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Abstract. We consider the problem of computing orthogonal drawings
and quasi-upward drawings with vertices of prescribed size. For both ty-
pes of drawings we present algorithms based on network flow techniques
and show that the produced drawings are optimal within a wide class.
Further, we present the results of an experimentation conducted on the
algorithms that we propose for orthogonal drawings. The experiments
show the effectiveness of the approach.

1 Introduction

Orthogonal drawings are extensively used in many application areas and se-
veral algorithms for constructing orthogonal drawings can be found in the lite-
rature [13,4,7,8,14,17,12,18]. A widely adopted approach to produce orthogonal
drawings is the so called topology-shape-metrics approach [9], originally propo-
sed in [3,2,19,20].

Although such approach has found in the last ten years several variations,
implementations, and improvements, it is still unsuitable for producing drawings
whose vertices have size assigned by the user. Actually, the algorithms based
on the topology-shape-metrics approach make either the assumption that the
vertices are points of the grid (see, e.g. [19]), or the assumption that all vertices
have the same size (see, e.g. [2,13]).

However, orthogonal drawings with vertices of prescribed size have a wide
range of applications. Examples are diagrams with long labels on symbols, dia-
grams for which the semantics or the importance of each vertex is related to
its size, and diagrams whose vertices contain pictures or maybe other diagrams.
Further, the capability of drawing vertices of prescribed size could be a key issue
in the realization of new techniques for edges labelling. Namely, fictitious verti-
ces of size suitable to host the labels could be inserted during a preprocessing
step and replaced with the corresponding labels in the final drawing.
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See in Fig. 1 two examples of drawings computed with the techniques descri-
bed in this paper.

(a) (b)

Fig. 1. (a) A drawing with small and large vertices. (b) The basic blocks of an industrial
plant (a boiling water reactor nuclear plant). Both drawings have been computed with
an implementation of the techniques described in this paper.

In this paper we introduce in Section 2 a new drawing convention, called
podavsnef, for planar orthogonal drawings with vertices of prescribed size. It is
a variation of the podevsnef drawing convention presented in [13].

Second, we present in Section 3 an algorithm for constructing podavsnef dra-
wings. The algorithm computes a podevsnef drawing and then expands the ver-
tices. The expansion of vertices is shown to be optimal among a large set of
possible expansions and the produced drawings can be further compacted with
a post-processing compaction technique at the expenses of a higher computation
time. Both the algorithm for vertex expansion and the post-processing are based
on network flow techniques. The proposed algorithm was implemented and te-
sted against the large test suite of graphs used in [10]. The height and the width
of the vertices of the graphs have been randomly chosen in a wide interval. The
experiments put in evidence the effectiveness of the techniques (Section 4).

Further, since the topology-shape-metrics approach has been recently exten-
ded to the construction of quasi-upward planar drawings of directed graphs [6],
we also study the problem of producing quasi-upward planar drawings of di-
graphs with vertices of prescribed size (Section 5). We show an algorithm that
is based on the construction of a visibility representation as an intermediate
drawing.
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2 Preliminaries and Drawing Conventions

We assume familiarity with planarity and connectivity of graphs [11,16] and with
flow networks [1]. An embedded planar graph is a planar graph with a specified
circular order of edges around vertices and a specified external face, admitting
a planar drawing that respects the given embedding. Unless otherwise specified
the planar graphs we consider are always embedded. A planar st-digraph G is an
embedded planar digraph with only one source s and one sink t embedded on
the external face. The dual st-digraph G∗ of G is defined as follows. The faces of
G are in one-to-one correspondence with the vertices of G∗, but for the external
face of G that corresponds to two vertices s∗ and t∗ of G∗. For every edge e of
G, G∗ has an edge (f, g), where f is the face to the left of e and g is the face to
the right of e. Digraph G∗ may have multiple edges.

A planar orthogonal drawing of a planar graph is a planar drawing that maps
each edge into a chain of horizontal and vertical segments. A planar orthogonal
grid drawing is an orthogonal drawing such that vertices and bends along the
edges have integer coordinates. A planar graph admits a planar orthogonal (grid)
drawing if and only if its vertices have maximum degree four [21]. An orthogonal
representation is an equivalence class of planar orthogonal drawings such that all
the drawings of the class have the same sequence of left and right turns (bends)
along the edges and two edges incident at a common vertex determine the same
angle.

