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ABSTRACT

Consider a fixed number of clustered areas identified by their geographical coor-

dinate that are monitored for the occurrences of an event such as pandemic, epidemic,

migration to name a few. Data collected on units at all areas include time varying covariates

and other environmental factors that may affect event occurrences. The event times in every

area can be independent. They can also be correlated with correlation between two units

induced by an unobservable frailty. In both cases, the collected data is considered pairwise

to account for spatial correlation between all pair of areas. The pairwise right censored

data is probit-transformed yielding a multivariate Gaussian random field preserving the

spatial correlation function. The data is analyzed using counting process and geostatistical

formulation that led to a class of weighted pairwise semiparametric estimating functions.

In the independence case, estimators of models unknowns are shown to be consistent and

asymptotically normally distributed under infill-type spatial statistics asymptotic. Detailed

small sample numerical studies that are in agreement with the theoretical results are pro-

vided in the independence case. In the dependence case, the estimators are shown to be

inefficiency when the dependence is ignored. The foregoing procedures are applied to

Leukemia survival data in Northeast England.
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1. INTRODUCTION

In this section of the dissertation, a detailed description of essential mathematical

preliminaries is provided for the reader to get a better understanding of the concepts used.

1.1. MATHEMATICAL PRELIMINARIES FOR SURVIVAL ANALYSIS

The pioneering work by Aalen (1978) on the theory of counting processes has been

the key to the development of statistical tools for analyzing data in reliability and survival

analysis. A detailed discussion of these topics can be found in Andersen et al. (2012),

Chung et al. (1990) and Fleming and Harrington (2011).

Let (Ω,F , 𝑃) be a complete probability space and 𝑇 = [0, 𝜏] ⊂ R be an interval of

time.

Definition 1.1.1 A filtration F = {F𝑡 , 𝑡 ∈ 𝑇} on (Ω,F , 𝑃) is an increasing family of 𝜎-

algebras, that is, ∀𝑡 ≤ 𝑠, F𝑡 ⊆ F𝑠 ⊆ F .

Note here that in the case of a stochastic process, F𝑡 could be taken to be all information

generated by the process up to time 𝑡, and is called the natural history of the process.

From now on, the natural filtration associated with the probability space (Ω,F , 𝑃) will be

denoted by F.

Definition 1.1.2 A stochastic process X = {𝑋𝑡 , 𝑡 ≥ 0} is called cadlag if its simple paths

{X(𝑡, 𝑤) : 𝑡 ∈ 𝑇} are right continuous with left hand limits for almost all w. Furthermore,

the set of all cadlag functions is called the Skorohod space.

Definition 1.1.3 A counting process is a stochastic process {𝑁 (𝑡) : 𝑡 ≥ 0} adapted to a

filtration F with 𝑁 (0) = 0 and 𝑁 (𝑡) < ∞ almost surely (a.s), and whose paths are with

probability one right-continuous, piecewise constant, and have only jump discontinuities,

with jumps of size +1.
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Definition 1.1.4 A stochastic process X = {𝑋𝑡 , 𝑡 ≥ 0} is:

1. Integrable if sup𝑡∈𝑇 𝐸 (𝑋 (𝑡)) < ∞,

2. Square integrable if sup𝑡∈𝑇 𝐸 (𝑋 (𝑡)2) < ∞,

3. Bounded if there exists a finite constant Γ such that 𝑃
{
sup𝑡∈𝑇 |𝑋 (𝑡) | < Γ

}
= 1.

From now on, cadlag stochastic processes will only be considered.

Definition 1.1.5 A collection M = {𝑀𝑡 , 𝑡 ≥ 0} is an F-martingale if M is F-adapted and

satisfies:

1. Integrability: 𝐸 ( |𝑀𝑡 |) < ∞ for all 𝑡 ∈ 𝑇 ,

2. Martingale property: 𝐸 (𝑀𝑡 |F𝑠) = 𝑀𝑠 a.s ∀𝑠 < 𝑡.

A sub martingale is obtained if (2) in previous definition is replaced by 𝐸 (𝑀𝑡 |F𝑠) ≥ 𝑀𝑠

𝑎.𝑠 ∀𝑠 < 𝑡. On the other hand, a super martingale is obtained by replacing (2) in previous

definition by 𝐸 (𝑀𝑡 |F𝑠) ≤ 𝑀𝑠 𝑎.𝑠 ∀𝑠 < 𝑡.

Now, the notion of a predictable process is discussed.

Definition 1.1.6 The 𝜎-algebra generated by all the sets of the form:

1. [0] × 𝐴, 𝐴 ∈ F0 and,

2. (𝑎, 𝑏] × 𝐴, 0 ≤ 𝑎 < 𝑏 < ∞, 𝐴 ∈ F𝑎,

is called the predictable 𝜎-algebra for F, where F0 is the information at time 0.

Lemma 1.1.1 Let F be a filtration, and X a left-continuous real-valued process adapted to

F. Then X is predictable.

Proposition 1.1.1 Let X be an F𝑡-predictable process. Then, for any 𝑡 > 0, 𝑋 (𝑡) is

F𝑡-measurable.
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An important theorem that allows decomposing a submartingale is discussed next.

Theorem 1.1.1 Doob-Meyer Decomposition Let M = {𝑀𝑡 , 𝑡 ≥ 0} be a right continuous,

nonnegative submartingale with respect to filtration F. Then, there exists a right-continuous

martingale M (𝑡) and an increasing right-continuous predictable process 𝐴(𝑡) such that

𝑀 (𝑡) = M (𝑡) + 𝐴(𝑡) a.s.

Note that, if M is a martingale with 𝐸 (𝑀2(𝑡)) < ∞ for 𝑡 > 0, Jensen’s inequality indicates

that 𝑀2(𝑡) is a submartingale.

Corollary 1.1.1 Let M be a cadlag martingale with respect to F. Then, there exists a

unique increasing right-continuous predictable process denoted by ⟨M,M⟩ (𝑡) called the

predictable quadratic variation process of M, such that ⟨M,M⟩ (0) = 0 a.s, 𝐸 ⟨M,M⟩ (𝑡) <

∞ for all t and
{
M2(𝑡) − ⟨M,M⟩ (𝑡) : 𝑡 ≥ 0

}
is a right continuous martingale.

Notion of stochastic integration is presented next. A detailed discussion can be found in

Chung et al. (1990).

Theorem 1.1.2 Suppose M is a finite variation local square integrable martingale, H a

predictable process and
∫ 𝑡

0 𝐻
2𝑑 ⟨𝑀⟩ locally integrable. Then,

∫ 𝑡

0 𝐻𝑑𝑀 is a local square

integrable martingale and its quadratic variation process is given by

〈∫
𝐻𝑑𝑀

〉
(𝑡) =

∫ 𝑡

0
𝐻2𝑑⟨𝑀⟩.

The above theorem can be further generalized to a vector of martingales M and M’ and

matrices H and K of predictable processes. In that case, the predictable covariation process

is given by 〈∫
H𝑑M,

∫
K𝑑M’

〉
=

∫ 𝑡

0
H𝑑 ⟨M,M’⟩K𝑡

where 𝐴𝑡 denotes the transpose of a matrix 𝐴.

Definition 1.1.7 Suppose a filtration F on (Ω,F , 𝑃) is given. A multivariate counting

process N = (𝑁1, . . . , 𝑁𝑘 ) is a vector of k F- adapted cadlag processes for which:
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1. 𝑁𝑖 = 0 ∀𝑖 = 1, 2, . . . , 𝑘 ,

2. Their jumps are of size one and no two components can jump at the same time,

3. Their paths are nondecreasing and piecewise constant.

Note that because the components of the counting process N are adapted, cadlag, locally

bounded and nondecreasing, they are local submartingales. So, by the Doob-Meyer de-

composition, there exists a compensator of 𝑁𝑖, say Λ𝑖. Λ𝑖 is referred to as the cumulative

intensity process of the counting process.

The following proposition makes the important connection among counting processes,

martingales and stochastic integration which is crucial in this work.

Proposition 1.1.2 Let N be a multivariate counting process and let 𝚲 =
∫
𝜆 be its as-

sociated vector of compensator processes such that each component of 𝚲 is absolutely

continuous. Let M = N − 𝚲 be the resulting vector of local martingales. If H is a vector

of locally bounded and predictable processes, then
∫

H𝑑M are vectors of local square

integrable martingales with a quadratic variation process given by

〈∫
H𝑑M

〉
=

∫
H𝑑𝑖𝑎𝑔 {𝝀}H𝑡𝑑𝑠,

where 𝑑𝑖𝑎𝑔 {𝝀} is the diagonal matrix of associated intensity processes.

The idea of constructing likelihood with counting process data was first introduced by

Jacod (1975). Considering counting process data, the likelihood function can be written in

a product integral form, which is a continuous version of the simple product Π.

Let Δ𝑁𝑖 (𝑡) = 𝑁𝑖 (𝑡) − 𝑁𝑖 (𝑡−) be the jump process, and let the intensity process

depends on some p-dimensional parameter 𝜃. Then, the likelihood in [0, 𝑡] can be written

as

𝐿 (𝜃, 𝑡) =
𝑛∏
𝑖=1

∏
𝑣∈[0,𝑡]

{
𝜆𝑖 (𝑣, 𝜃)Δ𝑁𝑖 (𝑣) × (1 − 𝜆𝑖 (𝑣, 𝜃))1−Δ𝑁𝑖 (𝑣)

}
, (1.1)
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where 𝑁𝑖 (𝑡) is the counting process for each individual i in the study and 𝜆𝑖 (𝑡, 𝜃) is the

hazard rate at time t which is a function of 𝜃 for a parametric model. Simplifying (1.1)

using Taylor expansion and noting 1 − 𝜆𝑖 (𝑣, 𝜃)𝑑𝑣 ≈ exp(−𝜆𝑖 (𝑣, 𝜃))𝑑𝑣, we obtain

𝐿 (𝜃, 𝑡) ∝
𝑛∏
𝑖=1


∏
𝑣∈[0,𝑡]

{
𝜆𝑖 (𝑣, 𝜃)Δ𝑁𝑖 (𝑣)

}
× exp

{
−

∫ 𝑡

0
𝜆𝑖 (𝑣, 𝜃)𝑑𝑣

} . (1.2)

Next, by taking the logarithm of (1.2), the log-likelihood process is obtained given by

𝑙 (𝜃, 𝑡) =
𝑛∑︁
𝑖=1

{∫ 𝑡

0
log[𝜆𝑖 (𝑣, 𝜃)]𝑑𝑁𝑖 (𝑣) −

∫ 𝑡

0
𝜆𝑖 (𝑣, 𝜃)𝑑𝑣

}
. (1.3)

The score process𝑈𝜃 (𝜃, 𝑡) is obtained by taking the gradient of (1.3) with respect to 𝜃.

