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ABSTRACT

Consider a fixed number of clustered areas identified by their geographical coor-
dinate that are monitored for the occurrences of an event such as pandemic, epidemic,
migration to name a few. Data collected on units at all areas include time varying covariates
and other environmental factors that may affect event occurrences. The event times in every
area can be independent. They can also be correlated with correlation between two units
induced by an unobservable frailty. In both cases, the collected data is considered pairwise
to account for spatial correlation between all pair of areas. The pairwise right censored
data is probit-transformed yielding a multivariate Gaussian random field preserving the
spatial correlation function. The data is analyzed using counting process and geostatistical
formulation that led to a class of weighted pairwise semiparametric estimating functions.
In the independence case, estimators of models unknowns are shown to be consistent and
asymptotically normally distributed under infill-type spatial statistics asymptotic. Detailed
small sample numerical studies that are in agreement with the theoretical results are pro-
vided in the independence case. In the dependence case, the estimators are shown to be
inefficiency when the dependence is ignored. The foregoing procedures are applied to

Leukemia survival data in Northeast England.
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1. INTRODUCTION

In this section of the dissertation, a detailed description of essential mathematical

preliminaries is provided for the reader to get a better understanding of the concepts used.

1.1. MATHEMATICAL PRELIMINARIES FOR SURVIVAL ANALYSIS

The pioneering work by Aalen (1978) on the theory of counting processes has been
the key to the development of statistical tools for analyzing data in reliability and survival
analysis. A detailed discussion of these topics can be found in Andersen et al. (2012),
Chung et al. (1990) and Fleming and Harrington (2011).

Let (Q, .7, P) be a complete probability space and 7' = [0, 7] C R be an interval of

time.

Definition 1.1.1 A filtration F = {%;,t € T} on (Q, %, P) is an increasing family of o -

algebras, that is, ¥Vt < s, %, C ¥, C F.

Note here that in the case of a stochastic process, .#; could be taken to be all information
generated by the process up to time ¢, and is called the natural history of the process.
From now on, the natural filtration associated with the probability space (Q,.%#, P) will be

denoted by F.

Definition 1.1.2 A stochastic process X = {X;,t > 0} is called cadlag if its simple paths
{X(t,w) : t € T} are right continuous with left hand limits for almost all w. Furthermore,

the set of all cadlag functions is called the Skorohod space.

Definition 1.1.3 A counting process is a stochastic process {N(t) : t > 0} adapted to a
filtration F with N(0) = 0 and N(t) < oo almost surely (a.s), and whose paths are with
probability one right-continuous, piecewise constant, and have only jump discontinuities,

with jumps of size +1.



Definition 1.1.4 A stochastic process X = {X;,t > 0} is:

1. Integrable if sup,cp E(X(1)) < oo,

2. Square integrable if sup,.; E(X (1)) < oo,

3. Bounded if there exists a finite constant I such that P {SupteT | X(1)] < F} =1
From now on, cadlag stochastic processes will only be considered.

Definition 1.1.5 A collection M = {M,,t > 0} is an F-martingale if M is F-adapted and

satisfies:
1. Integrability: E(|M;|) < oo forallt €T,
2. Martingale property: E(M;|.%s) = My a.s Vs < t.

A sub martingale is obtained if (2) in previous definition is replaced by E (M,|.%;) > M
a.s Vs < t. On the other hand, a super martingale is obtained by replacing (2) in previous
definition by E (M;|-%;) < M5 a.s Vs < t.

Now, the notion of a predictable process is discussed.

Definition 1.1.6 The o-algebra generated by all the sets of the form:
1. [0] x A, A € %) and,
2. (a,b] xA,0<a<b<oo,Ac€.F,

is called the predictable o-algebra for F, where % is the information at time 0.

Lemma 1.1.1 Let F be a filtration, and X a left-continuous real-valued process adapted to

F. Then X is predictable.

Proposition 1.1.1 Let X be an #;-predictable process. Then, for any t > 0, X(t) is

F;-measurable.



An important theorem that allows decomposing a submartingale is discussed next.

Theorem 1.1.1 Doob-Meyer Decomposition Let M = {M;,t > 0} be a right continuous,
nonnegative submartingale with respect to filtration F. Then, there exists a right-continuous

martingale ./ (t) and an increasing right-continuous predictable process A(t) such that
M(t) = (1) + A(¢) a.s.
Note that, if M is a martingale with E(M?(t)) < oo for t > 0, Jensen’s inequality indicates

that M?(z) is a submartingale.

Corollary 1.1.1 Let M be a cadlag martingale with respect to F. Then, there exists a
unique increasing right-continuous predictable process denoted by (M, M) (t) called the
predictable quadratic variation process of M, such that (M, M) (0) = 0a.s, E (M, M) () <

oo for all t and {Mz(t) —(M,M) (t):t> 0} is a right continuous martingale.

Notion of stochastic integration is presented next. A detailed discussion can be found in

Chung et al. (1990).

Theorem 1.1.2 Suppose M is a finite variation local square integrable martingale, H a
predictable process and /Ot H?*d (M) locally integrable. Then, /Ot HdM is a local square

integrable martingale and its quadratic variation process is given by

</ Ha’M> (t):/otsz(M>.

The above theorem can be further generalized to a vector of martingales M and M’ and

matrices H and K of predictable processes. In that case, the predictable covariation process

</ HdM,/KdM’> :./OlHd (M, M) K’

where A’ denotes the transpose of a matrix A.

is given by

Definition 1.1.7 Suppose a filtration F on (Q,.%, P) is given. A multivariate counting

process N = (Ny, ..., Ny) is a vector of k F- adapted cadlag processes for which:



1. Ny=0Vi=1,2,...,k
2. Their jumps are of size one and no two components can jump at the same time,
3. Their paths are nondecreasing and piecewise constant.

Note that because the components of the counting process N are adapted, cadlag, locally
bounded and nondecreasing, they are local submartingales. So, by the Doob-Meyer de-
composition, there exists a compensator of N;, say A;. A; is referred to as the cumulative
intensity process of the counting process.

The following proposition makes the important connection among counting processes,

martingales and stochastic integration which is crucial in this work.

Proposition 1.1.2 Let N be a multivariate counting process and let A = / A be its as-
sociated vector of compensator processes such that each component of A is absolutely
continuous. Let M = N — A be the resulting vector of local martingales. If H is a vector
of locally bounded and predictable processes, then / HdM are vectors of local square

integrable martingales with a quadratic variation process given by

</ HdM>:/Hdiag {AYH'ds,

where diag {A} is the diagonal matrix of associated intensity processes.

The idea of constructing likelihood with counting process data was first introduced by
Jacod (1975). Considering counting process data, the likelihood function can be written in
a product integral form, which is a continuous version of the simple product II.

Let AN;(t) = N;(t) — N;(t—) be the jump process, and let the intensity process
depends on some p-dimensional parameter . Then, the likelihood in [0, 7] can be written

as
n

re.n=][] {/l,-(v,H)ANf(V)x(l—/li(v,Q))l_AN"(V)}, (1.1)

i=1 ve[0,]



where N;(t) is the counting process for each individual i in the study and A;(¢, 6) is the
hazard rate at time ¢ which is a function of 6 for a parametric model. Simplifying (1.1)

using Taylor expansion and noting 1 — A;(v, 8)dv = exp(—4;(v, 8))dv, we obtain

L(@,t)ocﬁ [1 {/li(v,H)ANi(V)}XeXP{— / tai(v,mdv} : (1.2)
0

i=1 |ve[0,]

Next, by taking the logarithm of (1.2), the log-likelihood process is obtained given by

1(6,1) = Z {/Otlog[/l,-(v,e)]dN,-(v) —/Otai(v,e)dv}. (1.3)

i=1

The score process Uy(#, ) is obtained by taking the gradient of (1.3) with respect to 6.

{/ —log [1:(v,0)] dN(v)—/ 50 —A;i(v, O)dv}
Z{/ =g log[Ai(v. 0)1dM; (v)}
=1

A result which is key to obtaining asymptotic properties of the estimators is presented next.

U@(Q, t)

Theorem 1.1.3 Rebolledo’s Martingale Central Limit Theorem For eachn = 1,2,.. ., let
M® = (Ml("), MZ(”), oM ,E”)) be vectors of local square-integrable martingales where

each may be defined on different sample spaces with respect to different filtration. For

€ >0, let ME”) be a vector of local square integrable martingales such that )M }(Z") - MG(Z)

is a local square integrable martingale and |AM ]5") — AME(Z) <€ Let (M (”)> n=12...
be the k X k matrix processes with elements <M }(ln), M ]57)>. Assume the following conditions

forTo CT:

1. There exists a matrix of deterministic functions V(t) such that <M (”)> (1) LN V(t),Vt €

To, as n — oo,

2. <M§7}(t)> 2 0.Vt €Ty, hand € > 0 as n — .



Then
(M(”)(tl), . ..,M(")(tk)) 4 (M<°°>(t1), . ..,M<°°>(tk)) Vi, ...t €T,
Moreover, if Ty is dense in T and contains 7 if T € T, then the same conditions imply that
M® & M iy D(T)* as n — oo,
where M is a vector of continuous Gaussian martingales.

1.2. MATHEMATICAL PRELIMINARIES FOR SPATIAL STATISTICS
This subsection contains essential preliminaries on spatial statistics.
Definition 1.2.1 Let:
« S c R? be a spatial set,
* (Q,.%#,P) be a probability space,
* (E,€) be s measurable set.

A random field X, also called a spatial process, is a family X = {Xs,s € S} of random
variables indexed by s € S from (Q, %, P) to (E, €), where S denotes the spatial set of sites

and E denotes the state space of the process.

Definition 1.2.2 A Gaussian random field X on S is a process such that, for all finite subset
& of S and all sequence of reals a = (ay, s € &), the random variable Zs€§ asXg has a

Gaussian distribution.



Definition 1.2.3 A spatial process X = { X, s € S} is said to be second order, if for all s in

S, we have E [st] < 400, in this case, one can consider the mean function

m:S — R

s = m(s) = E[X]

and the covariance function

c:SxS —- R

(s,1) > c(s,t) =Cov(Xy, X;).

Definition 1.2.4 A second-order random field X on S is said to be stationary if it has a

constant mean function and its covariance function is invariant by translation, i.e.

VseS:m(s)=m

V(s,t) € 8%, Vhe S:c(s+h,t+h)=c(s,1)

Definition 1.2.5 If X is stationary, the function

cC:S —- R

h — C(h)=c(0,h)

is called a stationary covariance function.

Definition 1.2.6 The stationary correlation function of a stationary random field X is

p:S —- R

h - p(h):%.



Proposition 1.2.1 Let C be the stationary function of second-order spatial process. Then:
1. C(h) = C(—h) (even function),
2. Yh € §: |C(h)| £ C(0) (bounded function),

3. If Cis continuous at the origin, then it is uniformly continuous on S.

Proposition 1.2.2 Let C be the stationary function of second-order spatial process. Then:

Vn>1,Ya € R", V(sq,...,8,) € S" : X7, Z;=1 a;ja;jC(s;—s;) = 0.
Proposition 1.2.3 Let C be the stationary function of a second-order spatial process. Then:

1. If A is a linear function from R? to R%, the random field X* = {Xas, s € S} is

stationary with covariance function C4(s) = C(As).
2. If Cy, ..., C,, are stationary functions, then:
* Y(aj,az) € R* X R the function C(h) = a1Ci(h) + axCy(h) is a stationary
covariance function,
* C(h) = C1(h)Cy(h) is a stationary covariance function,

o lim,— 400 C(h) = C(h) exists for all h, then C is also a stationary covariance

function.

Proposition 1.2.4 A covariance function is positive semidefinite if Vn > 1, V(s1, ..., $y) €

S"andVa = (ay, ...,a,) €R", 31, 2’;21 ajajc(si,s;) = 0.

Proposition 1.2.5 The covariance function is positive definite if Vn > 1, V(s1, ..., s,) € S"

where s1, ..., s, are distincts, },;_, 2721 ajajc(si,s;) =0 (a; =0,Vi=1,...,n).

Definition 1.2.7 A spatial process X is said to be strictly stationary ifVk € N, V(ty, ..., t;) €

Sk and Vh € S the distribution of the random vector (Xt +hs ---s X1, +n) is independent of h.



Definition 1.2.8 A second-order spatial process X has an isotropic covariance function if
Cov(Xy, X;) depends only on ||t — s||, i.e. if there exists a function Cy from R* to R such

that ¢(s,t) = Co(||s — t||) for all (s,t) € S>. Here || - || denotes the euclidean norm on R?.

Definition 1.2.9 A spatial process X is said to be intrinsically stationary or intrinsic if the

processes

AX" = {AX{ = Xgon — Xy35 € S}
are stationary, for all h € S.
Definition 1.2.10 A spatial process X is said to be intrinsic if its increments are of order

two and such that:

Y(s,h) € 8% : E(Xgen — X;) =0,

Vs € S : Var(Xemn — Xs) =2y(h).

The function vy is called the semi-variogram function of X.

Definition 1.2.11 The semi-variogram 'y of a spatial process X is said to be isotropic if

there exists a function yq such that, y(h) = yo(||h||) for all h € S.

Proposition 1.2.6 If X is a second order stationary process with covariance function C,

then X is intrinsic with semi-variogram y(h) = C(0) — C(h).

Proposition 1.2.7 The semi-variogram function vy of an intrinsic process X satisfies the

following:
1. y(h) = y(=h) (even function) and y(0) = 0,

2. If A is a linear map on R%, then the function h — y(Ah) is also a semi-variogram

function,

3. Ify is continuous at 0, then 7y is continuous at every s where 7y is locally bounded,
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4. Ify is bounded in the neighborhood of 0, then there exists positive reals a and b such

that, forallx € S : y(x) < a||x|)* + b.

Proposition 1.2.8 The semi-variogram vy of an intrinsic process X is conditionally negative
definite, i.e. for alln € N*, for all a € R" such that 3., a; = 0 and for all (s1, ..., s,) € S",

we have: 3! Z’}ZI aajy(s;—s;) <0.

Theorem 1.2.1 A function y defined on R? is a semi-variogram if. and only if. it is condi-

tionally negative definite.

Proposition 1.2.9 Suppose X is an intrinsic process with bounded semi-variogram, such
that lim||p||—400 Y(h) = y(4+00) < +00. Then X is second order stationary and y(+o0) =

C(0) = Var(X;).

