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Abstract: Fog is challenging to predict, and the accuracy of fog prediction may depend on location
and time of day. Furthermore, accurate detection of fog is difficult, since, historically, it is often carried
out based on visual observations which can be biased and are often not very frequent. Furthermore,
visual observations are more challenging to make during the night. To overcome these limitations,
we detected fog using FM-120 instruments, which continuously measured liquid water content in the
air in the Monterey, California (USA), area. We used and compared the prediction performance of
logistic regression (LR) and random forest (RF) models each evening between 5 pm and 9 pm, which
is often the time when advection fog is generated in this coastal region. The relative performances of
the models depended on the hours between 5 pm and 9 pm, and the two models often generated
different predictions. In such cases, a consensus approach was considered by revisiting the past
performance of each model and weighting more heavily the more trustworthy model for a given
hour. The LR resulted in a higher sensitivity (hit rate) than the RF model early in the evening, but
the overall performance of the RF was usually better than that of the LR. The consensus approach
provided more robust prediction performance (closer to a better accuracy level between the two
methods). It was difficult to conclude which of the LR and RF models was superior consistently, and
the consensus approach provided robustness in 3 and 2 h forecasts.

Keywords: liquid water content; fog prediction; logistic regression; random forest

1. Introduction

One of the most unpredictable meteorological phenomena is fog, which is formed
for various reasons depending on seasons and locations. Due to the unique conditions of
the California coast (cold air near the surface and hot temperatures at higher altitudes),
there is much to learn about the fog events that occur in the Monterey Bay area located in
California, the United States [1,2]. Early references describe the frequency of fog (which
is defined as conditions on the ground with less than one-kilometer visibility) along the
Pacific coast at about 40 days per year on average [3]. In the Monterey Bay area, the
annual frequency is about 25 to 35 days on average. Unpredictable fog events have caused
flight delays for a local airport, affected road conditions for commuters [4], and increased
the risk of accidents for fishermen [5]. In addition, the presence of fog is of relevance
for ecosystem processes and, potentially, for the capture of water for various purposes,
including agriculture, reforestation, and even human consumption [6]. Frequent fog events
affect the lives of many, and researchers have attempted various ways of predicting fog
events; the predictability of observed factors depends on the geographical location, the
season of the year, and the time of day; thus, predictive models should be localized.

Along the coast of California, advection fog is formed as a result of a cold ocean in
conjunction with warmer air temperatures [7]. Cool ocean waters from the north move
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south along the west coast of the United States [8]. Furthermore, northwesterly winds
induce upwelling, particularly in the late spring, which provides additional surface water
cooling at some locations [9]. The western coastline of the United States has a uniquely
dependable inversion of warm air above cool air, which is in contact with the ocean [10].
The cooling of air below its dew point close to sea level and the containment of this by the
warm air above often results in fog that can be advected toward the land in the evening by
inland breezes [2].

Despite the relatively straightforward scientific explanations of fog generation, the
prediction of fog is challenging because of the details associated with fog formation and
its persistence. Important factors include the number and size of condensation nuclei
available coupled with the ongoing balance and sufficient scale of temperature gradients
and available humidity to maintain the liquid droplets that constitute fog. Therefore, one
approach for fog prediction, rather than modeling the physical details of fog formation, is
to apply regression-based models to forecast seasonal trends of weather conditions and
fog. A multiple regression approach was used to estimate the probability of marine fog
at 24 and 48 h intervals using variables such as evaporative heat flux and surface relative
humidity [11]. Though the models outperformed the other models compared in the study,
the r-square was only 0.30. Another regression analysis was performed to predict the
ceiling height (the height of the lowest layer of overcast clouds or broken clouds) one,
three, and six hours ahead based on the current ceiling height and other meteorological
variables [12]. The researchers compared the predictive model with an observational model
and concluded that the observational model was more effective for fog prediction. For
binary outcomes, logistic regression was used to estimate the probability of when a low
ceiling would no longer exist, one, two, and three hours ahead of 3 pm and 6 pm [13]. The
logistic regression model was then compared to persistent climatology forecasts, showing
an improvement in predicting when a low ceiling no longer exists.

