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Abstract—Efficient channel management is a challenge that

next-generation wireless networks need to meet in order to

satisfy increasing bandwidth demand and transmission rate

requirements. Non-orthogonal multiple access (NOMA) is

one of such efficient channel allocation methods used in 5G

backhaul wireless mesh networks. In this paper, we pro-

pose a power demand-based channel allocation method for

5G backhaul wireless mesh networks by employing NOMA

and considering traffic demands in small cells, thereby im-

proving channel utility. In this scheme, we work with physical

layer transmission. The foremost aim is to mutually optimize

the uplink/downlink NOMA channel assignment in order to

increase user fairness. The approach concerned may be di-

vided into two steps. First, initial channel allocation is per-

formed by employing the traveling salesman problem (TSP),

due to its similarity to many-to-many double-side user-channel

allocation. Second, the modified particle swarm optimization

(PSO) method is applied for allocation updates, by introducing

a decreasing coefficient which may have the form of a stan-

dard stochastic estimate algorithm. To enhance exploration

capacity of modified the PSO, a random velocity is included

to optimize the convergence rate and exploration behavior.

The performance of the designed scheme is estimated through

simulation, taking into account such parameters as through-

put, spectral efficiency, sum-rate, outage probability, signal-

to-interference plus noise ratio (SINR), and fairness. The

proposed scheme maximizes network capacity and improves

fairness between the individual stations. Experimental results

show that the proposed technique performs better than exist-

ing solutions.

Keywords—channel allocation, co-channel interference, convex

optimization, multicarrier NOMA, Rayleigh fading.

1. Introduction

5G is a trending communication technology that is capable

of improving network performance in urban areas [1]. 5G

enhances the collection of information and the framework

measurement rate. The data transmission rate, thickness

association, and inactivity of ultra-low signals are the other

benefits of 5G development enjoyed in multiple input mul-

tiple output (MIMO) systems.

Association of the web with remote cell towers is known as

the concept of backhaul. In multi-level media communica-

tion, the backhaul region consists of a system characterized

by a specific orientation of its connections, e.g. spine or-

ganization, center system, and the edge of the progressive

area [2]. Backhaul improves the speed at which information

is exchanged. Genuinely, without backhaul, users would not

be able to enjoy a web relationship in any way, shape or

form. Therefore, the backhaul effect should be considered

to provide a high priority information background.

Prerequisites of this type affect backhaul in a peculiar man-

ner, as it may bear information with highly complex and

flexible green contemplation [3]. These effects are very

difficult to acknowledge and secure 5G communication-

based protocols in the networking environment. Media

communications organization handles expansive volume

spilling information and uphold experiences from pecu-

liarity recognition and prescient displaying to comprehend

their systems and their clients [4], [5]. In this way, the

presumption of security segment of existing cell frame-

works, which rely upon making sure about the significant

attainable quality and guard of end-users, the 5G cell struc-

ture is depended upon to ensure that a redesigned security

instrument is set up in general framework to address is-

sues of approval and support for various interconnected

IoT devices.

Many methods are available for enhancing the uplink

stream. Versatile quality of service (QoS)-related environ-

ments may affect the system of 5G communication-based

portable hubs in terms of their collection ability [6], [7].

NOMA is a prominent access system for executing upgrades

in cutting-edge cell interchanges. Contrasted with symmet-

rical recurrence division different access, which is a notable

high-limit orthogonal multiple access scheme, NOMA of-

fers a range of tempting advantages, including higher pro-
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ductivity. A variety of NOMA strategies exist, including

power-area and code-domain [8].

The diverse and demanding characteristics of 5G require

a move from the rigid systems of the past, towards more

flexible and versatile networks. The use of recently devel-

oped radio network technologies results in an improvement

of dimensional flexibility in 5G networks [9]. New hand-

off solutions are likewise encouraging in the Internet of

Things (IoT) applications [10]. As we gain ground about

the 5G network of remote systems, the bit-per-joule energy

efficiency turns into an imperative structure paradigm for

practical advancement [11]. With that considered, MIMO-

related innovations turn out to be one of the major empow-

ering agents for 5G solutions in which BSs are furnished

with adequate reception hardware to satisfy requirements

related to phantom and energy efficiency increases over

current LTE systems [12].

1.1. Problem Statement

5G wireless networks are expected to support very di-

verse applications and terminals. Massive connectivity with

a large number of devices is an important requirement.

In the 5G era, the evolution of heterogeneous networks

(Het-Nets) results in densification of different sizes of cells.

Due to the time- and space-dependent service requirements

and traffic patterns, time-varying asymmetric traffic loads

are expected in both uplink (UL) and downlink (DL) con-

nections in different cells. Many optimization strategies

have been designed to provide seamless coverage and QoS

in DL and UL. However, the intractable nature of the chan-

nel selection problem motivates us to design an efficient

channel allocation scheme through joint optimization of UL

and DL streams. Performance of the designed scheme is

estimated through Matlab, with such performance param-

eters as throughput, spectral efficiency, sum-rate, outage

probability, signal-to-interference plus noise ratio (SINR)

and fairness taken into consideration and compared with

other recent optimization techniques.

1.2. Research Contributions

In this paper, we examine a 5G wireless mesh network that

comprises multiple primary networks and subscribed users

(SUs). At any instant, a different number of channels with

different capacities is allocated by the primary networks to

each SU.

The channel allocation problem is formulated as TSP, which

is then associated with the many-to-many two-sided user-

channel allocation. We acquaint a diminishing coefficient

with the updating principle. Thus, the population-based

artificial intelligence (AI) concept is used in our work, i.e.

a modified PSO may be perceived as a standard stochastic

estimate algorithm.

The modified PSO is then used to jointly optimize both

uplink and downlink channels using NOMA for optimal

channel allocation with proper interference management.

Finally, we mutually reform the UL/DL channel allocation

using NOMA to widen user fairness with proper interfer-

ence management.