We seek a spatial correlation that is a function of distance between spatial locations, so

called isotropic spatial covariance function.

Definition 1.2.12 The spherical covariance function between subjects i and j located at

geographical location i and geographical location j is given by

( J

where d;; is the distance between the two locations, and a is the range.

The spherical covariance decreases until it disappears when range is reached. The parameter

o? is the maximum value of the covariance attained at the origin.

Definition 1.2.13 The exponential covariance function between subjects i and j located at

geographical location i and geographical location j is given by
) |di; |\
Cexp(d;j) = 0" exp - with a >0

where d;; is the distance between the two locations.
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As the distance between locations increases, the spatial covariance falls off exponentially.

How quickly the covariance falls off is determined by the parameter a.

Definition 1.2.14 Matérn family is a class of isotropic covariance functions which specifies

the covariance function as c>M (h|v, a) where o> > 0 is the marginal variance and

1-v

2
M(h|v,a) =

) (allhl)"K, (allh])

is the spatial correlation at distance ||h|| and h € R?. Here K, is the modified Bessel
function of the second kind and a > 0 is a spatial scale parameter, whose inverse, 1/a, is

sometimes referred to as a correlation length.

Theorem 1.2.2 A continuous function vy defined on R? such that y(0) = 0 is a semi-

variogram if, and only if, for all a > 0, the function h — e~ is a covariance function.

Definition 1.2.15 When the limit limj)|— 400 ¥ (h) = y(+00) < +00 exists, its value y(+o0)

is called sill.

Definition 1.2.16 The range (resp. practical range) is the distance where (resp. 95% of)

the value of the sill is reached.

Definition 1.2.17 A semi-variogram has a nugget effect component when lim||| -0y (h) =

7> 0.
Graphical representation of sill, range and nugget effect can be found in Figure 1.1.

Definition 1.2.18 The increasing domain asymptotic is a sampling structure in spatial

statistics where new observations are added at the boundary points of an area.

Definition 1.2.19 The infill asymptotic consists of a sampling structure where new obser-

vations are added in between existing locations.
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Figure 1.2. Spatial locations of individuals.
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ABSTRACT

Consider a fixed number of clustered areas identified by their geographical coor-
dinates that are monitored for the occurrences of an event such as pandemic, epidemic,
migration to name a few. Data collected on units at all areas include time varying covariates
and environmental factors. The collected data is considered pairwise to account for spatial
correlation between all pair of areas. The pairwise right censored data is probit-transformed,

yielding a multivariate Gaussian random field preserving the spatial correlation function.
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The data is analyzed using counting process and geostatistical formulation that led to a
class of weighted pairwise semiparametric estimating functions. Estimators of models’ un-
knowns are shown to be consistent and asymptotically normally distributed under infill-type
spatial statistics asymptotic. Detailed small sample numerical studies that are in agreement
with theoretical results are provided. The foregoing procedures are applied to Leukemia
survival data in Northeast England.

Keywords: Spatial correlation; Gaussian random fields; Composite likelihood; Estimating

function; Infill asymptotic; Mixing; Clustered failure times

1. INTRODUCTION

Right censored data are encountered in various settings such as biomedical, reli-
ability, actuarial science, sociology, politics, and public health to name a few. They are
part of a class of data called survival or failure time data which include, among others,
the left and right censored, left and right truncation, and interval censored data. Research
with these types of data is well documented. This dissertation pertains to another aspect
of failure time data, namely one where spatial modeling is incorporated via geostatistical
locations of units of interest. Consider the situation where these units, located at areas
described by their longitude and latitude in a two dimensional surface are monitored for
the occurrence of some event such as onset of disease, epidemic, claims filed as a result of
property losses, cancer, or migration of individuals from one area to another to seek better
living conditions. There exist nuisance parameters such as environmental factors, social
and physical environments, population density, or weather conditions beyond the control
of the investigators that can have substantial impact on the occurrence of events between
two areas via their spatial coordinates. Two concrete examples of such data are given in

biomedical studies. Many more can be found in the book by Goldstein (1995).
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Example 1: East Boston Asthma Study: cf. Li and Ryan (2002).

A total of 753 subjects are enrolled in a Community Health Clinic in the east Boston area.
Questionnaire data pertaining to residential addresses, demographic variables, asthma sta-
tus, geographic coordinates, and other environmental factors were collected during regularly
scheduled visits. Geocoding the dataset allows linkage with various community-level co-
variates to individuals in the east Boston area from U.S. census data at the census block level.
Because children residing in nearby census blocks were often exposed to unmeasured sim-
ilar physical and social environments, the investigators suspected there might exist spatial
correlation across different communities. The goal of the study was to identify significant
risk factors associated with age at asthma onset while accounting for the possible spatial
correlation among the locations.

Example 2: Leukemia Survival Data: Henderson et al. (2002) and Gorst (1995).
1043 adults were diagnosed with leukemia between 1982 and 1998, in Northeast England,
which is comprised of 24 administrative districts boxed in 100km?. The data is a high-quality
database that holds records of incidence and subsequent survival status of all leukemia cases
in the region. Recorded also was the background variation in population or environmental
characteristics, which could enable further epidemiological studies. Past studies, while
informal, have suggested that there could be district-to-district variation in survival rates
above and beyond what might be expected to occur by chance alone.

In the first example, residents of east Boston are mainly relatively low income with
similar social and economical backgrounds who are often exposed to similar physical and
social environments. One child per geographical area is considered in the modeling in Li
and Lin (2006), whereas in Li and Ryan (2002) many units were considered per region. In
both modeling approaches, spatial correlation was considered among geographical areas.
The different geographical locations in east Boston are spatially correlated since adjacent
neighborhoods usually have a lot in common and the potential for spatial dependence exists.

Hence, correct inference on the association of the main covariates with the event-specific
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survival times relies on careful consideration of the underlying spatial correlation. In the
Leukemia survival data, clustered survival data was considered and it is of interest when
investigating how clustering and spatial aspects affect one region versus another, or how
spatial traits can help with the identification of regions with high risk of leukemia. The
Leukemia data fits more closely with the problem at hand here and can serve as a comparison
between the two methodologies. In both cases, environmental factors in a given location
may affect nearby locations thereby inducing the so-called spatial correlation, that is a
correlation between the geographical locations of two units.

Modeling failure time data when spatial correlation is present has emerged as an
area of active research, especially with right censored data. The models of interest are part
of multivariate survival models that contain a parameter modeling the association between
event times 7; and T}, i # j of two independent units. Such models include bivariate
frailty, copulas, marginal models, cluster models, and spatially correlation-type models
via the covariation process using a martingale representation. With right censored data,
the references are of Li and Ryan (2002), Henderson et al. (2002), Banerjee et al. (2003),
Banerjee and Dey (2005), Li and Lin (2006), Diva et al. (2007), Diva et al. (2008), Paik and
Ying (2012), Pan et al. (2014), Hunt (1978), Bronnenberg (2005), Engen (2007) and Paik
and Ying (2012). However, interest in spatial correlation dates back to the pioneering work
of Krige, and recently Matheron (1962). Frailty, cluster, marginal, and copula models do not
properly account for spatial correlation that is inherent with these data. As a consequence,
sophisticated techniques of geostatistics, coupled with modern failure time data analysis are
needed. In recognition of that, Li and Lin (2006), with right censored data assumed a Cox
model for failure time and applied a probit-type transformation of the failure times yielding
a multivariate Gaussian random field. Furthermore, they imposed a spatial structure on the

associated random fields that properly captured the spatial patterns among regions.
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1" location

Figure 1. Pictorial representation of the setting

This dissertation is concerned with the development of models for estimating the
regression parameters with clustered right censored data that account for spatial patterns
between various locations. This is important in the sense that if the spatial impact leads
to drastic consequences, local authorities could take necessary preventive actions to reduce
damage. It is therefore of considerable importance to develop models for estimating the
distribution function of time to event while accounting for spatial correlation. Multiple
units per location are considered in order to reflect the real life situation and the Leukemia
data will be used for illustration since it fits more closely with the setting with a pictorial
representation given in Figure 1.

Henderson et al. (2002) modeled spatial association via a mean random frailty per
region wherein individual frailty Z; within a region j with mean frailty x; was assumed to
follow a gamma distribution with parameters depending on ;. The vector (ui, ..., i) is

assumed to follow a multivariate normal distribution whose variance-covariance matrix is
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a function of the distance between regions. This study incorporated spatial association in
the failure times via a probit transformation leading to a multivariate Gaussian random field
with the spatial correlation matrix being a function of the distance between locations. The
two modeling approaches are applied to the same data and it is shown that our approach is
preferable in terms of better statistical results. Henderson et al. (2002) did not provide large
sample properties; this study provides all parameters involved in the models for the purpose
of making inference and doing further investigations tailored to a specific area.

Though some work has been done on incorporating spatial correlation in modeling,
very few of the works model many units per geostatistical location while accounting for
spatial patterns. The aim of this dissertation is to develop statistical models for spatially
correlated right censored data for multiple units per location where regression parameters
have a region and/or area level interpretation and in which spatial correlation is properly
incorporated. Ideas in the work of Li and Lin (2006) are borrowed by transforming the set
of failure times using a probit-type function allowing the vector of right censored data times
to follow a multivariate Gaussian random field (MGRF).

This part of the dissertation proceeds as follows. In Section 2, stochastic process
machinery was developed for this type of data and our model choices was motivated. Section
3 deals with some preliminary results that will set the stage for the estimation procedures
in Section 4. In Section 4, weighted estimating score processes were proposed and their
asymptotically unbiasedness was shown. Section 5 is on the existence of solutions and the
infill asymptotic results of the estimators. Section 6 presents the results of the numerical
studies, which indicate good approximation to the true parameters, and an illustrative
application with the Leukemia dataset. This part of the dissertation then concludes with a

summary and future directions.
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2. SPATTALLY CORRELATED RIGHT CENSORED DATA AND MODELS

The first critical step in the modeling is to identify a suitable dependence model
between spatial locations. As noted earlier, a geostatistical formulation will be the focus,
that relies on the fitting of covariance and cross-covariance structures for Gaussian random
fields for mathematical and computational convenience. This approach also facilitates
incorporation of the spatial correlation parameters in the modeling via the covariation
process between two locations resulting from the martingale modeling.

To facilitate reading of the dissertation, the following notation on locations and
number of units per location will be adopted throughout. There is a total of k locations
with each being described by its longitude and latitude in a two dimensional coordinate
with I; = (l;1,1;2). If no confusion arises, we will just write location i. The locations
will be denoted by i and j, so that i, j € {1,...,k} := L. Each location i has n; units.
Units are denoted by the letters » or s. For instance, in location i, we have r = 1, ..., n; so
that r € {1,...,n;} := £;. Likewise, s € {1,...,n;} = L;. For convenience, the compact

notation (i,r) € L X L; may be adapted similarly for (J, s).

2.1. PAIRWISE RIGHT CENSORED DATA

Consider k geographical locations described by two dimensional coordinates {I; =
(li1,1);i =1, ..., k} where [;; and [;; denote longitude and latitude of the ith geographical
location respectively. Let n; be the number of subjects in the i"" geographical location.
Each unit is observed until failure or censoring, whichever occurs first. At time ¢, for
the r'" (r = 1,2,...,n;) unit in the i’ (i = 1,2, ..., k) geographical location, failure
or censoring time is recorded by Wl.(r) and C l.(r) respectively. Let (51@ = I(Wl.(r) <C l.(r)),
Tl.(r) = Wl.(r) A Cl.(r) be the usual notation with right censored data. The variable 5fr) indicates
that either censoring or failure has occurred for unit r in location i. For (i,r) € L X £,

a p-dimensional vector Xfr)(t) of possibly time varying covariates is recorded at time
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t. Location i is assumed to be spatially correlated with j, i # j and denote the spatial
correlation between the two by p;; := p(||l; —1;||), where [|1; =1;|| is the Euclidean distance

between I; and 1;. The total observables entities per location at time ¢ are therefore,
O) =U,07 (1) = U, {x"(1.7,7.5,”). ()

In the present setting of spatially correlated events, the random observables in (1) will be
taken pairwise for the purpose of accounting for the spatial correlation p;;. Consequently,
the spatially correlated right censored data on £, on which estimation is conducted is given
by

0 = {[(0(1),01)) : pis] 30 # ji (i, j) € {1, kY = Lx L} )

2.2. STOCHASTIC PROCESS MODELING

With a view towards the multivariate Gaussian random field (MGRF), the stochastic
processes needed in the sequel are introduced. For (i,r) € £ X £;, define the counting and
at-risk process by Nfr)(t) = 5fr)I(Tl.(r) < t)and Yfr) (1) = I(Tl.(r) > t) respectively. Note that
Nfr)(t) indicates if an event has occurred by time ¢, whereas Yfr) (¢) indicates if unit (i, r)
is at risk at time 7. Y}r) (-) may be modified to allow left truncation or other general at-risk
processes. It is further assumed that the study ends at a time 7 with 7 > maxr,iTEr). So that
the interval [0, 7] = 7 is the observation time zone. The entire history at all geostatistical

locations at the end of the study is contained in the o-field ¥ = szl Vi Ti(:) with

" _ (D )
7 —O'(Nl. (0).Y, (t),te‘T).

To proceed with the modeling, it is assumed that the instantaneous hazard function
is different from location to location. If A;(¢) is the instantaneous failure rate in (¢, + dt)

for all units in location i, from stochastic integration theory, the compensator process of
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Ni(r)(l‘) is Al.(r)(t) given by Al.(r)(t) = /(;t Yl.(r)(u)/ll-(u)du so that for each (i, r), the process
t
{M}”(;) =N (1) - / Y ()" (u)du - 1 € ‘7'}
0

is a zero-mean square-integrable martingale with respect to the filtration f’(tr).

The choice of A;(z) is crucial in obtaining the MGRF. Many choices are possible,
such as additive, multiplicative, additive-multiplicative, or accelerated hazard-type models.
The Cox model was chosen because it is easier to apply a logit transformation in the pursuit
of the MGRF. However, an accelerated model can also be used, but a rank-based estimation
approach would have to be employed to estimate the unknown in the model.

To that end, for (i,7) € L X L;, let xl@ (t) be a p-dimensional vector of covariates.
The Cox model is postulated with different baseline per location, but the same regression

parameter f for all locations given by

A7 (1) = Ai(r) exp(B'x” (1)),

where a’ denotes the transpose of the vector a, and 8 is a p-dimensional vector of regression
parameters. The baseline hazard per location is Ap;(¢) and {Ao;(¢) : i = 1,..., k} is the set

of unspecified baseline hazard functions to be estimated.