𝑈𝜃 (𝜃, 𝑡) =

𝑛∑︁
𝑖=1

{∫ 𝑡

0

𝜕

𝜕𝜃
log[𝜆𝑖 (𝑣, 𝜃)]𝑑𝑁𝑖 (𝑣) −

∫ 𝑡

0

𝜕

𝜕𝜃
𝜆𝑖 (𝑣, 𝜃)𝑑𝑣

}
=

𝑛∑︁
𝑖=1

{∫ 𝑡

0

𝜕

𝜕𝜃
log[𝜆𝑖 (𝑣, 𝜃)]𝑑𝑀𝑖 (𝑣)

}
.

A result which is key to obtaining asymptotic properties of the estimators is presented next.

Theorem 1.1.3 Rebolledo’s Martingale Central Limit Theorem For each 𝑛 = 1, 2, . . ., let

M(𝑛) =
(
𝑀
(𝑛)
1 , 𝑀

(𝑛)
2 , . . . , 𝑀

(𝑛)
𝑘

)
be vectors of local square-integrable martingales where

each may be defined on different sample spaces with respect to different filtration. For

𝜖 > 0, let M(𝑛)𝜖 be a vector of local square integrable martingales such that
���𝑀 (𝑛)

ℎ
− 𝑀 (𝑛)

𝜖ℎ

���
is a local square integrable martingale and

���Δ𝑀 (𝑛)
ℎ
− Δ𝑀 (𝑛)

𝜖ℎ

��� ≤ 𝜖 . Let
〈
M(𝑛)

〉
, 𝑛 = 1, 2, . . .

be the 𝑘 × 𝑘 matrix processes with elements
〈
𝑀
(𝑛)
ℎ
, 𝑀
(𝑛)
ℎ′

〉
. Assume the following conditions

for 𝑇0 ⊆ 𝑇:

1. There exists a matrix of deterministic functions V(𝑡) such that
〈
M(𝑛)

〉
(𝑡)

𝑝
→ V(𝑡),∀𝑡 ∈

𝑇0, as 𝑛→∞,

2.
〈
M(𝑛)
𝜖ℎ
(𝑡)

〉
𝑝
→ 0,∀𝑡 ∈ 𝑇0, h and 𝜖 > 0 as 𝑛→∞.
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Then

(
𝑀 (𝑛) (𝑡1), . . . , 𝑀 (𝑛) (𝑡𝑘 )

)
𝑑→

(
𝑀 (∞) (𝑡1), . . . , 𝑀 (∞) (𝑡𝑘 )

)
,∀𝑡1, . . . , 𝑡𝑘 ∈ 𝑇0.

Moreover, if 𝑇0 is dense in T and contains 𝜏 if 𝜏 ∈ 𝑇 , then the same conditions imply that

M(𝑛) 𝑑→ M(∞) 𝑖𝑛 𝐷 (𝑇)𝑘 𝑎𝑠 𝑛→∞,

where M(∞) is a vector of continuous Gaussian martingales.

1.2. MATHEMATICAL PRELIMINARIES FOR SPATIAL STATISTICS

This subsection contains essential preliminaries on spatial statistics.

Definition 1.2.1 Let:

• 𝑆 ⊂ R𝑑 be a spatial set,

• (Ω,F , 𝑃) be a probability space,

• (𝐸, 𝜖) be s measurable set.

A random field 𝑋 , also called a spatial process, is a family 𝑋 = {𝑋𝑠, 𝑠 ∈ 𝑆} of random

variables indexed by 𝑠 ∈ 𝑆 from (Ω,F , 𝑃) to (𝐸, 𝜖), where 𝑆 denotes the spatial set of sites

and 𝐸 denotes the state space of the process.

Definition 1.2.2 A Gaussian random field 𝑋 on 𝑆 is a process such that, for all finite subset

𝜉 of 𝑆 and all sequence of reals 𝑎 = (𝑎𝑠, 𝑠 ∈ 𝜉), the random variable
∑
𝑠∈𝜉 𝑎𝑠𝑋𝑠 has a

Gaussian distribution.
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Definition 1.2.3 A spatial process 𝑋 = {𝑋𝑠, 𝑠 ∈ 𝑆} is said to be second order, if for all 𝑠 in

𝑆, we have 𝐸 [𝑋2
𝑠 ] < +∞, in this case, one can consider the mean function

𝑚 : 𝑆 → R

𝑠 ↦→ 𝑚(𝑠) = 𝐸 [𝑋𝑠]

and the covariance function

𝑐 : 𝑆 × 𝑆 → R

(𝑠, 𝑡) ↦→ 𝑐(𝑠, 𝑡) = 𝐶𝑜𝑣(𝑋𝑠, 𝑋𝑡).

Definition 1.2.4 A second-order random field 𝑋 on 𝑆 is said to be stationary if it has a

constant mean function and its covariance function is invariant by translation, i.e.

∀𝑠 ∈ 𝑆 : 𝑚(𝑠) = 𝑚

∀(𝑠, 𝑡) ∈ 𝑆2, ∀ℎ ∈ 𝑆 : 𝑐(𝑠 + ℎ, 𝑡 + ℎ) = 𝑐(𝑠, 𝑡)

Definition 1.2.5 If 𝑋 is stationary, the function

𝐶 : 𝑆 → R

ℎ ↦→ 𝐶 (ℎ) = 𝑐(0, ℎ)

is called a stationary covariance function.

Definition 1.2.6 The stationary correlation function of a stationary random field 𝑋 is

𝜌 : 𝑆 → R

ℎ ↦→ 𝜌(ℎ) = 𝐶 (ℎ)
𝐶 (0) .
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Proposition 1.2.1 Let C be the stationary function of second-order spatial process. Then:

1. 𝐶 (ℎ) = 𝐶 (−ℎ) (even function),

2. ∀ℎ ∈ 𝑆: |𝐶 (ℎ) | ≤ 𝐶 (0) (bounded function),

3. If C is continuous at the origin, then it is uniformly continuous on S.

Proposition 1.2.2 Let C be the stationary function of second-order spatial process. Then:

∀𝑛 ≥ 1, ∀𝑎 ∈ R𝑛, ∀(𝑠1, ..., 𝑠𝑛) ∈ 𝑆𝑛 :
∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑎𝑖𝑎 𝑗𝐶 (𝑠𝑖 − 𝑠 𝑗 ) ≥ 0.

Proposition 1.2.3 Let C be the stationary function of a second-order spatial process. Then:

1. If A is a linear function from R𝑑 to R𝑑 , the random field 𝑋𝐴 = {𝑋𝐴𝑠, 𝑠 ∈ 𝑆} is

stationary with covariance function 𝐶𝐴 (𝑠) = 𝐶 (𝐴𝑠).

2. If 𝐶1, ..., 𝐶𝑛 are stationary functions, then:

• ∀(𝛼1, 𝛼2) ∈ R+ × R+ the function 𝐶 (ℎ) = 𝛼1𝐶1(ℎ) + 𝛼2𝐶2(ℎ) is a stationary

covariance function,

• 𝐶 (ℎ) = 𝐶1(ℎ)𝐶2(ℎ) is a stationary covariance function,

• lim𝑛→+∞𝐶𝑛 (ℎ) = 𝐶 (ℎ) exists for all h, then C is also a stationary covariance

function.

Proposition 1.2.4 A covariance function is positive semidefinite if ∀𝑛 ≥ 1, ∀(𝑠1, ..., 𝑠𝑛) ∈

𝑆𝑛 and ∀𝑎 = (𝑎1, ..., 𝑎𝑛) ∈ R𝑛,
∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑎𝑖𝑎 𝑗𝑐(𝑠𝑖, 𝑠 𝑗 ) ≥ 0.

Proposition 1.2.5 The covariance function is positive definite if ∀𝑛 ≥ 1, ∀(𝑠1, ..., 𝑠𝑛) ∈ 𝑆𝑛

where 𝑠1, ..., 𝑠𝑛 are distincts,
∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑎𝑖𝑎 𝑗𝑐(𝑠𝑖, 𝑠 𝑗 ) = 0⇐⇒ (𝑎𝑖 = 0,∀𝑖 = 1, ..., 𝑛).

Definition 1.2.7 A spatial process 𝑋 is said to be strictly stationary if∀𝑘 ∈ N,∀(𝑡1, ..., 𝑡𝑘 ) ∈

𝑆𝑘 and ∀ℎ ∈ 𝑆 the distribution of the random vector (𝑋𝑡1+ℎ, ..., 𝑋𝑡𝑘+ℎ) is independent of ℎ.
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Definition 1.2.8 A second-order spatial process 𝑋 has an isotropic covariance function if

𝐶𝑜𝑣(𝑋𝑠, 𝑋𝑡) depends only on | |𝑡 − 𝑠 | |, i.e. if there exists a function 𝐶0 from R+ to R such

that 𝑐(𝑠, 𝑡) = 𝐶0( | |𝑠 − 𝑡 | |) for all (𝑠, 𝑡) ∈ 𝑆2. Here | | · | | denotes the euclidean norm on R𝑑 .

Definition 1.2.9 A spatial process 𝑋 is said to be intrinsically stationary or intrinsic if the

processes

Δ𝑋ℎ =
{
Δ𝑋ℎ𝑆 = 𝑋𝑠+ℎ − 𝑋𝑠; 𝑠 ∈ 𝑆

}
are stationary, for all ℎ ∈ 𝑆.

Definition 1.2.10 A spatial process 𝑋 is said to be intrinsic if its increments are of order

two and such that:

∀(𝑠, ℎ) ∈ 𝑆2 : 𝐸 (𝑋𝑠+ℎ − 𝑋𝑠) = 0,

∀𝑠 ∈ 𝑆 : 𝑉𝑎𝑟 (𝑋𝑠+ℎ − 𝑋𝑠) = 2𝛾(ℎ).

The function 𝛾 is called the semi-variogram function of 𝑋 .

Definition 1.2.11 The semi-variogram 𝛾 of a spatial process X is said to be isotropic if

there exists a function 𝛾0 such that, 𝛾(ℎ) = 𝛾0( | |ℎ| |) for all ℎ ∈ 𝑆.

Proposition 1.2.6 If X is a second order stationary process with covariance function C,

then X is intrinsic with semi-variogram 𝛾(ℎ) = 𝐶 (0) − 𝐶 (ℎ).

Proposition 1.2.7 The semi-variogram function 𝛾 of an intrinsic process X satisfies the

following:

1. 𝛾(ℎ) = 𝛾(−ℎ) (even function) and 𝛾(0) = 0,

2. If A is a linear map on R𝑑 , then the function ℎ ↦→ 𝛾(𝐴ℎ) is also a semi-variogram

function,

3. If 𝛾 is continuous at 0, then 𝛾 is continuous at every s where 𝛾 is locally bounded,
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4. If 𝛾 is bounded in the neighborhood of 0, then there exists positive reals a and b such

that, for all 𝑥 ∈ 𝑆 : 𝛾(𝑥) ≤ 𝑎 | |𝑥 | |2 + 𝑏.