More advanced models have been implemented for fog prediction. (Here, “advanced”
does not necessarily imply better predictions, but it implies the ability to handle computa-
tions efficiently in automated procedures.) Interestingly, the use of artificial intelligence for
fog prediction appeared in the literature of the late 1980s [14]. In Perth, Australia, a study
was conducted using a fuzzy logic model to predict fog, and it compared the fuzzy model
with two other forecasting models [15]. Recently, Markov chains and machine learning
algorithms have been used to predict fog using multiple predictors, such as temperature,
relative humidity, and other meteorological measurements [16]. Other advanced methods
used to predict fog or fog dissipation, such as decision trees, support vector machines,
ensemble methods (e.g., gradient boosting, random forest models), and artificial neural
networks (e.g., extreme learning machine, multilayer perceptron), can also be found in
the literature [17–20]. A recent study has evaluated the sensitivity of machine learning
techniques for visibility forecasting and showed that ensemble-based models perform
the best [21] and that tree-based methods perform better with multiple predictors [22].
These studies showed the importance of location, in that one location considered in their
study proved more unpredictable than another, regardless of prediction techniques, and
the random forest and similar methods performed better relative to the other methods
considered. They also discussed the possibility that the inclusion of other models within
different frameworks (e.g., logistic or linear regression, time-series, lazy learning) may
further improve prediction.

The primary focus of this article is the 1–3 h forecasting in the Monterey Bay area for
the times between 5 pm and 9 pm, which is when fog often begins in this region. Our
predictions were binary (fog or no fog) and verified based on observed liquid water content
(LWC), as measured by an FM-120 optical spectrometer. Other meteorological factors,
including, among other variables, dew point depression, wind speed, and previous values
of LWC, were used to drive the predictions at each hour. Our aim was not to exhaust
and compare all existing prediction algorithms but rather to demonstrate the different
results between the logistic regression method and the random forest method for each
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hour. We also demonstrate how we can obtain a more robust prediction performance when
the two methods have disagreeing predictions given the same predictors. To address the
disagreement between the prediction models, a consensus approach was considered by
reviewing their past prediction performances and more heavily weighting the one with
better performance at a given time. We note that the validation of a prediction model
requires data observed over a long period of time. However, the LWC measured by the FM-
120 was available for only one season in this study. Thus, this research work is considered
as a proof of concept.

This article is organized as follows. The LWC data are introduced in Section 2.1.
Accompanying meteorological variables are described in Section 2.2. In addition to hourly
averaged LWC, the slope of LWC is used as a predictor and is explained in Section 2.3. The
prediction models considered in this study are explained in Section 2.4 and their evaluation
criteria in Section 2.5. As an exploratory analysis, correlations between LWC and other
predictors are presented in Section 3.1. The performance of each model is reported in
Section 3.2 and the performance of the consensus approach in Section 3.3. The discussion is
contained in Section 4.

2. Materials and Methods
2.1. Data

A regular, automated means of fog detection can be challenging. One method has
involved the use of standard fog collectors (SFCs)—apparatuses used for the collection
of fog droplets as fog passes through a mesh. Other methods employ unidirectional
(conical) or planar fog harps, which use vertical strands of thread to collect the tiny fog
droplets [23,24]. Once the SFCs or harps collect fog droplets, the water accumulates
and drips down to a trough and into a rain gauge that records the time when the rain
gauge tips [25]. While standard fog collectors are effective in collecting volumes of water
associated with fog events, they are not perfect in recording the actual times of fog events
and they can potentially miss some fog events that result in little or no accumulation of
water due to the varying nature of fog and wind [26]. One issue, for instance, is that a
sufficient number of fog droplets are required to pass through the mesh of an SFC, coalesce
upon the mesh, and fall into the rain gauge in order to detect when a fog event has occurred,
so there is a gap between the actual fog event and the timestamp, which may be over an
hour [27]. An alternative approach, which we employ in this study, is to use an FM-120
optical spectrometer to measure the liquid water content (LWC) within the air.

For this study, the LWC was measured in grams per cubic meter at 5 m above ground
level using an optical spectrometer device known as an FM-120 manufactured by Droplet
Measurement Technologies. This optical spectrometer continuously samples droplet-laden
ambient air to report size distributions in the range of 2 µm to 50 µm. Two FM-120 units
were deployed at the time of this experiment to measure the efficiencies of standard fog
collector devices, which were not used in the present study. While the FM-120 units produce
droplet spectra in the range specified above, this study only utilized the LWC, which is an
integrated measure of droplet numbers and sizes that is used in order to determine the
presence of fog. The two FM-120 units were consistent in their detection of LWC values
indicative of fog events, which further supports the accuracy of their data. Furthermore,
an FM-120 unit was used in a different study with standard fog collectors in Chile [27].
This study also illustrated consistency in the detection of fog events in conjunction with a
standard fog collector, with the expected lag of up to 60 min evident between the detection
of sufficiently large LWC values by the FM-120 and the collection of water from the standard
fog collector [27]. Both LWC and weather data were recorded at a site known as Fritzsche
Field, near the Marina Airport, located at 36.695486◦, −121.757475◦.