Remark 1 The choice of same B coefficient for all locations is motivated by modeling the
same event for all units in all locations. However, the baseline hazard is chosen to be
different among the locations (see also Spiekerman and Lin (1998) and Lin (1994)). The

case of competing failures can be considered also, cf. Wei et al. (1989).
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2.3. MULTIVARIATE GAUSSIAN RANDOM FIELD

Gaussian Random Fields (GRF) and their multivariate counterpart MGRF play a
dominant role in spatial modeling, especially in geostatistics. Estimation of parameters are
facilitated if the models proposed can lead to the construction of MGRF. Since counting
processes and martingales have been the cornerstone of modeling failure time data via the
hazard function, it turns out that, making the event times normally distributed will lead
to the construction of MGRF. The motivation behind this approach is threefold: (i) the
marginal distribution of the event times follow a model that accounts for covariates, (ii)
prediction of event occurrences at a new location is faster with GRF using existing software
packages and kriging techniques, and (iii) the approach facilitates construction of pairwise
composite likelihood process, estimation of parameters, as well as large sample properties
via estimating functions. With a view towards the MGRF construction, for (i,r) € L X L;,

fr) = xfr)(t) if ambiguity does not arise, A(tler)) is the cumulative hazard function,

let x
and Fl.(r)(tler)) = exp [—A(tlxgr))] the survivor function. Then I:“l.(r)(Tl.(r)lxl(r)) follows a
uniform distribution on (0, 1) and Al(r)(Ti(r)lxgr)) follows a unit exponential distribution
EXP(1). Those facts are well known. If @(-) is the cumulative distribution function of the

standard normal distribution, the probit transformation of a variable U in (0, 1) is ®~!(U).

Hence,

£ g 1 a0

is the probit transformation of the failure time Tl.(r), which follows a standard normal

distribution N (0, 1). Note here that for each location i, its vector of failure times

=(1) (2 ~(n;
Ti — (Tl( )’Tl( )’ ’Tl(n ))
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form an n; multivariate normal distribution. Consequently, a MGRF can be constructed
with T given by

T: (T19T29""Tk) s
(n1,...,nk)

by imposing a spatial structure induced by a (3, z]'{=1 n;)Xx (Zl’.‘zl n;) spatial correlation matrix E
with block matrices Jy,;xn, = (1)n;xn;» i = 1, ..., k as diagonal elements, and the off diagonal
elements (n;,n;)I{i # j} depends on the spatial correlation p;; between two locations. The

matrix = takes the form

2
0-11Jn1><n1 plZJn|Xn2 T pljJnlxnj T plkJnlxnk
2
PZlanxnl 0-22Jn2><n2 e ijanxnj e PZkanxnk
pilJl’l,‘Xl’ll piZanxnz e pijJn[an T pikJn[Xnk
2

,Dlin Xn kaJn Xn o Pk Jn xn; O Jn Xn
| kXN kXN JdngXxn; Kk miexny | (Zf-;lni)x(zf;lni)

In the above matrix, the diagonal elements are the variance covariance matrices of the
failure times within a given region. Since in this case, ||| = 0, those elements reduce to
the marginal variances O'I%I{ii € {11,22,..., kk}} in the Matérn spatial correlation function

that is considered here, and will be introduced in the next subsection.

2.4. CHOICE OF SPATIAL CORRELATION MODEL

As indicated earlier, the critical part in identifying significant risk factors that trigger
event occurrences is to identify the best spatial correlation function. Henderson et al. (2002)
proposed a multivariate gamma frailty model incorporating spatial dependence between
locations as was done in Banerjee et al. (2003). Diva et al. (2007) extended the work of
Banerjee and Carlin (2003) by generalizing their Multivariate Conditional Autoregressive

Models. A pairwise joint distribution that depends on the distance between locations has
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been investigated by Paik and Ying (2012). Copula models on the other hand have been
proposed by Lawless and Yilmaz (2011) and Yilmaz and Lawless (2011). The problem
with the use of frailty or copula is that the former models within cluster correlation using
frailties or random effects, and the latter models joint distribution of two failure times, and
consequently do not really model spatial correlation. This study seeks spatial correlation
that is a function of distance between spatial locations, so called isotropic spatial covariance
functions. They have received a great deal of attention recently, specifically the Matérn

family Matérn (1986); Guttorp and Gneiting (2006); Gneiting et al. (2010) given by

1-v
C(Ih) = c*M(h;v,a) = o> ) (allh[])” K, (allhl)], 3)
where o2 is the marginal variance or sill, that is the variance if ||h|| = ||I; - Li||=0.v>0

is a smoothing parameter that controls the differentiability of a Gaussian process with this
covariance; and a > 0 is a range parameter that measures the correlation decay as the
separation between two locations increases. K,(-) and I'(:) are the Bessel and gamma
functions respectively. When v = 0.5 and +oo, the exponential and Gaussian covariance are
recovered and given by

C(h) = o exp(-alh])), 4)
C(h) = o exp(=a’||n||?), ®)

respectively. More details on sill and range can be found in Section 3 of Handcock and Stein
(1993) or Section 1 of Gneiting et al. (2010). The Matérn family turns out to be a good
choice because of its flexibility in modeling various types of spatial correlation structure in
many fields and possesses a good interpretability of the parameters. The importance of this
family is also highlighted in Stein (1999), page 14. Note that in (3), if i = j, ||h|| = 0 we get

C(h) = 02 the marginal variance which corresponds to the case of no spatial correlation.
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In what follows, it is assumed that the spatial correlation function depends on the
g-dimensional parameter 6 = (1, ...,0,) each describing various elements of the family.
A Matérn-type family for spatial correlation on the transformed failure times is assumed,
translating into § = (0'2, range, sill), that is ¢ = 3. The transformation leads to a MGRF
where the marginal failure times follow the postulated Cox model with a population level
interpretation for the regression parameter £, and facilitates estimation of the spatial as well

as regression parameters. Thus

1]

= [Eij]l-,jzl’_“,k = [COV(Ti,Tj)],-,j:L“_’k = (pij(6))ij=1....k-

For compactness, the notation p;; () will be used for p(1;,1;; 6).

3. ESTIMATION-PRELIMINARY

The unknowns arise from two models, the spatial correlation and the Cox models.
The Cox model with its unknown infinite dimensional baseline parameters A¢;(¢),i = 1, ..., k
belongs to a class C of hazards on R*. The regression coefficient B is in R?, whereas the
g-dimensional Matérn spatial correlation ¢ is in R4. For the Matérn family, ¢ = 3, the

theory for an unknown ¢ is found. So, the model parameter of main interest is

0 = [(A01(2), -, Aok (); (B1s -+ Bp); (61, ..., 04)] € O,

where ©® ¢ C¥ x R” x RZ. The observables O in (2) will be used for making inference on

0.

Remark 2 These models have (k + p + q) unknowns, which raises the question of identifi-
ability. Let pg(+) be the probability model on O. The issues of identifiability will not arise,
that is the Kullback-Leibler information will be positive for @ + 0o under the assumptions

that, under pg(+): (i) no two regions have the same longitude and latitude; (ii) for every
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region i, Z;’;l Yl.(r)(t) > 0, that is at least one failure occurs per region; (iii) for every
i >2and (iv)forAeG =o (Zfil Y (1)1 € T), and B € G; (likewise defined),
P(ANB) > 0. The last assumption ensures estimation of the spatial correlation parameter,

hence a uniquely defined spatial correlation function.

3.1. AALEN-BRESLOW ESTIMATOR OF 2(;(r) AND ITS PROPERTIES

Following the notation in Section 2.3, and as indicated earlier, for each (i, r),
t
{M}” (1) = N (1) - / Y (@)A" (u)du - 1 € T}
0

is a zero-mean martingale with respect to the filtration F; (lr). It then follows, via method of

moments, that an Aalen-Breslow estimator for Ag;(-) = /0. Aoi(u)du, fori € L is given by

) , "N
A()l(t) :/ : (rz)r—l 1 (M) (r) , (6)
0 2w exp (B w)

with the k dimensional vector of baseline hazard being Ao(2) = (A01(t), ...,/\Ok(t)).
Observe that Ao (7) is not yet an estimator because it still depends on the unknown regression
parameter 8 = (81, ..., ). The expression in (6) will later be substituted for A¢;(t) to
estimate B and to obtain the in-probability limits of the score matrix.

In order to facilitate understanding of the asymptotic properties of the parameters
in these models, it is important to go through some properties of Ag(7), in particular A; (),
properly standardized. The Ag;(¢) in the next theorem is one where B is replaced by its
estimator 8 and pertains to the consistency of Ag;(r) as n; — oo, for each i € L. As
will be discussed later in the large sample properties section, the requirement A, n; — o0
suffices to satisfy the infill asymptotic property under which the large sample properties

are obtained. This consistency result will be needed when showing the consistency of f3,
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which requires the existence of an in-probability limit for the score variance. The following
theorem can be shown easily using various stochastic processes arguments (cf. Wei et al.

(1989)).

Theorem 1 Fori =1, ...,k and as n; — oo, the estimator /iol-(t) is consistent for Ao;(t),
that is

5 P
sup [doi(t) — Aoi(2)| — 0.
te[0,7]

Proof: It suffices to show that, fori =1, ..., k and as n; — oo,

sup [Agi(r) = Aai(1)] 5 0.

te[0,7]

By triangular inequality we obtain

sup [Agi(t1B) — Aai(t)| < sup |Aai(1B) = Aoi(11Bo)| + sup |Aai(t]Bo) — Ag; (1))
re[0.7] re[0.7] re[0.7]

+ up |5 (1) — Aoi ()] (7)

te[0,7

where

NS (1) = / Qoi ()1 {Z Y (u) > o} du.

r=1

It suffices to show that each term in the right-hand side of (7) is asymptotically negligible.

By Taylor expansion of first term of (7) around 8y we obtain

|Aoi (118) = Aoi(1180)]
B-Bo

|A0i(t|/§) - AOi(t|ﬂ0)|

= Ay(118°)

(1) n;
~ (u, B) ")
(B - Bo) / @(u e ;le. (u)‘

(1) n;
w.f) & ‘
= |-(B-PBo) dN," (u) 8)
O/ SO0 ) PRUAL
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« 3 « P . t EV (up%)
where B* € (B, Bo) such that B — Bo. Now we consider the term /0 —S’(0>( i
Sty dN;” () of (8)
O, gy & W (u, B
' E| i LE, u
(u, B°) AN () = (w.5) dM(’)( )
(0) 0y )
0 OB S 0 8w p)
+Zn<’><u>a§’><u>du
(1) * ni
Z‘E L
[ oy e w
0 S (u, B*) =
+/ El.(l)(u,ﬂ*)/loz'(u)d“- ©)
0

By regularity condition III the second term on the right side of (9) converges to finite value

of fot elm (u, B*)Ap;i(u)du. For the first term on the right side of (9) we observe that
EN By e p)

’ S g0
L S(O)( ,BY) (0)(uﬂ) Z M; ()’

(l)
, B7) &y
+/0 ZdM()( )‘ (10)

S(O) (Lt ﬁ*

nj

tE(l)( . B) "
/0 ZdM ()' <

S(O)(u ﬂ* r=1

By regularity condition III and Andersen and Gill (1982) theorem 1.2 the two terms on the

right side of (10) are asymptotically negligible. Therefore

sup
te[0,7]

BB
/QSEO)(u,ﬂ* ;dM ()'—Op(l)

By regularity condition III we obtain

/ ED (1, B Aer(w)du / e, ) o (0)d
0 0
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and by consistency of /§, the first term of (7) is negligible. The second term of (7) turns out

to be a local martingale namely

A A _ ! pI dNi(r)(”)
AOl(tlﬂO) AOi(t) - ‘/0 erz,:l Yi(r) (u) exp (ﬁ’le(u))

— l ; N (”) 0% d
/Oﬂo(u)l{;Yl (u) > } u

— t 1
- Y wyexp (BX( )

X

Z AN (u) - Z Y™ (u) Agi (u) exp (,3'x§” (u)) du
r=1 r=1

! 1
) /0 L, ¥ ) exp (BX ()

Z AN (u) - Z Y ()2l (u)]
r=1 r=1

Sy, M (w)
i 0w exp (BX0 ()

X

Now by triangular inequality

|Aoi (71Bo) — Ag; ()]

IA

1/tndMl.(r)(u) /’ dMl.(r)(u)
nJo $9Bo,u) Jo s (Bo,u)
1ot aM” (u)
15 / RO
nJo s'(Bo,u)
1/’ n 1
nJo | S Bo,u) s (Bo,u)

I / am,” (u)
+ — —_—
nJo s\ (Bo,u)

IA

dM” (u)

(11)
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Considering the first term of (11) we obtain

l‘/’ n B 1
nJo |8$9Bo,u) s (Bo,u)

n

sup | ———
{ze[O,T] [Sfo) (Bo, 1)

S y N (1)
5\”(Bo. 1) n

1 ! r r
+;/0 Yl.()(u)/lf)(u)du}.

IA

sup dMl.(r) (u)

te[0,7]

By regularity condition III and VII

1/’ n B 1
nJo |89Bo,u) s (Bo,u)

sup dM l.(r) (u)

te[0,7]

=o0,(1).

Now the second term on the right hand side of (11) converges weakly to a zero mean
Gaussian process by Andersen and Gill (1982) theorem 1.2. Hence it is negligible and as a

consequence

sup |Aoi(#1Bo) — Ag;(1)| = 0, (1).
te[0,7]

Using Markov’s inequality, for any € € (0, 1), for the last term on the right hand side of (7),

IA

Agi (1) —AOi(f)|} /€

t | n; "
E{t:[l(l)g] /0 Aoi(u)l {;Yl (u) >0} du
- [ awtwan }/e
0
s e, [ {300 =oaatan}

r=1

/tp( i Y () :o) Aoi(u)du/e
0

r=1

/Ot [P (Yi(l)(u)) = O]m Aoi(u)due.

P4 sup |Ay (1) - AOi(t)| > € E < sup
1€[0,7] 1€[0,7]

IA

A

IA

IA
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By the dominated convergence theorem, since P (Yl.(l) (u)) = 0 is bounded. Then

P{ sup |AL (1) = Agi(1)] > e} < {P (Y}”(z*) - o)} " Aoi(t%) /e
te[0,7]
Since P (Yi(l)(t*) = 0) < 1 and Ag;(t*) < oo as n; — oo it follows that

sup |Ag; (1) = Aoi(£)| = 0,(1).
te[0,7]

This completes the proof.

