ordinary arithmetic
operations. The left shift operator (<<) and right

shift operator (>>) have the arithmetical meaning of
multiply by two and integral divide by 2,
respectively. The 'AND' bitwise operator is applied
to a variable, and the number 1 (for example: "var

& 1") is a logical operator that returns TRUE if and
only if the variable has zero value.

The following figures (Figure 2, Figure 3, and
Figure 4) show the kernel functions performing
Task 1 and Task 2 parallelly.

Figure 2. Kernel Function for Task 1

The kernel function in Figure 2 above
performs Task 1, that is, computing the value of
(16𝑑−𝑘 mod (8𝑘+𝑗))

8𝑘+𝑗
 for all values of 𝑘 with a start < 𝑘

< stop, where the start and stop are parameters
of the function. The main algorithm would firstly
break down the main range of 𝑘, which suppose to
be from 0 to n, into smaller subranges whose size is
suited to the capacity of the GPU number of threads
and then call the kernel function using the
appropriate choices of start and stop. In
addition, the sub-algorithm presented in lines 14-22
of the process above employs the classic divide-and-
conquer approach to compute the modular
exponentiation efficiently.

Figure 3. Kernel Functions for Task 2

Vol. 18, No. 2 September 2022 | DOI: 10.33480/pilar.v18i1.3291

97

Parallel Numerical Computation …

Two kernel functions described in Figure 3
above provide ingredients to implement the Parallel
Prefix Computation method to compute the sum of
all terms computed in Task 1 previously. First, we
describe how the binary_sum function works. The
summand terms from Task 1 are first stored in an
array that would be passed as the parameter *in
the function. The function then computes the sum of
each pair of consecutive summand terms on the
array and stores the result in another array whose
pointer is *out. Thus, the resulting array *out

length is half that of *in. The process is done for the

first pj elements of the array, which are
parameterized by the function. Some special
treatment in lines 15-17 is provided to handle the
case where the array length is odd. Next, the e
*binary_copy function copies the values of the

array *from into the array *to parallel with size of
pj. Both functions would be called in a loop many
times with decreasing values of pj that will be later
explained in the next figure.

Lines 12-19 of the Host-Kernel Interaction
code presented in Figure 4 describe how the kernel
functions are called repetitively inside a loop. Both
lines 16 and 18 indicate that variable m is passed as

the parameter pj of both kernel functions in Figure
3. Also, its value always decreases as the iteration
continues, as indicated by line 17.

Figure 4. Host-Kernel Interaction

The sub-algorithm explains the

communication between the host and kernel
function. Note that the sub-algorithm harnesses B

number of blocks, each of which has T number of
threads. In our implementation, we pick the
maximum number of such B and T available on the
device to optimize the computation fully.

Next, we present some results obtained by
the purely CPU and the GPU-assisted algorithms
regarding the Pi hexadecimal digits computation.
The digits outputted by the two schemes agree for
all digit positions. Table 3 displays some selected Pi
hexadecimal digits computed by the algorithms.

Table 3. Pi Hexadecimal Digits Obtained by
BPP Formula in both Serial and Parallel Scheme
Starting digit position Pi Hexadecimal Digits

5001 CAD18
10001 8AC8F
50001 940C2

100001 35EA1
500001 DD637

1000001 6C65E
5000001 EE394

10000001 7AF58

As the serial algorithm starts to work

considerably slowly (more than 3 minutes) when
the starting digit position is greater than 108, we
now employ only the parallel scheme to explore the
greatest starting digit position, which is feasibly and
reasonably able to be computed by our parallel
program. The furthest possible point we have
already tested is the hundred-billionth hexadecimal
of pi, "7FB5B", which is computable within
2156,397 seconds.

3. Running Time Analysis

In this section, we report the running times of
both algorithms concerning various values of 𝑛. As
the data points, we measure the running times of the
algorithms for 𝑛 = 10.000, 20.000, 30.000, ...,
5.000.000. So, in total, there are 500 data points
where each consecutive pair of points has a gap of
10.000. Figure 5 shows the running time behaviour
of both algorithms. The x-axis represents the n-digit
position, and the y-axis (log-scaled) represents the
running time.