2.2. Exploratory Data Analysis

The response variable that we applied in this paper was the LWC (grams per cubic
meter), and it was log-transformed base-10. The LWC is derived from the measurements of
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airborne droplets, and values of LWC greater than 0.01 g per cubic meter constitute fog,
corresponding to values of log(LWC) > −2. Note that, based on this threshold, we observed
that fog rarely existed between 10 am and 3 pm at this location (as shown in the upper right
panel of Figure 1). We note that when the observed value of LWC was numerically zero,
which led to an undefined value of log(LWC), we added 3.91 × 10−8 to avoid a numerical
error in the statistical modeling.
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Figure 1. Observed daily trends (gray) and smoothing splines for overall average (black): liquid
water content (LWC), temperature (T), dew point depression (DPD), wind speed (WS), wind direction
(WD), shortwave (SW), and longwave (LW), observed from 29 July to 6 November 2020. Solid curves
are average trends; dotted curves are the first and third quartiles.

The explanatory variables of interest were the temperature (T; degrees Celsius), dew
point depression (DPD; degrees Celsius), wind speed (WS; meters per second), wind
direction (WD; degrees), shortwave (SW; watts per square meter), and longwave (LW; watts
per square meter). These variables were recorded every ten minutes, and the observation
period was from 29 July to 6 November 2020. Figure 1 presents these variables with respect
to time of day, and smoothing splines were applied for average daily trends. Table 1 presents
descriptive statistics (mean, median, standard deviation, minimum, and maximum) of
these variables observed at 0 am (midnight), 3 am, 6 am, 9 am, 12 pm (noon), 3 pm, 6 pm,
and 9 pm.

As shown in Figure 1, the LWC, T, DPD, SW, and LW have inflection points near 12 pm
(noon), and WS and WD have inflection points near 2 pm. The information contained
in these inflection points (e.g., the rate of change in DPD) may play an important role
in forecasting a fog event in the early evening. We explored the relationships between
the response variable (LWC) and the explanatory variables with a 3 h interval to see if a
3 h forecast would be plausible. For hours t = 17, 18, 19, 20, 21 (i.e., from 5 pm to 9 pm),
we calculated the hourly averages of all variables and regressed the LWC of hour t on
each explanatory variable of hour t − 3 (simple regression) and all explanatory variables
simultaneously (multiple regression). A variable X averaged at hour t is denoted by X(t)
hereafter.
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Table 1. Descriptive statistics of liquid water content (LWC), temperature (T), dew point depression
(DPD), wind speed (WS), wind direction (WD), shortwave (SW), and longwave (LW), observed at 0 am
(midnight), 3 am, 6 am, 9 am, 12 pm (noon), 3 pm, 6 pm, and 9 pm from 29 July to 6 November 2020.

0 am 3 am 6 am 9 am 12 pm 3 pm 6 pm 9 pm

LWC
(log

base-10)

Mean −2.98 −2.89 −2.91 −3.86 −4.37 −4.29 −3.82 −3.46
Median −3.67 −3.52 −3.50 −3.98 −4.37 −4.33 −4.16 −3.97

SD 1.37 1.35 1.25 0.70 0.38 0.51 1.13 1.17
Minimum −4.67 −5.32 −4.47 −5.01 −5.24 −5.30 −6.09 −5.04
Maximum −0.50 −0.47 −0.38 −1.54 −3.10 −1.78 −0.74 −0.59

T

Mean 12.94 12.38 11.84 14.86 19.61 18.22 15.50 13.84
Median 12.95 12.62 12.13 14.02 18.18 17.58 15.08 13.62

SD 1.89 2.09 2.47 3.52 4.33 3.14 2.82 1.97
Minimum 8.37 5.97 4.55 7.68 14.08 13.23 11.25 8.63
Maximum 16.87 17.52 18.60 25.68 31.83 28.98 24.22 20.25

DPD

Mean 1.46 1.38 1.41 3.26 7.36 6.06 3.54 2.04
Median 0.71 0.25 0.09 1.92 5.97 5.60 2.93 1.28

SD 2.21 2.29 2.42 3.67 3.91 3.16 3.07 2.42
Minimum 0.00 0.00 0.00 0.00 1.18 0.72 0.00 0.00
Maximum 10.58 10.38 10.24 12.51 17.92 16.39 12.74 11.84

WS

Mean 2.66 2.31 2.14 2.47 5.06 7.22 4.88 3.22
Median 2.08 2.02 2.10 2.20 5.13 7.28 4.82 2.63

SD 1.72 1.36 1.23 1.39 2.08 1.30 1.56 1.88
Minimum 0.17 0.42 0.15 0.48 0.92 2.90 1.72 0.42
Maximum 7.45 5.73 5.05 7.45 11.93 11.52 9.23 7.97

WD

Mean 208.03 176.99 160.83 158.19 236.36 265.05 258.20 239.32
Median 240.20 178.68 127.40 112.33 264.12 263.72 256.75 249.52