Remark 3 An important result worth pointing out in connection with Theorem 1 is the

convergence under the infill asymptotic of the random field W(t) given by
W(t) = Vn (A01(t) — Aot (), ooy Agie (2) — AOk(l‘))

to the multivariate Gaussian random field ‘W(t) = (‘Wi (1), ..., Wi (t)) on the space of
gi(t)}. Such a result can be used for making simultaneous inference on Ao;(t) at some
fixed time points and constructing confidence bands for all the baseline or a subset of them
depending on interest, or testing equality of the baseline hazards at two different locations
i and j. The latter and former could be important for epidemiologists and authorities
since the results can be used to assess severity of a certain disease or pandemic at various
times of the calendar year or having an idea about which locations among the ones under

investigation have higher failure rates.
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3.2. JOINT MODELING

For a pair of units (r,s) € (L;, £;) and ¢ € [0, 7], counting, at-risk, and compen-

sator processes are defined as before by
(N (0.7 (1), A7 (0] and [NV (1), (1), 4P (1)),

respectively. Then, {Ml.(r)(t) :t € [0,7]} and {Mj(.s)(t) :t € [0,7]} are each a zero-mean
martingale with respect to the filtration 7—1@ and ?;(;) respectively. With a view toward
joint modeling, for (¢1,#,) € [0, 7]%, we introduce the joint counting process Nl.(jr’s)(-, -) by
Nl.(jr’s)(tl, 1) = I{Tl.(r) > tl,T](s) > t,}. The covariance function cov(Ml.(r)(tl),MJ(.s)(tz)) is

defined by
EM )M )T > 10,17 > 1) = A7 (11.02) = (M7 (00). M (12).
Using stochastic integration theory,

") (5) S (5) (r.s)
E (M0 @mw) - [ [0y Al . de| 0.
0 0

The spatial correlation between two locations implies that the covariance function depends
on the spatial parameter 6 via the spatial correlation p;; by virtue of the transformation
leading to the construction of the MGRF. Let G (-, -; p;;) be the bivariate survival function
of the transformed failure times T, and Tj. Then, the original bivariate survivor function

Fl.(jr’s)(tl, t2; pij) for (r,s) € (L, L)) is given by

F,-(jr’S)(tl,tZ;Pij) p (Tl-(r) > 11, T}s) > tz;Pij) (12)

G [o7 (F) (1), @7 (FY (12)): 011
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with Fl.(r)(tl) and F;s)(tz) being the marginal distribution functions of Ti(r) and Tj(s) re-
spectively. Following Prentice and Cai (1992), Ag’s) (t1,12), the joint compensator is given
by

Al(;,s)(dtl, dtz; pij) = Ao [A,@(ll), /\;x) (t2); Pij]/\fr) (dfl)/\ﬁs) (dt),

with the baseline joint compensator Ag |-, -; p;;] given by

Fi (0t pig) + B (11,23 piy)

Ao(t1,12; pif) prr

0 - 0 -
+a—l1F'l.(jr’s) ([1’ tZ;pij) + a_l‘zFi(jr’S)(tl’ tz;p,‘j)-

Remark 4 The covariance function Al.(;’s)(dtl, dty; pij) in conjunction with Ao;(dt1) and

Ao (dty) determines the joint distribution of T; and T; given the covariates xfr) and xjs).
The original bivariate survivor function of T; and T} given in (12) can be taken to be of the
Clayton family (cf. Clayton (1978)) or the Frank family model (cf. Genest (1987)). For the

Clayton model for instance, the joint survivor function takes the form

_ -
Pty py) = (1 + ¢ 1) 75

4. ESTIMATION

This section is dedicated to discuss theory on estimating regression and spatial

parameters.

4.1. WEIGHTED ESTIMATING FUNCTIONS

Estimation of parameters with spatially correlated random censorship data poses
challenges because: (i) the high dimension of the parameter 8 = (8, 6;Ag), and (ii) the
full likelihood L(@#|Data) is intractable. Since it is quite difficult to apply direct maximum

likelihood method in the spirit of Jacod (1976), the pairwise likelihood approach is adapted
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as an alternative. The main reference is Lindsay (1988). See also Varin et al. (2011) for an
overview of composite likelihood applications in various fields. Lindsay et al. (2011) also
discusses issues and strategies for the selection of composite likelihood.

The idea is to form pairwise likelihoods, a product of likelihoods for data in two
spatial locations that can be the basis of an unbiased estimating function, and then be
used for parameter estimation. It is a special case of a more general class of pseudo
likelihoods called composite likelihoods which allows addition of likelihoods in a situation
where the components do not represent independent replicates. The technique has good
theoretical properties and behaves well in many applications concerning spatial statistics
Hjort and Omre (1994); Heagerty and Lele (1998); Lele and Taper (2002); Varin and
Vidoni (2005); Varin et al. (2005). Moreover, it is robust to model mis-specification, is
computationally advantageous when dealing with data that has a complex structure, and
the estimated parameter is the same as in the complete model Lindsay et al. (2011). In
the present setting, for estimating 8, and as will be seen later, the covariation of the vector
M(t) = (M((?), ..., My (t)) depends on the spatial correlation parameter ¢ and the unequal
number of units per geographical site. The spatial dependency between locations may
be severe or moderate. As indicated in Liang and Zeger (1986), there may be a loss in
efficiency of the estimator of S when accounting for spatial correlation, especially when it is
severe. In the aim of increasing efficiency, the idea of Liang and Zeger (1986) is followed by
proposing generalized estimating equations that include weights in the estimating functions.
The weights are chosen in general to balance out severe versus moderate spatial dependence.

With a view toward estimating B that accounts for pairwise spatial correlation
between two locations (7, j) € £2, more notation is introduced in the sequel. If a = (ay, a2)
is a 1 X 2 row vector and its transpose denoted by a’ is a 2 X 1 column vector. For
(r.s) € (Li, L)), define H* (1) = (H" (1), H” (1), M7 (1) = (M (1), MY (1)) A

2 x2 matrix WY () = (w' (8)) is further defined whose elements are function of the spatial
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correlation ¢ and the number of units in locations i and j by

’ Wi (80) wh(80)
Wi =| s (13)
w3, (60) w3, (80)
Then, given 0, the pairwise estimating equation is defined for 8 between two locations at
time ¢ by

ni Ny

uliil(z, B16y) = Z Z/(; Hg,s)(u)wij(éo)ME;’s)(u)du. (14)

r=1 s=1

Attime ¢ € 7, the generalized estimating equation for 8 over all pairs is

U(t, BIso) = > U (1, Bléo). (15)

i<j
The weights matrix given in (13) adapts to dependencies between locations, especially when
dependency is strong and censoring within a location is light, and help improve efficiency

of the estimates under such scenarios. Two remarks are worth mentioning here.

Remark 5 Replacing W (8y) by the identity matrix in (14), results in the case of no spatial
correlation between locations. Observe also that if W' (8¢) is replaced by the variance
covariance matrix of (M(t), My(t), ..., My (t)) with M;(t) = Zf’zl Ml.(r)(t), the weights
actually depend on the regression coefficient 8 as well as the spatial correlation parameter
0 since its compensator A(t) depends on both. Then (14) can be re-expressed as a function
of B alone by first replacing 6 in (14) by b, a \Vn = \/m-consistent estimator of & that
satisfies \Jn(é6 — 8) = O,(1). In that case, (15) will take the form U(t; B, 8), and the
estimated 8 would still be consistent. For further discussions, cf. Liang and Zeger (1986).

This approach will be adopted in the estimation of B in the next section.

Remark 6 An important property of the estimating function (15) is the robustness of the re-
sulting estimator ﬁ even if the spatial correlation is misspecified and remains asymptotically

unbiased even under the misspecification.
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Examining U1 (-, -|8), it can be written as a sum of four terms each of which is

given below

.. nl t ..
Ul (1) :Z /O w HY (u, M (du),
r=1

OEDIDY /0 WL HS (u, M (du),
r=1 s=1

(16)

ni Ny

UY (1) = Z Z /0 twngi(r)(u, M (du).

r=1 s=1

.. nJ t ..
uln=> /0 wihH (u, )M (du).
s=1

For the purpose of estimating &, note that S{Ml.(r) (1 )M;S) (1) — Ag’s) (dty,dt2; pij)} = 0.
The goal is to find a weighted function of Ml.(r)(tl)M](.s)(tz) - Al{rj’s) (dty, dty; p;j) that can

serve as an estimating function for 6, with the flavor of score function. Define the (k X k)

ni nj

A (11,2:p(8) = ), ) A (1,123 p(8)).

r=1 s=1

Let Vs, A(t1,12;p(8)), [ = 1, ..., g, be the matrix of elementwise derivatives of A(z, p(9))
with respect to ¢;. Define

I, =A"[V;A] A7),

where A is for A(t,1;; p(6)) for compactness. Then, for [ = 1, ..., g, following Cressie
(1993), Page 483, it can be shown that &(M(1))I[;E(M(7)) + tr(IT[;A) = 0, where tr(-)
denotes the trace of a matrix. Consequently, a score function can be defined for estimating

the /" component of § using two locations by

U (t1.12) = M(OTLM (1) + u(TLA) == M(DTLM' () + r(A™'Ag). - (17)
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The expression in (17) can be viewed as a score process and its sum over all pairwise spatial
locations (7, j) can serve as an estimating function for §;. So, the estimating function over
all pairs of spatial locations for d is the g x 1 vector Us(#1,12; p(0)) = (U, (2), [ =1, ..., q)’

where Uy, (s, ) is given by

Usi(t, 3 0(8)) = D U (11,123 p(8)).

(L)<

4.2. UNBIASED ESTIMATING FUNCTIONS

The unbiased estimating functions concept is one of the requirements for showing the
existence of consistent solutions to the equations Uy, (#1,72) = 0 and ulil(g; -, -160) = 0,
respectively. Two conditions need to be satisfied for the existence and consistency of
the estimate: (i) the asymptotic unbiasedness of the two estimating functions, and (ii)
the existence of in-probability limit of the information matrix. To show (i) for Us,(¢),
the concept of mixing coupled with the multivariate Chebyshev inequality is applied in
particular. As for Ul/1(B;-,-|60) = 0, some regularity conditions applied on its derivatives
yield the result. Finally, Theorem 2 of Foutz (1976) will be used to show existence and
consistency of 8 and 8, the sequence of solutions to the aforementioned equations.

In geostatistics, asymptotic properties can be investigated in two different ways: the
Increasing domain asymptotic or the Infill asymptotic. The increasing domain asymptotic is
a sampling structure in spatial statistics where new observations are added at the boundary
points of an area, whereas the infill asymptotic consists of a sampling structure where new
observations are added in between existing locations. The latter is appropriate when the
spatial locations are fixed and in a bounded domain and one is interested in adding new

observations to each location. This study will use the infill asymptotic since the number of
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locations is fixed at k. Letting min;{ny, ..., nx} — oo satisfies the infill asymptotic criterion.
Therefore, in what follows, the statement n = min;n; — oo means Infill Asymptotic. Readers
are refereed to Cressie (1993), Section 7.3.1, page 480 for details.

4.2.1. Regularity Conditions.
I Fori=1,...,k, Aoi(t) < 0.
Il Foreach (i,r) e LxX L;andt € T, Xl.(r)(t) is uniformly bounded.

III For (i,r) € £ x L; and for each i, define Sfm) B.1)=X", Yl_(r) (1) [xl(r)(t)]‘g’meﬁ"‘}r)(”.
Let & denote expectation operator. There exists 8 C R”, a neighborhood of B, and
functions sfm) (B, 1) such that 8(Sl.(m) (B,1)) = sfm) (B.1), and that, for eachi = 1, ..., k,
m=0,1,2

)4
sup IS (B,1) - s (B, )| B0,
(B,1)eBx|[0,7]

and the sfm) (B, 1) are uniformly bounded on [0, 7] X B with continuous partial deriva-

tives.

IV Define

Q(0) = Q(8) = % > E|Vy@Vi, )],

i<ji'<)’

There exists a positive definite matrix (6y) such that

sup ||ﬂ(0) - Q(OO)H 0.
te[0,r*]

V Weight matrices conditions

. p
i |W(8) - W(bo)|| — 0, where [|a —b|| = sup;; |a;; — bij|.

ii For - € {11,12,21,22}, Vﬁwff(S) KR Vw'/ (8o) and Vgw'/ (8) are continuous

functions of dy.
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VI For -- € {11,22}, m =0,1,n = le n;, all of the following three quantities converge

in probability to zero.

1 L . . 1o (1)
sup =7 3 HO Y PN O @ x" (1)~ (o™, Bi)
(Bnesx[07] || 155 3
1 i g (s)
sup (=3 HOwhy P (e @ x0" (1) - s(wiy, Bi1)
(Bnesx[o] || 155 5T =
nj n;
1 ! (s) ij v (1) (") (r)m (m)
Sup — H (I)sz Y (t)eﬂ X; (l) ® X (t) - S(W2 ,B’ t)
(B.1)eBx[0.7] || 1 ;;; / b l :

VII Mixing conditions for unbiasedness of the score process for 6

i Let M*_ and M;? be the o-fields generated by the observables {O(I;) : i < k}

and {O(I;) : i > k} respectively. The mixing condition is

sup |P(ANB) - P(A) - P(B)| < C(]li - jII)
Ae/\/(fm,Be/\/(,‘zo

where C(-) is some mixing function.

ii For (i, j) € L x L, the weight v,;(8) on the compensators are uniformly bounded

with continuous partial derivatives with respect to 9.
VIII Joint compensator condition

i The function Ag(¢1, t2; d) exists and has bounded second derivatives in the range
of the arguments (B, ) for all (B,6) € B x D, where D c R9. Moreover,
Ao(t1,12;0) is continuously differentiable as a function of (B, d) and the partial
derivative Ag(dty, 1, 8) = AN, Ag(t1, dt2, ) := AJI0, Ag(t1,12, V) == A and

Ao(dty, dty, 6) = A(l)lo are bounded on B x D for all values of the arguments.

ii Any linear combination of the joint compensator partial derivatives with respect to

any of its arguments converges to a bounded function.
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Discussion on Regularity Conditions: Conditions I to III are the regular stability conditions
imposed on derivatives of the at-risk process that arise in models that involve the Cox
hazard functions. They are the expectations and variances of the covariates Xl.(r)(l‘) of
(i,r). Condition VI is on stability condition of the weight applied to the estimated spatial
correlation parameters, whereas VII are stability conditions guaranteeing convergence of the
variance-covariance matrix of the joint process, namely the block X1;. Likewise, Condition
VI together with VII pertains to infill asymptotic stability of the block X, and X,,, with
VII only needed for the latter.