Figure 5. Running times of BBP Algorithm: two ways

From Figure 5, it is apparent that the serial

algorithm runs significantly slower than the parallel
one. To provide a more detailed comparison, we
measure the ratio between the running times of the
serial scheme to that of the parallel one. We can use
this ratio as a performance measure. The greater the
ratio value is, the better the parallel scheme
performs compared to the serial scheme. The value
of the ratio is presented in figure 6.

Vol. 18, No. 2 September 2022 | DOI: 10.33480/pilar.v18i1.3291

98

Parallel Numerical Computation …

Figure 6. The ratio between running times of Serial &

Parallel schemes of BBP Algorithm

Figure 6 represents the serial and parallel

running time (y-axis) ratio against the n-digit
position (x-axis). A closer inspection of this figure
shows that when n is large enough, the running time
ratio tends to converge into a certain constant,
around 105.53. Its stable is stabilized once the value
of n has passed over a certain threshold around 3 ×
106. It means that when n is slightly larger than the
threshold, the ratio number is about to converge to
the ratio constant; otherwise, the percentage is still
increasing as n grows.

The constant corresponds to the thread
capacity of the GPU. As 𝑛 grows larger, the
performance improvement provided by the GPU has
been optimal as all the threads have already been
completely utilized. On the other hand, when the
algorithms compute the formula with a value of 𝑛
below the threshold, some lines of the GPU are still
vacant. So, in this case, increasing the value of 𝑛
would improve the performance ratio. It can be seen
by the increasing curve of the running time ratio on
such an interval of 𝑛 (when 𝑛 is less than the
threshold).

Although for large 𝑛, the parallel algorithm
runs faster, it is not exactly the case for some small
instances of 𝑛. To be more precise, we can take a
closer look at the running time curves of both
algorithms when the value of n is small enough, as
presented in Figure 7.

Figure 7. Running times at small instances.

From closer inspection of Figure 7, we
observe that for a small value of n (around 𝑛 <
 5.000), the parallel scheme performs slower than
the serial scheme. However, right after this, a
similar algorithm always performs better.

We can understand this phenomenon by the
following explanation. When 𝑛 is small, the parallel
algorithm utilizes the GPU threads for a relatively
fewer number of batches. Although in GPU, many
lines can work simultaneously, the computing
capability of each thread is much less sophisticated
than those of CPU. Consequently, when two single
threads of CPU and GPU are given the same
computational task, the CPU would likely perform
better than GPU. It is because the CPU is designed
for computing complex computations.

In contrast, GPU has a simpler computing
feature in the hope that massive parallelism would
help the GPU to excel over the CPU. To be more
precise, by having small enough 𝑛, tasks 1 and 2 of
the parallel scheme would not optimally utilize all
the GPU threads, so the delay times caused by the
latency might dominate the whole running time. In
fact, when only a small number of GPU threads are
used in the computation, the repetitive nature of
serial CPU processing would perform better.

CONCLUSION

In this paper, we optimize the 𝑛-digit Pi
computation by utilizing GPU parallelism. The
performance of GPU and CPU processing for
computing 𝑛-digit Pi is then compared. For most
values of 𝑛, the parallel algorithm assisted by the
GPU runs significantly faster than the serial
algorithm. Furthermore, this research measures the
running time ratio between CPU and GPU
algorithms. In other words, this ratio measures how
many times the GPU works better than the CPU.
From the implementation data collection, we found
that the ratio tends to increase as the 𝑛 is rising. It
shows the supremacy of GPU performance over CPU
in 𝑛-digit Pi calculation. In addition, the balance
appears to converge to 105.53 once 𝑛 has passed
over 3 × 106. It shows the fully utilized capacity of
the GPU in performing computation with a large
enough size instance. However, a closer inspection
of small cases indicates that the CPU performs
better than GPU due to a lack of parallelism. The
finding shows that numerical computation
optimization should be strategically planned rather
than relying on purely GPU computation. The
computation decision should be carefully designed
depending on the context of the use case.
Furthermore, a more rigorous investigation of
several alternatives of parallel numerical
computation for various irrational numbers will be
reserved for future works.