In order to orthogonally draw graphs of arbitrary vertex degree, different
drawing conventions have been introduced. The podevsnef (planar orthogonal
drawing with equal vertex size and not empty faces) drawing convention was
introduced in [13]. In a podevsnef drawing (see Fig. 2.a):

1. Vertices are points of the grid but it is easier to think to them in terms of
squares of half unit sides centered at grid points.

2. Two segments that are incident on the same vertex may overlap. Observe
that the angle between such segments has zero degree.

3. All the polygons representing the faces have area strictly greater than zero.
4. If two segments overlap they are presented to the user as two very near

segments.

In [13] an algorithm is presented that computes a podevsnef drawing of a pla-
nar graph with the minimum number of bends. Further, the authors conjecture
that the drawing problem becomes NP-hard when Condition 3 is omitted. The
podevsnef drawings generalize the concept of orthogonal representation, allowing
angles between two edges incident to the same vertex to have a zero degree va-
lue. The consequence of the assumption that the polygons representing the faces
have area strictly greater than zero is that the angles have specific constraints.
Namely, because of Conditions 2 and 3, each zero degrees corresponds to exactly
one bend [13]. An orthogonal representation corresponding to the above defini-
tion is a podevsnef orthogonal representation.

We also consider a similar drawing convention introduced in [5] called simple-
podevsnef. In that model, the following constraints are added to the podevsnef
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drawing convention: (i) In order to distribute the edges around a vertex more
uniformly, each vertex with degree greater than four has at least one incident
edge on each side. (ii) Consider a vertex u with deg(u) > 4. Consider two edges
(u, v) and (u, w) incident on u and such that (u, w) follows (u, v) in the circular
clockwise ordering given by the embedding. If there is a zero degree angle at u
between (u, v) and (u, w), then (i) (u, w) contains at least one bend and (ii) the
first bend of (u, w) encountered while following (u, w) from u to w causes a right
turn.

The simple-podevsnef drawing convention has several advantages [5]: the com-
putation of its orthogonal representation can be done with a standard minimum
cost flow technique and the final orthogonal drawing can be computed with a
standard compaction technique. Observe that a simple-podevsnef drawing is a
podevsnef drawing.

We generalize the concept of podevsnef drawing by introducing the podavsnef
convention. A podavsnef (planar orthogonal drawing with assigned vertex size
and non-empty faces) drawing is an orthogonal drawing such that:

1. Each vertex is a box with its specific height and width (assigned to each
single vertex by the user).

2. Two segments that are incident on the same vertex may overlap. Observe
that the angle between such segments has zero degree.

3. Consider any side of length l ≥ 0 of a vertex v and consider the set I of arcs
that are incident on such side.
a) If l + 1 > |I| then the edges of I cannot overlap.
b) Else (l + 1 ≤ |I|). The edges of I are partioned into l + 1 non-empty

subsets such that all the edges of the same subset overlap.
4. The orthogonal representation constructed from a podavsnef drawing by con-

tracting each vertex into a single point is a podevsnef orthogonal represen-
tation.

From the above definition it follows that a podevsnef drawing is a podavsnef
drawing such that all its vertices have width and height both equal to zero. On
the other hand a podavsnef drawing is essentially a podevsnef drawing where
vertices have specific sizes and where the edges incident on each vertex side are
uniformly distributed.

A quasi-upward drawing of a digraph [6] is such that the horizontal line
through each vertex v (that is drawn as a point) “locally” splits the incoming
edges of v from the outgoing edges of v. The term locally is used to identify a
sufficiently small connected region properly containing v.

A pqudavs (planar quasi-upward drawing with assigned vertex size) drawing
(Fig. 6.e) is a quasi-upward drawing such that each vertex is a box with its
specific height and width (assigned to each single vertex by the user).