Proposition 1.2.8 The semi-variogram 𝛾 of an intrinsic process X is conditionally negative

definite, i.e. for all 𝑛 ∈ N∗, for all 𝑎 ∈ R𝑛 such that
∑𝑛
𝑖=1 𝑎𝑖 = 0 and for all (𝑠1, ..., 𝑠𝑛) ∈ 𝑆𝑛,

we have:
∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑎𝑖𝑎 𝑗𝛾(𝑠𝑖 − 𝑠 𝑗 ) ≤ 0.

Theorem 1.2.1 A function 𝛾 defined on R𝑑 is a semi-variogram if, and only if, it is condi-

tionally negative definite.

Proposition 1.2.9 Suppose X is an intrinsic process with bounded semi-variogram, such

that lim| |ℎ | |→+∞ 𝛾(ℎ) = 𝛾(+∞) < +∞. Then X is second order stationary and 𝛾(+∞) =

𝐶 (0) = 𝑉𝑎𝑟 (𝑋𝑠).

We seek a spatial correlation that is a function of distance between spatial locations, so

called isotropic spatial covariance function.

Definition 1.2.12 The spherical covariance function between subjects i and j located at

geographical location 𝑖 and geographical location 𝑗 is given by

𝐶𝑠𝑝ℎ (𝑑𝑖 𝑗 ) = 𝜎2

(
1 − 3

2
|𝑑𝑖 𝑗 |
𝑎
+ 1

2
|𝑑𝑖 𝑗 |
𝑎3

3
)

where 𝑑𝑖 𝑗 is the distance between the two locations, and a is the range.

The spherical covariance decreases until it disappears when range is reached. The parameter

𝜎2 is the maximum value of the covariance attained at the origin.

Definition 1.2.13 The exponential covariance function between subjects i and j located at

geographical location 𝑖 and geographical location 𝑗 is given by

𝐶𝑒𝑥𝑝 (𝑑𝑖 𝑗 ) = 𝜎2 exp
(
−
|𝑑𝑖 𝑗 |
𝑎

)
𝑤𝑖𝑡ℎ 𝑎 > 0

where 𝑑𝑖 𝑗 is the distance between the two locations.
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As the distance between locations increases, the spatial covariance falls off exponentially.

How quickly the covariance falls off is determined by the parameter 𝑎.

Definition 1.2.14 Mat𝑒rn family is a class of isotropic covariance functions which specifies

the covariance function as 𝜎2𝑀 (h|𝑣, 𝑎) where 𝜎2 > 0 is the marginal variance and

𝑀 (h|𝑣, 𝑎) = 21−𝜈

Γ(𝜈) (𝑎 | |h| |)
𝜈K𝜈 (𝑎 | |h| |)

is the spatial correlation at distance | |h| | and h ∈ R𝑑 . Here K𝜈 is the modified Bessel

function of the second kind and 𝑎 > 0 is a spatial scale parameter, whose inverse, 1/𝑎, is

sometimes referred to as a correlation length.

Theorem 1.2.2 A continuous function 𝛾 defined on R𝑑 such that 𝛾(0) = 0 is a semi-

variogram if, and only if, for all a > 0, the function ℎ ↦→ 𝑒−𝑎𝛾(ℎ) is a covariance function.

Definition 1.2.15 When the limit lim| |ℎ| |→+∞ 𝛾(ℎ) = 𝛾(+∞) < +∞ exists, its value 𝛾(+∞)

is called sill.

Definition 1.2.16 The range (resp. practical range) is the distance where (resp. 95% of)

the value of the sill is reached.

Definition 1.2.17 A semi-variogram has a nugget effect component when lim| |ℎ| |→+0 𝛾(ℎ) =

𝜏 > 0.

Graphical representation of sill, range and nugget effect can be found in Figure 1.1.

Definition 1.2.18 The increasing domain asymptotic is a sampling structure in spatial

statistics where new observations are added at the boundary points of an area.

Definition 1.2.19 The infill asymptotic consists of a sampling structure where new obser-

vations are added in between existing locations.
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Figure 1.1. Variogram: nugget, sill and range.

Figure 1.2. Spatial locations of individuals.
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Figure 1.3. Infill asymptotic.

Figure 1.4. Increasing domain asymptotic
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ABSTRACT

Consider a fixed number of clustered areas identified by their geographical coor-

dinates that are monitored for the occurrences of an event such as pandemic, epidemic,

migration to name a few. Data collected on units at all areas include time varying covariates

and environmental factors. The collected data is considered pairwise to account for spatial

correlation between all pair of areas. The pairwise right censored data is probit-transformed,

yielding a multivariate Gaussian random field preserving the spatial correlation function.
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The data is analyzed using counting process and geostatistical formulation that led to a

class of weighted pairwise semiparametric estimating functions. Estimators of models’ un-

knowns are shown to be consistent and asymptotically normally distributed under infill-type

spatial statistics asymptotic. Detailed small sample numerical studies that are in agreement

with theoretical results are provided. The foregoing procedures are applied to Leukemia

survival data in Northeast England.

Keywords: Spatial correlation; Gaussian random fields; Composite likelihood; Estimating

function; Infill asymptotic; Mixing; Clustered failure times

1. INTRODUCTION

Right censored data are encountered in various settings such as biomedical, reli-

ability, actuarial science, sociology, politics, and public health to name a few. They are

part of a class of data called survival or failure time data which include, among others,

the left and right censored, left and right truncation, and interval censored data. Research

with these types of data is well documented. This dissertation pertains to another aspect

of failure time data, namely one where spatial modeling is incorporated via geostatistical

locations of units of interest. Consider the situation where these units, located at areas

described by their longitude and latitude in a two dimensional surface are monitored for

the occurrence of some event such as onset of disease, epidemic, claims filed as a result of

property losses, cancer, or migration of individuals from one area to another to seek better

living conditions. There exist nuisance parameters such as environmental factors, social

and physical environments, population density, or weather conditions beyond the control

of the investigators that can have substantial impact on the occurrence of events between

two areas via their spatial coordinates. Two concrete examples of such data are given in

biomedical studies. Many more can be found in the book by Goldstein (1995).
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Example 1: East Boston Asthma Study: cf. Li and Ryan (2002).

A total of 753 subjects are enrolled in a Community Health Clinic in the east Boston area.

Questionnaire data pertaining to residential addresses, demographic variables, asthma sta-

tus, geographic coordinates, and other environmental factors were collected during regularly

scheduled visits. Geocoding the dataset allows linkage with various community-level co-

variates to individuals in the east Boston area from U.S. census data at the census block level.

Because children residing in nearby census blocks were often exposed to unmeasured sim-

ilar physical and social environments, the investigators suspected there might exist spatial

correlation across different communities. The goal of the study was to identify significant

risk factors associated with age at asthma onset while accounting for the possible spatial

correlation among the locations.

Example 2: Leukemia Survival Data: Henderson et al. (2002) and Gorst (1995).

1043 adults were diagnosed with leukemia between 1982 and 1998, in Northeast England,

which is comprised of 24 administrative districts boxed in 100km2. The data is a high-quality

database that holds records of incidence and subsequent survival status of all leukemia cases

in the region. Recorded also was the background variation in population or environmental

characteristics, which could enable further epidemiological studies. Past studies, while

informal, have suggested that there could be district-to-district variation in survival rates

above and beyond what might be expected to occur by chance alone.

In the first example, residents of east Boston are mainly relatively low income with

similar social and economical backgrounds who are often exposed to similar physical and

social environments. One child per geographical area is considered in the modeling in Li

and Lin (2006), whereas in Li and Ryan (2002) many units were considered per region. In

both modeling approaches, spatial correlation was considered among geographical areas.

The different geographical locations in east Boston are spatially correlated since adjacent

neighborhoods usually have a lot in common and the potential for spatial dependence exists.

Hence, correct inference on the association of the main covariates with the event-specific
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survival times relies on careful consideration of the underlying spatial correlation. In the

Leukemia survival data, clustered survival data was considered and it is of interest when

investigating how clustering and spatial aspects affect one region versus another, or how

spatial traits can help with the identification of regions with high risk of leukemia. The

Leukemia data fits more closely with the problem at hand here and can serve as a comparison

between the two methodologies. In both cases, environmental factors in a given location

may affect nearby locations thereby inducing the so-called spatial correlation, that is a

correlation between the geographical locations of two units.

Modeling failure time data when spatial correlation is present has emerged as an

area of active research, especially with right censored data. The models of interest are part

of multivariate survival models that contain a parameter modeling the association between

event times 𝑇𝑖 and 𝑇𝑗 , 𝑖 ≠ 𝑗 of two independent units. Such models include bivariate

frailty, copulas, marginal models, cluster models, and spatially correlation-type models

via the covariation process using a martingale representation. With right censored data,

the references are of Li and Ryan (2002), Henderson et al. (2002), Banerjee et al. (2003),

Banerjee and Dey (2005), Li and Lin (2006), Diva et al. (2007), Diva et al. (2008), Paik and

Ying (2012), Pan et al. (2014), Hunt (1978), Bronnenberg (2005), Engen (2007) and Paik

and Ying (2012). However, interest in spatial correlation dates back to the pioneering work

of Krige, and recently Matheron (1962). Frailty, cluster, marginal, and copula models do not

properly account for spatial correlation that is inherent with these data. As a consequence,

sophisticated techniques of geostatistics, coupled with modern failure time data analysis are

needed. In recognition of that, Li and Lin (2006), with right censored data assumed a Cox

model for failure time and applied a probit-type transformation of the failure times yielding

a multivariate Gaussian random field. Furthermore, they imposed a spatial structure on the

associated random fields that properly captured the spatial patterns among regions.
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Figure 1. Pictorial representation of the setting

This dissertation is concerned with the development of models for estimating the

regression parameters with clustered right censored data that account for spatial patterns

between various locations. This is important in the sense that if the spatial impact leads

to drastic consequences, local authorities could take necessary preventive actions to reduce

damage. It is therefore of considerable importance to develop models for estimating the

distribution function of time to event while accounting for spatial correlation. Multiple

units per location are considered in order to reflect the real life situation and the Leukemia

data will be used for illustration since it fits more closely with the setting with a pictorial

representation given in Figure 1.