SD 67.49 75.84 70.91 77.37 66.00 9.84 19.04 55.51
Minimum 56.85 47.70 18.77 51.10 35.32 238.67 227.08 46.92
Maximum 304.87 319.97 297.38 332.30 304.35 295.65 317.65 319.22

SW

Mean 0.00 0.00 0.84 211.95 571.27 442.13 59.76 0.00
Median 0.00 0.00 0.00 225.47 596.88 441.30 43.77 0.00

SD 0.00 0.00 1.79 106.06 161.48 145.77 60.07 0.00
Minimum 0.00 0.00 0.00 17.20 110.67 60.70 1.50 0.00
Maximum 0.00 0.00 10.93 445.85 841.13 731.62 239.77 0.00

LW

Mean 348.59 347.66 346.44 350.20 357.50 353.28 349.10 347.71
Median 358.37 359.28 357.23 358.78 355.02 351.15 352.47 355.35

SD 23.93 26.36 28.90 27.65 22.67 21.76 24.80 23.86
Minimum 275.72 266.23 245.38 264.83 313.80 298.33 293.48 280.82
Maximum 377.13 388.17 382.10 401.78 416.98 402.27 389.88 387.18

2.3. Derived Variables

DPD is known to be a strong predictor of the LWC. For instance, we hypothesize
that LWC(18) is strongly correlated with DPD(15). In addition, we also hypothesize that
LWC(18) is correlated with the rate of change in DPD during the afternoon. For instance,
we attempted to explain LWC(18) by the slope of the hourly averages of DPD observed
from t = 12 to t = 15 using ordinary least squares estimation (OLSE). This derived variable is
denoted by ∆DPD(12,15). In addition, since the DPD was observed over 10 min windows,
we could approximate the instantaneous rate of change at t = 15 using six data points. The
slope of DPD estimated by OLSE during the 1 h period, t = 15, is denoted by ∆DPD(15).
The slope of an hourly averaged variable X observed from hour t to hour u is denoted by
∆X(t, u), and the instantaneous slope of X at hour t, estimated by 10 min data, is denoted
by ∆X(t) hereafter. The correlations between LWC(t) and the derived variables and the
correlations between LWC(t) and the explanatory variables (introduced in Section 2.2) are
provided in Section 3.1 (Table 2) for t = 17, 18, 19, 20, and 21.
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Table 2. Correlation between LWC(t) and the variables observed t − 3. Statistical significance is
indicated by * for p < 0.05, ** for p < 0.01, or *** for p < 0.001.

LWC(t = 17) LWC(t = 18) LWC(t = 19) LWC(t = 20) LWC(t = 21)

LWC(t − 3) 0.39 *** 0.71 *** 0.86 *** 0.81 *** 0.79 ***

∆LWC(t − 3) 0.41 *** 0.39 *** 0.49 *** 0.43 *** 0.35 ***

∆LWC(t − 6,
t − 3) 0.21 * 0.56 *** 0.77 *** 0.74 *** 0.73 ***

DPD(t − 3) 0.14 0.33 *** 0.47 *** 0.52 *** 0.52 ***

∆DPD(t − 3) 0.29 ** 0.26 * 0.21 * 0.05 0.25 *

∆DPD(t − 6,
t − 3) 0.22 * 0.37 *** 0.43 *** 0.39 *** 0.13

T(t − 3) 0.20 * 0.38 *** 0.49 *** 0.52 *** 0.49 ***

WS(t − 3) 0.05 0.04 0.09 0.09 0.08

WD(t − 3) 0.19 0.05 0.19 0.21 * 0.22 *

SW(t − 3) 0.28 ** 0.37 *** 0.51 *** 0.45 *** 0.32 **

LW(t − 3) 0.23 * 0.18 0.01 0.06 0.15

All (Adjusted
R-Squared) 0.41 0.66 0.79 0.72 0.67

2.4. Prediction Model for the Binary Outcome Fog

The left panel of Figure 2 presents the daily variability of LWC measured by the
FM-120, and the right panel presents the distribution of hourly averaged LWC from 5 pm to
9 pm. We clearly see multimodal distributions which distinguish between foggy evenings
and not-foggy evenings. We used a threshold of log(LWC) = −2.5 to define a fog event, and
about 13% and 20% of the observed days were foggy as of 5 pm and 9 pm, respectively,
according to the threshold. We note that this threshold corresponds to an LWC of about
0.003 g/m3. While a threshold of 0.01 g/m3 (or log(LWC) = −2) is generally taken as the
threshold for fog, we chose the slightly lower threshold of 0.003 g/m3 in order to allow for
more cases for the predictive model based on the data observed from 29 July to 6 November
2020. Fog events were observed more frequently later in the evening during the period of
observation (13.0%, 14.0%, 14.9%, 17.8%, and 19.8% for 5 pm, 6 pm, 7 pm, 8 pm, and 9 pm,
respectively).