3 Computing Podavsnef Drawings

In this section we first show that, given a planar graph and an assignment of
height and width for each of its vertices it is always possible to compute a
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podavsnef drawing with the prescribed dimensions for vertices. Second, we show
a complete strategy for constructing podavsnef drawings that allows trade-offs
between effectiveness and efficiency.

Given a podavsnef drawing Γ and two vertical (horizontal) lines that do not
intersect any vertex, a vertical strip (horizontal strip) is the set of the vertices of
Γ contained in the geometric strip defined by the two lines. A vertical partition
(horizontal partition) of Γ is the partition of the vertices of Γ into vertical
(horizontal) strips with the maximum number of strips. We number the strips
of the partition left to right (top to bottom).

A podavsnef drawing Γ is splittable if a vertical and a horizontal partition of
the vertices of Γ exists such that: (1) A vertex v of Γ uniquely determines one
horizontal strip σH(i) and one vertical strip σV (j) (we associate to v the pair
i, j); and (2) The function associating a pair i, j to each vertex v is injective.
The two partitions are a split of Γ . Observe that if Γ is splittable, then its split
is unique.

Consider two podavsnef drawings Γ ′ and Γ ′′ of the same graph and with the
same podevsnef orthogonal representation and with splits σ′ and σ′′, respectively.
Splits σ′ and σ′′ are equivalent if for each vertex v, the pair i, j determined by v
in σ′ is the same v determines in σ′′.

Given a planar graph G we construct a podevsnef drawing Γ of G, using one
of the algorithms presented in [13,5]. Roughly speaking, our strategy consists of
expanding the vertices inside different strips independently, preserving the shape
of the drawing. After the expansion the strips are “glued” together.

Consider a podevsnef drawing Γ . Observe that Γ is always splittable. The
split of Γ can be constructed as follows. The i-th horizontal (vertical) strip
σH(i) (σV (i)) is obtained considering the vertices of Γ with y-coordinates (x-
coordinates) in the interval [i − 1/2, i + 1/2]. See Fig. 2.a.

We associate with a vertical strip σV (i) a flow network Ni as follows (See
Fig. 2.b). In σV (i) a vertex u is up-visible from a vertex v if y(u) > y(v) and a
vertex x does not exist such that y(u) > y(x) > y(v). If u is up-visible from v
and u and v are joined by a straight edge, then v is up-adjacent to u.

The nodes of Ni are: Three nodes nl
v, nc

v, and nr
v, for each vertex v of σV (i).

Two nodes nl
u,v and nr

u,v for each vertex u that is up-adjacent to a vertex v.
One node nc

u,v for each vertex v that is up-visible from a vertex u that is not
up-adjacent to v. One source-node si and one sink-node ti.

For each vertex u that is up-adjacent to a vertex v we introduce the arcs
(nc

u, nr
u,v), (nc

u, nl
u,v), (nr

u,v, nc
v), (nl

u,v, nc
v), (nl

u, nl
u,v), (nr

u, nr
u,v), (nl

u,v, nl
v), and

(nr
u,v, nr

v).
For each vertex v that is up-visible from a vertex u that is not up-adjacent

to v we introduce the arcs (nc
u, nc

u,v), (nc
u,v, nc

v), (nl
u, nc

u,v), (nr
u, nc

u,v), (nc
u,v, nl

v),
and (nc

u,v, nr
r).

Let u be the bottommost (topmost) vertex of σV (i). We introduce the arcs
(si, n

l
u), (si, n

c
u), and (si, n

r
u) ((nl

u, ti), (nc
u, ti), and (nr

u, ti)).
The units of flow correspond to units of width of the strip. We denote by

lb(·) and ub(·) lower and upper bounds, respectively. Each node nc
u has lb(nc

u) =
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v
rnvnc
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0, 0,

0, 0,

0, 0,

1,

2,

t3

s3

6,6

3

3

6

222

2
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21

1

112

2 3 1

4 2

2 2 2

3,3

2,2

σv
(2)

σv
(2)

(b)

(d)(c)

(a)

v

u

z

x

u

v

x

z

Fig. 2. (a) A podevsnef drawing and its vertical strip σV (2). (b) The flow network
N2. Labels show the most important lower and upper bounds. (c) A minimum flow
in network N2. The thickness of the arcs is proportional to their flow; arcs and nodes
with 0 flow are omitted. (d) Widths and positions of vertices in σV (2).