The following theorem pertains to the asymptotic unbiasedness of U(f, ).
Theorem 2 Under Conditions I to V, as n — o0, Sup,c(q ] }lU (B,116)] Zo.
Proof: Using the fact that U1 (B, ¢|8) is the sum of four terms, by the triangle inequality,

the following is true:

U BE) < U (B0 +UY (B.1)] (1%

+HUY (B,1)| + UL (B, 7).
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It suffices to show that each term in the RHS of (18) converges to zero in probability.
Without loss of generality, this is only shown for Uilj (B,t) only. Asymptotic negligibility

of the remaining terms are obtained in similar manner. Thus,

1 _ 1 0 s
nUlj(ﬁ, 1 = y 1/ {H (1) (z<1 11) (O)(t) am; (1)
1 1 r r ij r
(0)(t) { ;H( o (OZ Dwi) - Si(t’W(O))} M0

-1

k _
5w (1) (%Zﬁ”(rk’%‘y)(”) - (s2w) a0 a9)

7 ()
_ —ZH(r)(t)Y(r)(l)eﬂO G l] — s(t, W(O))
B<j
-1

1 , /() -1 p
;ZYI.()(I)eﬁOXi <f>) - (s2m) | M .

1 . 1 k k n nj T N s(t, (0)) v
RUTTRIRNED 353999 3 M I (zwaz) )
" (o oy ey g 40 i< s; (1)
1
_ (O) {_ H(r)(t)Y(s)(t)e'Bo ; (l) — si(t, W(O))} M(S)(t)
Sj (t) n i<i

-1

k
1 r o (8) -1
—s(w'9 (1)) ;E YO (1)ePo O —(s§.0>(z)) aM (1) (20)
-

_ —ZH(’)(Z)Y(‘)(t)eBO ; (z) — s(, W(O))
B<jy
-1

1 s r xS 0 -1 s
Ly e | (s00) | au o
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i<j

1 . 1 k k ng nj T i y S(I,W(O)) .
~U(B1) = ;ZZ 1/0 {H](.)(t) (szﬁ)—ﬁ am'” (1)

(0}(0 {1 ZH(S)(l)Y(’)(t)eﬂO X" )y —si(, W(o))} M(’)(z)

-1
—s(w (1)) ( ZY(”(;)eﬁé (”m) -(sl@(;))_l am (1) (21)

i<i

’ (
- —ZH(S)(t)Y(r)(t)e'B MO s, wl?)
B<j
-1

k
LSy gy o857 O )| @
- § Y (1) <f>) —(sl. (r)) am" (1),

1 1<
VLB =)

1 1
{ ZH(A)(I)Y“)(I)eﬂO SOw Sj(f,W(O))} am;" ()

i<i

T N\ stow
() i (s)
1 /0 HY (1) (szfz) ;0)(0 M\ (1)

i<j

-1

k
1 r o (9) -1
—s(w9 (1)) 55 Y© (1) x" O _(s;O)(z)) a1 (22)
-

_ —ZH(S)(I)Y(S)(t)eBO ¢ (z) —s(, W(O))
B<y
-1
LS ) 8 x00 UFFS D
ZZ‘Y]. ()P —(sj (t)) M (1),
j:

Each one of the terms on the right hand side of (19), (20),(21) and (22) are 0, (1)
when n — oo per the regularity conditions I to V. Therefore n‘lUilj (B,t) = 0,(1). Likewise,
under conditions I to V, it can be shown that the remaining three terms in n-tulisl (B,1) are
all asymptotically negligible. Hence sup,e[O’T]n‘lU[’j 1(B, 1|6) L 0asn— oo, completing

the proof of the asymptotic unbiasedness of n Ul (B, 116).
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For the purpose of showing unbiasedness of the score associated with the spatial
correlation parameter, let v;; be the weight between two sites. The weight v;; can be taken
to be a function of the spatial correlation p;;(6) between locations i and j and will help
increase efficiency of §. With no loss of generality, it suffices to consider a score process

between two locations of the form
U (t1,12;8) = vij [Mi(t1) M (t2) — A (11,125 6)],

where Aj;(11,12:6) = 2/ ¥ AT (11,11 6) and M(n) = X% M7 (11), My(r2) =

Z'SZ | M;.s) (t2). The corresponding estimating function for § over all pairs is given by

U(t1,12;6) = ZUU(H,Q;@-
i<)

The next theorem is on the asymptotic unbiasedness of U(zy, 15; 9).

Theorem 3 Under Conditions VI and VIII, as n — oo,

1 .
Ul 1:8) =~ 3 U (11,12:6) 5 0.
n
(i.))i<]j
Proof: The mixing condition along with Chebyshev inequality and Condition VII is applied.
Let I,,(t,) = {i,j/lli — jl| = tn}. The set I,,(¢,) gives the range beyond which the spatial
correlation impact is negligible. The cut off point ¢, depends on the number of locations.

In what follows, A’ denote complement of a set A. For € > 0, via Chebyshev inequality and
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Condition VII,

pln! E:Iﬂubmﬁ)>e P 2:\wMMﬂMAQ%>M
(i,)).i<j (i,)).i<]j

+ Z vijAij(t1,12)
(@,7).<j
i<y EVisMi(t1)M;(t2))
(ne+ X iy VijAij(t1,12))?
D) el () EMi(t1) M (12))
n2e?
S ety ) EMi(t1)M;(12))
+ .
n2e?

With a proper choice of mixing function, the last inequality in previous display converges

to 0 under the mixing condition VII.

S. LARGE SAMPLE PROPERTIES

This section is devoted to the large sample properties of the estimators. Let 8 =
(B,6), Ui(B,1) = ULz, B|6o) and Us(t1,12;6) = U (11, 12;6). Consider the vector of

score processes V(1) = (Ui (B, 1), Ux(1,12;0)) such that

1 UiB) | 1 uliil(z, B160) 1

V(6:1.11.12) = V() = — B ==-3"Vv,.(9).
Gitin) @ n; U, (0) n; U (11, 15; 6) n; o)

(23)

The in-probability limit of the variance covariance matrix of V(0;1,t;,1,) is given

VU , VsU , M X
IZ (560‘71'/(0)) _| Ve 1(B.1) sU1(B,1) P 1 X2

Ly= . (24)

" VgUy(6,t) VsUr(0:t1,12) L X

<]

The next theorem is on the existence and consistency of the solution to V(6) = 0.



46

Theorem 4 (a) There exists a sequence of solutions B, and 8, to the sequence of estimating
equations U1 (B,t) = 0 and Uy (t1,12;8) = 0.

(b) Under Conditions I to VIII, and the infill asymptotic, B, ER Bo and §,, =R 0o

Before proving the theorem, a discussion on /io,-(t), i = 1,...,k 1s warranted since its
consistency is required for the in-probability limit of the score variance. Recall that Ao; (1)

is given by
e, AN

5B, 1)

and is a jump process and will possibly loses efficiency for large n. However, any loss of

Aoi(1) =

efficiency using it for the limit is minor as compared to using a more complicated smoothed

estimator obtained via kernel and proposed in Ramlau-Hansen (1983) given by

N 1 ! r—u\
/lK t) = — K d\o;
S0 =5 [ k() dhato

where K (-) is some kernel function and #,,, a sequence of positive constants. Although /igl. (1)
is smoother, both are, however consistent for Ao;(7), that is sup,c(g 7 |A0i (£) — 20: (1] 0.
This proceeds to using the consistent version Ag;(z).

Proof: The inverse function theorem of Foutz (1976) is applied. Three conditions
need to be satisfied. (i) asymptotic unbiasedness of the estimating functions, (ii) existence
and continuity of the partial derivatives matrix and (iii) the negative definiteness of the
matrix of partial derivatives at the true parameter value 6y. Condition (i) has been already
shown in Theorem 2 and Theorem 3. It remains to show (ii) and (iii). Consider Uilj (1) given
by

. 1 Lot
CHOES Z Z /0 w H (u, B)M (du).

i<j r=1
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Since A;(¢) is unknown, substitute it by its consistent Breslow estimator. So the version is

U ij (7) given by

1 N
0V = 230 [ Wi wp)

i<j r=1

. {dNi(r) (u) _ Yi(r) (u)eﬂ/xfr)(u)

D de”w))
sSOBu) |)

The gradient of Ijilj (1) with respect to B is

Vel (B.1) = %Zi/o (v )

i<j r=1

'Wiljl (de(r)(u) - Yl-(r)(u)eﬂ/x‘(r)(u)/ioz'(u)du)

DI R

i<j r=1

7o (1) A
~ Y% ()P R () du

sV (B.u)

2 (r)
+v") ()P <“>®S(O)( Aoi(u)du
i

B.u)

(1)
P ’ _ O\ o S (Bou) ) (1)
5 op(l)—/0 [s (u,ﬂ,w“)@m—s(u,ﬁ,w“ )]/l()i(u)du.
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Likewise, substituting the Breslow estimator in [AJZZJ (1), fJ;j (t) and [AJZJ (t) the gradients of

03 (2), 0;j(t) and l?ij(t) are

VUl (B.7) =
P
q
‘7ﬁljéj(13,T) =

5 Op(l)—/ S(I;B,wg))(@
0

% )y i nZ /OT [VﬁHf‘Y)(u,ﬁ)]

iSj s=1 r=1

XW’ijz (dNi(r)(“) - Yf”(u)eﬂ,xgr)(”)/iol-(u)du)

1 n; T (s) lJ
+ZZZ/O H;"(u, B)wi,

i<j r=1
(1)
S' ,l/l a~
%ﬂo,‘(u)du
Sl‘ (ﬂ, I/t)

" s (B u)
op(1) = /0 [s (t;ﬂ,wgg)) ® W - (u;ﬂ,wilz))] Aoi(u)du.

r r 7 (1) uw) A
- Yi( )(u)XE )(u)eﬂ X () 20i(w)du

(") () B5
D ()W g

53)) [ [vat wp)]

iSj s=1 r=1

g T
XW)) (dNJ('S)(u) - Y;s)(u)eﬂ X (”)/loj(u)du)

1 ni T () .. (A) (A) ﬁ/ (A)()A
+ﬁ ZZ/O Hir (”’ﬁ)wlzjl _Yjv (”)va (u)e” ¥ " Aoj(u)du

i<j r=1
(1)
<) S (lg’u) A
+Y;s)(u)eﬁ X (u) ® zo)—/IOj(M)du
s (B.u)
1
sV (B u)

. (1)
W_s(”’ﬂ’wm) Aoj (u)du.
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it = 15[ o]

i<j s=1

.. 7o (S) A
wih (dNJ(.S)(u) ~ Y ()P (”)/loj(u)du)

.
1 J T .. 7 (5) A
a0 B | ¥ e

i<j s=1

S\ (B.u) |
SJ (ﬂ’ I/l)

T s(.l)(ﬂ, u)
ﬁ) Op(l) _/0 S (u;ﬂ’ ng)) ® m - (M;ﬂ, Wélz)) /loj(u)du

7o (5)
+Y;S)(u)eﬁ 5 W g

Taking the gradient with respect to 8 of all four terms in U/1(z), and taking their
limits according to the regularity conditions, obtain that, at 6, the first block of X, namely

X1y = (09)); jy..x With the (i, /)1 element given by

.....

T (1) (D
= - g ©0) g i Bouw) 0) g S (B, u)
Y /O[S(M’ﬁ’w“) s (B.u) (i) s (B.u)

—s (u;ﬁ, ngl)) — (u;,B, ngg)) ] Aoi(u)du
] (g, D (B.u)
[l (n) o _:@EZ 2o —jgm o

—s (u;ﬁ, wglz)) -5 (u;ﬂ, wgll)) Aogj(u)du.

Note that 0y is a p X p matrix. Obviously X1, = 0, a matrix of 0. The X3, block is the
gradient of U, (8; 11, t>) with respect to 8. To see how it is derived, let v/ be a 1 X g row
vector and V5AY (t1,12; 8) defined by

0 0

V= Vi) VA (1,10,8) = a—mAij,...,ﬁAif = VAl
q



respectively. To make notation compact, for/ =1, ..., g, let

o .. o .. B
—AY(t1,10;0) = —AY((0)) = V5 AY (5) := AY
35, (11,125 0) 75, ((0)) = V5,AY (6)

Then, the (i, j )th element of X, is the ¢ X ¢ matrix given by

ij Aij ij 4ij ij 41j
le51 V1A52 VlAéq
ij Aij ij 4ij ij 4ij
L . . vy A vy A - VIA
212]2(6):V11®V6A1J: 27702 2702 2764
l] ij ij 40j ij 40j
viAs vads o vads,
Recall also that
ni nj
N g
V(;lAl] (o) = —Al(r 5) (t1,12,30).
r=1 s=1 86 ’

So that, for example, the (1, 1) component of 212]2 is given by

Zij] lj: ij S A(rs)t t,6
[22 wy ZZ@& (11,12:.6).

r=1 s=

The in-probability limit of |25 | -

N 1
[212]2](1 5o lim ~ » v/ [VsAY(11,12;6)] .

By virtue of the previous derivations, a compact notation for X, is then

Iy = lim ~ p Z i Z e VaA(r (11,12 6).

i<j r=1 s=1

That limiting matrix is assumed to exist per Condition VII and is negative definite.
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Now consider the block X,;. It is easy to show that the (i, j )" element, i = Jj =

1, ..., k of the gradient of Uy (#1, t; &) with respect to B is 212]1

g T i sDp.
Xy = /0 Vij ® {ZHZ-(”(M,.B)—M}

= SV (B, u)
| (2 Yi”(u)eﬂ"‘}”(”)) {Z My 8 )

nj

r=1 s=1
ni Ny
+ ), ) Ay du, Mz;P(5))} Ao () du
r=1 s=1
- d s (B, u)
+/ Vij ® ZH;S)(u,ﬂ)— é())—
0 s=1 Sj (ﬂ’ M)

nj ni
7o (5)
) Z Y;S)(u)eﬁ x; (u) {Z Mi(r) (Xz@ (u))
s=1 r=1
ni  nj

+ Z Z Ai;’s)(ul, duz;p((f))}

r=1 s=1

/ioj(u)du.