Using a similar method to that described in Section 2.3, we derived ∆LWC(t − 6, t − 3)
and ∆LWC(t − 3) and used these as potential predictors for LWC(t) for t = 17, . . . , 21. We
then considered four levels of prediction models using logistic regression (LR). The baseline
prediction model only considered DPD(t − 3), which is referred to as LR0. LR1 considers
LWC(t − 3) in addition to LR0. LR2 considers ∆LWC(t − 3) and ∆DPD(t − 3) in addition
to LR1. LR3 considers ∆LWC(t − 6, t − 3) and ∆DPD(t − 6, t − 3) in addition to LR2. For
instance, in order to predict fog at 6 pm, LR0 uses the DPD value at 3 pm; LR1 adds the
LWC value at 3 pm; LR2 further considers the instantaneous change (slope) of LWC and of
DPD at 3 pm; and LR3 further considers the slope of hourly averaged LWC and DPD from
12 to 3 pm. All statistical analyses were performed in R. To compare the parametric LR to a
nonparametric machine learning algorithm, we considered the random forest (RF) with all
the predictors used in LR3. The randomForest package was used in Ref. [28].

The LR uses a mathematical function, known as the logistic function, which receives
observed predictors (e.g., change in LWC from 12 pm to 3 pm) and returns the probability
of a binary outcome (e.g., the probability of a fog event at 6 pm). It may receive one or
more predictors to estimate the probability given the observed data, and a binary outcome
is predicted based on the estimated probability. Unlike the LR, the RF does not assume a
specific functional relationship between the probability of a binary outcome and observed
predictors. Instead, the RF builds decision trees based on bootstrap samples, randomly
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selects a few predictors (instead of trying all available predictors at once) to evaluate
predictability, and repeats the random process a large number of times to determine a
final model. The RF is considered as a black box because it is difficult to know why the
final model predicts the binary outcome (e.g., a fog event) given input predictors [29]. A
large-scale numerical experiment showed that RF performed better than LR with about
69% of the datasets tested in the study [29]. In general, if the true relationship between
predictors and the probability of a binary outcome is close to the assumed logistic function,
the LR will outperform the RF. Otherwise, the RF will outperform the LR, as it does not
rely on the same mathematical assumption and is not sensitive to outliers.
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Figure 2. The daily trend of LWC (left) and the observed distribution of LWC(t) from t = 17 to t = 21
(right), observed from 29 July to 6 November 2020. The red line represents the threshold above which
fog is defined to be present. This paper used a slightly lower threshold of log(LWC) = −2.5.

2.5. Evaluation of Prediction Models

The models were tested to predict fog at 5 pm, 6 pm, 7 pm, 8 pm, and 9 pm, and
we evaluated the predictive performance by the hit rate (HR), false alarm rate (FAR), and
critical success index (CSI), which are defined in Equations (1)–(3), respectively. The HR is
defined as the percentage of times that the fog was correctly predicted during the times
that there was actual fog (also known as the sensitivity, true positive rate, or recall score).
The FAR refers to the percentage of times that the fog did not occur when it was predicted
to occur (100% minus precision). The CSI refers to the ratio of occasions when fog was
correctly predicted to the number of times when there was actual fog plus the number of
times that it was incorrectly predicted that there would be fog. If we let TP, TN, FP, and FN
denote true positive, true negative, false positive, and false negative, respectively, the three
criteria are defined as:

HR = TP/(TP + FN), (1)

FAR = FP/(TP + FP), (2)

CSI = TP/(TP + FP + FN). (3)

All values for HR, FAR, and CSI, which are referred to as Equations (1)–(3), respectively,
are values between zero and one; high values for HR and CSI and low values for FAR are
desired. In addition, the CSI will always be less than or equal to the HR.

To be more realistic in the evaluation of prediction models, we considered the following
procedure. Starting with data for 27 September (about 60% of all available data), we trained
a prediction model (model parameters and decision threshold), predicted the fog (presence
or absence) for the next day between 5 and 9 pm, and recorded the prediction result (correct
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or incorrect). Then, adding the data for 28 September, we updated the model and made the
prediction for the next day. We continued this process until we reached 6 November, the
last observation day. We summarized and compared the prediction performance of the five
models considered (LR0, LR1, LR2, LR3, and RF).

