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Abstract—It is commonly known that physical layer security

is achieved with a trade-off in terms of the achievable rate.

Hence, security constraints generate rate losses in wiretap

channels. To mitigate such rate losses in multi-user channels,

we propose a coding/decoding scheme for multi-user multiple

access wiretap channel (MAC-WT), where previously trans-

mitted messages are used as a secret key to enhance the se-

crecy rates of the transmitting users, until the usual Shannon

capacity region of a multiple access channel (MAC) is achieved

without the secrecy constraint. With this coding scheme, all

messages transmitted in the recent past are secure with re-

spect to all the information of the eavesdropper till now. To

achieve this goal, we introduce secret key buffers at both the

users and the legitimate receiver. Finally, we consider a fading

MAC-WT and show that with this coding/decoding scheme, we

can achieve the capacity region of a fading MAC channel (in

the ergodic sense).

Keywords—multiple access channel, physical layer security,

strong secrecy, wiretap channel.

1. Introduction

In [1], Wyner proved, degraded wiretap channel, that by

assigning multiple codewords to a single message, we can

achieve reliability as well as security in a point-to-point

channel communication and characterized secrecy capacity

for this channel. After decades of work commenced af-

ter the wireless revolution had begun, researchers started

extending Wyner’s coding scheme (wiretap coding) in dif-

ferent directions. A single user fading wiretap channel was

studied in [2], [3]. A secret key buffer was used in [4] to

mitigate the fluctuations in the secrecy capacity due to the

variations in the channel’s gain over time.

A multiple access channel (MAC) with security constraints

was studied in [5] and [6]. In [5], the transmitting users

treat each other as eavesdroppers (Eve) and an achiev-

able secrecy rate region is characterized. In some special

cases the secrecy capacity region is also found. In [6], the

authors consider the eavesdropper to be listening at the re-

ceiving end. The authors provide an achievable secrecy-rate

region. The secrecy-capacity region is not known for such

a MAC. The same authors also studied a fading MAC with

full channel state information (CSI) of Eve known at the

transmitters. Paper [7] is a research extension of a scenario

in which the CSI of Eve is not known at the transmitters.

For a detailed review of theoretical information theoretic

security see [8], [9], and [10].

In all of the above mentioned papers, a notion of weak se-

crecy was used, i.e. if M is the message transmitted and the

eavesdropper receives Zn for a codeword of length n chan-

nel uses, then I(M;Zn)/n→ 0, as n→ ∞. This notion of

secrecy is not stringent enough in various cases [9]. In [11],

Maurer proposed a notion of strong secrecy: I(W ;Zn)→ 0
as n → ∞. For a point-to-point channel, he showed that

it can be achieved without any change in secrecy capacity.

Since then, other methods have been proposed for achiev-

ing strong secrecy [12], [13] and [14]. The methods shown

in [12] and [14] have been used to obtain strong secrecy

for a MAC-WT in [15] and [16], respectively.

In all these works one may notice that security is achieved

at the cost of transmission rate. For a single user AWGN

wiretap channel, if Cb is the capacity of the legitimate re-

ceiver (Bob) and Ce is the capacity of Eve’s channel, then

the secrecy capacity of this channel is Cs = (Cb−Ce)
+,

where (x)+ = max(0,x) [17]. In recent years, some work

has been devoted to mitigating the secrecy rate loss. A feed-

back channel is used in [18] and [19] to enhance the se-

crecy rate, and under certain conditions the authors prove

that the secrecy capacity can approach the main channel

capacity. In [20], the authors assume that the transmit-

ter (Alice) and Bob have access to a secret key, and then

they propose a coding scheme which utilizes that key to

enhance the secrecy rate. A secure multiplex scheme has

been proposed in [21] which achieves Shannon channel ca-

pacity for a point-to-point wiretap channel. In this model,

multiple messages are transmitted. The authors show that

the mutual information of the currently transmitted mes-

sage with respect to (w.r.t.) all the information received by

Eve goes to zero as the codeword length n→ ∞. In [22],

Shah et al. propose a simple coding scheme, without any

feedback channels or access to a specific key, and enhance
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the secrecy capacity of a wiretap channel to the Shannon

capacity of the main channel. In this work, only the mes-

sage currently being transmitted is secure with respect to

all information possessed by Eve.

In [23], the coding scheme of [22] was extended to a mul-

tiple access wiretap channel and it was shown that the

Ahleswede-Liao region of the MAC can be achieved as the

secrecy rate region, while keeping the currently transmitted

message secure with respect to all information of Eve. In

this paper, we extend the coding/decoding schemes of [22]

and [23] to a multiple access wiretap channel and prove that

we can achieve the Ahleswede-Liao region [24], [25] of the

MAC as the secrecy-rate region, while keeping all recent

messages secure with respect to the information possessed

by Eve until the present. Finally, we achieve the same for

a fading MAC-WT.

The remaining part of the paper is organized as follows.

In Section 2, we define the channel model and recall some

previous results which will be used in this paper. We ex-

tend the coding/decoding scheme from [22] to two user

discrete memoryless MAC-WT (DM-MAC-WT) in Section

3, and prove the achievability of the Ahleswede-Liao re-

gion, under the security constraint that only the currently

transmitted message is secured with respect to all data re-

ceived by Eve. In Section 4, we consider a two-user DM-

MAC-WT where each user, i.e. the receiver as well as

Eve, has infinite length buffers to store previous messages.

We propose a coding scheme to enhance the secrecy rate

region to the Ahleswede-Liao region of the usual MAC,

this time with the security constraint that all recent mes-

sages are secure with respect to all information possessed

by Eve. In Section 5, we consider a two-user fading MAC-

WT and extend the coding scheme from the previous sec-

tions to enhance the secrecy-rate region of the fading MAC-

WT to the Ahleswede-Liao region of the MAC in the er-

godic sense. Section 6 concludes the paper. The Appendix

contains several lemmas used in the proofs of the main

theorems.

In this paper, random variables will be denoted by capi-

tal letters X ,Y,Z, vectors will be denoted with upper-bar

letters, e.g. X = (X1, . . . ,Xn), and scalar constants will be

denoted by lower case letters a,b, etc.

2. Multiple Access Wiretap Channel

A discrete memoryless multiple access channel with a wire-

tapper and two users is considered (Fig. 1). The channel is

represented by a transition probability matrix p(y,z|x1,x2),
where xi ∈Xi is the channel input from user i, i = 1,2,

y ∈Y is the channel output to Bob and z ∈Z is the chan-

nel output to Eve. Sets X1,X2,Y ,Z are finite. The two

transmitting users want to securely and reliably send mes-

sages M(1) and M(2) to Bob (legitimate receiver), while

ensuring that eavesdropper (Eve) cannot decode the mes-

sages.

Fig. 1. Discrete memoryless multiple access wiretap channel.

Definition 2.1. For a MAC-WT, a (2nR(s)
1 ,2nR(s)

2 ,n) code-

book comprises of (1) two sets of messages M (i), i = 1,2,

where cardinality of each message set is 2nRi , (2) uniformly

distributed messages M(1) and M(2) over corresponding

message sets (messages are assumed to be independent of

each other), (3) two stochastic encoders:

fi : M
(i) →X

n
i , i = 1,2, (1)

and (4) a decoder at Bob:

g : Y
n →M

(1)×M
(2). (2)

The decoded (estimated) messages are denoted by

(M̂(1),M̂(2)).

The average error probability at the receiver (Bob) is:

P(n)
e , P

{(
M̂(1),M̂(2)

)
6=
(

M(1),M(2)
)}

, (3)

and leakage rate at Eve is:

R(n)
L =

1
n

I(M(1),M(2);Zn). (4)

In [6], the authors have defined two types of security re-

quirements depending upon the mutual trust of the trans-

mitting users. If each user is conservative, such that when

the other user is transmitting, then it may compromise with

Eve and provide Eve with its codeword, then individual

leakage constraints:

R(n)
L,1 =

1
n

I(M(1); Zn|X (2)
), (5)

R(n)
L,2 =

1
n

I(M(2); Zn|X (1)
), (6)

are relevant, where X (i)
denotes the codeword for user i.