Vol. 18, No. 2 September 2022 | DOI: 10.33480/pilar.v18i1.3291

99

Parallel Numerical Computation …

REFERENCES

Abdelfattah, A., Anzt, H., Boman, E. G., Carson, E.,

Cojean, T., Dongarra, J., . . . Li, S. (2020). A
survey of numerical methods utilizing
mixed precision arithmetic. arXiv preprint
arXiv:2007.06674.
https://arxiv.org/pdf/2007.06674.pdf

Bailey, D. H. (2006). The BBP Algorithm for Pi.
Berkeley: Lawrence Berkeley National
Lab.(LBNL).
https://www.osti.gov/servlets/purl/9833
22

Bailey, D., Borwein, P., & Plouffe, S. (1997). On the
rapid computation of various
polylogarithmic constants. Mathematics of
Computation, 66(218), 903-913.
https://doi.org/10.1090/S0025-5718-97-
00856-9

Baylor G.Fain, H. M. (2022). GPU acceleration and
data fitting: Agent-based models of viral
infections can now be parameterized in
hours. Journal of Computational Science.
https://doi.org/10.1016/j.jocs.2022.1016
62

Brodtkorb, A. R., Hagen, T. R., & Sætra, M. L. (2013).
Graphics processing unit (GPU)
programming strategies and trends in GPU
computing. Journal of Parallel and
Distributed Computing, 73(1), 4-13.
https://doi.org/10.1016/j.jpdc.2012.04.00
3

David Kirk, W.-m. H. (2017). Programming Massively
Parallel Processors. Cambridge: Elsevier.

Hockney, R. W., & Jesshope, C. R. (2019). Parallel
Computers 2: Architecture, Programming
and Algorithms. CRC Press.

Hu, Y., Liu, Y., & Liu, Z. (2022). A Survey on
Convolutional Neural Network
Accelerators: GPU, FPGA and ASIC. 2022
14th International Conference on Computer
Research and Development (ICCRD) (pp.
100-107). IEEE.
https://doi.org/10.1109/ICCRD54409.202
2.9730377

Intel Corp. (2019). Intel®️ Core™️ i5 Processors.
(Processors Productions) Retrieved 8 10,
2022, from Intel.com:
https://www.intel.com/content/www/us
/en/products/sku/190883/intel-core-
i59400f-processor-9m-cache-up-to-4-10-
ghz/specifications.html

Iwao, E. H. (2022, June 8). Even more pi in the sky:
Calculating 100 trillion digits of pi on Google
Cloud. Retrieved from Google Cloud Blog:
https://cloud.google.com/blog/products/

compute/calculating-100-trillion-digits-of-
pi-on-google-cloud

Jeong, Y.-S., Oh, K.-J., Cho, C.-K., & Choi, H.-J. (2020).
Pseudo-random number generation using
LSTMs. The Journal of Supercomputing,
76(10), 8324-8342.
https://doi.org/10.1109/BigComp.2018.0
0091

Keller, T. (2021, August 14). World record attempt
by UAS Grisons: Pi-Challenge. Retrieved
from University of Applied Science Grisons
Website:
https://www.fhgr.ch/en/themenschwerp
unkte/applied-future-technologies/davis-
centre/pi-challenge/

Kim, D. H., Williams, L. J., Hernandez-Fernandez, M.,
& Bjornson, B. H. (2022). Comparison of
CPU and GPU bayesian estimates of fibre
orientations from diffusion MRI. Plos one,
17(4), e0252736.
https://doi.org/10.1371/journal.pone.025
2736

Kumar, A., & Sen, S. (2019). Design and Analysis of
Algorithms. Cambridge University Press.