3. Results
3.1. Data Exploration

Table 2 presents the correlations between LWC(t) and each variable observed at t − 3
for t ≥ 17. In the univariate analysis, the slope ∆LWC(t − 3) has a higher correlation than
the hourly average LWC(t − 3) at t = 17 (5 pm), and LWC(t − 3) is a stronger predictor than
∆LWC(t − 3) for t ≥ 18 (6 pm or later). The relationship between DPD(t − 3) and LWC(t) is
weak in the early evening, but a moderate correlation is observed in the late evening. The
slope ∆DPD(t − 3) has a higher correlation with LWC(t) than DPD(t − 3) at t = 17, and
DPD(t − 3) has a higher correlation with LWC(t) than ∆DPD(t − 3) for t ≥ 18.

In the table, statistically significant variables are marked as *, **, or *** depending on
the level of significance. LWC(t − 3) has a strong relationship with LWC(t) for t ≥ 18 (6 pm
and later), but the quick change ∆LWC(t − 3) has a moderate relationship with LWC(t) for
t ≥ 17 (5 pm and later). In addition, the gradual hourly change ∆LWC(t − 6, t − 3) has a
stronger relationship with LWC(t) for t ≥ 18 than the quick change ∆LWC(t − 3), and vice
versa, at t = 17. Using multiple regression, predicting fog at 5 pm and 9 pm seems more
challenging than predicting fog at 7 pm.

The DPD(t − 3) has a moderate relationship with LWC(t) for t ≥ 18, but ∆DPD(t − 3)
and ∆DPD(t − 6, t − 3) appear to have a higher correlation with LWC(t) rather than
DPD(t − 3) at t = 17. The gradual change ∆DPD(t − 6, t − 3) seems to be associated with
LWC(t) until t = 20.

The temperature T(t − 3) has a moderate relationship with LWC(t) for t ≥ 18, but not
at t = 17. The wind speed WS(t − 3) and the wind direction WD(t − 3) have relatively
weaker associations with LWC(t). It is interesting that the shortwave SW(t − 3) has a
moderate relationship with LWC(t) for t ≥ 18, but was found to be not a useful predictor
in the multiple linear regression. Additionally, multiple linear regression showed that,
given the information of LWC and DPD, the other meteorological factors did not make
meaningful contributions to the explanation of LWC.

3.2. Prediction Model Performance

The best prediction model depended on the time between the forecast and the observed
event (e.g., 1 h, 2 h, or 3 h forecast), as shown in other studies [16,18], and it further
depended on the time of evening (5 pm to 9 pm) in the Monterey Bay area. The critical
success index, CSI = TP/(TP + FP + FN), is summarized hourly in Table 3. For the 3 h
forecast, LR3 resulted in the highest CSI = 0.61 at 5 pm, and the simpler LR1 tended to
perform the best from 7 pm to 9 pm, with CSI = 0.64 to 0.89. While it may seem surprising
that the LR3, which utilized information from between 3 and 6 h prior, performed more
poorly than the LR1, which utilized information from only 3 h prior, we surmise that the
added information associated with the LR3 distracted the prediction from 7 pm to 9 pm.
The RF and LR1 showed similar results from 6 pm to 8 pm. For the 2 h forecast, LR1 and RF
were competitive, and RF was superior to all logistic regression models for the 1 h forecast,
except for LR3 at 6 pm. It was difficult to suggest one model for all evening hours. This
motivated the following section, which involved the consensus approach.



Atmosphere 2022, 13, 1332 9 of 13

Table 3. Hit rate (HR = TP/(TP + FN); also known as the sensitivity, true positive rate, or recall
score), false alarm rate (FAR = FP/(TP + FP); 100% minus precision), and critical success index (CSI =
TP/(TP + FP + FN)) of each prediction model by evening hours.

1 h Forecast 2 h Forecast 3 h Forecast

Time Criterion LR0 LR1 LR2 LR3 RF LR0 LR1 LR2 LR3 RF LR0 LR1 LR2 LR3 RF

5 pm
HR 0.75 0.77 0.88 1.00 0.88 0.38 0.50 0.38 0.50 0.50 0.16 0.32 0.65 0.81 0.33
FAR 0.33 0.14 0.22 0.20 0.00 0.40 0.00 0.24 0.33 0.00 0.50 0.33 0.20 0.29 0.00
CSI 0.55 0.68 0.70 0.80 0.88 0.30 0.50 0.34 0.40 0.50 0.14 0.28 0.55 0.61 0.33

6 pm
HR 0.75 0.88 0.75 0.88 0.88 0.75 0.88 0.88 0.88 0.88 0.25 0.50 0.63 0.63 0.50
FAR 0.40 0.22 0.00 0.00 0.13 0.33 0.13 0.22 0.22 0.13 0.50 0.00 0.17 0.50 0.00
CSI 0.50 0.70 0.75 0.88 0.78 0.55 0.78 0.70 0.70 0.78 0.20 0.50 0.56 0.38 0.50