In a scenario where the users trust each other, collective

leakage:

R(n)
L =

1
n

I(M(1),M(2);Zn). (7)

is relevant. Since, M(1)⊥M(2) and, hence, also X (1)
⊥X (2)

,

where X ⊥Y denotes that random variable X is independent

of Y :
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nR(n)
L = I(M(1), M(2); Zn)

= I(M(1);Zn)+ I(M(2); Zn|M(1))

= H(M(1))−H(M(1)|Zn)+H(M(2))

−H(M(2)|Zn,M(1))

≤ H(M(1)|Xn
2 )−H(M(1)|Zn,Xn

2 )

+H(M(2)|Xn
1 )−H(M(2)|Zn,Xn

1 )

= I(M(1); Zn|Xn
2 )+ I(M(2); Zn|Xn

1 )

= nR(n)
L,1 +nR(n)

L,2 (8)

and hence, if individual leakage rates are small, then so is

the collective leakage rate. In this paper, we consider the

secrecy notion (7).

Definition 2.2. The secrecy-rates (R(s)
1 ,R(s)

2 ) are achievable

if there exists a sequence of codes (2nR(s)
1 ,2nR(s)

2 ,n) with

P(n)
e → 0 as n→ ∞ and

limsup
n→∞

R(n)
L,i = 0, for i = 1,2 . (9)

By taking closure of convex-hull of the achievable secrecy-

rate tuple (R(s)
1 ,R(s)

2 ), we obtain secrecy-capacity region for

MAC-WT.

In [6], the authors propose a superposition coding-based

scheme to obtain the following secrecy-rate region.

Fig. 2. Capacity region and secrecy rate region of MAC.

Theorem 2.1. Rates (R(s)
1 ,R(s)

2 ) are achievable with

a limsupn→∞ R(n)
L,i = 0, i = 1,2, if there exist independent

random variables (X1,X2) as channel inputs satisfying:

R(s)
1 < I(X1; Y |X2)− I(X1; Z),

R(s)
2 < I(X2; Y |X1)− I(X2; Z),

R(s)
1 +R(s)

2 < I(X1,X2; Y )− I(X1;Z)− I(X2; Z), (10)

where Y and Z are the corresponding symbols received by

Bob and Eve. ¤

The capacity region for a multiple access wiretap channel

with the secrecy constraint is not known. Without the se-

crecy constraint, the capacity region for a multiple access

channel is obtained by taking a convex closure of the re-

gions in Theorem 2.1, excluding the terms I(Xi; Z), i = 1,2
on the RHS of (10) (Fig. 2) [24]. In the following section,

we show that we can achieve the Ahleswede-Liao capacity

region of a MAC even when some modified metric of secu-

rity metrics is satisfied. First, we restate the result of [24]

and [25] which defines the capacity region for MAC without

a security constraint, which we call as the Ahleswede-Liao

capacity region.

Theorem 2.2. The capacity region of MAC is given by

convex hull of rate pairs (R1,R2) satisfying:

R1 < I(X1; Y |X2) ,

R2 < I(X2; Y |X1) ,

R1 +R2 < I(X1,X2; Y ) . (11)

3. Mitigating Rate Loss in MAC-WT to

Achieve Ahleswede-Liao Capacity

In this section, the coding scheme proposed in [22] for

a single-user point-to-point wiretap channel is extended

to the multiple transmitters case in order to enhance the

achievable secrecy rates of discrete time MAC-WT. As

in [22], we assume that the system is time slotted (i.e.

each user transmits one message in one time slot), where

each slot consists of n channel uses. In slot 1, the first

message is encoded via point-to-point wiretap coding, as

in [1]. In slot 2, the message transmitted in slot 1 is used

as a secret key along with the usual wiretap code, and then

the two messages are transmitted in that slot (the number

of channels uses remains the same). Hence, the secrecy-

rate is twice as high as in slot 1. We use the same coding

scheme in the respective time slots mutatis mutandis, until

the secrecy rate becomes saturated with the Shannon capac-

ity of the main channel. After this time slot, the previously

transmitted secure message is used as a key and no wiretap

coding is used. We show that the proposed scheme ensures

that the message currently being transmitted is secure with

respect to all of Eve’s outputs, i.e. if message Mk is securely

transmitted in slot k then:

1
n

I(Mk; Z1, . . . , Zk)→ 0, (12)

as the length of codeword n→∞, where Z i is the informa-

tion received by Eve in slot i.
Next, we not only extend this coding/decoding scheme to

a multiple access wiretap channel, but also modify the

scheme, so that it can be used to improve its secrecy crite-

rion (12) and can be used for fading multiple access wiretap

channels as well. The following secrecy criterion is used.

In slot k, if user i transmits message M(i)
k , we need:

I(M(1)
l ,M(2)

l ; Z1, . . . ,Zk)≤ nε, for l = 1, . . . ,k . (13)

for any given ε > 0. This will be strengthened so that

it satisfies strong secrecy requirement also, I(M(1)
l , M(2)

l ;
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Z1, . . . ,Zk)→ 0 as n → ∞ at the end of the section. To

achieve this goal, we modify the message sets and en-

coders/decoders with respect to Section 2 in the following

manner.

Each slot has n channel uses and is divided into two parts.

The first part has n1 channel uses and the second n2, n1 +
n2 = n. The message sets are M (i) = {1, . . . , 2n1Rs

i } for

users i = 1,2, where (Rs
1,R

s
2) satisfy (10) for some (X1,X2).

Here, there are two parts of the each encoder:

f s
1 :M (1) →X

n1
1 , f d

1 : M
(1)×K1 →X

n2
1 , (14)

f s
2 :M (2) →X

n1
2 , f d

2 : M
(2)×K2 →X

n2
2 , (15)

where Xi ∈Xi, i = 1,2, and Ki, is the set of secret keys

generated for the respective user i = 1,2, f s
i , i = 1,2 are the

usual wiretap encoders corresponding to each transmitting

user, as in [6], and f d
i , i = 1,2 are the deterministic encoders

(used for channel models without security constraint) cor-

responding to each user in the usual MAC. User i may

transmit multiple messages from M (i) in a slot. In the first

part of each slot of n1 length, one message from M (i) may

be transmitted using wiretap coding via f s
i (denoted by M(i)

k,1
in slot k) and in the second part multiple messages from

M (i) may be transmitted (denoted by M(i)
k,2) using messages

transmitted in previous slots as keys. The overall message

transmitted in slot k by user i is M(i)
k = (M(i)

k,1,M
(i)
k,2).

Theorem 3.1. The secrecy rate region achieved while satis-

fying (13) is the Ahleswede-Liao capacity region for MAC,

i.e. it is the closure of convex hull of all rate pairs (R(s)
1 ,R(s)

2 )
satisfying:

R(s)
1 < I(X1;Y |X2),

R(s)
2 < I(X2;Y |X1),

R(s)
1 +R(s)

2 < I(X1,X2;Y ), (16)

for some independent random variables X1,X2.

Proof. We fix distributions pX1 , pX2 . Initially we take

n1 = n2 = n/2. In the first slot, i-th user selects mes-

sage M
(i)
1 ∈ M (i) to be securely transmitted in the first

part of the slot, while the second part is not used. Both

users use the multiple access wiretap coding scheme of

[6]. Hence, the achievable rate pair (R(s)
1 ,R(s)

2 ) satisfies

(10) and R(n)
L,i ≤ n1ε , i = 1,2. In slot 2, the two users se-

lect two messages each, (M(1)
2,1,M

(1)
2,2) and (M(2)

2,1,M
(2)
2,2) to be

transmitted. Both transmitting users use the multiple access

wiretap coding scheme (as in [6]) for the first part of the

message, i.e. (M(1)
2,1,M

(2)
2,1), and for the second part, trans-

mitter i first takes XOR of M(i)
2,2 with the previous message,

i.e. M(i)
2,2⊕M(i)

1 . This message (i.e. XOR of the second part

and the previous message) is transmitted over the multiple

access wiretap channel using a usual MAC coding scheme,

i.e. without security [24], [25]. Therefore, the achievable

secrecy rate in both sub-slots satisfies (10) for both the

transmitting users. This achievable secrecy rate is also the

overall rate of slot two.