Note that Zgj] is a p X p matrix and the in-probability limit. Assuming the integration
operation is interchangeable and limit is given by
. 1 .
E(XY) = lim — Z .

(i,7).i<])

Hence, the partial derivative matrix converges to a matrix X which is negative definite
at the true parameter value (Bo,dp). It then follows from the inverse function theorem
of Foutz (1976) that there exists a unique sequence (/3,8) such that V(t; B,6) = 0 and
(B.8) = (Bo, 80) as n — .

The next theorem is on the asymptotic normality of (B, 6,) when properly stan-

dardized.

Theorem 5 Under regularity Conditions I and VIII,

/L

VLB 8.Y = (Bl 63)'} 5 Npig(0psgs @),
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where ® is a (p + q) X (p + q) matrix given by ® = £ 1Qx~1,

Proof: The central limit theorem is applied for random field given in Remarks (3), page 112

of Guyon (1995). Taylor expansion of V(¢,0) at 6 = 6 yields
P -1
Vn(6, - 6o) = [@V(t, 6) |0:0*] VnV(t,60),

where 6* is between 6, and 6, and 6* KR Po under the infill asymptotic domain setting.

Furthermore, note that

0 P
— 0| & X

as n — oo. The Q matrix in @ is the variance of the score vector, which under Conditions
V and VI is assumed to exist and converges to a positive definite matrix. The expression
of @ is obtained by applying the result of multivariate central limit theorem. Finally, the

theorem follows upon applying Remark(3), page 112 of Guyon (1995).

6. NUMERICAL ASSESSMENT AND APPLICATION

This section discusses how the simulation study was done together with the illustra-

tive application.

6.1. NUMERICAL ASSESSMENT

This begins with the selection of the different regions that will be used. The package
raster on Geographic Data Analysis and Modeling contains the geographical coordinates
of many countries. The United States was used the country.

6.1.1. Regions. The raster package in R contains the data on the geographical
coordinates of well defined subdivisions in many countries. This package was used to get
the coordinates for states, counties etc... for the United States. Depending on the country,

this package also allows users to select location data with several levels of depth. For
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the United States, the users can specify either Level 1 for statewise locations or Level 2
for the county wise locations. We use Level 2 data from raster for the simulations. The
geographical centers of the 3117 contiguous counties, excluding Hawaii and Alaska are our
I;,i =1,...,3117. The other alternative is to choose a state and randomly select counties
within the selected state. In Figure 2, the state of Missouri is provided as an example with
the coordinates for a couple of the counties. For example, the longitude and latitude of the

center of Newton county in the state of Missouri is (—94.34,36.91).

Scotland
(-92.14942 , 40.45480)

Newton
(-94.34001,36.90553) ‘,’

Figure 2. Missouri counties map

6.1.2. Simulation Design. A random sample of {n; : i = 1,..,3117} people from
each county was obtained where n; is proportional to the county population from the lat-
est census available in R while making sure n = ?:1117 n; € {93510, 155850,311700}.
Two covariates were considered x = (xp,x;), where x; follows the binomial distribu-

tion with parameters n = n; and p = 0.5 and x, ~ N(0,0.5) resulting in a mixture
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of categorical and quantitative covariates. The spatial correlation parameter was set at
6 = (01,02) = (range,sill) = (0.5,1.5). The regression coefficient vector in the Cox
model is B = (B1,82) = (1,2). As for the proportion of censored observation, less censor-
ing to severe censoring is allowed in order to assess its impact on the spatial correlation.
The proportion of censored units was taken to be in {5%, 10%, 20%, 25%}, allowing for
mild to severe censoring. For the baseline hazard, the Weibull hazard was used given by
Ao(t) = 0102(011)%271. We set 6; = 1 since it is the scale parameter and is irrelevant in our
simulation. However, the shape parameter 6, was taken in {0.8, 1.5} to allow for increasing
failure over time for 6, = 2 and decreasing for 8, = 0.8.

6.1.3. Event Times Generation. Under the Cox model with Weibull baseline haz-
ard, failure times were generated via the probit transformation using the following steps:
(i) If ®(-) denotes the probit transformation, then solving for the Cox’s model, we obtain

for (i,r) € L X L;

A1) = =1n (1= &(F")) expl-px" ()].
Solving for Tl.(r), we obtain

1 = AGH |- n (1= ©(F)) exp(-px" ()]

T
where Aal.l (+) is the inverse of the Weibull cumulative hazard given by A () =1%.
(ii) For (i,r) € L x L;, the Tl.(r)s are generated using the expression

1

o1

11 = |- 1n (1= &(F") ) exp(-px" (1))

where ®(7") ~ U(0, 1),
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6.1.4. Simulated Data. For the purpose of estimating parameters, the study con-
siders two spatial correlation models, namely the exponential and Gaussian model as given
in (4), (5) and powered spatial correlation function. For all models, 500 simulation repli-
cations were performed with each parameter specification and sample size combination.
The results are given in Table 1, Table 2, Table 3, and Table 4. CP stands for censoring
percentage.

6.1.5. Comments on The Simulation Results. The results of the simulation study
indicate that the estimators of the spatial correlation § as well as regression coefficients
perform well. One thing to note here is that as the percentage of censoring increases, the
biases of the f increase regardless of the sample size, whereas the biases of the 6 remain
very steady close to each other. This makes sense since the spatial correlation parameters is
the correlation between two areas so it is not affected by large samples. However, the bias
of B will increase because higher censoring translates into less failure times. There is no
significant difference in the results between the exponential and Gaussian spatial correlation
models. The reason why this is so is both have exponential components so the impact of the
large sample will be minor. However, the standard deviations of the estimates of é remain

without any noticeable pattern with the increasing sample size.

6.2. ILLUSTRATIVE APPLICATION

The foregoing procedures are applied to the Leukemia survival data which was
also analyzed in Henderson et al. (2002). The data contains 1,043 cases of Acute Myeloid
Leukemia (AML) which were recorded between 1982 and 1998 at 24 administrative districts.

It contains the time Ti(r) for each unit (i,r) € L x L;, and the censoring indicator
61@. There were 16% of censored observations. Four covariates were available, that

is x = (age, gender, wbc, tpi), where wbc stands for white blood cell count and #pi for
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Townsend score. The Townsend score is a qualitative value in [—7, 10] describing quality
of life in a given area. High values indicate less affluent areas. The factors affecting survival

were investigated while accounting for spatial correlation.

1.0°N -

0.8°N-

0.6°N-

Latitude

0.4°N -

0.2°N-

0.0°-

0.0° 0.2°E 0.4°E 0.6°E 0.8°E 1.0°E
Longitude

Figure 3. Leukemia data with the 24 districts

Figure 3 shows residential locations of the AML cases during the observation
window. Henderson et al. (2002) investigated whether the survival distribution in AML
in adults is homogeneous across the region after allowing for known risk factors. In their

manuscript, they employ a multivariate frailty that incorporates the effects of covariates,
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0.8°N -
Risk
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0208 = 1 1 1 1 1 1
0.0° 0.2°E 0.4°E 0.6°E 0.8°E 1.0°E

Longitude

Figure 4. Leukemia data with the 24 districts, units, and risk

individual heterogeneity, and spatial traits. This study’s approach and theirs are different.
Whereas both use the Cox model as the instantaneous failure rate, their approach in studying
spatial variation is done via the use of conditional frailty, where the conditioning random
variable for all 24 districts is the vector of mean frailty u = (uy, ..., u24). Specifically, if
Z, is the frailty for unit r in location I;, and u; the mean frailty of all individuals in that

location, they postulate that

Zolui ~T(E (Eup™),
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with a N(1, Z) on p; where E measure the spatial variation between districts. Whereas
they use a conditional frailty model with variance covariance matrix that is a function of the
distance between regions, we embed the spatial correlation in the transformed failure times
giving us a multivariate Gaussian random field with variance covariance that is a function

of the distance between regions via the Matérn spatial correlation function.

0.8 1.0
|

0.6

Baseline Survivor Function
0.4

0.2

0.0

I I I I I I
0 1000 2000 3000 4000 5000

Days

Figure 5. Survival curve of area categories

Before applying our methods, a set of initial data analysis was run. Figure 5 shows
the Kaplan-Meier plots by gender. It is clear that survival curve for the female group lies
above that of male group. This concurs with the summary statistics in Table5. The variable
tpi represents the Townsend score. The higher values for #pi indicates less affluent areas.
All individuals in the study were grouped into 3 categories based on #pi. If #pi of a person is
lower than —1.5, he or she is categorized into Rich group. Likewise, if tpi of a person falls
between —1.5 and —4.5, the person is grouped into Medium category. Lastly, if a persons

tpi is greater than 4.5, that person is categorized into Poor group. Figure 5 presents the
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Table 5. Summary statistics of Leukemia data by gender

Female Male

Survival time Min 1.0 1.0
Q1 37.0 45.5

Q2 182.0 186.0

Mean 581.5 489.0

Q3 574.8 490.5

Max  4922.0 4977.0

Age Min 14.00 14.0

Q1 48.00 50.0

Q2 65.00 65.0
Mean 60.98 60.5
Q3 75.00 74.0
Max 92.00 92.0

wbc Min 0.00 0.00
Q1 1.80 1.70
Q2 7.35 8.10
Mean 4042 36.94
Q3 36.60 41.10

Max  500.00 500.00

survival curves according to these three areas. From near day 100 to 5000 survival curve
of Medium group always lies below than survival curves of other two groups. Moreover,
comparing data of Poor and Rich groups, from day O to near day 2400, survival curve for
Rich group is always above the Poor group. But, interestingly from near day 2400 to 5000
survival curve for poor group is above that of Rich group.

These methods are used to analyze the Leukemia data. Factors that may increase the
risk of acute myeloid leukemia include age, gender, prior cancer treatment, environmental
factors, blood disorder, genetic disorder, to name a few. Only covariates in the data, were
considered assuming that age at onset of acute myeloid leukemia (AML) on adults follows

the Cox model. The Matérn model was used to account for the spatial dependence between
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pair of districts. The hazard function for an 7" unit in district i is given by

A (1) = 0:(1) expl Buge X age + Byex X S€X + Puupe X Wpe]

o
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Figure 6. Survival curve of gender

The estimated regression coefficients and the spatial correlation parameters using
the estimating functions in Section 5 were obtained. And also the associated standard
deviations and confidence intervals were calculated. The results are presented in Table 6.
The results of Henderson’s approach are also presented in Table 7. The results in both
tables show in both models that all regression coefficient are significant concurring with
the fact that all the covariates age, sex, and wpc increase the risk of aml. That is more
so with our models, and the results concur with our preliminary analysis of the data. The
estimated value of the range, which is 1.2418 indicates that the impact of environment
vanishes when two units are separated by at least 1.2418 units of distance. The log pseudo

marginal likelihoods (LPML) for each model is also given. Despite the fact that this model
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has more parameters, it has a better LPML, indicating it is the best model between the
two. However, this needs to be taken with cautious and deep investigation such as each unit
personal geographical location would be needed to arrive at the best model in this situation.

Table 6. Summary of means and standard deviations of regression parameters and spatial
parameters for Leukemia data using our models. LPM L = —5991.082

Mean Median Std.Dev. 95%CI-Low 95% CI-Upp

age 30.65 X103 27.95x107° 370 x107®  27.95x1073  34.69 x1073
sex 70.40 x1073 70.61x1073  0.30x1073  70.07 x10>  70.61 x1073
wbc 3.00 x1073 3.03x107°  0.04 x1073 2.95 x1073 3.03 x1073
tpi 3430 x1073  33.77x107°  0.72x107® 3377 x1073  35.09 x1073
sill 891.25 %107 913.18 x1073 48351073  815.88x1073  913.18 x1073
range 1241.79 x1073  1201.53 x10™* 90.02 x10~* 1201.53 x107> 1382.70 x1073

Table 7. Summary of means and standard deviations of regression parameters and spatial
parameters for Leukemia data using Henderson’s model: LPM L = —5925.385

Mean Median Std.Dev. 95%CI-Low  95% CI-Upp

age  51.95x1073  52.00x107  3.35x107°  45.07 x107°  58.46 x1073
sex 108.04 x1073 105.01 x1073 108.38 x10™* -101.16 x10™3 325.87 x1073
wbe  5.94x107° 594 %107 0.79 x1073 439 x1073  7.53 x1073
tpi 61.37x1073 6124 x1073 1546 x107>  33.07 x107®  93.25 x10~?
fv.  64.22x107° 4042 %1073 80.68 x1073 1.01 x1073 252,93 x1073

7. CONCLUDING REMARKS

The situation where many units clustered in different geographical areas described
by their longitude and latitude are monitored for the occurrence of some event. A method-

ology was developed using a combination of modern survival analysis and geostatistical
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formulation. Parameters of these models are estimated using unbiased estimating functions
and their large sample properties were also examined using infill asymptotic approach that
one encounters with spatial data. The methodology can be easily generalized to the case
of recurrent events. Another generalization is to consider the geographical coordinate of
each unit within a given geographical area. It is also possible to consider both within and
between areas spatial correlation. Another important area of interest is to develop models
that account for correlation between event time via frailty when the event is allowed to
recur. Another possible future direction is using another model for modeling connection
between failure covariates and failure times such as the accelerated failure time model.
However, other estimating approaches, such as rank-based would need to be applied to the

transformed event times.
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ABSTRACT

We consider the same setting, namely a fixed number of clustered areas identified
by their geographical coordinate that are monitored for the occurrences of an event such as
pandemic, epidemic, migration to name a few. Data collected on units at all areas include
time varying covariates and environmental factors. We allow for association between event
times in every area using an unobservable frailty. The frailty are assumed to be the same per
area, and are independent. The collected data is again considered pairwise to account for
spatial correlation between all pair of areas, and their frailty unobservables Z; and Z;. The
pairwise right censored data is again probit-transformed yielding a multivariate Gaussian
random field given the values of the frailties. We provide a detailed small sample numerical
studies and we show that ignoring correlation between unit in a given area leads to biased
estimators.

Keywords: Spatial correlation; Gaussian random fields; Composite likelihood; Estimating

function; Frailty; Mixing; Clustered failure times
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1. INTRODUCTION

Spatially correlated data arise in various crucial fields such as ecology, clinical trials,
and epidemiology to name a few. Therefore, developing statistical models that are capable
of accounting for spatial correlation is of utmost importance.