7 pm
HR 1.00 0.89 1.00 1.00 1.00 0.67 0.89 0.67 0.78 0.89 0.67 0.89 0.89 0.89 0.89
FAR 0.18 0.00 0.10 0.10 0.00 0.40 0.20 0.00 0.00 0.00 0.33 0.00 0.11 0.27 0.00
CSI 0.82 0.89 0.90 0.90 1.00 0.46 0.73 0.67 0.78 0.89 0.50 0.89 0.80 0.67 0.89

8 pm
HR 1.00 0.90 0.90 0.90 0.90 0.80 0.80 0.80 0.70 0.80 0.70 0.70 0.70 0.70 0.70
FAR 0.33 0.18 0.18 0.25 0.18 0.38 0.00 0.11 0.13 0.20 0.30 0.13 0.36 0.22 0.13
CSI 0.67 0.75 0.75 0.69 0.75 0.53 0.80 0.73 0.64 0.67 0.54 0.64 0.50 0.58 0.64

9 pm
HR 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.80 0.80 0.80 0.70 0.80
FAR 0.53 0.18 0.18 0.31 0.10 0.40 0.18 0.25 0.31 0.25 0.38 0.00 0.11 0.22 0.20
CSI 0.45 0.75 0.75 0.64 0.82 0.56 0.75 0.69 0.64 0.69 0.53 0.80 0.73 0.58 0.67

3.3. Consensus Prediction

For the 2 h forecast from 5 pm to 9 pm, the RF showed the same or better performance
(higher HR, lower FAR, and higher CSI) than LR3 except for the FAR at 8 pm. For the 1 h
and 3 h forecast, the relative superiority of LR3 and RF depended on the time of evening
and the evaluation criterion (HR, FAR, or CSI), even though the two models utilized the
same set of predictors. Furthermore, there were many cases where LR1 outperformed
the logistic regression models. The RF is useful for utilizing multiple predictors without
parametric assumptions, while LR1 is simple and performs well at certain hours. We
attempted a consensus approach between LR1 and RF. When the predictions of LR1 and RF
agreed (i.e., both predicted fog or no fog), the prediction was straightforward. When the
predictions of LR1 and RF disagreed, consensus was determined by choosing the model
which was correct more often per all prior disagreements of that type. For example, if LR1
predicted fog and RF did not, yet each time this occurred in the past one model was correct
more than 50% of the time, the prediction of that model was chosen as the consensus. The
same method for consensus applied when RF predicted fog and LR1 did not. We note that
the consensus approach does not guarantee the performance of the better model. Instead,
it is devised to achieve a performance level that is close to that of the better model.

The CSI = TP/(TP + FP + FN) of the consensus prediction is compared with those
of individual LR1 and RF in Figure 3. For the 3 h prediction, the consensus prediction
resulted in a CSI score that was sometimes the same as that of the better model (at 9 pm)
and sometimes the same as that of the worse model (at 5 pm). For the 2 h prediction, it
never resulted in a lower CSI score than the worse model for the 2 h prediction. For the 1 h
prediction, however, the consensus prediction did not seem helpful, and it was found that
it could have a slightly lower CSI than the worse model.
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4. Discussion

Radiation fog, such as the Tule fog in California’s Central Valley, is often associated
with problems caused within some transportation systems, such as roadways in the Central
Valley. This, coupled with the slightly more predictable nature of radiation fog, since it
occurs in still conditions and does not advect, results in more studies considering and
measuring its presence and persistence [30]. This study, however, focused on advection
fog, given its importance in coastal ecosystems, its greater potential for water capture
(particularly when it is accompanied by orographic lift), and its added impacts on aircraft
and maritime transportation. The FM-120 instrumentation allowed us to accurately and
effectively determine the presence or absence of fog droplets and how their presence is
influenced by other meteorological factors.

Other studies have generated a variety of different metrics for assessing effectiveness
in fog prediction (generally of radiation fog). We note some of the challenges associated
with comparisons of results from different models applied in different fog regions.