Henderson et al. (2002) modeled spatial association via a mean random frailty per

region wherein individual frailty 𝑍𝑖 within a region 𝑗 with mean frailty 𝜇 𝑗 was assumed to

follow a gamma distribution with parameters depending on 𝜇 𝑗 . The vector (𝜇1, ..., 𝜇𝑘 ) is

assumed to follow a multivariate normal distribution whose variance-covariance matrix is
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a function of the distance between regions. This study incorporated spatial association in

the failure times via a probit transformation leading to a multivariate Gaussian random field

with the spatial correlation matrix being a function of the distance between locations. The

two modeling approaches are applied to the same data and it is shown that our approach is

preferable in terms of better statistical results. Henderson et al. (2002) did not provide large

sample properties; this study provides all parameters involved in the models for the purpose

of making inference and doing further investigations tailored to a specific area.

Though some work has been done on incorporating spatial correlation in modeling,

very few of the works model many units per geostatistical location while accounting for

spatial patterns. The aim of this dissertation is to develop statistical models for spatially

correlated right censored data for multiple units per location where regression parameters

have a region and/or area level interpretation and in which spatial correlation is properly

incorporated. Ideas in the work of Li and Lin (2006) are borrowed by transforming the set

of failure times using a probit-type function allowing the vector of right censored data times

to follow a multivariate Gaussian random field (MGRF).

This part of the dissertation proceeds as follows. In Section 2, stochastic process

machinery was developed for this type of data and our model choices was motivated. Section

3 deals with some preliminary results that will set the stage for the estimation procedures

in Section 4. In Section 4, weighted estimating score processes were proposed and their

asymptotically unbiasedness was shown. Section 5 is on the existence of solutions and the

infill asymptotic results of the estimators. Section 6 presents the results of the numerical

studies, which indicate good approximation to the true parameters, and an illustrative

application with the Leukemia dataset. This part of the dissertation then concludes with a

summary and future directions.
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2. SPATIALLY CORRELATED RIGHT CENSORED DATA AND MODELS

The first critical step in the modeling is to identify a suitable dependence model

between spatial locations. As noted earlier, a geostatistical formulation will be the focus,

that relies on the fitting of covariance and cross-covariance structures for Gaussian random

fields for mathematical and computational convenience. This approach also facilitates

incorporation of the spatial correlation parameters in the modeling via the covariation

process between two locations resulting from the martingale modeling.

To facilitate reading of the dissertation, the following notation on locations and

number of units per location will be adopted throughout. There is a total of 𝑘 locations

with each being described by its longitude and latitude in a two dimensional coordinate

with I𝑖 = (𝑙𝑖1, 𝑙𝑖2). If no confusion arises, we will just write location 𝑖. The locations

will be denoted by 𝑖 and 𝑗 , so that 𝑖, 𝑗 ∈ {1, ..., 𝑘} := L. Each location 𝑖 has 𝑛𝑖 units.

Units are denoted by the letters 𝑟 or 𝑠. For instance, in location 𝑖, we have 𝑟 = 1, ..., 𝑛𝑖 so

that 𝑟 ∈ {1, ..., 𝑛𝑖} := L𝑖. Likewise, 𝑠 ∈ {1, ..., 𝑛 𝑗 } = L 𝑗 . For convenience, the compact

notation (𝑖, 𝑟) ∈ L × L𝑖 may be adapted similarly for ( 𝑗 , 𝑠).

2.1. PAIRWISE RIGHT CENSORED DATA

Consider 𝑘 geographical locations described by two dimensional coordinates {I𝑖 =

(𝑙𝑖1, 𝑙𝑖2); 𝑖 = 1, ..., 𝑘} where 𝑙𝑖1 and 𝑙𝑖2 denote longitude and latitude of the 𝑖𝑡ℎ geographical

location respectively. Let 𝑛𝑖 be the number of subjects in the 𝑖𝑡ℎ geographical location.

Each unit is observed until failure or censoring, whichever occurs first. At time 𝑡, for

the 𝑟 𝑡ℎ (𝑟 = 1, 2, ..., 𝑛𝑖) unit in the 𝑖𝑡ℎ (𝑖 = 1, 2, ..., 𝑘) geographical location, failure

or censoring time is recorded by 𝑊 (𝑟)
𝑖

and 𝐶 (𝑟)
𝑖

respectively. Let 𝛿(𝑟)
𝑖

= I(𝑊 (𝑟)
𝑖
≤ 𝐶 (𝑟)

𝑖
),

𝑇
(𝑟)
𝑖

= 𝑊
(𝑟)
𝑖
∧𝐶 (𝑟)

𝑖
be the usual notation with right censored data. The variable 𝛿(𝑟)

𝑖
indicates

that either censoring or failure has occurred for unit 𝑟 in location 𝑖. For (𝑖, 𝑟) ∈ L × L𝑖,

a 𝑝-dimensional vector x(𝑟)
𝑖
(𝑡) of possibly time varying covariates is recorded at time



21

𝑡. Location 𝑖 is assumed to be spatially correlated with 𝑗 , 𝑖 ≠ 𝑗 and denote the spatial

correlation between the two by 𝜌𝑖 𝑗 := 𝜌(∥l𝑖 − l 𝑗 ∥), where ∥l𝑖 − l 𝑗 ∥ is the Euclidean distance

between l𝑖 and l 𝑗 . The total observables entities per location at time 𝑡 are therefore,

O(I𝑖) = ∪𝑛𝑖𝑟=1O(𝑟) (I𝑖) = ∪𝑛𝑖𝑟=1{x
(𝑟)
𝑖
(𝑡), 𝑇 (𝑟)

𝑖
, 𝛿
(𝑟)
𝑖
}. (1)

In the present setting of spatially correlated events, the random observables in (1) will be

taken pairwise for the purpose of accounting for the spatial correlation 𝜌𝑖 𝑗 . Consequently,

the spatially correlated right censored data on L, on which estimation is conducted is given

by

O =
{[(

O(I𝑖),O(I 𝑗 )
)

; 𝜌𝑖 𝑗
]

; 𝑖 ≠ 𝑗 ; (𝑖, 𝑗) ∈ {1, ..., 𝑘}2 = L × L
}
. (2)

2.2. STOCHASTIC PROCESS MODELING

With a view towards the multivariate Gaussian random field (MGRF), the stochastic

processes needed in the sequel are introduced. For (𝑖, 𝑟) ∈ L × L𝑖, define the counting and

at-risk process by N(𝑟)
𝑖
(𝑡) = 𝛿(𝑟)

𝑖
I(𝑇 (𝑟)

𝑖
≤ 𝑡) and Y(𝑟)

𝑖
(𝑡) = I(𝑇 (𝑟)

𝑖
≥ 𝑡) respectively. Note that

N(𝑟)
𝑖
(𝑡) indicates if an event has occurred by time 𝑡, whereas Y(𝑟)

𝑖
(𝑡) indicates if unit (𝑖, 𝑟)

is at risk at time 𝑡. Y(𝑟)
𝑖
(·) may be modified to allow left truncation or other general at-risk

processes. It is further assumed that the study ends at a time 𝜏 with 𝜏 ≥ max𝑟,𝑖T(𝑟)𝑖 . So that

the interval [0, 𝜏] = T is the observation time zone. The entire history at all geostatistical

locations at the end of the study is contained in the 𝜎-field F =
∨𝑘
𝑖=1

∨𝑛𝑖
𝑟=1 F

(𝑟)
𝑖,𝜏

with

F (𝑟)
𝑖,𝜏

= 𝜎

(
𝑁
(𝑟)
𝑖
(𝑡), 𝑌 (𝑟)

𝑖
(𝑡), 𝑡 ∈ T

)
.

To proceed with the modeling, it is assumed that the instantaneous hazard function

is different from location to location. If 𝜆𝑖 (𝑡) is the instantaneous failure rate in (𝑡, 𝑡 + 𝑑𝑡)

for all units in location 𝑖, from stochastic integration theory, the compensator process of
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𝑁
(𝑟)
𝑖
(𝑡) is 𝐴(𝑟)

𝑖
(𝑡) given by 𝐴(𝑟)

𝑖
(𝑡) =

∫ 𝑡

0 𝑌
(𝑟)
𝑖
(𝑢)𝜆𝑖 (𝑢)𝑑𝑢 so that for each (𝑖, 𝑟), the process

{
𝑀
(𝑟)
𝑖
(𝑡) = 𝑁 (𝑟)

𝑖
(𝑡) −

∫ 𝑡

0
𝑌
(𝑟)
𝑖
(𝑢)𝜆(𝑟)

𝑖
(𝑢)𝑑𝑢 : 𝑡 ∈ T

}
is a zero-mean square-integrable martingale with respect to the filtration F (𝑟)

𝑖,𝑡
.

The choice of 𝜆𝑖 (𝑡) is crucial in obtaining the MGRF. Many choices are possible,

such as additive, multiplicative, additive-multiplicative, or accelerated hazard-type models.

The Cox model was chosen because it is easier to apply a logit transformation in the pursuit

of the MGRF. However, an accelerated model can also be used, but a rank-based estimation

approach would have to be employed to estimate the unknown in the model.

To that end, for (𝑖, 𝑟) ∈ L × L𝑖, let x(𝑟)
𝑖
(𝑡) be a 𝑝-dimensional vector of covariates.

The Cox model is postulated with different baseline per location, but the same regression

parameter 𝜷 for all locations given by

𝜆
(𝑟)
𝑖
(𝑡) = 𝜆0𝑖 (𝑡) exp(𝜷′x(𝑟)

𝑖
(𝑡)),

where a′ denotes the transpose of the vector a, and 𝜷 is a 𝑝-dimensional vector of regression

parameters. The baseline hazard per location is 𝜆0𝑖 (𝑡) and {𝜆0𝑖 (𝑡) : 𝑖 = 1, ..., 𝑘} is the set

of unspecified baseline hazard functions to be estimated.

Remark 1 The choice of same 𝜷 coefficient for all locations is motivated by modeling the

same event for all units in all locations. However, the baseline hazard is chosen to be

different among the locations (see also Spiekerman and Lin (1998) and Lin (1994)). The

case of competing failures can be considered also, cf. Wei et al. (1989).
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2.3. MULTIVARIATE GAUSSIAN RANDOM FIELD

Gaussian Random Fields (GRF) and their multivariate counterpart MGRF play a

dominant role in spatial modeling, especially in geostatistics. Estimation of parameters are

facilitated if the models proposed can lead to the construction of MGRF. Since counting

processes and martingales have been the cornerstone of modeling failure time data via the

hazard function, it turns out that, making the event times normally distributed will lead

to the construction of MGRF. The motivation behind this approach is threefold: (i) the

marginal distribution of the event times follow a model that accounts for covariates, (ii)

prediction of event occurrences at a new location is faster with GRF using existing software

packages and kriging techniques, and (iii) the approach facilitates construction of pairwise

composite likelihood process, estimation of parameters, as well as large sample properties

via estimating functions. With a view towards the MGRF construction, for (𝑖, 𝑟) ∈ L × L𝑖,

let x(𝑟)
𝑖

:= x(𝑟)
𝑖
(𝑡) if ambiguity does not arise, Λ(𝑡 |x(𝑟)

𝑖
) is the cumulative hazard function,

and 𝐹̄ (𝑟)
𝑖
(𝑡 |x(𝑟)

𝑖
) = exp

[
−Λ(𝑡 |x(𝑟)

𝑖
)
]

the survivor function. Then 𝐹̄ (𝑟)
𝑖
(𝑇 (𝑟)
𝑖
|x(𝑟)
𝑖
) follows a

uniform distribution on (0, 1) and Λ
(𝑟)
𝑖
(𝑇 (𝑟)
𝑖
|x(𝑟)
𝑖
) follows a unit exponential distribution

EXP(1). Those facts are well known. If Φ(·) is the cumulative distribution function of the

standard normal distribution, the probit transformation of a variable𝑈 in (0, 1) is Φ−1(𝑈).