ub(nc
u) = w ≥ 0, where w is the width assigned to u. The lower bounds of

arcs (nl
u,v, nc

v) and (nr
u,v, nc

v) are used to preserve enough space for the edges
incident on v from below. Namely, consider the sets I l and Ir of arcs incident
from below to the left and to the right of the straight edge connecting u to v,
respectively. If w + 1 > |I l| + |Ir| then, according to the podavsnef convention,
the incident edges can not overlap. Hence, we assign lb(nl

u,v, nc
v) = |I l| and

lb(nr
u,v, nc

v) = |Ir|. Else (w + 1 ≤ |I l| + |Ir|), w is not enough large to draw
the incident edges all non-overlapping. In this case we assign lb(nl

u,v, nc
v) = 0,

ub(nl
u,v, nc

v) = |I l|, lb(nr
u,v, nc

v) = 0, and ub(nr
u,v, nc

v) = |Ir|. Analogous bounds
are assigned to (nc

u, nl
u,v) and (nc

u, nr
u,v). Lower and upper bounds not specified

are set to 0 and to ∞, respectively. All arcs have an ∞ capacity and 0 cost. See
Fig. 2.

Property 1. Network Ni is a planar st-digraph.
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We define a network NV associated with the vertical partition of Γ , obtained
by the networks Ni by adding a new source sV , a new sink tV , and, for each
i, the edges (sV , si) and (ti, tV ) (lb(sV , si) = lb(ti, tV ) = 0 and ub(sV , si) =
ub(ti, tV ) = ∞). We apply an analogous construction to the horizontal partition
of Γ , defining a network NH .

Property 2. Networks NV and NH are planar st-digraphs with O(n) nodes,
where n is the number of vertices of G.

From the above discussion we have:

Lemma 1. Each pair of feasible flows one of NV and the other of NH de-
termines a podavsnef drawing that admits a split equivalent to the one of Γ .
Conversely, for each podavsnef drawing admitting a split equivalent to the one
of Γ there exists a pair of feasible flows one of NV and the other of NH .

It is easy to see that networks NV and NH always have a feasible flow.
Because of Lemma 1 and since a podevsnef drawing of a planar graph always

exists [13], we have:

Lemma 2. Let G be a planar graph and suppose an assignment of widths and
heights is given for the vertices of G. A podavsnef drawing of G always exists
with vertices of the given sides.

The values of flow in NV and NH are in one-to-one correspondence with
the width and the height of the corresponding podavsnef drawings. A minimum
width and height drawing can be computed by computing minimum flows on
NV and NH . Hence, we have:

Theorem 1. Let G be a planar graph and let Γ be a podevsnef drawing of G.
Suppose an assignment of widths and heights is given for the vertices of G. A
podavsnef drawing of G can be computed that has minimum width and minimum
height among those admitting a split that is equivalent to the one of Γ .

Observe that a minimum flow in NV can be computed by solving a min-cost-
flow problem on NV augmented with arc (sV , tV ) (with cost equal to zero) and
by setting a cost equal to one on arcs (sV , si). In such network we can “pump”
any feasible flow of NV . The minimum flow in NV is obtained by subtracting
from the feasible flow the value of flow through (sV , tV ).

It is clear that, even if the drawings produced with the above strategy are
minimal in their equivalence class, they can be often further reduced in size if
we allow vertices of a strips (vertical or horizontal) to enter another strip. This
is not possible in the above framework.

If the user is interested in smaller drawings, even at the expenses of a higher
computational time, a more effective technique can be adopted. The idea is to
use the podavsnef drawing produced so far as a starting point for successive
compaction steps.
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We adopt a heuristic similar to the one used in the VLSI compaction [15],
and that generalizes the “moving” technique presented in [12]. Namely, at each
step we “squeeze” as much as possible the drawing in one direction. Then, we do
the same in the opposite direction. We continue alternating the two steps until
the drawing cannot be further squeezed. The steps should not modify the size of
vertices. In the following we describe the algorithm for compacting with respect
to the horizontal direction. The vertical case is analogous.