In the third slot, the rate satisfies (10) in the first part (via

wiretap coding). Since in the second part we XOR with

message M(i)
2 and are able to send two messages, hence the

rate of (10), assuming 2(R(s)
1 ,R(s)

2 ) via (10), is within the

range of (16).

Define:

λ1 ,

⌈
I(X1; Y |X2)

I(X1; Y |X2)− I(X1; Z)

⌉
, (17)

where dxe is the ceiling of x, i.e. the smallest integer greater

than or equal to x. In slot λ1 + 1 the rate of user 1 in the

second part of the slot satisfies:

R(s)
1 ≤min(λ1 (I(X1; Y |X2)− I(X1; Z)) , I(X1; Y |X2))

= I(X1;Y |X2). (18)

Similarly, we define λ2 as:

λ2 ,

⌈
I(X2; Y |X1)

I(X2; Y |X1)− I(X2; Z)

⌉
. (19)

In slot λ2 +1, the rate R(s)
2 satisfies:

R(s)
2 ≤ I(X2; Y |X1). (20)

In slot λ = max{λ1,λ2}+1, the sum-rate will satisfy:

R(s)
1 +R(s)

2 ≤min

{
λ

[
I(X1,X2; Y )−

2

∑
i=1

I(Xi;Z)

]
,

I(X1,X2; Y )

}
. (21)

After some particular slot, say, λ ∗ which is greater

than λ , the achievable secrecy sum-rate will get saturated

by the Shannon sum-rate (i.e. sum-capacity of the usual

MAC), i.e. I(X1,X2; Y ), and, hence, thereafter the rate pair

(R(s)
1 ,R(s)

2 ), (R(s)∗
1 ,R(s)∗

2 ) in the second part of the slot will

be at a boundary point of (16) and the overall rate for the

whole slot is the average of the rates in the first mini-slot

and the second mini-slot.

In k-th slot, (k > λ ∗) to securely transmit a pair of mes-

sages (M(1)
k ,M(2)

k ), where M(i)
k = (M(i)

k,1,M
(i)
k,2), i = 1,2, we

Fig. 3. Coding scheme to achieve Ahleswede-Liao region in

MAC.
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use the usual wiretap coding for (M(1)
k,1,M

(2)
k,1) and for the

second part of the message, we XOR it with the previ-

ously transmitted message, i.e. M(i)
k,2⊕M(i)

k−1,2, i = 1,2, and

transmit the overall codeword over the MAC-WT (Fig. 3).

We let n2 = ln1 such that the overall rate of a slot is close

to that in (16). Hence, by taking a sufficiently large l, one

can achieve rates arbitrarily close to the boundary of (16).

For the above-mentioned coding scheme, Pn
e → 0. A convex

combination of the achievable rates in (16) can be achieved

by time sharing. Now, we show that our coding/decoding

scheme also satisfies (13).

Leakage rate analysis. Before we compute the leakage

rate, we set up the notation which will be used in the

subsequent part of the proof. For transmitting user i, we

represent the codeword sent in slot k by X (i)
k . Similarly,

X (i)
k,1 and X (i)

k,2 will represent n1-length and n2-length code-

words of i-th user i in slot number k. We define a notation

here, when i = 1 then i = 2 and when i = 2 then i = 1. In

k-th slot, the noisy version of the codeword received by Eve

is Zk ≡ (Zk,1,Zk,2), where Zk,1 is the sequence correspond-

ing to the wiretap coding part and Zk,2 is corresponding to

the XOR part in which the previous message is used as a

key.

Since wiretap coding of [6] is employed in slot 1, the leak-

age rate will satisfy:

I(M(1)
1 ; Z1|X

(2)
1 )≤ n1ε , I(M(2)

1 ; Z1|X
(1)
1 )≤ n1ε . (22)

For user 1 in slot 2, we show:

I(M(1)
1 ; Z1,Z2|X

(2)
2 )≤ n1ε ,

I(M(1)
2 ; Z1,Z2|X

(1)
2 )≤ n1ε . (23)

A similar calculation can be made for user 2.

First, we note that:

I(M(1)
1 ; Z1,Z2|X

(2)
2 )

= I(M(1)
1 ; Z1)+ I(M(1)

1 ; Z2|Z1,X
(2)
2 )

(a)

≤ n1ε +H(M(1)
1 |Z1,X

(2)
2 )−H(M(1)

1 |Z1,X
(2)
2 ,Z2)

(b)
= n1ε +H(M(1)

1 |Z1)−H(M(1)
1 |Z1) = n1ε . (24)

where (a) follows from the usual wiretap coding and

(b) follows from the fact that X (2)
2 ⊥ (M(1)

1 ,Z1), and

(X (2)
2 ,Z2)⊥ (M(1)

1 ,Z1).

Next, we consider:

I(M(1)
2 ; Z1,Z2|X

(2)
2 )

= I(M(1)
2,1,M

(1)
2,2; Z1,Z2|X

(2)
2 )

= I(M(1)
2,1; Z1,Z2|X

(2)
2 )+ I(M(1)

2,2; Z1,Z2|X
(2)
2 ,M(1)

2,1)

, I1 + I2 . (25)

We get the upper bounds on I1 and I2. The first term:

I1 = I(M(1)
2,1; Z1,Z2|X

(2)
2 )

= I(M(1)
2,1; Z1,Z2,1,Z2,2|X

(2)
2 )

= I(M(1)
2,1; Z1|X

(2)
2 )+ I(M(1)

2,1; Z2,1|X
(2)
2 ,Z1)

+ I(M(1)
2,1; Z2,2|X

(2)
2 ,Z1,Z2,1)

(a)
= 0+ I(M(1)

2,1; Z2,1|X
(2)
2,1,X

(2)
2,2,Z1)

+ I(M(1)
2,1;Z2,2|X

(2)
2 ,Z1,Z2,1)

, I11 + I12 , (26)

where (a) follows because Z1 is independent of

(M(1)
21 ,X (2)

2 ). Furthermore:

I11 = I(M(1)
2,1; Z2,1|X

(2)
2,1,X

(2)
2,2,Z1)

= H(M(1)
2,1; |X (2)

2,1,X
(2)
2,2,Z1)

−H(M(1)
2,1; |Z2,1,X

(2)
2,1,X

(2)
2,2,Z1)

(a)
= H(M(1)

2,1; |X (2)
2,1)−H(M(1)

2,1; |Z2,1,X
(2)
2,1)

= I(M(1)
2,1; Z2,1, |X

(2)
2,1)

(b)

≤ n1ε , (27)

where (a) follows, since (X (2)
2,2,Z1)⊥ (M(1)

2,1,Z2,1,X
(2)
2,1) and

(b) follows because the first part of the message is encoded

via the usual wiretap coding scheme for the multiple access

wiretap channel. Also:

I12 = I(M(1)
2,1; Z2,2|X

(2)
2 ,Z1,Z2,1)

= H(M(1)
2,1; |X (2)

2,1,X
(2)
2,2,Z1,Z2,1)

−H(M(1)
2,1|X

(2)
2,1,X

(2)
2,2,Z1,Z2,1,Z2,2)

(a)
= H(M(1)

2,1; |X (2)
2,1,Z2,1)−H(M(1)

2,1; |X (2)
2,1,Z2,1) = 0 ,

where (a) follows, since (X (2)
2,2,Z1,Z2,2)⊥ (M(1)

2,1,X
(2)
2,1,Z2,1).

From Eqs. (25), (26) and (27), we have I1 = I11 + I12 ≤ n1ε .