Hence,

T̃(𝑟)𝑖 := Φ−1
[
1 − 𝑒−Λ0𝑖 (𝑇 (𝑟 )𝑖

) exp(𝜷′x(𝑟 )
𝑖
)
]

is the probit transformation of the failure time 𝑇 (𝑟)
𝑖

, which follows a standard normal

distribution N(0, 1). Note here that for each location 𝑖, its vector of failure times

T̃𝑖 = (𝑇 (1)𝑖
, 𝑇
(2)
𝑖
, ..., 𝑇

(𝑛𝑖)
𝑖
)
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form an 𝑛𝑖 multivariate normal distribution. Consequently, a MGRF can be constructed

with T̃ given by

T̃ =

(
T̃1, T̃2, ..., T̃𝑘

)
(𝑛1,...,𝑛𝑘)

,

by imposing a spatial structure induced by a (∑𝑘
𝑖=1 𝑛𝑖)×(

∑𝑘
𝑖=1 𝑛𝑖) spatial correlation matrix𝚵

with block matrices J𝑛𝑖×𝑛𝑖 = (1)𝑛𝑖×𝑛𝑖 , 𝑖 = 1, ..., 𝑘 as diagonal elements, and the off diagonal

elements (𝑛𝑖, 𝑛 𝑗 )I{𝑖 ≠ 𝑗} depends on the spatial correlation 𝜌𝑖 𝑗 between two locations. The

matrix 𝚵 takes the form

𝚵 =



𝜎2
11J𝑛1×𝑛1 𝜌12J𝑛1×𝑛2 · · · 𝜌1 𝑗J𝑛1×𝑛 𝑗 · · · 𝜌1𝑘J𝑛1×𝑛𝑘

𝜌21J𝑛2×𝑛1 𝜎2
22J𝑛2×𝑛2 · · · 𝜌2 𝑗J𝑛2×𝑛 𝑗 · · · 𝜌2𝑘J𝑛2×𝑛𝑘

...
...

...
...

𝜌𝑖1J𝑛𝑖×𝑛1 𝜌𝑖2J𝑛2×𝑛2 · · · 𝜌𝑖 𝑗J𝑛𝑖×𝑛 𝑗 · · · 𝜌𝑖𝑘J𝑛𝑖×𝑛𝑘
...

...
...

...

𝜌𝑘1J𝑛𝑘×𝑛1 𝜌𝑘2J𝑛𝑘×𝑛2 · · · 𝜌𝑘 𝑗J𝑛𝑘×𝑛 𝑗 · · · 𝜎2
𝑘𝑘

J𝑛𝑘×𝑛𝑘

 (∑𝑘
𝑖=1 𝑛𝑖)×(

∑𝑘
𝑖=1 𝑛𝑖)

In the above matrix, the diagonal elements are the variance covariance matrices of the

failure times within a given region. Since in this case, ∥ℎ∥ = 0, those elements reduce to

the marginal variances 𝜎2
𝑖𝑖
I{𝑖𝑖 ∈ {11, 22, ..., 𝑘 𝑘}} in the Matérn spatial correlation function

that is considered here, and will be introduced in the next subsection.

2.4. CHOICE OF SPATIAL CORRELATION MODEL

As indicated earlier, the critical part in identifying significant risk factors that trigger

event occurrences is to identify the best spatial correlation function. Henderson et al. (2002)

proposed a multivariate gamma frailty model incorporating spatial dependence between

locations as was done in Banerjee et al. (2003). Diva et al. (2007) extended the work of

Banerjee and Carlin (2003) by generalizing their Multivariate Conditional Autoregressive

Models. A pairwise joint distribution that depends on the distance between locations has
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been investigated by Paik and Ying (2012). Copula models on the other hand have been

proposed by Lawless and Yilmaz (2011) and Yilmaz and Lawless (2011). The problem

with the use of frailty or copula is that the former models within cluster correlation using

frailties or random effects, and the latter models joint distribution of two failure times, and

consequently do not really model spatial correlation. This study seeks spatial correlation

that is a function of distance between spatial locations, so called isotropic spatial covariance

functions. They have received a great deal of attention recently, specifically the Matérn

family Matérn (1986); Guttorp and Gneiting (2006); Gneiting et al. (2010) given by

𝐶 (∥h∥) = 𝜎2𝑀 (h; 𝜈, 𝑎) = 𝜎2
(

21−𝜈

Γ(𝜈) (𝑎∥h∥)
𝜈 𝐾𝜈 (𝑎∥h∥)

)
, (3)

where 𝜎2 is the marginal variance or sill, that is the variance if ∥h∥ = ∥l𝑖 − l 𝑗 ∥ = 0. 𝜈 > 0

is a smoothing parameter that controls the differentiability of a Gaussian process with this

covariance; and 𝑎 > 0 is a range parameter that measures the correlation decay as the

separation between two locations increases. 𝐾𝜈 (·) and Γ(·) are the Bessel and gamma

functions respectively. When 𝜈 = 0.5 and +∞, the exponential and Gaussian covariance are

recovered and given by

𝐶 (h) = 𝜎2 exp(−𝑎∥h∥), (4)

𝐶 (h) = 𝜎2 exp(−𝑎2∥h∥2), (5)

respectively. More details on sill and range can be found in Section 3 of Handcock and Stein

(1993) or Section 1 of Gneiting et al. (2010). The Matérn family turns out to be a good

choice because of its flexibility in modeling various types of spatial correlation structure in

many fields and possesses a good interpretability of the parameters. The importance of this

family is also highlighted in Stein (1999), page 14. Note that in (3), if 𝑖 = 𝑗 , ∥h∥ = 0 we get

𝐶 (h) = 𝜎2 the marginal variance which corresponds to the case of no spatial correlation.
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In what follows, it is assumed that the spatial correlation function depends on the

𝑞-dimensional parameter 𝜹 = (𝛿1, ..., 𝛿𝑞) each describing various elements of the family.

A Matérn-type family for spatial correlation on the transformed failure times is assumed,

translating into 𝜹 = (𝜎2, range, sill), that is 𝑞 = 3. The transformation leads to a MGRF

where the marginal failure times follow the postulated Cox model with a population level

interpretation for the regression parameter 𝜷, and facilitates estimation of the spatial as well

as regression parameters. Thus

𝚵 =
[
𝚵𝑖 𝑗

]
𝑖, 𝑗=1,...,𝑘 =

[
Cov(T̃𝑖, T̃ 𝑗 )

]
𝑖, 𝑗=1,...,𝑘 = (𝜌𝑖 𝑗 (𝜹))𝑖, 𝑗=1,...,𝑘 .

For compactness, the notation 𝜌𝑖 𝑗 (𝜹) will be used for 𝜌(l𝑖, l 𝑗 ; 𝜹).

3. ESTIMATION-PRELIMINARY

The unknowns arise from two models, the spatial correlation and the Cox models.

The Cox model with its unknown infinite dimensional baseline parameters𝜆0𝑖 (𝑡), 𝑖 = 1, ..., 𝑘

belongs to a class C of hazards onℜ+. The regression coefficient 𝜷 is inℜ𝑝, whereas the

𝑞-dimensional Matérn spatial correlation 𝜹 is in ℜ𝑞. For the Matérn family, 𝑞 = 3, the

theory for an unknown 𝑞 is found. So, the model parameter of main interest is

𝜽 = [(𝜆01(𝑡), ..., 𝜆0𝑘 (𝑡)); (𝛽1, ..., 𝛽𝑝); (𝛿1, ..., 𝛿𝑞)] ∈ 𝚯,

where 𝚯 ⊂ C𝑘 ×ℜ𝑝 ×ℜ𝑞
+. The observables O in (2) will be used for making inference on

𝜽 .

Remark 2 These models have (𝑘 + 𝑝 + 𝑞) unknowns, which raises the question of identifi-

ability. Let 𝑝𝜽 (·) be the probability model on O. The issues of identifiability will not arise,

that is the Kullback-Leibler information will be positive for 𝜽 ≠ 𝜽0 under the assumptions

that, under 𝑝𝜽 (·): (i) no two regions have the same longitude and latitude; (ii) for every
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region 𝑖,
∑𝑛𝑖
𝑟=1𝑌

(𝑟)
𝑖
(𝑡) > 0, that is at least one failure occurs per region; (iii) for every

𝑖, 𝑛𝑖 ≥ 2 and (iv) for 𝐴 ∈ G𝑖 = 𝜎

(∑𝑛𝑖
𝑟=1𝑌

(𝑟)
𝑖
(𝑡), 𝑡 ∈ T

)
, and 𝐵 ∈ G 𝑗 (likewise defined),

𝑃(𝐴∩𝐵) > 0. The last assumption ensures estimation of the spatial correlation parameter,

hence a uniquely defined spatial correlation function.

3.1. AALEN-BRESLOW ESTIMATOR OF 𝜆0𝑖 (𝑡) AND ITS PROPERTIES

Following the notation in Section 2.3, and as indicated earlier, for each (𝑖, 𝑟),

{
𝑀
(𝑟)
𝑖
(𝑡) = 𝑁 (𝑟)

𝑖
(𝑡) −

∫ 𝑡

0
𝑌
(𝑟)
𝑖
(𝑢)𝜆(𝑟)

𝑖
(𝑢)𝑑𝑢 : 𝑡 ∈ T

}
is a zero-mean martingale with respect to the filtration F (𝑟)

𝑖,𝑡
. It then follows, via method of

moments, that an Aalen-Breslow estimator for Λ0𝑖 (·) =
∫ ·

0 𝜆0𝑖 (𝑢)𝑑𝑢, for 𝑖 ∈ L is given by

Λ̂0𝑖 (𝑡) =
∫ 𝑡

0

∑𝑛𝑖
𝑟=1 𝑑𝑁

(𝑟)
𝑖
(𝑢)∑𝑛𝑖

𝑟=1𝑌
(𝑟)
𝑖
(𝑢) exp

(
𝜷′x(𝑟)

𝑖
(𝑢)

) , (6)

with the 𝑘 dimensional vector of baseline hazard being 𝚲̂0(𝑡) =

(
Λ̂01(𝑡), ..., Λ̂0𝑘 (𝑡)

)
.