In addition to possible covariates, it may be possible for a survival model to be
affected by unobserved random factors called frailties via its hazard function. Ignoring
so called frailties and solely depending on covariates in modeling survival times can have
consequences including ending up having unreliable parameter estimates. Therefore, it is
of significant importance to account for frailty variables.

Spatial statistical methods have been described in detail by Cressie (1993) and sta-
tistical tools needed for modeling normally distributed data have been developed. However,
modeling spatially correlated survival data with frailties has not been considered by Cressie
(1993). Sudipto, Banerjee et al. (2003) and Bradley (2005) discussed a few hierarchi-
cal methods for modeling survival data which are spatially correlated. They considered
spatially arranged clusters according to their frailties and used two different approaches
called "geostatistical" and "lattice" to model survival times taking spatially correlated haz-
ards into account. However, the covariance structure they obtained in their study did not
correspond to a proper covariance structure. Kosorok et al. (2004) considered a class of
semiparametric regression models that are one parameter extension of Cox model. They
performed non-parametric likelihood based inferences while assuming hazard given the
covariates and random frailty has proportional hazard form multiplied by the corresponding
frailty. However, they did not consider spatial dependence of survival times. Petersen
(1998) used an additive frailty model for modeling correlated survival time. Even though
he did not take spatial correlation as the specific correlation in his study, the frailty model
he proposed and the corresponding estimation methods he derived give an easy and flexible
approach to model multivariate correlated survival times by clearly distinguishing between

dependence parameters and regression parameters with baseline hazards. However, they
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restricted associations between individuals to be always positive which might not be the
case in applications. Moreover, they did not consider how the effect of the choice of frailty
distribution can be problematic in modeling. Li and Lin (2006) proposed a new class of
semiparametric normal transformation models for right censored spatially correlated sur-
vival data. Their model is a flexible one that provides a semiparametric likelihood approach
to generate censored spatial survival data that have a spatial correlation structure which
allows individual observations to marginally follow the Cox proportional hazard model.
However, their model does not account for frailties associated with survival times.

Li and Lin (2006) considered right-censored spatially correlated survival data and
performed semi parametric inferences. They assumed that each of the clusters in their
study had only one subject. In addition, they did not consider frailties. However, in real
world applications, one observation per cluster is a quite rare case and also, unobservable
random factors are often thought to interfere with the observations. Therefore, in our study,
we extend his idea to a general setting so that, our model is capable of handling many
observations per cluster as well as unobservable random factors.

The rest of this part of the dissertation is structured as follows. In Section 2, a
semiparametric model is introduced with a normal transformation that can handle spa-
tially correlated survival data including unobservable random factors. Section 3 describes
developing estimating equations, that are spatial semiparametric, for spatial correlation
parameters and regression coefficients given the corresponding frailties. In Section 4, a
simulation study was performed using R software package to assess the performance of the

proposed method when finite samples are taken into account.

2. SPATTIALLY CORRELATED SURVIVAL DATA WITH FRAILTY

This section gives a discussion on notation, pairwise survival data, Cox model used,

Multivariate Gaussian Random fields and spatial correlation models.
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2.1. NOTATION

The previous chapter and the current one have similar notations except the inclusion
of the unobserved frailty.

In addition, let Z = (Z,, Z, ..., Zi) be a k-dimensional vector of independently and
identically distributed positive random variables called frailties which are unobservable
random factors affecting the event occurrences of the subjects at each geographical location.
We also assume that each subject in the same geographical location has the same frailty.
Therefore, the frailty shared by all subjects in location i is denoted by Z;.

The censoring times C l.(r) and true survival times Wl.(r) are assumed independent of
each other, given the independent frailties Z; and covariates Xl@ (7).

The observable data per area given frailty is
0(11z) = (x" (1. 7,".8". ;)

2.2. THE MODEL

According to our model, hazard function of true survival time Tl.(r) is assumed to
follow the following shared frailty model given below in (1) marginally, where A¢;(?) is
the baseline hazard function for the i*” geographical location with different baseline per
location, but same regression parameter B for all locations. As we stated before, it is
assumed that all the individuals in a given geographical location i have the same frailty Z;.

Hence /ll(r) (+) has the form
A7 (112:) = Zido (1) exp (BX" (1)) (1)

In (1), Bis a p-dimensional regression parameters vector and £ stands for its transpose. For

i =1, ..., k, the baseline hazard functions A¢; () are unspecified and need to be estimated.
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2.3. MGRF FRAMEWORK WITH FRAILTY

First, let Ai(tler)(t),Zi) be the cumulative hazard function for i"* geographical
location. Then the cumulative survival function Fi(r)(tlxgr) (1), Z;) = exp —A(tlxlm (1), Z)
follows a uniform distribution on (0, 1). It can also be shown that Afr)(Tl.(r)lxl{r)(t), Z)
follows a unit exponential distribution EXP(1). If ®(:) is the cumulative distribution
function of the standard normal distribution, then the probit transformation of a variable U
in (0, 1) is @' (U). Based on this we probit transform our failure time Tl.(r) to obtain Tl.(r)

as follows.

T 2 @1 [1 = e 2T B )| 7,

This transformed version of event times follows a standard normal distribution N (0, 1). By

defining a vector of transformed failure times for each subject in location i as below

it can be shown to follow an n; variate joint multivariate normal distribution. As a re-
sult, a multivariate Gaussian random field (MGRF) can be constructed using each of the

transformed failure times T;, i = 1, ..., k of all geographical locations, namely

T= (TI,TZ,...,Tk)

(n1,...,nk)

3. SEMI PARAMETRIC ESTIMATING EQUATIONS

This section gives essentials of method of moment estimator, joint modeling and

estimation of regression and spatial parameters.
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3.1. METHOD OF MOMENT ESTIMATOR

In this section some useful notation similar to those in the previous chapter are
introduced to describe the mathematical setup of the problem of interest using stochastic
process framework.

For (i,r) € £ x L;, define the counting process Nl@(t) = 55”1(7}(’) < t) where
I(-) is an indicator function and §; = (Cl.(r) < Wl.(r)) is a non-censoring indicator. At risk
process is defined as Yl.(r)(t) = I(Tl.(r) > t). Note that Nfr)(t) indicates if an event has
occurred by time 7, whereas Yl@ (¢) indicates if unit (i, r) is at risk at time 7. Furthermore,
it is assumed that the study ends at a time 7 with 7 > maxr,iTl@. Therefore, the observation
time window is [0, 7] = 7. The entire history at all geostatistical locations at the end of

the study is contained in the o-field ¥ = \/l{‘:l Vi 7:;(:) with
FO = o (Nf”(z), Y (1)1 e ‘7') .

In this dissertation, instantaneous hazard function is assumed to be different from one

geographical region to another. From stochastic integration theory, the compensator process
.. . . t

of Nl.(r)(t) conditional on Z; = z; is Afr)(tlzi) given by Afr)(t|z,-) =z Yt.(r)(u)/l,-(u)du SO

that for each (i, r) the process
t
MO (t1Z) = N (1) - / Y™ (u) Zidoi (u) exp (,B’x,?”(u)) du teT
0

is a zero-mean square-integrable martingale with respect to the filtration ¥, (tr) conditional
on Z;. Hence by method of moments, an Aalen-Breslow estimator for Ag;(-) = /0- Aoi(u)du,

fori € L is given by

Aoi(1lz) / | Sy dN” ()
0i\l|Zi) = :
0 3 Y )z exp (8% (w))

2)
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Thus, the estimator of Ay(¢|Z) would be a k X 1 vector

Aoi(t1Z1)

R Ap(t|Z
Ao(1]Z) = 02(.” . 3)

_/A\Ok(tlzk)_ -

Since B = (B4, ..., Bp) is an unknown regression parameter vector, Ao(t]Z) is not yet an
estimator. Therefore expression in (3) will be used as substitution for A¢;(¢) to estimate 8

and also to obtain the in-probability limits of the score matrix.

3.2. JOINT MODELING

With a view towards joint modeling, for a pair of units (r,s) € (£;, £;) and t €
[0. 7], let [N (1), ¥, (1), A" (1]z)] and [N (1), Y1 (1), A (1]z;)] be their counting,
at-risk, and conditional compensator processes respectively. Note that then there are zero
mean martingale processes conditional on z; and z; namely, {Ml.(r)(t|z,-) :t € [0,7]} and
{MJ(.S) (tlz;) : t € [0, 7]} with respect to their corresponding filtrations denoted by 71(:) and
Tj(f) respectively. Next for (¢, 1) € [0, 7], define the joint counting process Nl.(jr’s)(-, -) by
Nl.(jr’s)(tl, ) = I{Tl.(r) > 1, Tj(s) > t,}. The covariance function (Ml.(r)(tllzi), M](.s)(tzlzj))
is defined by

EM" ()M 1" > 0,1 > 10,2, 2)) = A (1,012, 2))

(M, MY (1,012, Z)).
Further, by stochastic integration theory,

131 1)
E M (1|Z)M (12|2)) - / / Y ()Y () Z:Z; A (duy, dug) | = 0.
0 0
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Next, for the i’ and j'" geographical locations Ti(l) , Tl.(z), s Tf"’j conditional on Z; are i.i.d..
Similarly, T].(l), TJ.(Z), T;"’ ) conditional on Z; are also i.i.d.. They have the conditional
survivor function Fl.(r)(t|Z,-) and F;s) (t|Z;) respectively. Conditional bivariate survivor

function Fl.(jr’s)(tl 15 pijZiy Z;) for (r, s) € (L, L)) is given by

F,-(;’s)(ll,tz;pij|zi, Z;) p (Ti(r) > ll,Tj(S) > fz;Pijlzi,Zj)

G |o™ (F")(1112). 07 (F (1212)))]

where p;; and G(-,; p;;|Z;, Z;) are spatial correlation and conditional bivariate survival
function of the transformed failure times 7; and TJ respectively. Following Prentice and Cai

(1992) the conditional joint compensator, Ag’s) (t1,12|Zi, Z;), is given by
A, diy; pil Zi Z)) = Ao N (11 Z0), A (120 2)): pi I A (d11 | Z) A (dna| Z;),
where the baseline joint compensator Ao |-, -; p;;] is given by

0% .. _
FO9(1, t2; pij|Zi, Zj) + F,-(jr’s)(tl, t2; pij|Zi, Z;)

Ao(t1, 123 pifl Zin Zj) - = o0ty 1

0 - 0 -
+a—llﬂ(j~r’s)(l1, 12 pijlZi, Z;) + a_tzFl'(jr,S)(tla 12 pijlZi, Z;).

3.3. ESTIMATION

This section gives the theory on estimating regression and spatial parameters.

3.3.1. Estimating S. The model in our study was assumed to have independent and
identically distributed (i.i.d) frailty random variables that come from a known distribution.
Particularly, the gamma distribution with unit mean and variance 1/a, Gamma(a,a) will be
used as the known distribution. It is difficult to apply direct maximum likelihood methods to

estimate parameters of interest due to the high dimensionality of the likelihood and the fact
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Z; are not observed. Again we use pairwise likelihood approach to estimate the parameters
using expectation-maximization algorithm. This approach uses data in two spatial locations
that can be the basis of an unbiased estimating function.

More notation in the sequel are introduced with a view toward estimating £ that
accounts for pairwise spatial correlation between two locations (i, j) € £2. Ifa = (ay, a») is
a 1x2 row vector and its transpose denoted by a” is a2x 1 column vector. Using usual notation
used in the first part of this dissertation, for (r,s) € (£;, £;), we define Hf;’s)(ﬂZi, Z;) =
(H"(112:), H (11Z;)) and M (1121, ) = (M (112:). M (11Z;)) .

In our case, the pairwise likelihood can be written as

w'lj1 dNi(r) (u)

n;, nj t
1 (1) A
LiB160.7:2) = [ |[ [3] | 7 @z a0
r=1 s=1 | u=0
t r)
X exp —/0 ZYi(r)(M)ZieﬂXi ) i () du }
r=1
! () 0
X 1—[ Y (u)z;eP ™ Aoi (u)
u=0
t i 7o (5) ~
X exp —/0 ZY;S)(u)zje'Bxf 0 doi (u)du
s=1
' r) wiidN; ()
A 1|57 @azef™ (“)/101(”)]
u=0
t r)
X exp —/0 ZYi(r)(u)zie'B % Ao, (u)du }
r=1
; . A w;éde(-S)(u)
X 1—[ Y}s)(u)Zjeﬂxj (”)ﬂoj'(u)
u=0
t s () (0 n
X exp _/0 ZY;S)(u)z;'eﬂxf “oj (wydu| ¢
s=1
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Then the corresponding log likelihood can be written as

i (Bl6. 2. Z;) o ZZ{ / TEBX ()~ log SO (1)]dN ()

r=1 s=1

wih 8% () - 1og S (u)]dN," (u)

Y BX" (1) = 1og S (u)]dN' (u)

+ + +

LB (u) - log Sj.(’)(u)]dzv](.s)(u)} .
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To estimate B, if the Z = z = (z1, 22, ..., 2x) are observed, then the complete likelihood

function for the model parameter B is given by

Lij(B,Z;,Zjl6g) =

1 1
T /\@ —z | @ —z;
.on; a 1 —Zi @ 1 2j
monyo |z (a) exp () | | 2] (Q) exp (—a )
ST (2
wﬁdNi(r)(u)

7o (1) ~
Yi(r)(u)zieﬂ 00 A0i (u)

X
1

<

Il
(=)
r

X exp

r M
(1) A
_./ Z,Yi(r)(”)zieﬂxi “ 2o (u)du
")

w AN (u)

t

11

u=0

o (5) A
Y )z, doi (u)

X exp

t
7o (5) A
—/ ZY}S)(M)ZjeﬂXj W) A0 () du
0 s=1

} Wi dN " ()

t

Al 1

u=0

’ (r) A
¥ () zieP™" O g ()

t M
1 (1) A
_./0 Zyi(r)(u)zieﬂ 0 20 () du

r=1

X exp

t

11

u=0

wgédN](.S)(u)
’ (S)(u) A
Yj(s)(u)zje'g Xj /loj(u)]

X exp

t 1y
7o (S) A
—/ ZY}S)(u)z,'eﬁxf (”)ﬂoj(u)du
0 s=1




Note that the above equation, as a function of z;, is proportional to

o ﬁ+wﬁdNi(r)(u)+w;]idN;s)(u)—l
Lij(B.Z,Z160) « []]]=

r=1 s=1

X exp {_Zi

t Ju
b [ D e gy )
L —

LewlldN " () +wHdN | (u)-1
i

1 t & 7 (1) a

@’ / Z Yi(r)(u)eﬁ % Ao (u)du
@ 0 =

1 ! @ 7o ()

—+/ ZY.(S)(u)eﬂ X (”)/IOi(u)du
@ U] !