Nvidia. (2016). Geforce GTX 1060 Specifications.
(Graphics Cards Productions) Retrieved 8
10, 2022, from nvidia.com:
https://www.nvidia.com/en-
gb/geforce/graphics-cards/geforce-gtx-
1060/specifications/

Reguly, I. Z., & Mudalige, G. R. (2020). Productivity,
performance, and portability for
computational fluid dynamics applications.
Computers & Fluids, 104425.
https://doi.org/10.1016/j.compfluid.2020
.104425

Reitwiesner, G. W. (1950). An ENIAC Determination
of π and e to more than 2000 Decimal
Places. Mathematical Tables and Other Aids
to Computation, 4(29), 11-15.
https://doi.org/10.2307/2002695

Rosenfeld, V., Breß, S., & Markl, V. (2022). Query
processing on heterogeneous CPU/GPU
systems. ACM Computing Surveys (CSUR),
55(1), 1-38.
https://doi.org/10.1145/3485126

Semenenko, J., Kolesau, A., Starikovičius, V.,
Mackūnas, A., & Šešok, D. (2020).
Comparison of GPU and CPU efficiency
while solving heat conduction problems.
Mokslas-Lietuvos ateitis/Science-Future of
Lithuania, 12.
https://doi.org/10.3846/mla.2020.13500

Takahashi, D. (2020). On the computation and
verification of π using BBP-type formulas.
The Ramanujan Journal, 177-186.
https://link.springer.com/article/10.1007
/s11139-018-0104-x

https://arxiv.org/pdf/2007.06674.pdf
https://www.osti.gov/servlets/purl/983322
https://www.osti.gov/servlets/purl/983322
https://doi.org/10.1090/S0025-5718-97-00856-9
https://doi.org/10.1090/S0025-5718-97-00856-9
https://doi.org/10.1016/j.jocs.2022.101662
https://doi.org/10.1016/j.jocs.2022.101662
https://doi.org/10.1016/j.jpdc.2012.04.003
https://doi.org/10.1016/j.jpdc.2012.04.003
https://doi.org/10.1109/BigComp.2018.00091
https://doi.org/10.1109/BigComp.2018.00091
https://www.fhgr.ch/en/themenschwerpunkte/applied-future-technologies/davis-centre/pi-challenge/
https://www.fhgr.ch/en/themenschwerpunkte/applied-future-technologies/davis-centre/pi-challenge/
https://www.fhgr.ch/en/themenschwerpunkte/applied-future-technologies/davis-centre/pi-challenge/
https://doi.org/10.1371/journal.pone.0252736
https://doi.org/10.1371/journal.pone.0252736
https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1060/specifications/
https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1060/specifications/
https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1060/specifications/
https://doi.org/10.1016/j.compfluid.2020.104425
https://doi.org/10.1016/j.compfluid.2020.104425
https://doi.org/10.2307/2002695

Vol. 18, No. 2 September 2022 | DOI: 10.33480/pilar.v18i1.3291

100

Parallel Numerical Computation …

V-Gen. (n.d.). V-GeN Platinum DDR 4 PC 19200 -
2400 MHz. Retrieved 8 10, 2022, from V-
Gen.co.id: https://v-gen.co.id/ram/v-gen-
platinum-ddr-4-pc-19200-2400-mhz-ecc/

Wolchover, N. (2022). Does time really flow? New
clues come from a century-old approach to
math. The Best Writing on Mathematics
2021, 19, 183.

Yunus, I., Kanata, B., & Ariessaputra, S. (2021).
Perbandingan Kinerja CPU dengan GPU dan
Tanpa GPU dalam Pemrosesan Gambar
Menggunakan Metode Convolutional
Neural Network. Indonesian Journal of
Applied Science and Technology, 2(4), 127-
134. Retrieved from
https://journal.publication-

center.com/index.php/ijast/article/view/
1310

https://v-gen.co.id/ram/v-gen-platinum-ddr-4-pc-19200-2400-mhz-ecc/
https://v-gen.co.id/ram/v-gen-platinum-ddr-4-pc-19200-2400-mhz-ecc/
https://journal.publication-center.com/index.php/ijast/article/view/1310
https://journal.publication-center.com/index.php/ijast/article/view/1310
https://journal.publication-center.com/index.php/ijast/article/view/1310