The related works are discussed in Section 2. Section 3

describes the system model. Section 4 elaborates on the

proposed method. Section 5 evaluates performance of the

channel allocation process. Section 6 presents the conclu-

sions.

2. Related Works

Xia et al. [13] proposed a new kind of virtual channel opti-

mization technique in NOMA for successful power balanc-

ing. By using the process presented, data may be separated

through the power balancing effect. The minimum Eu-

clidean distance for constellation points without estimating

the channel is considered as the best method for the channel

state estimation process. A closed-form of the optimization

process is developed by maximizing the fixed optimal solu-

tion with 2 to 3 users. Also, the less complex effect of the

maximum likelihood detector reduces computational intri-

cacy without influencing the implementation of quadrature

phase shift keying (QPSK).

Paper [14] proposed a calculation for the UL of huge

MIMO frameworks to isolate the joined gotten flag of all

clients at the BS into autonomous signs for every client

class. While applying the proposed calculation, the compu-

tational expense of the flag handling process is diminished

and it is conceivable to ensure adaptability on the location

methods at the BS. A flag is shown for heterogeneous sys-

tems with various classes of clients. Discretionary design

cell acquisition subframes (CAS) and distributed antenna

systems (DAS) are presented in this paper as well. To-

tal rate examination and computational multifaceted nature

contemplated for the proposed decoupled signal detection

(DSD) method are exhibited.

In [15], user transmission rate and interference are

mainly considered for developing a fractional transmission

power allocation (FTPA)-based channel allocation process.

Greedy algorithm (GA) is applied to obtain the ideal so-

lution for allocation purposes. Mathematical development

of max-min energy effectiveness is developed in the in-

tractable programming solution. A sequential programming

approach is determined to obtain an optimal solution for

power analysis. Focus is placed on energy-efficient power-

based channel allocation to provide an enhanced version of

optimal channel modulation.

These upgrades demonstrate that a quality-of-service-aware

game theory-based power control (QoS-GTPC) plan can be

obtained for 5G versatile frameworks.

Sarigiannidis et al. [16] presented a spatially unique power

control answer for relieving cell-to-device-to-device (D2D)

and D2D-to-cell impedance. The proposed D2D control

arrangement is somewhat adaptable, including the excep-

tional instances of no D2D connections or using the great-

est transmit control. Under the considered power control,

a diagnostic methodology is produced to assess the pro-

2



Modified PSO Based Channel Allocation Scheme for Interference Management in 5G Wireless Mesh Networks

ductivity and proficiency of such systems. Investigation of

the power control arrangement can productively alleviate

obstruction between the cell and the D2D level.

In general, 5G wireless networks provide various facili-

ties to assist assorted applications and terminals which re-

quire superb connectivity to connect an enormous number

of devices. Han et al. [17] developed a security-related

protocol for NOMA-based massive MIMO uplink commu-

nication. The power allocation model is given through the

joint power and sub-channel allocation for secrecy capacity

(JPSASC) method to get a sub-optimal solution to the joint

issue. Especially, the power stint is developed as a non-

pliable game with the perspective of a distribution system.

The simulation outcome of JPSASC is developed to explain

the secrecy capacity in the NOMA model.

5G networks can be configured as heterogeneous networks

(HetNets), in which cell densification is the main feature,

with cells of different sizes forming the network. Further-

more, 5G is relied upon to help alleviate time-shifting awry

traffic load for both UL and DL connections in various

cells. Several optimization strategies have been developed

to support seamless coverage and QoS for both DL and

UL. However, the intractable nature of the channel selec-

tion problem in 5G heterogeneous networks [18] motivates

us to design an efficient channel allocation scheme through

joint optimization of UL and DL streams.

3. System Model

Dense HetNets have been created based on the principle

of diminishing the cell size and increasing the quantity of

small cells (SCs) per unit of territory, as such a solution is

capable of handling the traffic rates expected in 5G. Here,

we consider a 5G heterogeneous network comprising N
networks of any type, e.g. wired and wireless links. The

network consists of a specified number of primary users

(PUs) and subscribed users (SUs). Each network is allo-

cated with the most extreme number of channels, where the

channels allocated to SUs rely on the conduct of PUs [19].

5G supports a heterogeneous network that consists of dis-

crete elements, such as users, services, radio access net-

works (RAN), and backhaul networks. The backhaul net-

work plays a major role in transferring data intended for the

users from/to different base stations within the cellular net-

work. The scheduling of backhaul transmission determines

that performance be optimized relative to traffic demands

placed on the small cells served. Normally, the traffic de-

mands may change over time during longer transmissions,

due to channel dynamics.

We will probably meet long-duration traffic requests over

blocks of N diminishing slots. Next, the scheduling prob-

lem of more than one such block will be considered. On

account of remote backhaul, the drawn-out requests will

regularly be out of the ergodic rate locale of the backhaul

remote channel. This persuades us to characterize the back-

haul scheduling problem in order to decide on and work

at the rate point in the backhaul ergodic rate area that is

nearest, in some sense, to the traffic requests in the access

network. An example of a 5G backhaul network and its

components is depicted in Fig. 1.

With MIMO and millimeter-wave communication technolo-

gies, the small cell scheme is an inevitable solution for

upcoming 5G networks. MIMO has arisen as an innova-

tion catalyst for cutting edge mobile communications in 5G.

Furthermore, the increase in channel allocation guaranteed

by MIMO is forecast to overcome the capacity crunch ex-

perienced in current mobile networks and to allow for the

Fig. 1. A 5G wireless mesh backhaul network.
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aggressive focus of 5G. The test to acknowledge MIMO for

5G is an effective and cost-proficient reconciliation in the

whole network concept. This work features categorization

and usage schemes for MIMO with a small cell 5G indoor

framework taken into consideration.

In this regard, the MIMO innovation, where the BSs are

furnished with countless antennas to satisfy different spec-

tral and energy efficiency gain requirements, will be a key

innovation empowering agent for 5G [20], [21].