} |

Since z; and z; are independent, given a, Ag;(+), Ag;(+), N l.(r) and N](.s);

X exp {—zj

t 1
7o (8) A
+/ E Yj(s)(u)eﬁxf (”)/loj(u)du
0 =1

L(z;, data) ~ gamma (A, B)
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where A = L+ w N () + Wi N () and B = L+ [ 5 ¥ (u)eP™" 0 oy (u)du +

pI Yi(r)(u)eﬂ"‘f (”)/loj(u)du and L;(6, z;) has the form

3
B}
~.
N
2|
I
—_
Q=
RI=
(¢}
B
o
—_
R o
SN—

L; (B’ Zl|60)

~
Il
—
©
Ul
—
—_
RI=
~—

w’lj1 le.(r) (u)

t
[ 7 (1) A
x {l_[ Y (yzieP S Jor () |

t i

Z Y( ) (u)zieP™: )(”)/10 (u)du

o (1) A
X{H e i)
t

X exp [ Z Y(r)(u)z Pxi (“)/10 (u)du

X exp

|
b

t N t i
(7 (A () () A
—+/ E Yl.(r)(u)eﬂxi (”)/lol-(u)du+/ E Yl.(r)(u)eﬁxi (”)/loj(u)du
(U— (U—

w;’] dNJ(.r) (u)

Letting

=
Il

and substituting it in (4) we get

ng nj ot ) ) ) wﬁdNi(r)(u)
Li(B., Zilbo) = r n [Yi’ (u) Ao () eP™ (u)]
r=1 s=1 u=0
Wi AN (u)

[ A 7o (1)
x [17 @) dai )P 5|

i () i ()
X[nzl] a+wlldNi (M)+W21dNJ (u) 16Xp(—77z,)d(17z,)

i -1
« n3+wzldN(r)(u)+thdN(?)(u) r (l) a,%] .
a
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Since Z; are not observed, integrating out Z; we get

Lo = [T @]

r=1 s=1 u=0

d (V)(u)

. s ) WE AN ()
s [ 1 Ay @)

XTI (é Y AN (u) + wh N@(u))

1 tg 7o (1) A~
@ / Z Yi(r) () eP ) Ag; (u) du
0 =1

—(§+w§f, AN (u) 4wl aN' (u))

X

t Ju
/ ZY“( )eF 000, (u)du

LR

And also the full log likelihood is obtained by taking logarithm of (4) which yields,

1L:(B|6o) = [é—1+w N (1) +w N(S)(t)]logz,

i 1
i loga —n;logl’ (—) - —3z
@) «a

/ log Y( )(u) +log z; +ﬂ’x(r)(u) +log /lol(u)] wh dN(r)(u)
j [ ..
+Z/ [1Og Yi(’)(u) +log z; +ﬁfxi(r)(u) +log /ioj(u)] lejldN](.s)(u)
t M
/ Z Y( )(u)z P )(”)/lo (u)du

t i
/ Z Y( )(u)z A (“)/lo (u)du.

The maximum likelihood estimator of the model parameters is the maximizer of this full
likelihood process. Expectation maximization algorithm (EM) is used for the computations
of the estimate. We give the main steps of this algorithm below. We will have the algorithm

in detail in simulation section later. For the expectation step given 6, r = 1,...,n; and
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€ [0, t], the conditional expectation of the z; is given by,

w” N(r)(u) + w (s)(u)
C

E (il Aoi (1), Aoy (), N (), N (u)) =

where, C = é + fot Z’:;l )’i(r)(u)eﬂ'xgr)(”) [Aoi () + /ioj (u)]du. And conditional expectation

of the log(z;) is given by,

E[log ziler, Aoi (1), Aoj (). N\ (). N ()] = log |~

1 r S
+w11N( )(u) +w N( )(u)]

+ N(r)(u) +w; N(Y)(u)]

-D

where D = log E[z;|a, Ao; (1), Agj(u), Nl.(r) (u), N](.s(u)] and, ¢(-) is the digamma function.
For maximization procedure, the only difference with the case without frailties is that Yl.(r) (1)
will be replaced by zin.(r) (7). Similar to the estimating equation for 8 in the case of model
without frailties, given Z and Ay(t|z, B, 6), B can be estimated by solving the estimating

equation below

i nj
U, ,BI«So,z,,z)—ZZ/ H (u|Zi, Z) W (80)M (ulZi, Z)du.  (6)
r=1 s=1
where
H (u|Z;, Z;) = (H" (u|Z), H (u]Z)),
(r)
, , 2 x 7 (W)Y () Zidgi (w)eP X @
H )z =X ) - ==
Y () Zidoi (u)ePX
and

x)
2 X @Y () Zdoy (wyef i

H; wlZ)) = X7 (@) - ") B ()
Zsil Yj (u)Zj/loj(u)e %)
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Also, WY (8) = (w' (8)) is a 2 x 2 matrix whose elements are function of the spatial

correlation ¢ and the number of units in locations i and j by

w'l (80) Wi (80)

W"j(é‘o) = y y
WZJI (60) W2]2(60)

Then, at time ¢ € 7, we can write the generalized estimating equation for 8 over all pairs as

U, Bl6o, 2, ) = Y U1, Bl6o, Zi, Z)).
i<j
Examining Ul/1(., |80, Z;, Z;), it can be written as a sum of four terms each of which is

given below

.. ni t ..
vtz =Y [ Wi o pizom @),
r=1

vl zp =y %" /0 wihH (u, B1Z)) M (du),

r=1 s=1

Uy zy=). ), /0 Wi H (u, BIZ)M (du),

r=1 s=1

.. nj t ..
Ul (112;) :Z /0 wihH (u, BIZ))M " (du).
s=1

3.3.2. Estimating 6. To estimate ¢, a function which is an unbiased estimator of 0 is
sought. Consequently, the objective is to find a weighted function of M l.(r) (t11Z;) MJ(.S) (t2]Z))—
Af’rj’s) (dt1,dt2; pij|Z;, Z;) which will be an estimating function for § with the flavor of score
function.

Define the (k X k) matrix A(t1,t2;p(6)|Zi,Z;) = (Aij (11,125 p(6)|Zi, Z;)) with

(i, /)" entry given by

ni Ny
Aij(t1,12:p(0)|2i, Z)) = Z Z Ag’s)(ll, 12;p(6)|2i, Z;).

r=1 s=1
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Let Vs,A(t1,12;p(0)), | = 1,...,q, be the matrix of element-wise derivatives of

A(t, p(6)) with respect to §;. Define
I, =A"[V;A] A7),

where we use A for A(t1, t2; p(0)|z;, z;) for compactness. Then, for [ = 1, ..., g, following
Cressie (1993), Page 483, it can be shown that &(M(¢))I1;E(M(¢)) + tr(I[;A) = 0, when
the frailties are observed, where tr(-) denotes the trace of a matrix. Consequently, a score

llh

function can be defined for estimating the /" component of é using two locations by

M(#|Z;i, Z;)TUM'(t|Z;, Z;) + tr(T1,A)

Ug(fl,f2|zi,zj)

M(t|Z;, Z)IUM (t|Z;, Z;) + (A~ Asg,). (7)

The expression in (7) can be viewed as a score process and its sum over all pairwise
spatial locations (i, j) can serve as an estimating function for §;. So, the estimating
function over all pairs of spatial locations for § is the g x 1 vector Us(t1,12; p(0)|Z;, Z;) =

(Us,(t1,12: p(0)12;, Z), 1 = 1, ..., q)" where

Us, (t1,t2; 0(8)|Z:, Z;) = Z Ug(ﬁ,tz;P(fmzi,Zj)-
(L.)i<j

4. NUMERICAL IMPLEMENTATION

This section gives a description on the simulation design and discusses the simulation

results obtained.

4.1. SIMULATION DESIGN

We are in the same simulation setting as in the first part of this dissertation. The

only difference is we generate the unobservables frailty.
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The parameter @ which governs the gamma frailty variable was set to 1 and 80.
The choice of 1 was to mimic the presence of frailty where as 80 was chosen to mimic the
absence of frailty.

300 replications were performed with each sample size and parameter combination.
We have listed the results obtained in Table 1, Table 2, Table 3, Table 4, Table 5, Table 6,
Table 7 and Table 8 where CP stands for censoring percentage.

Basically, in this simulation part of this chapter, the procedures developed for the
case without frailties in the first part of the dissertation were adapted for the case with

frailties.

4.2. EXPECTATION-MAXIMIZATION ALGORITHM

Expectation-maximization (EM) algorithm is typically used in the presence of frailty,
in order to estimate regression coefficients and frailty parameters. We use this algorithm in
our work.

Mainly, this algorithm has two steps which are called the expectation step (E-Step)
and maximization step (M- Step). In Expectation step, we calculate conditional expectation
of unobserved frailties conditional on the observed information and obtain the current
parameter estimates. In the maximization step, we take these expected values found in
E-step as the true information. Then by maximizing the likelihood we obtain new estimates
of the parameters of interest, given the expected values.

4.2.1. Initialization Step. First, by setting Z; to 1, an ordinary Cox model is fitted
and Biniria 1s estimated. So, we call Biniriar = ﬁ(o). Then the initial value for the cumulative

hazard function is estimated by

t n; (r)
A A (0 A ZI‘: le (u)
AY (12 p0) = / 1 8)

. A (0 A ’ )
0 3 v w7 exp (BOx" (w))

Next, an initial estimate &(©) of « is also specified.
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4.2.2. E-Step. Using initial values specified in initialization step, namely &©, ()

(1

and A(O)(tlZ © ,B(O)) obtain Z; ~ and log Zi(l) by

(O) + wllN(r)(u) + w (s)(u)

S DY AL R u“”(u) + 2% ()] du

Zi(l) _

and

G 1
long.(l) = log[

W N () + w3 N ()
O

lzo "

~log E[zila . AL (), AL (), N (). N ()]

N( )(u) +w N(Y)(u)]

where ¢ is the di gamma function. i.e., the first derivative of the logarithm of the gamma

function.

4.2.3. M-Step.
1. Using (8), obtain /A\(()})(ﬂZAi(I),IBA(O)).
2. Obtain ' by substituting ZA,-(I) for Z in equation (6).

3. Calculate @ by maximizing the full likelihood in (5) with respect to & given the current

values (/A\(():.), BD).

4. Compare the values (ZW, M) with the values (Z'?, @) until the values of Z and
& have stabilized. After that, terminate the algorithm. At that time the estimates will
be the final values. If not, replace (&©, 9;0)) by (aV, é;l)) and proceed to step 1 of

the algorithm.
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4.3. DISCUSSIONS OF SIMULATION RESULTS

Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8 list mean
values and the standard deviations of the estimators of 81, 52, d; and d, according to the
values of 775 (0.8, 1.5), sample size (30x3117,50x3117, 100x3117) and spatial correlation
model (exponential, powered exponential). Additionally, Table 1, Table 2, Table 3 and Table
4 contain mean values of . Effects of changing the values of sample size, CP, 175, @ and
spatial correlation model on the estimators of 8 and § are investigated.

As the sample size increases the estimators of the regression coefficient 8 improves,
with deceasing biases and standard errors. This is true for both exponential and powered
exponential spatial correlation models.

Moreover, the estimates of frailty parameter which were obtained using EM algo-
rithm were close to the true values.

In Figure 2 we also observe that bias of the estimator of B decreases as the «
decreases. Regardless of the sample size, it is noted that as censoring percentage (CP)
increases, the bias of B increases. It is justifiable since, higher censoring means less failure
times. On the other hand, regardless of the sample size, the biases of the  remain very
steady and are not affected by the change in CP. This is clear since the spatial correlation
parameter is the correlation between two areas and hence it is not affected by sample size.

No significant difference in the results between exponential and powered exponential
was observed. It was not a surprise since both model have exponential components.

However, the standard deviations of the estimates of 6 do not have any noticeable
pattern with the increasing sample size. This is also true because of above mentioned
reason.

It is worthwhile noting the fact that accounting for frailty in the model improved
the performance of the regression parameter in the presence of frailty. This was evident as

bias of estimator of regression parameter decreases when frailty variance increase. This



100

can be justified because subjects in the same location are not independent due to the effects
of frailty. So, it becomes clear that, ignoring the frailties when they are present can make

unreliable estimates of the regression parameters.

5. CONCLUDING REMARKS

This research was conducted based on the assumption that the subjects in each
geographical region are concentrated in the center. In reality, this may not be the case.
Therefore, it would be worthwhile to the situation where the geostatistical location of
each unit is considered. Another aspect needing further investigation is the possibility of
allowing the event to recur which has applications in many area. Techniques in Adekpedjou
and Niang Dabo (2021) can be used. It will be also interesting to investigate asymptotic
properties of the estimators with frailty. Techniques in Murphy (1995) and Parner (1998)
can be used. In this work, we have assumed the Cox model as a model for failure time.
Others such as Accelerated failure time, additive model, or additive/multiplicative models

can be considered in future.
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SECTION

2. CONCLUSIONS

In this research a method was explored for modeling failure time data in the presence
of possible spatial correlation by probit transforming failure times and constructing multi-
variate Gaussian random fields. Particularly, we account for spatial correlation by including
a spatially dependent variance-covariance matrix for the Gaussian random fields, whose
elements are a function of Euclidean distance between geographical locations, and those
elements represent the spatial dependency among all pairs of geographical locations of the
study. In literature, there have been some work to model spatially correlated failure time
data which only consider one subject per location. We generalize this setting to have many
units per any given geographical location, since this is the more practical situation according
to real world applications. For Paper I we considered the case with no frailty. We obtained
weighted pairwise semi parametric estimating equations in order to estimate regression and
spatial parameters. Our estimators were shown to be consistent and asymptotically normally
distributed under infill asymptotic. The simulation study we conducted gave results that
were in agreement with developed methods. In Paper II we included frailty variables with
a view towards investigating their effects in estimating procedure. Specifically, we assume
that each subject in a given geographical region has the same frailty, where as the frailty
is different from one geographical region to the other. We then used the same methods
that we used in Paper I adapting to the case with frailty. Finally, we conducted a separate

simulation study to examine the effects of frailty when modeling failure times.
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