Observe that 𝚲̂0(𝑡) is not yet an estimator because it still depends on the unknown regression

parameter 𝜷 = (𝛽1, ..., 𝛽𝑝). The expression in (6) will later be substituted for 𝜆0𝑖 (𝑡) to

estimate 𝜷 and to obtain the in-probability limits of the score matrix.

In order to facilitate understanding of the asymptotic properties of the parameters

in these models, it is important to go through some properties of 𝚲̂0(𝑡), in particular 𝜆̂0𝑖 (𝑡),

properly standardized. The 𝜆̂0𝑖 (𝑡) in the next theorem is one where 𝜷 is replaced by its

estimator 𝜷̂ and pertains to the consistency of 𝜆̂0𝑖 (𝑡) as 𝑛𝑖 → ∞, for each 𝑖 ∈ L. As

will be discussed later in the large sample properties section, the requirement ∧𝑛
𝑖=1𝑛𝑖 → ∞

suffices to satisfy the infill asymptotic property under which the large sample properties

are obtained. This consistency result will be needed when showing the consistency of 𝜷̂,
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which requires the existence of an in-probability limit for the score variance. The following

theorem can be shown easily using various stochastic processes arguments (cf. Wei et al.

(1989)).

Theorem 1 For 𝑖 = 1, ..., 𝑘 and as 𝑛𝑖 → ∞, the estimator 𝜆̂0𝑖 (𝑡) is consistent for 𝜆0𝑖 (𝑡),

that is

sup
𝑡∈[0,𝜏]

|𝜆̂0𝑖 (𝑡) − 𝜆0𝑖 (𝑡) |
𝑝
→ 0.

Proof: It suffices to show that, for 𝑖 = 1, ..., 𝑘 and as 𝑛𝑖 →∞,

sup
𝑡∈[0,𝜏]

��Λ̂0𝑖 (𝑡) − Λ0𝑖 (𝑡)
�� 𝑝
→ 0.

By triangular inequality we obtain

sup
𝑡∈[0,𝜏]

��Λ̂0𝑖 (𝑡 | 𝜷̂) − Λ0𝑖 (𝑡)
�� ≤ sup

𝑡∈[0,𝜏]

��Λ̂0𝑖 (𝑡 | 𝜷̂) − Λ̂0𝑖 (𝑡 |𝜷0)
�� + sup

𝑡∈[0,𝜏]

��Λ̂0𝑖 (𝑡 |𝜷0) − Λ∗0𝑖 (𝑡)
��

+ sup
𝑡∈[0,𝜏]

��Λ∗0𝑖 (𝑡) − Λ0𝑖 (𝑡)
�� (7)

where

Λ∗0𝑖 (𝑡) =
∫ 𝑡

0
𝜆0𝑖 (𝑢)𝐼

{
𝑛𝑖∑︁
𝑟=1

𝑌
(𝑟)
𝑖
(𝑢) > 0

}
𝑑𝑢.

It suffices to show that each term in the right-hand side of (7) is asymptotically negligible.

By Taylor expansion of first term of (7) around 𝜷0 we obtain��Λ̂0𝑖 (𝑡 | 𝜷̂) − Λ̂0𝑖 (𝑡 |𝜷0)
��

𝜷̂ − 𝜷0
= Λ̂′0𝑖 (𝑡 |𝜷

∗)

��Λ̂0𝑖 (𝑡 | 𝜷̂) − Λ̂0𝑖 (𝑡 |𝜷0)
�� =

�����−( 𝜷̂ − 𝜷0)
∫ 𝑡

0

𝑆
(1)
𝑖
(𝑢, 𝜷∗)

𝑆
(0)
𝑖
(𝑢, 𝜷∗)⊗2

·
𝑛𝑖∑︁
𝑟=1

𝑑𝑁
(𝑟)
𝑖
(𝑢)

�����
=

�����−( 𝜷̂ − 𝜷0)
∫ 𝑡

0

𝐸
(1)
𝑖
(𝑢, 𝜷∗)

𝑆
(0)
𝑖
(𝑢, 𝜷∗)

·
𝑛𝑖∑︁
𝑟=1

𝑑𝑁
(𝑟)
𝑖
(𝑢)

����� (8)
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where 𝜷∗ ∈ ( 𝜷̂, 𝜷0) such that 𝜷∗
𝑝
→ 𝜷0. Now we consider the term

∫ 𝑡

0
𝐸
(1)
𝑖
(𝑢,𝜷∗)

𝑆
(0)
𝑖
(𝑢,𝜷∗)

·∑𝑛𝑖
𝑟=1 𝑑𝑁

(𝑟)
𝑖
(𝑢) of (8)

∫ 𝑡

0

𝐸
(1)
𝑖
(𝑢, 𝜷∗)

𝑆
(0)
𝑖
(𝑢, 𝜷∗)

·
𝑛𝑖∑︁
𝑟=1

𝑑𝑁
(𝑟)
𝑖
(𝑢) =

∫ 𝑡

0

𝐸
(1)
𝑖
(𝑢, 𝜷∗)

𝑆
(0)
𝑖
(𝑢, 𝜷∗)

[
𝑛𝑖∑︁
𝑟=1

𝑑𝑀
(𝑟)
𝑖
(𝑢)

+
𝑛𝑖∑︁
𝑟=1

𝑌
(𝑟)
𝑖
(𝑢)𝜆(𝑟)

𝑖
(𝑢)𝑑𝑢

]
=

∫ 𝑡

0

𝐸
(1)
𝑖
(𝑢, 𝜷∗)

𝑆
(0)
𝑖
(𝑢, 𝜷∗)

·
𝑛𝑖∑︁
𝑟=1

𝑑𝑀
(𝑟)
𝑖
(𝑢)

+
∫ 𝑡

0
𝐸
(1)
𝑖
(𝑢, 𝜷∗)𝜆0𝑖 (𝑢)𝑑𝑢. (9)

By regularity condition III the second term on the right side of (9) converges to finite value

of
∫ 𝑡

0 𝑒
(1)
𝑖
(𝑢, 𝜷∗)𝜆0𝑖 (𝑢)𝑑𝑢. For the first term on the right side of (9) we observe that

�����∫ 𝑡

0

𝐸
(1)
𝑖
(𝑢, 𝜷∗)

𝑆
(0)
𝑖
(𝑢, 𝜷∗)

·
𝑛𝑖∑︁
𝑟=1

𝑑𝑀
(𝑟)
𝑖
(𝑢)

����� ≤
�����∫ 𝑡

0

[
𝐸
(1)
𝑖
(𝑢, 𝜷∗)

𝑆
(0)
𝑖
(𝑢, 𝜷∗)

−
𝑒
(1)
𝑖
(𝑢, 𝜷∗)

𝑠
(0)
𝑖
(𝑢, 𝜷∗)

]
𝑛𝑖∑︁
𝑟=1

𝑑𝑀
(𝑟)
𝑖
(𝑢)

�����
+
�����∫ 𝑡

0

𝑒
(1)
𝑖
(𝑢, 𝜷∗)

𝑠
(0)
𝑖
(𝑢, 𝜷∗)

𝑛𝑖∑︁
𝑟=1

𝑑𝑀
(𝑟)
𝑖
(𝑢)

����� . (10)

By regularity condition III and Andersen and Gill (1982) theorem I.2 the two terms on the

right side of (10) are asymptotically negligible. Therefore

sup
𝑡∈[0,𝜏]

�����∫ 𝑡

0

𝐸
(1)
𝑖
(𝑢, 𝜷∗)

𝑆
(0)
𝑖
(𝑢, 𝜷∗)

·
𝑛𝑖∑︁
𝑟=1

𝑑𝑀
(𝑟)
𝑖
(𝑢)

����� = 𝑜𝑝 (1).
By regularity condition III we obtain

∫ 𝑡

0
𝐸
(1)
𝑖
(𝑢, 𝜷∗)𝜆0𝑖 (𝑢)𝑑𝑢

𝑝
→

∫ 𝑡

0
𝑒
(1)
𝑖
(𝑢, 𝜷∗)𝜆0𝑖 (𝑢)𝑑𝑢
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and by consistency of 𝜷̂, the first term of (7) is negligible. The second term of (7) turns out

to be a local martingale namely

Λ̂0𝑖 (𝑡 |𝜷0) − Λ∗0𝑖 (𝑡) =

∫ 𝑡

0

∑𝑛𝑖
𝑟=1 𝑑𝑁

(𝑟)
𝑖
(𝑢)∑𝑛𝑖

𝑟=1𝑌
(𝑟)
𝑖
(𝑢) exp

(
𝜷′X(𝑟)

𝑖
(𝑢)

)
−

∫ 𝑡

0
𝜆0𝑖 (𝑢)𝐼

{
𝑛𝑖∑︁
𝑟=1

𝑌
(𝑟)
𝑖
(𝑢) > 0

}
𝑑𝑢

=

∫ 𝑡

0

1∑𝑛𝑖
𝑟=1𝑌

(𝑟)
𝑖
(𝑢) exp

(
𝜷′X(𝑟)

𝑖
(𝑢)

)
×

[
𝑛𝑖∑︁
𝑟=1

𝑑𝑁
(𝑟)
𝑖
(𝑢) −

𝑛𝑖∑︁
𝑟=1

𝑌
(𝑟)
𝑖
(𝑢)𝜆0𝑖 (𝑢) exp

(
𝜷′X(𝑟)

𝑖
(𝑢)

)
𝑑𝑢

]
=

∫ 𝑡

0

1∑𝑛𝑖
𝑟=1𝑌

(𝑟)
𝑖
(𝑢) exp

(
𝜷′X(𝑟)

𝑖
(𝑢)

)
×

[
𝑛𝑖∑︁
𝑟=1

𝑑𝑁
(𝑟)
𝑖
(𝑢) −

𝑛𝑖∑︁
𝑟=1

𝑌
(𝑟)
𝑖
(𝑢)𝜆(𝑟)

𝑖
(𝑢)

]
=

∑𝑛𝑖
𝑟=1 𝑑𝑀

(𝑟)
𝑖
(𝑢)∑𝑛𝑖

𝑟=1𝑌
(𝑟)
𝑖
(𝑢) exp

(
𝜷′X(𝑟)

𝑖
(𝑢)

) .
Now by triangular inequality

��Λ̂0𝑖 (𝑡 |𝜷0) − Λ∗0𝑖 (𝑡)
�� ≤ �����1𝑛 ∫ 𝑡

0

𝑛𝑑𝑀
(𝑟)
𝑖
(𝑢)

𝑆
(0)
𝑖
(𝜷0, 𝑢)