Some recent studies have reported the F1 score (F1S), which combines hit rate
(HR = TP/(TP + FN); also known as the sensitivity, true positive rate, or recall score)
and false alarm rate (FAR = FP/(TP + FP); 100% minus precision) as a single metric, and
is defined as F1S = 2 × (1 − FAR) HR/(1 − FAR + HR). F1 scores ranged between 0.53
and 0.77, depending on predictive models, for 1 h forecasts of low visibility at Valladolid
Airport, Spain [16]. In a recent study of South Korea, twelve models were compared, and
they resulted in a median F1S of 0.81 in Incheon Port and of 0.66 in Haeundae Beach in
South Korea for a 1 h forecast of fog dissipation [18]. Another study considered various
simulation settings of hourly fog assessments which resulted in an average F1S from 0.25
to 0.81 [31]. In this study, for the 1 h forecast between 5 pm and 9 pm in the Monterey
Bay area, the F1S ranged from 0.81 to 0.94 under LR1 and from 0.85 to 1.00 under RF.
Despite the common metric, it is very challenging or even impossible to compare or relate
fog prediction studies, for several reasons. The outcome of interest differs from study to
study (e.g., fog, fog dissipation, low visibility), and the definition of a binary outcome to be
predicted varies. In this study, instead of using a threshold of visible distance, a common
metric associated with the presence of fog, we used the LWC measured by the FM-120 to
define a fog event. Furthermore, available predictors, causes of fog or fog dissipation, and
statistical methods vary from study to study. Additionally, we demonstrated in this study
that fog prediction is more or less challenging at certain times, and we showed that the
performance of models depends on the time of day. We focused on the critical period of the
day (between 5 pm and 9 pm) when fog often starts to appear in the Monterey Bay area.
Instead of using cross-validation, we updated the models as we moved forward for fog
prediction in the process of evaluating model performance. The limitation of our study is
that we observed the LWC data for only one season; we shall therefore extend this study to
multiple seasons and locations to determine whether one model is consistently superior.
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Though the random forest (RF) method is efficient for testing a large number of
combinations of predictors and evaluating predictive performance, it seems that human
subjectivity and experiences must be involved in this process. In our RF model, we derived
the slope variables of DPD and LWC and used the estimated slopes as predictors of RF. It
performed better than integrating all observed DPD and LWC information in the model-
building process. In other words, deriving variables based on scientific rationale seemed to
improve fog prediction as opposed to letting an automated algorithm dictate the prediction
process based purely on raw data.

The time- and location-specific performances of multiple candidate models moti-
vates the use of a consensus approach, and it has been used to account for model uncer-
tainty [32–34]. In the presence of model uncertainty, the multiple-model approach seems
reasonable by weighing one model more based on the history of performance at a certain
time, location, and other factors. Having too many models would complicate the pro-
cess without meaningful gain, and we can benefit from combining a few superior models
selected by careful monitoring and continual evaluation of past prediction performance.

Unlike related research which compared multiple prediction models separately, we
attempted time-specific consensus prediction to address the challenge posed by the outper-
formance of one model by another depending on the time of day. The consensus approach
was applied to achieve performance close to the performance of a better model. In this
study, we attempted 1 h, 2 h, and 3 h forecasts of early night fog events in the Monterey
Bay area and found that the consensus approach was robust for the 2 h and 3 h forecasts
but not for the 1 h forecast. Our findings are limited by the scope of the specific location
(the Monterey Bay area), and they are based on data collected for only one season. The
performance of consensus prediction should be validated when a larger collection of data
collected over a longer period by FM-120 instruments becomes available.

5. Conclusions

This paper implemented a consensus-based approach toward the modeling and pre-
diction of advective fog at a central California coastal location. Use of FM-120 instruments
provided accurate, reliable, and consistent measurements of air liquid water content, which
allowed for regular measurement of the presence of fog. The authors note that, given the
cost of FM-120 instruments, other lower-cost methods of fog detection, including the use of
standard fog collectors, could be considered in revised versions of the proposed methods,
with the caveat that there is some delay between the onset of a fog event and the collection
of water by a standard fog collector.

In conjunction with the measurements for LWC, we also integrated regular measure-
ments of key meteorological variables into the modeling and prediction process. The
variables we found most important to include were wind speed, wind direction, dew point
depression, previous hours’ liquid water contents, and the slopes of dew point depression
and LWC. The results presented in this paper utilized 1 h to 3 h forecasts based on these
variables in order to predict the presence of advective fog in the window from 5 to 9 pm.

Higher correlations existed between some of the more strongly related variables and
LWC at later times than at the earliest time (5 pm), possibly because, once the fog formed at
5 pm, it was a good indicator of fog existing at later times. Additionally, both the random
forest and the logistic regression models indicated some impressive predictive behaviors
for 1 h to 3 h forecasting at various times between 5 and 9 pm. The comprehensive critical
success index (CSI) exhibited values from a low of around 25% at 5 pm for the more difficult
3 h forecast to a high of 100% for the 1 h forecast at 7 pm. The specific critical success rate
values were dependent upon the time of the predicted fog and the hours ahead of the
prediction.

Furthermore, we applied a consensus approach to resolve those cases where the results
of the random forest and linear regression models disagreed. For all but one of the times
between 5 pm and 9 pm and predictions from 1 to 3 h that we examined, the consensus
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approach provided robust results in terms of CSI for agreement between model outputs
and the actual LWC data derived from the FM-120 instruments for the 2 h and 3 h forecasts.

Supplementary Materials: The data used for predictive modeling in this study are available as a
supplementary file. The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/atmos13081332/s1.
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