First (preprocessing step), we reduce the problem of horizontally compacting
the podavsnef drawing Γ to the problem of horizontally compacting a drawing Γ ′

with all zero size vertices and constraints on the length of a subset of its edges.
It is worth noting that the techniques described hereunder can be used in any
case an analogous reduction can be found. The drawing Γ ′ is obtained from Γ
as follows (see Fig. 3). (i) Each box of Γ representing a vertex is replaced with
a box-shaped cycle in which the corners of the box and the attach points of the
edges are represented by zero size vertices. We call vertex-boundary edges the
edges created in this way. (ii) Each bend is replaced by a zero size vertex. The
whole drawing is enclosed in a box consisting of four additional vertices and
edges, in order to make easy to handle the external face in the subsequent steps.

s

t

(a) (b)

Fig. 3. The starting podavsnef drawing Γ (a) and The flow network NV (b).

From Γ ′ we construct a drawing Γ# such that all the faces are rectangles.
This is done by splitting the faces of Γ ′ with a suitable set of new horizontal
edges. See for example Fig. 3.b. This operation requires, in general, the intro-
duction of fictitious vertices (white colored in the figure).

We compute the compacted drawing with a flow technique. Namely, we de-
termine the new lengths to be assigned to the horizontal edges by solving a min-
cost-flow problem on a network N built as follows (see Fig. 3.b): (i) the nodes are
the internal faces of Γ#; (ii) we insert an arc for each pair of vertically-adjacent
faces, with the only exception of the adjacencies with the external face. In other
words, the horizontal edges of Γ# that are not on the external face are in one-
to-one correspondence with the arcs. Each arc is directed from the bottom face
to the upper face.
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Each unit of flow corresponds to one unit of length. When the solution is
computed the vertex coordinates can be easily assigned using a depth first search
visit of the drawing. In order to preserve the size of vertices and to minimize the
total length of the horizontal edges, we set bounds and costs on each arc a of N
corresponding to edge e of Γ# as follows: if e is a vertex-boundary edge, then
we set lb(a) = ub(a) equal to the value of the length of e. Since the value of the
flow through a is fixed, its cost is irrelevant; if e belongs to Γ# but it is not an
edge of Γ ′, then lb(a) = 1, ub(a) = ∞, and the cost of a is set to 0; if e belongs
to Γ ′ and it is not a vertex-boundary edge, then lb(a) = 1, ub(a) = ∞, and the
cost of a is set to 1.

Property 3. Network N is a planar st-digraph with O(n + b) nodes, where n is
the number of vertices and b is the number of bends of Γ . The source s and the
sink t of N are the bottom and the top faces of Γ#, respectively.

Network N admits a feasible flow. The value of flow produced by s is equal to
the width of the box enclosing the drawing. It is easy to see that the solution of
a min-cost-flow problem on N corresponds to a minimization of the total length
of the horizontal edges.

It is also possible to exploit network N to minimize the total width of the
drawing. This is done by using what we call the pinch technique. During the
construction of Γ ′, before building the enclosing box we encapsulate Γ ′ into a
rectangle whose horizontal sides are assigned a high cost (lb = 0 and ub = ∞).

It is worth noting that, even though the techniques described above consider-
ably reduce the length of the edges, we still have space for improvements. In fact,
the described procedure does not allow the attach points of the edges to “slide”
along the boundaries of the vertices because the length of each vertex-boundary
edge in Γ ′ is fixed. Such constraint can be relaxed.

In order to obtain the desired dimension for the vertices we can fix only
the sum of the lengths of the vertex-boundary edges along the top and bottom
sides of each vertex, leaving the attach points free to move along the boundary.
Namely, the flow network N can be modified as follows (see Fig. 4.d):

– For each box-shaped face f of Γ# representing a vertex v of Γ , we split the
node of N associated with f into two nodes vout and vin and add a directed
arc e = (vin, vout). The incoming edges of v become the incoming edges of
vin while the outgoing edges of v become the outgoing edges of vout.

– We set lb(e) = ub(e) equal to the width assigned to v, and cost of e equal
to 0.