−
∫ 𝑡

0

𝑑𝑀
(𝑟)
𝑖
(𝑢)

𝑠
(0)
𝑖
(𝜷0, 𝑢)

�����
+
�����1𝑛 ∫ 𝑡

0

𝑑𝑀
(𝑟)
𝑖
(𝑢)

𝑠
(0)
𝑖
(𝜷0, 𝑢)

�����
≤

�����1𝑛 ∫ 𝑡

0

[
𝑛

𝑆
(0)
𝑖
(𝜷0, 𝑢)

− 1
𝑠
(0)
𝑖
(𝜷0, 𝑢)

]
𝑑𝑀
(𝑟)
𝑖
(𝑢)

�����
+
�����1𝑛 ∫ 𝑡

0

𝑑𝑀
(𝑟)
𝑖
(𝑢)

𝑠
(0)
𝑖
(𝜷0, 𝑢)

����� (11)
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Considering the first term of (11) we obtain

sup
𝑡∈[0,𝜏]

�����1𝑛 ∫ 𝑡

0

[
𝑛

𝑆
(0)
𝑖
(𝜷0, 𝑢)

− 1
𝑠
(0)
𝑖
(𝜷0, 𝑢)

]
𝑑𝑀
(𝑟)
𝑖
(𝑢)

����� ≤
{

sup
𝑡∈[0,𝜏]

[
𝑛

𝑆
(0)
𝑖
(𝜷0, 𝑡)

− 1
𝑠
(0)
𝑖
(𝜷0, 𝑡)

]}
×

{
𝑁
(𝑟)
𝑖
(𝜏)
𝑛

+ 1
𝑛

∫ 𝑡

0
𝑌
(𝑟)
𝑖
(𝑢)𝜆(𝑟)

𝑖
(𝑢)𝑑𝑢

}
.

By regularity condition III and VII

sup
𝑡∈[0,𝜏]

�����1𝑛 ∫ 𝑡

0

[
𝑛

𝑆
(0)
𝑖
(𝜷0, 𝑢)

− 1
𝑠
(0)
𝑖
(𝜷0, 𝑢)

]
𝑑𝑀
(𝑟)
𝑖
(𝑢)

����� = 𝑜𝑝 (1).
Now the second term on the right hand side of (11) converges weakly to a zero mean

Gaussian process by Andersen and Gill (1982) theorem I.2. Hence it is negligible and as a

consequence

sup
𝑡∈[0,𝜏]

��Λ̂0𝑖 (𝑡 |𝜷0) − Λ∗0𝑖 (𝑡)
�� = 𝑜𝑝 (1).

Using Markov’s inequality, for any 𝜖 ∈ (0, 1), for the last term on the right hand side of (7),

𝑃

{
sup
𝑡∈[0,𝜏]

��Λ∗0𝑖 (𝑡) − Λ0𝑖 (𝑡)
�� > 𝜖} ≤ 𝐸

{
sup
𝑡∈[0,𝜏]

��Λ∗0𝑖 (𝑡) − Λ0𝑖 (𝑡)
��} /𝜖

≤ 𝐸

{
sup
𝑡∈[0,𝜏]

�����∫ 𝑡

0
𝜆0𝑖 (𝑢)𝐼

{
𝑛𝑖∑︁
𝑟=1

𝑌
(𝑟)
𝑖
(𝑢) > 0

}
𝑑𝑢

−
∫ 𝑡

0
𝜆0𝑖 (𝑢)𝑑𝑢

���� } /𝜖
≤ 𝐸

{
sup
𝑡∈[0,𝜏]

∫ 𝑡

0
𝐼

{
𝑛𝑖∑︁
𝑟=1

𝑌
(𝑟)
𝑖
(𝑢) = 0

}
𝜆0𝑖 (𝑢)𝑑𝑢

}
/𝜖

≤
∫ 𝑡

0
𝑃

(
𝑛𝑖∑︁
𝑟=1

𝑌
(𝑟)
𝑖
(𝑢) = 0

)
𝜆0𝑖 (𝑢)𝑑𝑢/𝜖

≤
∫ 𝑡

0

[
𝑃

(
𝑌
(1)
𝑖
(𝑢)

)
= 0

]𝑛𝑖
𝜆0𝑖 (𝑢)𝑑𝑢/𝜖 .
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By the dominated convergence theorem, since 𝑃
(
𝑌
(1)
𝑖
(𝑢)

)
= 0 is bounded. Then

𝑃

{
sup
𝑡∈[0,𝜏]

��Λ∗0𝑖 (𝑡) − Λ0𝑖 (𝑡)
�� > 𝜖} ≤ {

𝑃

(
𝑌
(1)
𝑖
(𝑡∗) = 0

)}𝑛𝑖
Λ0𝑖 (𝑡∗)/𝜖

Since 𝑃
(
𝑌
(1)
𝑖
(𝑡∗) = 0

)
< 1 and Λ0𝑖 (𝑡∗) < ∞ as 𝑛𝑖 →∞ it follows that

sup
𝑡∈[0,𝜏]

��Λ∗0𝑖 (𝑡) − Λ0𝑖 (𝑡)
�� = 𝑜𝑝 (1).

This completes the proof.

Remark 3 An important result worth pointing out in connection with Theorem 1 is the

convergence under the infill asymptotic of the random field Ŵ(𝑡) given by

Ŵ(𝑡) =
√
𝑛

(
Λ̂01(𝑡) − Λ01(𝑡), ..., Λ̂0𝑘 (𝑡) − Λ0𝑘 (𝑡)

)
to the multivariate Gaussian random field W (𝑡) = (W1(𝑡), ...,W𝑘 (𝑡)) on the space of

continuous functions on 𝐷𝑘 [0, 𝜏] equipped with the metric d(f, g) = max𝑖∈{1,...,𝑘}{ 𝑓𝑖 (𝑡) −

𝑔𝑖 (𝑡)}. Such a result can be used for making simultaneous inference on Λ0𝑖 (𝑡) at some

fixed time points and constructing confidence bands for all the baseline or a subset of them

depending on interest, or testing equality of the baseline hazards at two different locations

𝑖 and 𝑗 . The latter and former could be important for epidemiologists and authorities

since the results can be used to assess severity of a certain disease or pandemic at various

times of the calendar year or having an idea about which locations among the ones under

investigation have higher failure rates.
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3.2. JOINT MODELING

For a pair of units (𝑟, 𝑠) ∈ (L𝑖,L 𝑗 ) and 𝑡 ∈ [0, 𝜏], counting, at-risk, and compen-

sator processes are defined as before by

[𝑁 (𝑟)
𝑖
(𝑡), 𝑌 (𝑟)

𝑖
(𝑡), 𝐴(𝑟)

𝑖
(𝑡)] and [𝑁 (𝑠)

𝑗
(𝑡), 𝑌 (𝑠)

𝑗
(𝑡), 𝐴(𝑠)

𝑗
(𝑡)],

respectively. Then, {𝑀 (𝑟)
𝑖
(𝑡) : 𝑡 ∈ [0, 𝜏]} and {𝑀 (𝑠)

𝑗
(𝑡) : 𝑡 ∈ [0, 𝜏]} are each a zero-mean

martingale with respect to the filtration F (𝑟)
𝑖,𝑡

and F (𝑠)
𝑗 ,𝑡

respectively. With a view toward

joint modeling, for (𝑡1, 𝑡2) ∈ [0, 𝜏]2, we introduce the joint counting process 𝑁 (𝑟,𝑠)
𝑖 𝑗
(·, ·) by

𝑁
(𝑟,𝑠)
𝑖 𝑗
(𝑡1, 𝑡2) = I{𝑇 (𝑟)

𝑖
≥ 𝑡1, 𝑇 (𝑠)𝑗 ≥ 𝑡2}. The covariance function cov(𝑀 (𝑟)

𝑖
(𝑡1), 𝑀 (𝑠)𝑗 (𝑡2)) is

defined by

𝐸 (𝑀 (𝑟)
𝑖
(𝑡1)𝑀 (𝑠)𝑗 (𝑡2) |𝑇

(𝑟)
𝑖

> 𝑡1, 𝑇
(𝑠)
𝑗
> 𝑡2) = 𝐴(𝑟,𝑠)𝑖, 𝑗

(𝑡1, 𝑡2) = ⟨𝑀 (𝑟)𝑖 (𝑡1), 𝑀
(𝑠)
𝑗
(𝑡2)⟩.

Using stochastic integration theory,

𝐸

(
𝑀
(𝑟)
𝑖
(𝑡1)𝑀 (𝑠)𝑗 (𝑡2) −

∫ 𝑡1

0

∫ 𝑡2

0
𝑌
(𝑟)
𝑖
(𝑢1)𝑌 (𝑠)𝑗 (𝑢2)𝐴(𝑟,𝑠)𝑖, 𝑗

(𝑑𝑢1, 𝑑𝑢2)
)
= 0.

The spatial correlation between two locations implies that the covariance function depends

on the spatial parameter 𝜹 via the spatial correlation 𝜌𝑖 𝑗 by virtue of the transformation

leading to the construction of the MGRF. Let 𝐺 (·, ·; 𝜌𝑖 𝑗 ) be the bivariate survival function

of the transformed failure times 𝑇𝑖 and 𝑇𝑗 . Then, the original bivariate survivor function

𝐹̄
(𝑟,𝑠)
𝑖 𝑗
(𝑡1, 𝑡2; 𝜌𝑖 𝑗 ) for (𝑟, 𝑠) ∈ (L𝑖,L 𝑗 ) is given by

𝐹̄
(𝑟,𝑠)
𝑖 𝑗
(𝑡1, 𝑡2; 𝜌𝑖 𝑗 ) = P

(
𝑇
(𝑟)
𝑖

> 𝑡1, 𝑇
(𝑠)
𝑗
> 𝑡2; 𝜌𝑖 𝑗

)
(12)

= 𝐺

[
Φ−1(𝐹 (𝑟)

𝑖
) (𝑡1),Φ−1(𝐹 (𝑠)

𝑗
(𝑡2)); 𝜌𝑖 𝑗

]
,
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with 𝐹 (𝑟)
𝑖
(𝑡1) and 𝐹 (𝑠)

𝑗
(𝑡2) being the marginal distribution functions of 𝑇 (𝑟)

𝑖
and 𝑇 (𝑠)

𝑗
re-

spectively. Following Prentice and Cai (1992), 𝐴(𝑟,𝑠)
𝑖 𝑗
(𝑡1, 𝑡2), the joint compensator is given

by

𝐴
(𝑟,𝑠)
𝑖 𝑗
(𝑑𝑡1, 𝑑𝑡2; 𝜌𝑖 𝑗 ) = 𝐴0 [Λ(𝑟)𝑖 (𝑡1),Λ

(𝑠)
𝑗
(𝑡2); 𝜌𝑖 𝑗 ]Λ(𝑟)𝑖 (𝑑𝑡1)Λ

(𝑠)
𝑗
(𝑑𝑡2),

with the baseline joint compensator 𝐴0 [·, ·; 𝜌𝑖 𝑗 ] given by

𝐴0(𝑡1, 𝑡2; 𝜌𝑖 𝑗 ) =
𝜕2

𝜕𝑡1𝜕𝑡2
𝐹̄
(𝑟,𝑠)
𝑖 𝑗
(𝑡1, 𝑡2; 𝜌𝑖 𝑗 ) + 𝐹̄ (𝑟,𝑠)𝑖 𝑗

(𝑡1, 𝑡2; 𝜌𝑖 𝑗 )

+ 𝜕
𝜕𝑡1

𝐹̄
(𝑟,𝑠)
𝑖 𝑗
(𝑡1, 𝑡2; 𝜌𝑖 𝑗 ) +

𝜕

𝜕𝑡2
𝐹̄
(𝑟,𝑠)
𝑖 𝑗
(𝑡1, 𝑡2; 𝜌𝑖 𝑗 ).