Next, we consider:

I2 = I(M(1)
2,2;Z1,Z2|X

(2)
2 ,M(1)

2,1)

= I(M(1)
2,2;Z2|X

(2)
2 ,M(1)

2,1)

+ I(M(1)
2,2;Z1|X

(2)
2 ,M(1)

2,1,Z2) . (28)

We have:

I(M(1)
2,2; Z2|X

(2)
2 ,M(1)

2,1)

= I(M(1)
2,2; Z2,1|X

(2)
2 ,M(1)

2,1)

+ I(M(1)
2,2; Z2,2|X

(2)
2 ,M(1)

2,1,Z2,1)

(a1)
= 0+ I(M(1)

2,2; Z2,2|X
(2)
2 ,M(1)

2,1,Z2,1)

(a2)
= I(M(1)

2,2; Z2,2|X
(2)
2,2)

(a3)
= 0,
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and (a1) follows, since M(1)
2,2 ⊥ (Z2,1,X

(2)
2 ,M(1)

2,1); (a2) holds

because (X (2)
2,1,M

(1)
2,1) ⊥ (M(1)

2,2,Z2,2,X
(2)
2,2); and (a3) is true,

since M(1)
2,2 ⊥ (X (2)

2,2,Z2,2).
In addition:

I(M(1)
2,2; Z1|X

(2)
2 ,M(1)

2,1,Z2)

= I(M(1)
2,2; Z1|X

(2)
2,1,X

(2)
2,2,M

(1)
2,1,Z2,1,Z2,2)

(b1)
= I(M(1)

2,2; Z1|X
(2)
2,2,Z2,2)

(b2)
= 0 ,

where (b1) follows, since (M(1)
2,1,Z2,1,X

(2)
2,1) ⊥ (Z2,2, X (2)

2,2,

M(1)
2,2,Z1) and (b2) follows because Z1 ⊥ (M(1)

2,2,X
(2)
2,2,Z2,2).

Hence, from (28) we have I2 = 0.

From (25), we have:

I(M(1)
2 ; Z1,Z2|X

(2)
2 )≤ n1ε . (29)

Similarly, one can show that:

I(M(2)
2 ; Z1,Z2|X

(1)
2 )≤ n1ε . (30)

Therefore, from (8):

I(M(1)
2 ,M(2)

2 ; Z1,Z2)

≤ I(M(1)
2 ;Z1,Z2|X

(2)
2 )+ I(M(2)

2 ; Z1,Z2|X
(1)
2 ) .

To prove that (13) holds for any slot, we use the principle of

mathematical induction in the lemma below. For a proof,

please see [23].

Lemma 3.2. Let (13) hold for k, then it also holds for

k +1. ¤

Remark 1 (extension to strong secrecy notion). We have

used the notion of weak secrecy in the above proof, i.e. if

message W is transmitted via wiretap coding and Eve re-

ceives sequence Zn, then I(W ; Zn) ≤ n1ε . The criteria of

strong secrecy provide not only for the information leakage

rate, but also require that the absolute information vanishes,

i.e. I(W ;Zn) ≤ ε . In a single-user point-to-point wiretap

channel, if the weak secrecy notion is replaced by the strong

secrecy notion, the secrecy capacity of the channel does not

change [26]. A similar result has been proved for a MAC-

WT in [16], using the channel resolvability-based coding

scheme. If we use, in the coding scheme proposed in this

paper (Theorem 2), a coding scheme based on the resolv-

ability technique in slot 1, and in other slots use both cod-

ing schemes together (i.e. resolvability-based coding in the

first part of the slot) and the previously transmitted mes-

sage (which is now secure in the strong sense with respect

to Eve) as a secret key in the second part of the slot, we

can achieve the same secrecy-rate region, i.e. the capacity

region of the usual multiple access channel without Eve,

satisfying the following leakage rate:

limsup
n→∞

I(M(1)
k ,M(2)

k ; Z1,Z2, . . . ,Zk) = 0 , (31)

as n→∞, because in the RHS of (13), we can get ε instead

of 2n1ε .

4. Discrete Memoryless MAC-WT

with Buffer

In this section we improve the result from Theorem 3.1 by

obtaining rates (16) while enhancing the secrecy require-

ment from (13) to:

I(M(1)
k , M(1)

k−1, . . . , M(1)
k−N1

; Z1, . . . , Zk|X
(2)
k )≤ n1ε ,

I(M(2)
k , M(2)

k−1, . . . , M(1)
k−N1

; Z1, . . . , Zk|X
(1)
k )≤ n1ε ,

I(M(1)
k , M(2)

k , . . . , M(1)
k−N1

, M(2)
k−N1

; Z1, . . . , Zk)≤ 2n1ε ,

(32)

where N1 can be arbitrarily large. This will satisfy the re-

quirements of any practical system. Therefore, we use a key

buffer at each of the users and instead of using the mes-

sages transmitted in slot k−1 as the key in slot k, we use

the messages transmitted in slots before k−N1−1.

Let each user have an infinite key buffer to store the key

bits. The message M(i)
k after transmission in slot k from

user i is stored in its key buffer at the end of the slot.

However, now in slot k +1 we use the oldest bits stored in

its key buffer as a key in the second part of its slot. Once

certain bits from the key buffer have been used as a key,

these are discarded from the key buffer.

Let B(i)
k be the number of key bits in the key buffer of the

i-th user at the beginning of the k-th slot. Then, out of this,

for k ≥ λ ∗, the number of key bits used in a slot by user

1 is C1n2, since these are used only in the second part of

the slot where C1 ≤ I(X1; Y |X2), while the total number of

secret bits transmitted in the slot is C1n2 + R(1)
s n1. These

transmitted bits also get stored in its key buffer at time

k+1. Similarly, the same holds for user 2. Thus, B(i)
k →∞

as k→ ∞ for i = 1, 2.

After some time (say N2 slots) has elapsed since us-

ing the oldest bits in the key buffer, for k ≥ N2,

we will be using the secret key bits only from mes-

sages (M(i)
1 , M(i)

2 , . . . , M(i)
k−N1−1) for securing messages

(M(i)
k , M(i)

k−1, . . . , M(i)
k−N1

), for user i = 1, 2, respectively.

The following proof works for N1 > 0. Theorem 2.1 for

N1 = 0.

Fig. 4. Discrete memoryless multiple access wiretap channel

with secret key buffers.
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Theorem 4.1. The secrecy-rate region with the leakage rate

constraints (32) of a DM-MAC-WT is equal to the usual

Ahleswede-Liao region (16) of MAC.

Proof. With the proposed modification of the coding-de-

coding scheme presented in Section 3, in any slot k, the

legitimate receiver is able to decode the message pair

(M(1)
k , M(2)

k ) with the error probability of P(n)
e → 0 as

n→ ∞. Also (13) along with R(n)
L,i ≤ n1ε1, i = 1, 2 continue

to be satisfied, where ε1 > 0 will be fixed later on.

Now we consider the leakage rate. We have:

I(M(1)
k , M(1)

k−1, . . . , M(1)
k−N1

; Z1, . . . , Zk|X
(2)
k )

= I(M(1)
k,1, M(1)

k−1,1, . . . , M(1)
k−N1,1; Z1, . . . , Zk|X

(2)
k )

+ I(M(1)
k,2, M(1)

k−1,2, . . . , M(1)
k−N1,2; Z1, . . . , Zk

|X (2)
k , M(1)

k,1, . . . , M(1)
k−N1,1) .

From Lemma 7.1 and Lemma 7.2 in the Appendix:

I(M(1)
k,1, M(1)

k−1,1, . . . , M(1)
k−N1,1; Z1, . . . , Zk|X

(2)
k )≤ n1ε (33)

and

I
(

M(1)
k,2, M(1)

k−1,2, . . . , M(1)
k−N1,2; Z1, . . . , Zk|X

(2)
k ,M(1)

k,1, . . . ,

M(1)
k−N1,1

)
≤ 6n1ε . (34)

Thus, taking ε = ε/7, we obtain the first inequality in (32).