– For each vertex-boundary edge e′ of f , we set the lower bound of the corre-
sponding arc of N equal to 0 if e′ is incident to a “corner” of f , and equal
to 1 otherwise. The value of ub(e′) is set to ∞ and the cost of e′ is set to 0.

The benefits deriving from the above modifications are put in evidence in
Fig. 4.a, 4.b, and 4.c.
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lb=1

lb=0
lb=0

lb=1 lb=1

lb=0 lb=0

lb=ub=width(a)

(b) (c) (d)

Fig. 4. Given an initial configuration (a), figures (b) and (c) show the results of the
compaction without and with the refined strategy illustrated in figure (d).

4 Experiments with GDToolkit

We implemented the algorithms described in Section 3, that compute a podavsnef
drawing from a podevsnef one. In particular our implementation constructs a po-
davsnef drawing starting from a simple-podevsnef drawing. The implementation
uses the GDToolkit library1.

We tested the algorithm over a set of more than 8000 (not-necessarily planar)
graphs in the data-base used in [10], representing data from real-world applica-
tions. The number of vertices of the tested graphs is in the range 10 − −100.

Our experimental setting is as follows. For each graph G in the test-suite
we have randomly chosen the width w and the height h of every vertex v of G
with a uniform probability distribution in the range 0 − 9. The area covered by
v (in terms of grid-points) is (w + 1)(h + 1). Subsequently, we have computed a
simple-podevsnef drawing Γ of G, and a podavsnef drawing Γ ′ of G starting from
Γ . In the simple-podevsnef Γ all vertices have zero width and height, each one
covering one unit of area. Both for Γ and for Γ ′ we measured the ratio between
the total area covered by the vertices and the area of the drawing (both in terms
of grid-points).

The experiments show that the compaction strategies described in the pre-
vious section make an effective usage of the area of the drawing, increasing the
percentage of area used to represent vertices. Also, from the point of view of the
CPU time, all the computations were performed within an acceptable amount of
time. Namely, the largest graphs required less than 50 seconds on a PC Pentium
II (350 MHz) with Linux and C++ code compiled with GNU g++.

5 Computing Pqudavs Drawings

In this section we describe how to compute a pqudavs drawing of a planar digraph.
Since the strategy for computing a planar quasi-upward drawing relies on the
1 http://www.dia.uniroma3.it/˜gdt
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construction of a planar upward drawing of a planar st-digraph derived from
it [6], we focus on the problem of constructing a pqudavs drawing of a planar
st-digraph. The techniques can be easily applied to draw general planar digraphs.

Planar upward drawings of planar st-digraphs can be constructed by using,
as intermediate drawing, a visibility representation [9]. Visibility representati-
ons map vertices to horizontal segments (vertex-segments) and edges to vertical
segments (edge-segments). The vertical segment representing edge (u, v) has its
endpoints on the horizontal segments representing vertices u and v, and does
not intersect with any other horizontal segment.

The basic technique [9] to compute coordinates of the vertex-segments of a
visibility representation of an st-digraph G consists of computing two optimal
topological numberings, one performed on the st-digraph G and the other per-
formed on its dual st-digraph G∗. We recall that a topological numbering of an
st-digraph is an assignment of integer numbers to its vertices, such that, for each
edge (u, v), the number assigned to v is greater than the one assigned to u. The
numbering is optimal if the range of numbers assigned to the vertices is minimi-
zed. The y-coordinate of the vertex-segment representing vertex v is the number
assigned to v by the optimal topological numbering of G. The left and right x-
coordinates of the vertex-segment representing vertex v are: (left x-coordinate)
the lowest number assigned by the optimal topological numbering of G∗ to the
vertices of the face associated with v; (right x-coordinate) the highest number
assigned by the optimal topological numbering of G∗ to the vertices of the face
associated with v minus one (See Fig. 5).
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Fig. 5. (a) An st-digraph (colored black and drawn upward) and its dual (colored grey).
Labels are the result of two optimal topological numberings. (b) The corresponding
visibility representation.