4. Proposed Method

We initially portray the basics of UL and DL NOMA trans-

missions and underline their vital differences in terms of us-

age unpredictability, recognition, and unraveling at the suc-

cessive interference cancelation (SIC) receiver(s), brought

about intra-cell and between cell impedance. At that point,

for joint DL and UL NOMA, we hypothetically infer the

NOMA predominant condition for every individual client

Table 1

Notations used

Symbol Description

xn Unit power message signal for user n
pd

n Power allocated for user n
N Total number of users

Pt Total power at base station

wn Gaussian noise at the receiver for user n
hn Channel gain between the BS and user n
vn Additive noise

v Indicates the additive noise at the BS

In Interfering signal

θ Power splitting factor

w Receiver noise

Ru
n Uplink rate achieved by the n-th user

N0 Noise power

PI Power of the interference received by the base
station

γu
n Uplink signal to noise ratio

γd
n Downlink signal to noise ratio

Pi
m Transmit power of downlink

qi
r Transmit power of uplink

βm Joint effect of path loss

βn Shadowing between DL users and UL BSs

x Current number of iterations

α , β Positive constant parameters

a Acceleration factor

w Inertia weight

φ Path loss exponent

µ Non-negative constant

H,G Constant parameters

in a two-client NOMA group. The NOMA predominant

condition refers to a condition under which the spectral effi-

ciency gains of NOMA are ensured, in contrast with orthog-

onal frequency division multiple access (OFDMA) [22].

By and large, NOMA permits the superposition of definite

message signals of clients within a NOMA group. The

ideal message signal is then recognized and decoded at the

receiver (client in the DL and BS in the UL) by applying

SIC.

Table 1 shows the notations used in the following con-

siderations.

4.1. Downlink NOMA

In the DL NOMA, the BS communicates the superimposed

sign:

x =
N

∑
n=1

√

Pd
n xd

n ,

where xd
n is the unit power of the message signal proposed

for client n, Pd
n means the power allocated for client n, and

N indicates the complete number of clients signified by UN
in a NOMA framework.

The power allocated to a client relies on the forces of dif-

ferent clients, because of the BS all out force requirement,

Pt = ∑N
n=1 Pd

n , where Pt is the absolute BS power. The sig-

nal received by the n-th user is termed yn = hnx+wn, where

hn indicates the channel gain between the user n and the

BS and wn represents the Gaussian noise at the receiver for

user n [23], [24].

Downlink NOMA utilizes a power allocation mechanism,

where high power transmission is utilized for clients with

below-par channel conditions and vice versa. Accordingly,

at a given client in the NOMA group, the strong interfer-

ing signals are caused primarily by the powerful message

signals of generally frail channel clients. In that capac-

ity, in order to separate the ideal signal, every client can-

cels the strong interference by SIC translating, demodulat-

ing, and by deducting them from the received signal y.

Consequently, the highest channel gain client drops all

intra-cluster interferences, while the least channel picks up

a client gets the interferences from all clients within its

group [25], [26]. Additionally, the transmitting power is

subject to [27]:
N

∑
n=1

Pd
n 6 P . (1)

We expect that the signal received by every client UN is

parted into two streams, and the power fraction with condi-

tion 0 6 θn 6 1 is utilized for data processing. Transmitters

are the source of interference I. There is a simultaneous

transmission of data signals and power from BS. The per-

ception at the n-th client, which is utilized for data inter-

preting, is given by:

yn = hn
√

θn

N

∑
i=1

√

Pd
i sd

i +
√

θnIn +wn , (2)
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where wn indicates additive noise at Un and In is the inter-

fering signal. Noise is included in two parts of the recip-

ient: the receiver antenna noise and the circuit noise. In

any case, the antenna noise is ignored. Hence, we incor-

porate only one additive noise. Each client U j completes

SIC by identifying and eliminating the U ′
Ns message, for

all n < j, from its perception. Consequently, the attainable

rate at UN , n ∈ [1, 2, . . . , N] is limited by:

Rd
n = min(Rd

n→n,Rn→n+1, . . . ,Rd
n→N) . (3)

Rd
n→ j indicates the amount at which user U j finds the in-

tended message for user UN :

Rd
n→ j = τ log2

(

1+
Pd

n θ jg j

θ jg j ∑N
i=n+1 Pd

i +θ jPI , j +1

)

, (4)

where Pd
n = Pd

n
N0

and PI, j =
PI, j
N0

are the interference power

received by U j. We consider that PI, j is detected precisely

by U j and portrayed to the BS to guarantee and allocate

the current resources. When n = N, Eq. (4) is:

Rd
n→ j = log2

(

1+
Pd

n θNgn

θNPI,N +1

)

. (5)

P = Pd
1 , . . . , Pd

N shows the set of the power transmission

values between the clients and θ = θ1, . . . , θN is the set of

isolating power factors between the clients.

4.2. Uplink NOMA

In uplink NOMA, each client transmits its individual signal

xu
n with:

x =
N

∑
n=1

√

Pu
n xu

n

and transmit power Pu
n in such a way that the BS received

signal can be characterized as:

y =
M

∑
n=1

√

Pu
n hnxu

n +w ,

where w is the receiver noise (with a density of power

spectral N0) at the BS. The power transmitted per client is

restricted by the client’s maximum battery power [23].