Similarly, we can show the second inequality.

To prove the third inequality, we define M̃(1) , (M(1)
k ,

M(1)
k−1, . . . , M(1)

k−N1
), M̃(2) , (M(2)

k , M(2)
k−1, . . . , M(2)

k−N1
) and

Z̃ , (Z1, . . . , Zk), and we have:

I(M̃(1), M̃(2); Z̃)

= I(M̃(1); Z̃)+ I(M̃(2); Z̃|M̃(1))

= H(M̃(1))−H(M̃(1)|Z̃)+H(M̃(2))−H(M̃(2)|Z̃,M̃(1))

(a)

≤ H(M̃(1)|X (2)
k )−H(M̃(1)|Z̃,X (2)

k )+H(M̃(2)|X (1)
k )

−H(M̃(2)|Z̃,X (1)
k )

= I(M̃(1); Z̃|X (2)
k )+ I(M̃(2); Z̃|X (1)

k ), (35)

where (a) follows because: conditioning decreases the en-

tropy, all transmitted messages are independent of each

other and the codeword is a one-to-one function of the

message to be transmitted. Hence, from (33) and (34):

I
(

M(1)
k , M(2)

k , . . . , M(1)
k−N1

, M(2)
k−N1

; Z1, . . . , Zn
k

)
≤ n1ε .

(36)

5. Fading MAC-WT

In this section, we consider a two-user discrete time additive

white Gaussian fading channel. If X1, X2 are the channel

inputs, then Bob receives:

Y = H̃1X2 + H̃2X2 +N1 (37)

and Eve receives:

Z = G̃1X1 + G̃2X2 +N2, (38)

where H̃i is the channel gain to Bob, G̃i is the channel

gain to Eve, and Ni has Gaussian distribution with a mean

0 and variance σ 2
i , i = 1,2. We assume that the random

variables H̃1, H̃2, G̃1, G̃2, N1, N2 are independent of each

other. The channel is experiencing slow fading, i.e. the

channel gains remain the same during the transmission of

the entire codeword. Let Hi = |H̃i|
2 and Gi = |G̃i|

2, i = 1, 2.

The average power constraint for user i is Pi.

We define some notation for convenience. For H =
(H1, H2), G = (G1, G2):

C1(P1(H,G)),
1
2

log
(

1+
H1P1(H,G)

σ 2
1

)
,

C2(P2(H,G)),
1
2

log
(

1+
H2P1(H,G)

σ 2
1

)
,

Ce
1(P1(H,G)),

1
2

log
(

1+
G1P1(H,G)

σ 2
2 +G2P2(H,G)

)
,

Ce
2(P2(H,G)),

1
2

log
(

1+
G2P2(H,G)

σ 2
2 +G1P1(H,G)

)
,

C(P1(H,G),P2(H,G)),
1
2

log

(
1+

H1P1(H,G)+H2P2(H,G)

σ 2
1

)
. (39)

The achievable secrecy rate region for this channel is:

R
s
g(P) =





(R(s)
1 ,R(s)

2 ) :

R(s)
1 ≤ EH,G

[
(C1(P1)−Ce

1(P1))
+]

R(s)
2 ≤ EH,G

[
(C2(P2)−Ce

2(P2))
+]

R(s)
1 +R(s)

2 ≤ EH,G

[(
C(P1, P2)−∑2

i=1 Ce
i (Pi)

)+]





(40)

where P = (P1, P2). To achieve these rates (with Pi(H,G)≡
Pi), the transmitters need not know the channel states, but

Bob’s receiver needs to know all Hi, Gi. We assume this

in this section.

If the channel states (H,G) are known to each of the users,

as well as at the receiver of Bob, then we can improve over

the rate region in (40) by making the transmit power as

functions of (H,G):

P : H×G→ R
2
+ , (41)

where P = (P1, P2). Now we note the rate region as

C s
f (P). Therefore, the secrecy capacity region of MAC-

WT (C s
f (P)) is not known, but Rs

f (P)⊆ C s
f (P) [27].
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Now, we apply the coding scheme of Section 3 to the two-

user fading MAC-WT in order to enlarge the secrecy rate

region to the usual capacity region of the fading channel.

The message pair (M(1)
k , M(2)

k ) is to be transmitted confi-

dentially by the two users over the fading MAC in slot k,

and will be stored in their respective secret key buffers at

the end of the k-th slot. Let B(1)
k , B(2)

k be the number of

bits in the key buffers of users 1 and 2, respectively, at the

beginning of the slot k.

Let R(i)
k bits be taken from the key buffer of user i to

act as a secret key for the transmission of message M(i)
k .

The two users satisfy the long-term average power con-

straint:

limsup
k→∞

1
k

k

∑
m=1

E [Pi(Hk,Gk)]≤ Pi, i = 1, 2 , (42)

where Hk, Gk are the channel gains in slot k and Pi(Hk, Gk)
is the average power used by user i in slot k. We need to

compute Pi(H, G) and R(i)
k , i = 1, 2, such that the resulting

average rate region (r(1), r(2)) is maximized, where:

r(i) = limsup
k→∞

1
k

k

∑
l=1

r(i)
l , (43)

r(i)
k is the transmission rate of user i in slot k, subject to the

long-term respective power constraints (42). The secrecy-

rate region is computed when:

Pr({H1k > G1k}∪{H2k > G2k}) > 0 , (44)

where Pr(A) represents the probability of event A. Other-

wise, the secrecy-rate region is zero. Actually, we state the

following theorem for Pr(Hik > Gik) > 0, i = 1, 2. If it is

not true for any one i, then the secrecy rate for that user

is zero. For both transmitting users, at the end of slot k,

r̂(i)
k = n(l + 1)r(i)

k bits are stored in the secret key buffer

for future use as a key, where n2 = ln1. Hence, B(i)
k evolves

as:

B(i)
k+1 = B(i)

k + r̂(i)
k −R(i)

k , (45)

where r̂(i)
k ≥ R(i)

k and r̂(i)
k > R(i)

k with positive probability

Pr(Hik > Gik). Therefore, B(i)
k → ∞ a.s. for i = 1, 2.

Theorem 5.1. If Pr(Hik > Gik) > 0, i = 1, 2, and all the

channel gains are available at all the transmitters, then

the following long-term average rates that maintain the leak-

age rates (32), are achievable:

R(s)
1 ≤

1
2
EH,G [C1 (P1(H))] ,

R(s)
2 ≤

1
2
EH,G [C2 (P2(H))] ,

R(s)
1 +R(s)

2 ≤
1
2
EH,G [C (P1(H), P2(H))] . (46)

where P is any policy that satisfies the average power con-

straint. If Bob is the only party knowing all channel states

(not the transmitters), then (R(s)
1 , R(s)

2 ) satisfies (46) with

Pi(H,G)≡ Pi, i = 1, 2.

Achievability scheme outline. We use the coding-decoding

scheme proposed in Section 3 with appropriate changes to

account for the fading process. Assuming that B(i)
0 = 0, i =

1, 2, user i transmits the first time when Hik > Gik. Then,

it uses the usual MAC wiretap coding as proposed in [6]

in all its l +1 mini-slots.

In the next slot (say k-th), user i uses the first mini-

slot for wiretap coding (if Hik > Gik for user i) and the

rest of the m mini-slots for transmission via the secret

key (if Hik < Gik the first mini-slot is not used). It uses

R(i)
k = min

[
B(i)

k , lCi(Pi(H, G)n1)
]

key bits which are re-

moved from the key buffer at the end of the slot. The total

number of bits transmitted by user i in slot k is:

r̂(i)
k = R(i)

k +n1

[
Ci(P1(Hk, Gk)

]
−Ce

i

[
Pi(Hk,Gk)

]+
. (47)

These bits are stored in the key buffer at the end of the

slot. Thus, r̂(i)
k ≥ R(i)

k and since Pr(Hik > Gik) > 0, i = 1, 2,

Pr(r̂(i)
k > R(i)

k ) > 0. Finally, B(i)
k → ∞ a.s. for i = 1, 2.