Given an st-digraph G and an assignment of specific height and width to
each of its vertices, we compute a pqudavs drawing of G by using, as interme-
diate drawing, an expanded visibility representation. In the expanded visibility
representation a vertex with assigned height h and width w is represented by
a box (vertex-box) of height h and width greater than or equal to w, while an
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edge (u, v) is represented as usual by a vertical segment connecting the boxes
representing vertices u and v, and not intersecting with any other vertex-box.

We assign the y-coordinates (x-coordinates) of the vertex-boxes of the expan-
ded visibility representation by means of a network flow technique, computed on
the flow network Ny (Nx) defined as follows.

1. Starting from G, we construct a digraph G′ (see Fig. 6.a) by replacing each
vertex v of G with two new vertices vin and vout and with a new directed
edge (vin, vout). The incoming edges of v become the incoming edges of vin

while the outgoing edges of v become the outgoing edges of vout. Observe
that G′ is a planar st-digraph.

2. We compute the dual st-digraph G′∗ of G′.
3. The nodes and arcs of Ny are (see Fig. 6.b) the vertices and edges of G′∗.

Let v be a vertex of G with assigned height h. Let e be the edge of G′∗

associated with (vin, vout). We set in Ny lb(e) = ub(e) = h. All the other
arcs of Ny have lower bound equal to one and upper bound equal to ∞.

4. The nodes and arcs of Nx are the vertices and edges of G′. Let v be a vertex
of G with assigned width w. We set in Nx lb(vin, vout) = w+1. All the other
arcs of Nx have lower bound equal to one. All the arcs have upper bound
equal to ∞.

Each unit of flow on an arc of the network Nx corresponds to a unit of width
required by the corresponding edge or vertex-box of G. Each unit of flow on
an arc of the network Ny corresponds to a unit of height of the corresponding
edge or vertex-box of G. Therefore, from a pair of feasible flows of Ny and Nx

the coordinates of the vertex-boxes and of the edge-segments of the expanded
visibility representation are easily computed (see Fig. 6.c and 6.d).

Property 4. Networks Ny and Nx are planar st-digraphs with O(n) nodes, where
n is the number of vertices of G.

Observe that, since all the upper bounds on the arcs of Nx are set to ∞, there
always exists a feasible flow in such network. Further, in the network Ny the only
arcs with a bounded upper capacity are those corresponding to the edges of G′

derived from the splitting of vertices. However, for each of these arcs there is a
directed path connecting its end vertices, composed by arcs with infinite upper
bound. Then ([1]) there always exists a feasible flow in Ny.

Since networks Ny and Nx always have a feasible flow, and since from an
expanded visibility representation a pqudavs drawing can be easily computed
with the techniques illustrated in [9] and in [6], we have:

Theorem 2. Let G be a quasi-upward planar digraph and suppose an assign-
ment of widths and heights is given for the vertices of G. A pqudavs drawing of
G always exists.

The amounts of flow in Ny and Nx are in one-to-one correspondence with the
height and width of the expanded visibility drawings. Hence, to construct dra-
wings with limited width and height we can compute minimum flows on Ny and
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Fig. 6. (a) The digraph G′ obtained by splitting each vertex of the input graph G
(the digraph of Fig. 5). (b) The network flows Nx (black arcs) and Ny (grey arcs).
Black (white) labels show the most important lower and upper bounds of Nx (Ny).
Unspecified lower bounds and upper bounds are assumed to be 1 and ∞, respectively.
The lower and upper bounds on dashed arcs are used to specify the vertex dimensions.
(c) Two minimum flows for Nx and Ny. The thickness of the arcs is proportional to
their flow. Arcs with flow 0 are omitted. (d) The expanded visibility representation of
G corresponding to the flow values in (c). (e) A pqudavs drawing of the digraph G with
the vertices of the specified height and width.

Nx. A further level of optimization of the drawing can be reached by assigning
one unit of cost to the arcs of Ny and performing a min-cost-flow on Ny with
the above minimum flow as feasible flow. Since units of flow represent lengths of
the edge-segments, this technique allows to obtain drawings with reduced total
edge length. Unfortunately, since there are many degrees of freedom in obtaining
the st-digraph G from the input digraph, the reduced size of the drawing of the
st-digraph does not imply the reduced size of the pqudavs drawing of the input
graph.
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