Note that, for applying SIC and decrypting signals at the

BS, it is essential to keep up the uniqueness of different

message signals which are superimposed within y. Consid-

ering that the channels of various clients are diverse in the

uplink, individual message signals encounter definite chan-

nel gains. Subsequently, the received signal power, com-

pared with the most potent channel client, is likely the most

potent at the BS. Accordingly, this signal is decrypted, first

at the BS, and encounters interference from all clients in

the group with generally more vulnerable channels. Hence,

the communication of the most potent channel gain client

encounters interference from all clients within its group,

though the communication of the least channel gain client

receives zero interference from the clients in its group. In

this way, the perception at the BS is given by [27]:

y =
N

∑
n=1

h̄n
√

Pu
n su

n + I + v (6)

where I indicates the interfering signal and v is the additive

noise at the BS. By utilizing SIC, the capacity region is

limited by:

∑
n∈Mk

Ru
n 6 (1−τ) log2

(

1+
∑n∈Mk

Pu
n gn

PI +1

)

∀Mk : Mk ⊆ N ,

(7)

with Ru
n being a quantum of UL accomplished by the n-th

client, Pu
n = Pu

n
N0

, P1 = P1
N0

, N0 is the noise power, and PI is

the interference power acquired by the BS. PI is detected

precisely by the BS. At last, Mk signifies any conceivable

subset of the clients. τ is introduced to denote the effect of

cross-correlation. The asymptotic Shannon capacities on

the UL (CUL) and the DL (CDL) for MU-MIMO channels

under convenient transmission are given by [21]:

CUL =
N

∑
n=1

log2(1+ γu
n Mβψn) , (8)

CDL = max
an>0,∑an61

N

∑
n=1

log2(1+ γd
n Manψn) , (9)

where γu
n and γd

n are the overall UL and DL SNR’s, [ψn],n =
1,2, . . . ,N constitutes the coefficients of large-scale fading

for the N UE’s, and an is a group of variables which should

be enhanced to get CDL. At the point when suitable power

control systems are utilized to standardize the impact of βn,

the UL capacity improves to N log2(1+MγuSNR
n ).

Corresponding considerations are given to DL NOMA.

Hence, we accomplish multiplexing gains and cluster gains,

under suitable transmission conditions, utilizing simple lin-

ear processing techniques at the BS, such as, for example,

maximal ratio combining (MRC) and zero forcing (ZF) de-

tection. This streamlines the computational burden and

the hardware requirements related to the BSs, the BS’s

actualize complex signal processing techniques, for exam-

ple, maximum likelihood (ML) recognition and successive

interference cancelation (SIC), to accomplish optimal ca-

pacities.

The sum power utilization P, accumulated across UL and

DL transmissions in a NOMA-MIMO framework, can be

displayed as [21]:

P = PPA +PC +Psys , (10)

where PPA shows the complete DL and UL used through

the power amplifiers (PA’s) at the UEs and the BS, PC con-

stitutes the absolute DL and UL circuit power utilized by

different digital and analog signal processing circuits at the

BS and the UEs and Psys refers to the excess framework-

dependent component in P.

While PPA empowers for the sum power use on RF trans-

missions, PC incorporates the sum power utilization from
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RF chain components, for example, synthesizers and fil-

ters, additionally the tasks of the baseband, for example,

digital up/down conversion, FFT/IFFT, recipient/precoding

combining, channel deciphering/coding, and assessment of

the channel. Here, PC can not be planned according to the

regular exercise as a stable term autonomous of (M,K) as

per the requirement of hardware and the number of circuit

processes in the framework created with K and M. Psys
will assume a critical role in describing energy efficiency

of 5G networks, since many BS and UE types will co-exist

in a multi-tier architecture with various cell sizes, power

utilization levels and access technologies.

4.3. Full-Duplex-NOMA System

We consider a full duplex multicarrier NOMA (FD MC-

NOMA) framework which includes full duplex base sta-

tions (FD-BSs), K DL clients, and J UL clients. All DL

and UL clients are provided with two antennas. The FD-

BSs are additionally furnished with two antennas for facil-

itating synchronized DL transmission and UL reception in

a similar frequency band. We expect that the BSs and the

DL clients are furnished along with successive interference

cancelers. The whole frequency W band is apportioned into

NF subcarriers. In this article, the individual subcarriers are

distributed between two DL clients and two UL clients at

the most, to restrict multi-user interference (MUI) and the

UL-to-DL co-channel interference (CCI) on an individual

subcarrier and to guarantee low hardware complexity and

low processing delays [28], [29].

Presuming that UL clients r ∈ (1, . . . ,J), UL clients t ∈
(1. . . . ,J), DL clients m ∈ (1, . . . ,K) and DL clients n ∈
(1, . . . ,K) are preferred and multiplexed on subcarrier i ∈
(1, . . . ,NB) likewise the required signals at DL client n, DL

client m, and the BS are indicated likewise by:

Y i
DLm =

√

Pi
mβmhi

mxi
DLm + Ii

MUm + Ii
CCm

+wi
DLm , (11)

Y i
DLn =

√

qi
nβnhi

nxi
DLn + Ii

MUn + Ii
CCn

+wi
DLn , (12)

Y i
BS =

√

qi
rω̄rgi

rx
i
ULr

+

√

qi
tω̄tgi

tx
i
ULt

+ Ii
SI +wi

BS , (13)

where xi
ULr

and xi
DLm

represent the transmission of signals

from UL client r to the FD-BS and from the FD-BS to DL

client m on subcarrier i. Pi
m and qi

r are transmit powers

of DL client m and UL BS r, separately. βm and βn are

the joint impact of path loss and shadowing among DL

clients and UL BS. hi
r and hi

m indicate the small scale fading

coefficients for the link between UL BS r and the FD-BS

and the link between the FD-BS and DL client m. I i
MUm

and

Ii
CCm

are MUI and CCI. The joint impact of path loss and

shadowing between UL BS r and the FD BS and between

DL client m and UL BS r is depicted by ω̄r and gr. Finally,

the complex additive white Gaussian noise (AWGN) on

subcarrier i is depicted by wi
DLm

, wi
ULr

, and wi
BS.

An instant subcarrier is assigned to the clients of two DL

and UL in the FD MC-NOMA framework simultaneously.