Also, as before, we can show that after some slot k ≥ N2,

with an arbitrarily large probability, the messages trans-

mitted in slots k, k− 1, . . . , k−N1 will use the messages

transmitted before k−N1−1, and the rate used in the first

mini-slot will satisfy (40), but the rate used in the second

mini-slot will satisfy (46). The overall rate of the slot can

be made as close to (46) as we wish, by taking a large value

of l. Thus, the rest of the proof demonstrating Pn
e → 0 and

that (32) is satisfied follows from Theorem 3.1.

All the above results extend in strong secrecy sense, as in

Section 3, by using the resolvability-based coding scheme

of [16] instead of the usual wiretap coding for MAC-WT

of [6].

6. Conclusions

In this paper, we obtain the secrecy-rate region for a time-

slotted MAC-WT. By using the previously transmitted

message as a secret key in the next slot, we show that

we can mitigate the rate loss and achieve the secrecy-

rate region equal to the Ahleswede-Liao region of a mul-

tiple access channel (without wiretapper), if we consider

the secrecy rate of the individual messages. We then ex-

tend the results to a scenario in which an arbitrarily large

number of recently transmitted multiple messages is now

secure with respect to the information of Eve, by using

the secret key buffer for both transmitters. Finally, we fur-

ther extend our coding scheme to a fading Gaussian chan-

nel and show that the usual Ahleswede-Liao region can

be obtained while retaining the secrecy of the multiple

messages.
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Appendix

DM-MAC-WT with Secret Key Buffer

Lemma 7.1. The following inequality is satisfied

I(M(1)
k,1, M(1)

k−1,1, . . . , M(1)
k−N1,1; Z1, . . . , Zk|X

(2)
k )≤ n1ε . (48)

Proof. We have:

I(M(1)
k,1, M(1)

k−1,1, . . . , M(1)
k−N1,1; Z1, . . . , Zk|X

(2)
k )

= I(M(1)
k,1; Z1, . . . , Zk|X

(2)
k )

+ I(M(1)
k−1,1; Z1, . . . , Zk|X

(2)
k , M(1)

k,1)

+ . . .+ I(M(1)
k−N1,1; Z1, . . . , Zk|X

(2)
k , M(1)

k,1, M(1)
k−1,1, . . . ,

M(1)
k−N1+1,1), I1 + I2 + . . .+ IN1 . (49)

Now let us evaluate each term. Denoting the two parts of Zk
by Zk,1,Zk,2, and choosing the wiretap coding with leakage

rate ≤ n1ε1, where ε1 = ε/N1:

I1 = I(M(1)
k,1; Z1,1, Z1,2, . . . , Zk,1, Zk,2|X

(2)
k )

= I(M(1)
k,1; Zk,1|X

(2)
k )+ I(M(1)

k,1; Z1, . . . , Zk−1, Zk,2|X
(2)
k )

(a)

≤ n1ε1 + I(M(1)
k,1; Z1, . . . , Zk−1, Zk,2|X

(2)
k ,)

= n1ε1+H(M(1)
k,1|X

(2)
k )−H(M(1)

k,1|X
(2)
k , Z1, . . . , Zk−1, Zk,2)

(b)
= n1ε1 +H(M(1)

k,1|X
(2)
k )−H(M(1)

k,1|X
(2)
k ) = n1ε1 , (50)

where (a) follows from wiretap coding and (b) follows,

since (Z1, . . . , Zk−1, Zk,2)⊥ (W (1)
k,1 , X (2)

k ).
Next consider I2. We have:

I2 = I(M(1)
k−1,1; Z1, . . . , Zk−1,1, Zk−1,2, Zk|X

(2)
k , M(1)

k,1)

= I(M(1)
k−1,1; Zk−1,1|X

(2)
k , M(1)

k,1)+ I(M(1)
k−1,1;

(Z1, . . . , Zk)\Zk−1,1|X
(2)
k ,M(1)

k,1, Zk−1)

= H(M(1)
k−1,1|X

(2)
k , M(1)

k,1)−H(M(1)
k−1,1|X

(2)
k , M(1)

k,1, Zk−1,1)

+ I(M(1)
k−1,1; (Z1, . . . , Zk)\Zk−1,1|X

(2)
k , M(1)

k,1, Zk−1) (51)

(a)
= H(M(1)

k−1,1)−H(M(1)
k−1,1|Zk−1,1)

+ I(M(1)
k−1,1; (Z1, . . . , Zk)\Zk−1,1|X

(2)
k , M(1)

k,1, Zk−1)

= I(M(1)
k−1,1; Zk−1,1)I(M

(1)
k−1,1; (Z1, . . . , Zk)\Zk−1,1|X

(2)
k ,

M(1)
k,1, Zk−1)

(b)

≤ n1ε1 + I(M(1)
k−1,1; (Z1, . . . , Zk)\Zk−1,1|X

(2)
k , M(1)

k,1, Zk−1)

= n1ε1 + I(M(1)
k−1,1; Z1, . . . , Zk−1,2, Zk|X

(2)
k , M(1)

k,1, Zk−1)

= n1ε1 + I(M(1)
k−1,1; Z1, . . . , Zk−2|X

(2)
k , M(1)

k,1, Zk−1)

+ I(M(1)
k−1,1; Zk, Zk−1,2|X

(2)
k ,M(1)

k,1, Zk−1,1Z1, . . . , Zk−2)

(c)
= n1ε1+0+I(M(1)

k−1,1; Zk, Zk−1,2|X
(2)
k , M(1)

k,1, Zk−1,1Z1, . . . ,

Zk−2)

= n1ε1 + I(M(1)
k−1,1; Zk,1|X

(2)
k , M(1)

k,1, Zk−1,1Z1, . . . , Zk−2)

+ I(M(1)
k−1,1; Zk,2, Zk−1,2|X

(2)
k , M(1)

k,1, Zk−1,1, Z1, . . . , Zk−2,

Zk,1)

= n1ε1 +H(M(1)
k−1,1; |X (2)

k , M(1)
k,1, Zk−1,1Z1, . . . , Zk−2)

−H(M(1)
k−1,1; |X (2)

k , M(1)
k,1, Zk−1,1Z1, . . . , Zk−2, Zk,1)

+ I(M(1)
k−1,1; Zk,2, Zk−1,2|X

(2)
k , M(1)

k,1, Zk−1,1, Z1, . . . , Zk−2,

Zk,1)

(d)
= n1ε1 +H(M(1)

k−1,1; |Zk−1,1)−H(M(1)
k−1,1; |Zk−1,1)

+ I(M(1)
k−1,1; Zk,2, Zk−1,2|X

(2)
k , M(1)

k,1, Zk−1,1, Z1, . . . ,

Zk−2, Zk,1) , (52)

where (a) follows since M(1)
k−1,1 ⊥ (X (2)

k , M(1)
k,1) and (M(1)

k−1,1,

Zk−1) ⊥ (X (2)
k , M(1)

k,1), (b) follows from wiretap cod-

ing, (c) follows since (M(1)
k−1,1, Zk−1) ⊥ (Z1, . . . , Zk−2,

X (2)
k , M(1)

k,1), (Z1, . . . , Zk−2) ⊥ (X (2)
k , M(1)

k,1) and (Z1, . . . ,

Zk−1) ⊥ (X (2)
k , M(1)

k,1) and (d) follows since (M(1)
k−1,1,

Zk−1,1)⊥ (X (2)
k , M(1)

k,1, Z1, . . . , Zk−2).