Commonly, the UL power of client signals is lower than that

of signals released by the BS for DL clients, which makes

it complex for the clients of DL to extract and remove the

UL signal by accomplishing SIC. Because of their various

constraints on the complexity of receiver hardware and QoS

needs, different coding schemes and modulations are used

in the DL and UL. As a result, DL clients cannot decode

and demodulate the UL signals. So, every user signal is

treated as noise, and to eliminate other DL clients, only the

DL client achieves SIC. For example, we initially consider

an individual policy for the SIC decoding order 4 and an

allocation of subcarrier. UL BSs r, t and DL clients m,

n are multiplexed on subcarrier i. In addition to decoding

SIC and eliminating the DL client, ms signal is achieved by

the DL client n. Before decrypting the UL client ts signal,

the FD BS first decrypts the UL client rs signal and then

eliminates it by SIC. Equation (14) is applied to represent

the weighted sum throughput of subcarrier i in such an

approach:

U i
m,n,r,t = si

m,n,r,t

[

wm log2

(

1+
H i

mPi
m

α i
m +1

)

+wn log2
(

1+
H i

nPi
n

α i
n +1

)

+ µr log2

(

1+
Gi

rq
i
r

φ IsIiα i
r +1

)

+ µt log2

(

1+
Gi

tq
i
t

φ IsIiα i
t +1

)

]

, (14)

for the links between the DL, clients m and n and FD

BSs r and t on subcarrier i are defined by the total small

scale fading coefficients, such as α i
m, α i

n, α i
r and α i

t respec-

tively. The subcarrier allocation indicator is represented by

si
m,n,r,t ∈ (0,1). If UL BSs t and r and DL clients n and

m are multiplexed on subcarrier i, then si
m,n,r,t = 1. Before

decrypting the BS ts signal, the FD BS first decrypts UL

BS rs signal and eliminates it. Likewise, DL client n ex-

ecutes SIC of the DL client m signal. Another resource

allocation policy is utilized when si
m,n,r,t = 0. To achieve

a particular notation of fairness in resource allocation, the

non-negative constants that are identified in the media ac-

cess control (MAC) layer and 0 ≤ wm ≤ 1 and 0 ≤ µr ≤ 1
Eq. (14) mentions the preferences of DL client m and UL

BS r respectively.

In practice, self-interference (SI) cannot be canceled com-

pletely, regardless of whether the SI channel is known at

the FD-BS, because of the limited dynamic range of the

receiver. Subsequently, we mold the surplus SI following

elimination at the receiving antenna with autonomous zero-

mean Gaussian distortion noise, for which change is relative

to the received power of the antenna. NOMA frameworks

utilize the power domain for multiple access, wherein vari-

ous clients are provided with various power levels. Specifi-

cally, for a particular subcarrier, let us presume that the DL

client n intends to decrypt and eliminate the CCI induced

by DL client m employing SIC. Interference cancelation is

fruitful if SINR received by client ns for client m signal

is bigger than or equivalent to the SINR received received

by client m for its signal. For instance, DL client n can

only successfully decrypt and eliminate DL client m signal

6
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by SIC on subcarrier i when the accompanying disparity

holds:

wn log2

(

1+
H i

nPi
n

α i
n +1

)

> wm log2

(

1+
H i

mPi
m

α i
m +1

)

, (15)

on subcarrier i, the suddenly weighted sum throughput

Eq. (14) for the instance of r = t and m = n, turn out to be:

U i
m,n,r,t = si

m,n,r,t

[

wm log2(1+
H i

m(Pi
m +Pi

n)

α i
m +1

)

+ µr log2

(

1+
Gt

r(q
t
r +qi

t)

φ IsIi(α i
r +1)

)]

. (16)

Variable φ denotes path loss exponent, µ is the non-

negative constant, the constant parameters H and G are

defined as H i
m =

ϖm|hi
m|

2

σ 2
zDLm

, Gi
r =

er|gi
r|

2

σ 2
zBS

in Eqs. (14)–(16).

The joint UL/DL NOMA channel allocation issue is that,

allocating a path for a node either a BS or end client among

various nodes in a wireless mesh network, to reduce the

processing time and to expand the framework throughput.

In our definition, the correspondence between nodes in the

backhaul network in a 5G framework can be preoccupied

as TSP.

Here, we consider a well-known TSP, in which we need to

determine the shortest closed path between clients of both

J UL and K DL, with at least one subcarrier allocated to

each client. Suppose, i = (1,2, . . . ,N) is the set of TSP

clients and the weighted sum throughput of each client is

given by U i
m,n,r,t .

The system aims to increase the weighted sum throughput

of the system. The best joint UL/DL NOMA distribution

policy is obtained by mixed-integer linear programming,

problem for TSP is represented as:

Q(x) = maximizep,q

NF

∑
i=1

K

∑
m=1

K

∑
n=1

J

∑
r=1

J

∑
t=1

U i
m,n,r,t , (17)

subject to:

C1 : si
m,n,r,t ∈ [0,1],∀i,m,n,r,t , (18)

C2 :
NF

∑
i=1

K

∑
m=1

K

∑
n=1

J

∑
r=1

J

∑
t=1

si
m,n,r,t(P

i
m +Pi

n) 6 PDL
max , (19)

C3 :
NF

∑
i=1

K

∑
m=1

K

∑
n=1

J

∑
r=1

J

∑
t=1

si
m,n,r,t(P

i
r +Pi

t ) 6 PUL
max , (20)

C4 :
NF

∑
i=1

K

∑
m=1

K

∑
n=1

J

∑
r=1

J

∑
t=1

si
m,n,r,t 6 1, ∀i , (21)

C5 : Pi
m > 0, ∀ i,m , (22)

C6 : Pi
r > 0, ∀ i,r . (23)

If si
m,n,r,t = (0,1), then C1 assures effective SIC at DL op-

erator n. For the reception of UL, since the receiver for

all UL signals is the FD-BS, it can accomplish SIC in any

order. For the BS, the C2 constraint is the power constraint

through an extreme allowance of power transmission PDL
max.

By using PUL
max, C3 bounds the transfer power of UL user r.

To guarantee that each subcarrier constraint C4 is imposed,

it is allocated to the top two DL and UL clients. The client

pairings of DL, UL-to-DL, and UL are accomplished on

each subcarrier. For the UL and DL clients, C5 and C6 are

said to be the non-negative power transmission constraints.

4.4. Modified Particle Swarm Optimization (MPSO) with

Inertia Weight

Eberhart and Kennedy discovered a particle swarm opti-

mization (PSO) algorithm relying on a population-based,

cooperative search metaheuristic procedure. PSO particles

are known as the population’s candidate solutions in which

it coincides and develops instantly according to the sharing

of knowledge from neighboring particles. PSO is a modern

optimization algorithm, but when the problem dimension

arises, it normally requires some enhancements [31].

In this paper, an altered PSO algorithm is proposed. For

planning a modern multi-stage exception expansion, MPSO

is applied here. Also, for multi-stage planning, some

groups of particles are separated from the population in

the altered PSO algorithm. Here, xi j represents the position

vector of the j-th particle of the i-th group. An intermedi-

ate network is optimized by each group of particles during

single stage iterations. Therefore, the number of planning

stages and groups tends to be similar. The particles fly

sequentially from dissimilar groups (i.e. dissimilar phases).

From its own last position, a j-th particle of the first group

starts to move in every single iteration, but for i > 1, from

the last position of a j-th particle of i−1 group, the j-th
particle of the i-th group starts to move. Equation 16 is

used to calculate the objective function of each particle

for the i-th stage in the i-th group. The objective function

U i
m,n,r,t (where s = i) is presented xLB

i as a local best posi-

tion and it is minimized by the better position vector of the

i-th group. The overall explanations are gained from the

positions of sequential particles of all groups. The number

of particles of each group is equal to the number of newly

created particles for every iteration.

Equation (17) is used to compute the objective function of

every particle. Then, the better solution is predicted. The

best particles are presented xGB
i as a better global position.

The velocity vector of a better existing position in conven-

tional PSO is calculated as:

vi,n+1 = w∗ vi,n +C1∗ rd1(Pi,n−xLB
i,n )+C2∗ rd2(Pi,n−xGB

i,n ) ,

(24)

vi,n =

[

(1− t
T )Vm ; if vi,n > Vm

−(1− t
T )Vm ; if vi,n <−Vm

]

, (25)

xi,n+1 = xi,n + vi,n+1 . (26)

Apart from the scaling term 1− t
T , an altered algorithm of

PSO is almost similar to the original one in the scheme; and

in Eq. (25) it is multiplied with maximum velocity Vm. The

proceeded maximum number of generations processed is

7
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mentioned using T and the number of the current generation

is symbolized using t.
A significant component inertia weight in particle swarm is

used to overcome the local optimal problem and slow rate of

convergence of PSO. Inertia weight is one of the important

factors to influence the convergence speed and searching for

outcomes. The global search ability is better for PSO and

when the weight of inertia is higher, then the function of the

concrete value is to improve the rate of convergence. Local

search ability is also enhanced when the inertia weight is

insignificant. This means that an enhanced solution may

be achieved immediately after the local search algorithm

is completed. Early convergence is processed quickly by

the PSO algorithm as well. In the PSO algorithm, we

initially fixed a large inertia weight value and in the global

scope, to guess the series of the optimum value. To perform

the optimal value search for the algorithm, we set a lower

value of inertia weight w, so that the algorithm offers faster

convergence and better search outcomes. The function of

the modified inertia weight is:

w(x) =
n.α

n+ xa +β , (27)

where the rate of change and acceleration factor is defined

by a, the range of w is controlled by the threshold values

(positive constant parameters) α and β , the current iteration

number and the algorithm iteration number are defined by

x and n, respectively.

The following equations are used to verify the validity of

this function:

w(x)
′
=
−nαaxa−1

(n+ xa)2 , (28)

w(x)
′′
=

nαaxγ−2(n+ xa)[(a+1)xa− (a−1)n]

(n+ xa)4 . (29)

When x is greater than

√

(γ−1)n
γ+1 then the significance of

w(x)′′ is in excess of 0 and w(x)′ is lower than 0 as per

Eqs. (28) and (29).

The weight of the inertia function is a convex, as well as de-

scending function besides it, is observed from the above for-

mula that the descending speed steadily slows down when

the iteration number increases. Without affecting the preci-

sion of convergence, it significantly raises the rate of con-

vergence of this algorithm.

The values of α and β are set to 0.8 and 0.5, because the

range of inertia weight w ranges from 0.5 to 1.2 in PSO. In

an existing space, searching for the smaller value of w takes

place but the bigger w can be searched in the new spaces.

The inertia weight variable is suitably picked for balancing

both the local and global search. In Eq. (27), a different

value of a is displayed for the inertia weight function.

In the process of its execution, the algorithm preserves two

superior variables named g-best and l-best position. Two

comparisons are performed: to decide the g-best location

of every creation in the entire population, each particle’s

fitness at its current position is related to the remaining par-

ticles’ fitness. Then, to choose the l-best position for every

particle, the current location of separate particles is con-

trasted with diverse visiting positions. Based on Eq. (24),

the refining velocity of every particle in the species of par-

ticle group is realized by these two positions. To update

the speed rate of the fresh particle, two stochastic variables

outweigh the effect of two locations.

The pseudo-code with the M-PSO algorithm for task

scheduling is presented as Algorithm 1.

Algorithm 1. Modified PSO for joint UL/DL channel

allocation

1. Initialization. The population and iteration number

are fixed as N and Nt , respectively. Within the pre-

defined decision variable range, initialize velocity vi
and position xi of the particles with random numbers.

The upper bound of the decision variable is fixed at

Vm. The fixed iteration count t = 0 and pi = xi as

personal better position.

2. Estimation. Every single particle in the current pop-

ulation is estimated. Set t = t + 1, pi = xi when

Q(t) < Q(t−1). Find a corresponding position xmin
and Qmin = minQ(t). The global best is selected by

using xGB
i,n = xmin.