But:

I(M(1)
k−1,1; Zk,2, Zk−1,2|X

(2)
k , M(1)

k,1, Zk−1,1,

Z1, . . . , Zk−2, Zk,1)

= H(M(1)
k−1,1|X

(2)
k , M(1)

k,1, Zk−1,1, Z1, . . . , Zk−2, Zk,1)

−H(M(1)
k−1,1|X

(2)
k , M(1)

k,1, Zk−1,1, Z1, . . . , Zk−2, Zk,1,

Zk,2, Zk−1,2)

(a)
= H(M(1)

k−1,1|Zk−1,1)−H(M(1)
k−1,1|Zk−1,1)

= 0 , (53)

where (a) follows, since (M(1)
k−1,1, Zk−1,1) ⊥ (X (2)

k , M(1)
k,1,

Z1, . . . , Zk−2, Zk,1) and (M(1)
k−1,1, Zk−1,1) ⊥ (X (2)

k , M(1)
k,1,

Z1, . . . ,Zk−2, Zk,1, Zk,2, Zk−1,2).
Hence we have:

I2 ≤ n1ε1 . (54)

One can similarly prove that Ii ≤ n1ε1 for i = 3,4, . . . , N1.

Therefore:

I(M(1)
k,1, M(1)

k−1,1, . . . , M(1)
k−N1,1; Z1, . . . , Zk|X

(2)
k )

≤ N1nε1 = n1ε . (55)

¤

Lemma 7.2. The following inequality is satisfied

I(M(1)
k,2, M(1)

k−1,2, . . . , M(1)
k−N1,2; Z1, . . . , Zk

|X (2)
k , M(1)

k,1, . . . , M(1)
k−N1,1)≤ 6n1ε . (56)
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Proof.

I(M(1)
k,2, M(1)

k−1,2, . . . , M(1)
k−N1,2; Z1, . . . , Zk|X

(2)
k ,

M(1)
k,1, M(1)

k−1,1, . . . , M(1)
k−N1,1)

= I(M(1)
k,2, M(1)

k−1,2, . . . , M(1)
k−N1,2; Z1, . . . , Zk−N1−1|X

(2)
k ,

M(1)
k,1, M(1)

k−1,1, . . . , M(1)
k−N1,1)

+ I(M(1)
k,2, M(1)

k−1,2, . . . , M(1)
k−N1 2; Zk−N1 , . . . , Zk|X

(2)
k ,

M(1)
k,1, M(1)

k−1,1, . . . , M(1)
k−N1,1, Z1, . . . , Zk−N1−1)

(a)
= 0+ I(M(1)

k,2, M(1)
k−1,2, . . . , M(1)

k−N1,2; Zk−N1 , . . . , Zk|X
(2)
k ,

M(1)
k,1, M(1)

k−1,1, . . . , M(1)
k−N1,1, Z1, . . . , Zk−N1−1)

= I(M(1)
k,2, M(1)

k−1,2, . . . , M(1)
k−N1,2; Zk−N1,1, . . . , Zk,1|X

(2)
k ,

M(1)
k,1, M(1)

k−1,1, . . . , M(1)
k−N1,1, Z1, . . . , Zk−N1−1)

+ I(M(1)
k,2, M(1)

k−1,2, . . . , M(1)
k−N1,1; Zk−N1,2, . . . , Zk,2|X

(2)
k ,

M(1)
k,1, M(1)

k−1,1, . . . , M(1)
k−N1,1, Z1, . . . , Zk−N1−1,

Zk,1, Zk−1,1, . . . , Zk−N1,1)

(b)
= 0+ I(M(1)

k,2, . . . , M(1)
k−N1,2; Zk−N1,2, . . . , Zk,2|M

(1)
k,1, . . . ,

M(1)
k−N1,1, Z1, . . . , Zk−N1 , Zk−N1,1, . . . , Zk−1, X (2)

k )

(c)
= I(M(1)

k,2, . . . , M(1)
k−N1,2; Zk−N1,2, . . . , Zk,2|Z1, . . . ,

Zk−N1 , X (2)
k )

,
= I(M̂(1)

2 ; Ẑ2|Ẑ1, X (2)
k ),

where (a) follows, since (M(1)
k,2, . . . , M(1)

k−N1,2) ⊥ (Z1, . . . ,

Zk−N1−1, M(1)
k,1, . . . , M(1)

k−N1,1, X (2)
k ), (b) follows, since

(M(1)
k,2, M(1)

k−1,2, . . . , M(1)
k−N1,2) is independent of the other

random variables (RVs) in the first expression, (c) follows,

since (M(1)
k,1, . . . , M(1)

k−N1,1, Zk−N1,1, . . . , Zk−1,1) is indepen-

dent of all other RVs in the expression, and in the last

inequality we denote the respective random sequences with

their respective widehat symbols.

Now we observe that:

I(M̂(1)
2 ; Ẑ1, Ẑ2|X

(2)
k )

= I(M̂(1)
2 ; Ẑ1|X

(2)
k )+ I(M̂(1)

2 ; Ẑ2|Ẑ1, X (2)
k )

(a)
= 0+ I(M̂(1)

2 ; Ẑ2|Ẑ1, X (2)
k )

≤ I(M̂(1)
2 ; Ẑ1, Ẑ2|X

(2)
k )

= I(M̂(1)
2 ; Ẑ2|X

(2)
k )+ I(M̂(1)

2 ; Ẑ1|Ẑ2, X (2)
k )

(b)
= 0+ I(M̂(1)

2 ; Ẑ1|Ẑ2,X
(2)
k ) , (57)

where (a) follows, since M̂(1)
2 ⊥ (Ẑ1, X (2)

k ), and (b) follows,

since M̂(1)
2 ⊥ (Ẑ2, X (2)

k ).

We will also use the following notation: M̂(1)
1 , (M(1)

k,1,

. . . , Mk−N1,1), Ai are the indices of messages transmitted in

slots 1, . . . , k−N1−1 that are used as secret keys by user

i for transmitting messages in slots k−N1, . . . , k, M(i)
Ai

=(
M(i)

k , k ∈ Ai

)
, M(i)

Ac
i

=
(

M(i)
k , k ∈ {1, . . . , k−N1−1}

)
,

similarly we define ZAi , ZAc
i
. Then we have:

I(M̂(1)
2 ; Ẑ1|Ẑ2, X (2)

k )

≤ I(M̂(1)
2 , M(1)

A1
, M(2)

A2
; Ẑ1, |Ẑ2, X (2)

k )

= I(M(1)
A1

, M(2)
A2

; Ẑ1, |X
(2)
k , Ẑ2)

+ I(M̂(1)
2 ; Ẑ1|X

(2)
k , Ẑ2, M(1)

A1
, M(2)

A2
)

(a)

≤ I(M(1)
A1

, M(2)
A2

; Ẑ1)+ I(M̂(1)
2 ; Ẑ1|X

(2)
k , Ẑ2, M(1)

A1
, M(2)

A2
)

(b)
= I(M(1)

A1
, M(2)

A2
; Ẑ1)+0

= I(M(1)
A1,1, M(1)

A1,2, M(2)
A2,1, M(2)

A2,2; Ẑ1)

= I(M(1)
A1,1, M(2)

A2,1; Ẑ1)

+ I(M(1)
A1,2, M(2)

A2,2; Ẑ1|M
(1)
A1,1, M(2)

A2,1)

(c)
= I(M(1)

A1,1, M(2)
A2,1; Ẑ1)+0

= I(M(1)
A1,1; Ẑ1)+ I(M(2)

A2,1; Ẑ1|M
(1)
A1,1)

≤ I(M(1)
A1,1, M(2)

A1,1; Ẑ1)+ I(M(2)
A2,1; Ẑ1|M

(1)
A1,1)

(d)

≤ 2n1ε + I(M(2)
A2,1; Ẑ1|M

(1)
A1,1)

(e)
= 2n1ε + I(M(2)

A2,1; ZA2 , ZAc
2
|M(1)

A1,1)

= 2n1ε + I(M(2)
A2,1; ZA2 |M

(1)
A1,1)

+ I(M(2)
A2,1; ZAc

2
|M(1)

A1,1, ZA2)

,
= 2n1ε + I1 + I2 , (58)

where:

• (a) follows, because Ẑ1↔ (M(1)
A1

, M(2)
A2

)↔ (Ẑ2, X (2)
k ),

• (b) follows, since M̂(1)
2 ↔ (M(1)

A1
, M(2)

A2
, Ẑ2, X (2)

k )↔

Ẑ1,

• (c) follows, since (M(1)
A1,2, M(2)

A2,2) ⊥ (Ẑ1, M(1)
A1,1,

M(2)
A2,1),

• (d), ( j) and (m) follows by wiretap coding,

• (e) follows, since Ẑ1 = (Z1, . . . , Zk−N1) =
(ZA2 , ZAc

2
).
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Now, we evaluate I2:

I2 = I(M(2)
A2,1; ZAc

2
|M(1)

A1,1, ZA2)

= H(M(2)
A2,1|M

(1)
A1,1, ZA2)

−H(M(2)
A2,1|M

(1)
A1,1, ZA2 , ZAc

2
)

(a)
= H(M(2)

A2,1|M
(1)
A1,1, ZA2,1, ZA2,2)

−H(M(2)
A2,1|M

(1)
A1∩A2,1, ZA2,1)

(b)
= H(M(2)

A2,1|M
(1)
A1∩A2,1, ZA2,1)

−H(M(2)
A2,1|M

(1)
A1∩A2,1, ZA2,1) = 0 , (59)

where (a) and (b) follow because M(1)
A1,1 and M(1)

A1,1 are used

as keys only in slots k−N1, . . . , k.

Next, we evaluate I1:

I1 = I(M(2)
A2,1; ZA2 |M

(1)
A1,1)

= I(M(2)
A2∩A1,1, M(2)

A2∩Ac
1,1; ZA2 |M

(1)
A1,1)

= I(M(2)
A2∩Ac

1,1; ZA2 |M
(1)
A1,1)

+ I(M(2)
A2∩A1,1; ZA2 |M

(1)
A1,1, M(2)

A2∩Ac
1, 1)

,
= I3 + I4 . (60)

Now:

I3 = I(M(2)
A2∩Ac

1,1; ZA2 |M
(1)
A1,1)

= I(M(2)
A2∩Ac

1,1; ZA2∩A1 ,ZA2∩Ac
1
|M(1)

A1,1)

= I(M(2)
A2∩Ac

1,1; ZA2∩Ac
1
|M(1)

A1,1)

+ I(M(2)
A2∩Ac

1,1; ZA2∩A1 |M
(1)
A1,1, ZA2∩Ac

1
)

,
= I31 + I32 . (61)

Consider:

I31 = I(M(2)
A2∩Ac

1, 1; ZA2∩Ac
1
|M(1)

A1, 1)

= I(M(2)
A2∩Ac

1, 1; ZA2∩Ac
1, 1, ZA2∩Ac

1,2|M
(1)
A1,1)

= I(M(2)
A2∩Ac

1,1; ZA2∩Ac
1,1|M

(1)
A1,1)

+ I(M(2)
A2∩Ac

1,1; ZA2∩Ac
1,2|M

(1)
A1,1, ZA2∩Ac

1,1)

(a)

≤ I(M(1)
A2∩Ac

1,1, M(2)
A2∩Ac

1,1; ZA2∩Ac
1,1)+0

(b)

≤ 2n1ε , (62)

where (a) follows, since ZA2∩Ac
1,2 ⊥ (M(2)

A2∩Ac
1,1, M(1)

A1,1,

ZA2∩Ac
1,1), (b) follows from wiretap coding and that M(1)

A1,1⊥

(M(2)
A2∩Ac

1,1, ZA2∩Ac
1,1). Next consider the second term

of (61). We get:

I32 = I(M(2)
A2∩Ac

1,1; ZA2∩A1 |M
(1)
A1,1, ZA2∩Ac

1
)

= I(M(2)
A2∩Ac

1,1; ZA2∩A1,1, ZA2∩A1,2|M
(1)
A1,1, ZA2∩Ac

1
)

= I(M(2)
A2∩Ac

1,1; ZA2∩A1,1|M
(1)
A1,1, ZA2∩Ac

1
)

+ I(M(2)
A2∩Ac

1,1; ZA2∩A1,2|M
(1)
A1,1, ZA2∩Ac

1
, ZA2∩A1,1)

(a)
= I(M(2)

A2∩Ac
1,1; ZA2∩A1,1|M

(1)
A1,1, ZA2∩Ac

1
)+0

= H(M(2)
A2∩Ac

1,1|M
(1)
A1,1, ZA2∩Ac

1
)

−H(M(2)
A2∩Ac

1,1; |M(1)
A1,1, ZA2∩Ac

1
, ZA2∩A1,1)

(b)
= H(M(2)

A2∩Ac
1,1|ZA2∩Ac

1
)−H(M(2)

A2∩Ac
1,1|ZA2∩Ac

1
)

= 0 , (63)

where (a) follows, since ZA2∩A1,2 ⊥ (M(2)
A2∩Ac

1,1, M(1)
A1,1,

ZA2∩Ac
1
, ZA2∩A1,1), (b) follows, since M(1)

A1,1 ⊥ (M(2)
A2∩Ac

1,1,

ZA2∩Ac
1
) and (M(1)

A1,1, ZA2∩A1,1)⊥ (M(2)
A2∩Ac

1,1, ZA2∩Ac
1
).

Finally, we consider:

I4 = I(M(2)
A2∩A1,1; ZA2 |M

(1)
A1,1, M(2)

A2∩Ac
1,1)

= I(M(2)
A2∩A1,1; ZA2,1, ZA2,2|M

(1)
A1,1, M(2)

A2∩Ac
1,1)

= I(M(2)
A2∩A1,1; ZA2,1|M

(1)
A1,1, M(2)

A2∩Ac
1,1)

+ I(M(2)
A2∩A1,1; ZA2,2|M

(1)
A1,1, M(2)

A2∩Ac
1,1, ZA2,1)

(a)
= I(M(2)

A2∩A1,1; ZA2,1|M
(1)
A1,1, M(2)

A2∩Ac
1,1)+0

= I(M(2)
A2∩A1,1; ZA2∩A1,1, ZA2∩Ac

1,1|M
(1)
A1,1, M(2)

A2∩Ac
1,1)

= I(M(2)
A2∩A1,1; ZA2∩A1,1|M

(1)
A1,1, M(2)

A2∩Ac
1,1)

+ I(M(2)
A2∩A1,1; ZA2∩Ac

1,1|M
(1)
A1,1, M(2)

A2∩Ac
1,1, ZA2∩A1,1)

≤ I(M(2)
A2∩A1,1, M(2)

A2∩A1,1; ZA2∩A1,1|M
(1)
A1,1)

+H(ZA2∩Ac
1,1|M

(1)
A1,1, M(2)

A2∩Ac
1,1, ZA2∩A1,1)

−H(ZA2∩Ac
1,1|M

(1)
A1,1, M(2)

A2∩Ac
1,1, ZA2∩A1,1, M(2)

A2∩A1,1)

(b)

≤ 2n1ε +H(ZA2∩Ac
1,1|M

(2)
A2∩Ac

1,1)

−H(ZA2∩Ac
1,1|M

(2)
A2∩Ac

1,1)

= 2n1ε , (64)

where (a) follows, since ZA2,2 is independent of the

rest of the terms in the expression, (b) follows, because

(ZA2∩Ac
1,1, M(2)

A2∩Ac
1,1) ⊥ (M(1)

A1,1,ZA2∩A1,1) and (ZA2∩Ac
1,1,

M(2)
A2∩Ac

1,1)⊥ (M(1)
A1,1, ZA2∩A1,1, M(2)

A2∩A1,1).

Hence, we have from (60) that I ≤ 6n1ε . Thus, we get:

I(M̂(1)
2 ; Ẑ2|Ẑ1, X (2)

k )≤ 6n1ε , (65)

and the lemma is established. ¤
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