3. Generation of new particles. Compute the objec-

tive function values for every single new particle and,

depending upon the current xi (i = 1, 2, . . . , N), com-

pute the new position xi and velocity vi. Associate

new xi (2N particles) as well as all xi together and

collect them in a temporary list.

4. Non-dominated sorting. In tempList recognize

dominated results and save them in a Pf ront (Pareto

front) matrix. Fixed front number k = 1 and:

(a) from the tempList the non-dominated particles

are eliminated,

(b) k = k + 1. The non-dominated results in the

excepting tempList are recognized and are col-

lected in a Pf rontk (front k) matrix,

(c) when all 2N particles get ranked into several

fronts then stop the repeating steps b–c.

5. For the next iteration, select particles. From Pf ront
randomly pick out N particles, if Pf rontsize > N and

store them as next xi. Or select random particles in

next front (front k) and include them in next xi until

next xi size becomes N.

6. For every particle in next xi, compute objective func-

tion values and for the next iteration set the next xi
as the current position’s xi.

7. If all vi < 0.1Vm, then implement subsequent steps or

else go to step 8.

(a) from the current population randomly pick 20%

particles and modify their positions by 10% of

8
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the Vm. Finally, xtemp is used to store those re-

sults,

(b) xtemp gets estimated and all the dominant parti-

cles are identified. The particles in the current

xi are replaced by those dominating particles,

(c) it is definite that the number of x does not ex-

ceed N and repeat K times (K = 1,2, . . . ,10)

steps a–b.

8. If t < Nt go to step 2.

9. From the final population, the non-dominated solu-

tions are stored and performance metric values are

calculated.

The creation of randomized and legal influence of loca-

tion is a major goal of these coefficients. So, once in

a while it is very essential to find few examinations and

at other times small exploitation stochastically. Depends

upon a new speed with solving Eq. (26), this algorithm up-

dates the particle’s current position to a new value. Every

single particle defines the PSO particle population’s new

state and reviews its position. Based on their new location,

the fitness values are evaluated by the algorithm. The du-

plication of the processes is used to estimate the location of

fresh particles and to predict the global and the local best

positions which, in turn, are used to inform the position of

the particles.

5. Performance Evaluation

The performance of the presented channel allocation

method is examined using the simulation parameters from

Table 2. Within the outer and inner boundaries, both the

K and J users are uniformly and randomly dispensed. PDL
max

defines the extreme transmit power of the FD BS. Here, we

incorporate the Rayleigh fading model in the UL NOMA

for communication between users and the BS. Similarly,

we have incorporated the Rician fading model in the DL

NOMA for communication between the BS and users.

5.1. Throughput

Throughput is defined as the movement of data from one

location to another, over a specific period of time. It is

a key indicator of the effectiveness and quality of net-

work connectivity. A high rate of failed message deliveries

will eventually lead to low throughput and degraded perfor-

mance. Decoding methods in NOMA systems, to decode

various simultaneous transmissions, SIC which is a mul-

tiuser detection technique that uses the structured nature of

interference. Separate signals are retrieved, one by one,

from the composite signal in the following manner. It is

questionable when the remaining signals are decoded if all

of the signals fail to be decoded. Throughput depends on

every single signal. The order of decoding also plays an es-

sential role in the positive outcome of decoding operation.

Table 2

Simulation parameters

Parameter Description

System bandwidth 12 GHz

Number of subcarriers 5

Carrier frequency 3.6 GHz

Subcarrier separation 20 kHz

Sub-frame length 1.0 ms

Symbol duration
66.67 µs

+ cyclic prefix: 4.69 µs

Receiver type MMSE+SIC

Number of users per cell 10

Number of PU per cell 3

Number of SU per cell 7

Inter-site distance 500 m

Maximum transmit power 46 dBm

Channel model
3GPP spatial channel

model (SCM)

Path loss model 133.6 +3̇5 log(d) [km]

Traffic model Full buffer

Power factor 0.25

Size of swarm 30

Modulation technique 16 QAM

Maximum iteration 500

Encoding Conventional

The order of decoding the received superposition coded

signals is not forced by the principle of NOMA. The sys-

tem’s advantages become visible when throughput decodes

stronger signals ahead of their weaker counterparts.

However, due to the decoding difficulties of the SIC method

and the changing nature of wireless channels, most users

are allocated, undesirably, to subchannels which will inten-

sify the system’s throughput. Throughput of the presented

system increases with the increasing number of users, as

shown in Fig. 2 and is compared with some of the existing

approaches [25].

Consistent throughput performance was obtained in the

graph for the existing algorithms, where the number of

users does not affect throughput to a considerable degree.

Tree search-based transmission power allocation (TTPA)

and fractional transmission power allocation (FTPA) are the

conventional methods that work based on grouping, power

allocation, and ordering. Figure 2 shows that the proposed

system is affected by significant changes concerning the

number of users. Typically, NOMA systems are intended

for dense user networks. The proposed system is highly

suitable here. Extreme throughput is achieved by users

who gain the best of all subchannels. Similarly, the max-

imum throughput is achieved by the users who are nearer

to the base station, as well as in overall subchannels, with

the effect of Rayleigh fading being statistically parallel for

all users.
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Fig. 2. Throughput vs. number of users.

5.2. Spectral Efficiency

Spectral efficiency is defined as the bits per second net

data rate divided by bandwidth. Net data rate and in-

dex rate are associated with the raw data rate, including

the payload and all overheads that can be used. Fig-

ure 3 shows the spectral efficiency versus the number of

users. The NOMA-MPSO spectral efficiency exceeds the

NOMA-TTPA, NOMA-FTPA, and OFDMA schemes and

the presented methods of resource optimization tend to pro-

vide maximum spectral efficiency than the existing previous

techniques [32], [33].

Fig. 3. Spectral efficiency vs. number of users.

Figure 3 shows that with the number of users, the efficiency

of the spectrum rises and the growth of data rate becomes

slower with the rise in the number of users. It endures

rising in the total sum rate when the number of users is

greater than the number of sub-channels as well as it grows

at a smaller speed due to the gain of multiuser diversity.

When the user number is insignificant then the effect of

diversity of multiuser is more remarkable.

5.3. Sum-Rate

The sum rate is defined as the sum of all rates of commu-

nication between the nodes, taking place in a network:

RT =
K

∑
k=1

Rk , (30)

where Rk is the k-th user equivalent sum-rate and RT is the

sum-rate obtained by using the proposed approach. The

highest sum-rate for users will be achieved by conducting

all communication at once, or there must be some schedul-

ing between the different tasks. The sum-rate is maximized

when the system is operating continuously, in the full-

duplex mode.

Fig. 4. Sum rate vs. number of users.

Figure 4 shows RT , the total rate of the user, the num-

ber of UEs per cell function, is got through system-level

simulations for the presented scheme of NOMA-MIMO us-

ing MPSO at the SIC receiver at both ends and transmit-

ter side of BS. We put in a simple assessment model us-

ing the Shannon capacity [34]. Using NOMA, we assess

a case accounting OFDMA, in which the transmission of

a single-stream is applied per transmitter beam. In addition,

MPSO channel allocation methods are compared with the

exhaustive NOMA-FTPA and NOMA-TTPA searches. The

NOMA-MPSO technique is suitable for finding the con-

straints of QoS and the sum-rate with weights in which the

majority of the gap is less than 5% and it is very adja-

cent to the globally optimum value. Hence, the suggested

joint UL/DL channel assignment technique is capable of

attaining approximate optimal performance with fewer dif-

ficulties.
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5.4. Outage Probability

Outage probability is the achieved data rate of an individual

user which is lower than the predefined value. For common

outage probability, an outage occurs when the user is de-

activated. In individual outage probability, individual user

outage events are considered. Outage probability is used

as a performance measure, since it not only allows for the

identification of the probability of errors, but may be also

used to evaluate the outage capacity/rate. After 20 dB, the

graph gets saturated due to the proper achievement of SNR

in this region. The effect of the user’s non-uniform loca-

tions and the interference is caught by applying stochastic

geometry, and the order of diversity is computed to demon-

strate efficient use of the channel’s degree of freedom by the

presented framework [35]. In Fig. 5, the scheme in question

is compared with NOMA-TTPA, NOMA-FTPA, OFDMA.

One may notice that their outage sum-rate performance is

similar, up to a certain reduced number of users, but when

the number of users increases, outage probability changes

considerably. However, the NOMA-MPSO scheme is ca-

pable of offering much better reception reliability, certainly

for maximum power transmissions.

Fig. 5. Outage probability vs. transmission power.

5.5. SINR

SINR measures the quality of a transmission channel.

SINR is generally defined for a specific user and is rep-

resented as:

SINR =
P

I +N
, (31)

where incoming signal, interference signal, and noise are

denoted as P, I, and N, respectively. Noise cancelation

is impossible under separate constraints of power, but the

possibility of the set of target SINRs may be under a sum

power constraint. Because of the unavailability of power

constraints, arbitrary target SINRs may be achieved. This is

caused by the cascaded structure of interference formed by

the successive decoding operations. To accomplish a cer-

tain set of SINRs, an equal amount of total power is essen-

tial for both links. Under a sum power constraint, both

links have an equal achievable SINR range. Likewise,

the same beamformers, accomplish the target [36]. Fig-

ure 6 illustrates the performance of the offered method BER

unit and compares its performance with existing algorithms

OFDMA, NOMA-FTPA, and NOMA-TTPA. BER perfor-

mance is improved in the proposed system.

Fig. 6. BER vs. SINR.

5.6. Fairness

This is the most popular metric used in network engineering

to determine if users or applications receive a fair share of

he system’s resources. Fairness is defined as:

Fairness(r1,r2, . . . ,rn) =
(∑i ri)2
n∑i ri2

, (32)

where the throughput individual nodes is denoted as

r1,r2, . . . ,rn. Based on the scheduling period, the fairness

of the proposed method is examined. The time domain of

the scheduling process is slotted. The time slot index is de-

noted by t. With 20 slots, we interpret a scheduling frame.

Channel state information is grouped once per frame. The

Jain’s fairness index is calculated by
(∑K

k=1 rk)2
K ∑K

k=1 rk2
, when the

average user’s rates are r1, . . . ,rk, at the end of the period

of schedule. In network communications, this index, devel-

oped in [37] and is utilized for user throughput as a measure

of fairness value from 1
K and 1.0 is reached. Fairer through-

put distribution is specified by higher values. This index

will drop the index value but doesn’t evade a user from be-

ing assisted with low throughput (or even zero throughputs)

but it will bring down the index value.

The fairness index for the number of users is shown in

Fig. 7. Thanks to the higher level of competition between

the users, fairness degradation in all schemes is caused by

an increase in the number of users [32]. But in the scheme

we propose, the slope of the curve is decreasing slightly
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Fig. 7. Fairness index vs. number of users.

with an increase in the number of users, which means that

fairness level is improved compared to that of the existing

schemes, i.e. OFDMA, NOMA-TTPA, and NOMA- FTPA.

6. Conclusion

This paper discusses the design of FD BS for the MIMO-

NOMA system channel allocation algorithm. For the en-

largement of the weighted sum system throughput, the

model of the algorithm is generated as a mixed combinato-

rial non-convex optimization issue. Based on various work-

loads and task scheduling approaches, an M-PSO algorithm

is developed in this paper. The inner weight factor plays

a vital role in M-PSO, where the higher value of inertia

weight is performed as global search and the small weight

of inertia value performed as local search. The M-PSO

algorithm with a greater number of users achieves better

results than the same algorithm with a few users. More-

over, the presented FD MC-NOMA approach was proven

to offer a perfect balance between maintaining fairness and

improving the system’s throughput among users. The pro-

posed FD MC-NOMA M-PSO scheme offers better per-

formance in terms of throughput, fairness, sum-rate, and

spectral efficiency for a given number of users.
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