Remark 4 The covariance function 𝐴(𝑟,𝑠)
𝑖 𝑗
(𝑑𝑡1, 𝑑𝑡2; 𝜌𝑖 𝑗 ) in conjunction with Λ0𝑖 (𝑑𝑡1) and

Λ0 𝑗 (𝑑𝑡2) determines the joint distribution of 𝑇𝑖 and 𝑇𝑗 given the covariates x(𝑟)
𝑖

and x(𝑠)
𝑗

.

The original bivariate survivor function of 𝑇𝑖 and 𝑇𝑗 given in (12) can be taken to be of the

Clayton family (cf. Clayton (1978)) or the Frank family model (cf. Genest (1987)). For the

Clayton model for instance, the joint survivor function takes the form

𝐹̄ (𝑡𝑖, 𝑡 𝑗 ; 𝜌𝑖 𝑗 ) =
(
𝑒𝑡𝑖𝜌𝑖 𝑗 + 𝑒𝑡 𝑗 𝜌𝑖 𝑗 − 1

)− 1
𝜌𝑖 𝑗 .

4. ESTIMATION

This section is dedicated to discuss theory on estimating regression and spatial

parameters.

4.1. WEIGHTED ESTIMATING FUNCTIONS

Estimation of parameters with spatially correlated random censorship data poses

challenges because: (i) the high dimension of the parameter 𝜽 = (𝜷, 𝜹;𝚲0), and (ii) the

full likelihood L(𝜽 |Data) is intractable. Since it is quite difficult to apply direct maximum

likelihood method in the spirit of Jacod (1976), the pairwise likelihood approach is adapted
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as an alternative. The main reference is Lindsay (1988). See also Varin et al. (2011) for an

overview of composite likelihood applications in various fields. Lindsay et al. (2011) also

discusses issues and strategies for the selection of composite likelihood.

The idea is to form pairwise likelihoods, a product of likelihoods for data in two

spatial locations that can be the basis of an unbiased estimating function, and then be

used for parameter estimation. It is a special case of a more general class of pseudo

likelihoods called composite likelihoods which allows addition of likelihoods in a situation

where the components do not represent independent replicates. The technique has good

theoretical properties and behaves well in many applications concerning spatial statistics

Hjort and Omre (1994); Heagerty and Lele (1998); Lele and Taper (2002); Varin and

Vidoni (2005); Varin et al. (2005). Moreover, it is robust to model mis-specification, is

computationally advantageous when dealing with data that has a complex structure, and

the estimated parameter is the same as in the complete model Lindsay et al. (2011). In

the present setting, for estimating 𝜷, and as will be seen later, the covariation of the vector

M(𝑡) = (𝑀1(𝑡), ..., 𝑀𝑘 (𝑡)) depends on the spatial correlation parameter 𝜹 and the unequal

number of units per geographical site. The spatial dependency between locations may

be severe or moderate. As indicated in Liang and Zeger (1986), there may be a loss in

efficiency of the estimator of 𝜷 when accounting for spatial correlation, especially when it is

severe. In the aim of increasing efficiency, the idea of Liang and Zeger (1986) is followed by

proposing generalized estimating equations that include weights in the estimating functions.

The weights are chosen in general to balance out severe versus moderate spatial dependence.

With a view toward estimating 𝜷 that accounts for pairwise spatial correlation

between two locations (𝑖, 𝑗) ∈ L2, more notation is introduced in the sequel. If a = (𝑎1, 𝑎2)

is a 1 × 2 row vector and its transpose denoted by a′ is a 2 × 1 column vector. For

(𝑟, 𝑠) ∈ (L𝑖,L 𝑗 ), define H(𝑟,𝑠)
𝑖 𝑗
(𝑡) = (𝐻 (𝑟)

𝑖
(𝑡), 𝐻 (𝑠)

𝑗
(𝑡)), M(𝑟,𝑠)

𝑖 𝑗
(𝑡) = (𝑀 (𝑟)

𝑖
(𝑡), 𝑀 (𝑠)

𝑗
(𝑡))′. A

2×2 matrix W𝑖 𝑗 (𝜹) = (𝑤𝑖 𝑗 (𝜹)) is further defined whose elements are function of the spatial
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correlation 𝜹 and the number of units in locations 𝑖 and 𝑗 by

W𝑖 𝑗 (𝜹0) =
©­­«
𝑤
𝑖 𝑗

11(𝜹0) 𝑤
𝑖 𝑗

12(𝜹0)

𝑤
𝑖 𝑗

21(𝜹0) 𝑤
𝑖 𝑗

22(𝜹0)

ª®®¬ . (13)

Then, given 𝜹0, the pairwise estimating equation is defined for 𝜷 between two locations at

time 𝑡 by

U[𝑖 𝑗] (𝑡, 𝜷|𝜹0) =
𝑛𝑖∑︁
𝑟=1

𝑛 𝑗∑︁
𝑠=1

∫ 𝑡

0
H(𝑟,𝑠)
𝑖 𝑗
(𝑢)W𝑖 𝑗 (𝜹0)M(𝑟,𝑠)𝑖 𝑗

(𝑢)𝑑𝑢. (14)

At time 𝑡 ∈ T , the generalized estimating equation for 𝜷 over all pairs is

U(𝑡, 𝜷|𝜹0) =
∑︁
𝑖≤ 𝑗

U[𝑖 𝑗] (𝑡, 𝜷|𝜹0). (15)

The weights matrix given in (13) adapts to dependencies between locations, especially when

dependency is strong and censoring within a location is light, and help improve efficiency

of the estimates under such scenarios. Two remarks are worth mentioning here.

Remark 5 Replacing W𝑖 𝑗 (𝜹0) by the identity matrix in (14), results in the case of no spatial

correlation between locations. Observe also that if W𝑖 𝑗 (𝜹0) is replaced by the variance

covariance matrix of (𝑀1(𝑡), 𝑀2(𝑡), ..., 𝑀𝑘 (𝑡)) with 𝑀𝑖 (𝑡) =
∑𝑛𝑖
𝑟=1 𝑀

(𝑟)
𝑖
(𝑡), the weights

actually depend on the regression coefficient 𝜷 as well as the spatial correlation parameter

𝜹 since its compensator A(𝑡) depends on both. Then (14) can be re-expressed as a function

of 𝜷 alone by first replacing 𝜹 in (14) by 𝜹, a
√
𝑛 =

√︁∑
𝑖 𝑛𝑖-consistent estimator of 𝜹0 that

satisfies
√
𝑛(𝜹 − 𝜹0) = 𝑂𝑝 (1). In that case, (15) will take the form 𝑈 (𝑡; 𝜷, 𝜹), and the

estimated 𝜷 would still be consistent. For further discussions, cf. Liang and Zeger (1986).

This approach will be adopted in the estimation of 𝜷 in the next section.

Remark 6 An important property of the estimating function (15) is the robustness of the re-

sulting estimator 𝜷̂ even if the spatial correlation is misspecified and remains asymptotically

unbiased even under the misspecification.
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Examining U[𝑖 𝑗] (·, ·|𝜹0), it can be written as a sum of four terms each of which is

given below

𝑈
𝑖 𝑗

1 (𝑡) =
𝑛𝑖∑︁
𝑟=1

∫ 𝑡

0
𝑤
𝑖 𝑗

11𝐻
(𝑟)
𝑖
(𝑢, 𝜷)𝑀 (𝑟)

𝑖
(𝑑𝑢),

𝑈
𝑖 𝑗

2 (𝑡) =
𝑛𝑖∑︁
𝑟=1

𝑛 𝑗∑︁
𝑠=1

∫ 𝑡

0
𝑤
𝑖 𝑗

12𝐻
(𝑠)
𝑗
(𝑢, 𝜷)𝑀 (𝑟)

𝑖
(𝑑𝑢),

𝑈
𝑖 𝑗

3 (𝑡) =
𝑛𝑖∑︁
𝑟=1

𝑛 𝑗∑︁
𝑠=1

∫ 𝑡

0
𝑤
𝑖 𝑗

21𝐻
(𝑟)
𝑖
(𝑢, 𝜷)𝑀 (𝑠)

𝑗
(𝑑𝑢),

𝑈
𝑖 𝑗

4 (𝑡) =
𝑛 𝑗∑︁
𝑠=1

∫ 𝑡

0
𝑤
𝑖 𝑗

22𝐻
(𝑠)
𝑗
(𝑢, 𝜷)𝑀 (𝑠)

𝑗
(𝑑𝑢).

(16)

For the purpose of estimating 𝜹0, note that E{𝑀 (𝑟)
𝑖
(𝑡1)𝑀 (𝑠)𝑗 (𝑡2) − 𝐴

(𝑟,𝑠)
𝑖 𝑗
(𝑑𝑡1, 𝑑𝑡2; 𝜌𝑖 𝑗 )} = 0.

The goal is to find a weighted function of 𝑀 (𝑟)
𝑖
(𝑡1)𝑀 (𝑠)𝑗 (𝑡2) − 𝐴

(𝑟,𝑠)
𝑖, 𝑗
(𝑑𝑡1, 𝑑𝑡2; 𝜌𝑖 𝑗 ) that can

serve as an estimating function for 𝜹0 with the flavor of score function. Define the (𝑘 × 𝑘)

matrix A(𝑡1, 𝑡2; 𝜌(𝜹)) =
(
𝐴𝑖 𝑗 (𝑡1, 𝑡2; 𝜌(𝜹))

)
𝑖, 𝑗=1,...,𝑘 , with (𝑖, 𝑗)𝑡ℎ entry given by

𝐴𝑖 𝑗 (𝑡1, 𝑡2; 𝜌(𝜹) =
𝑛𝑖∑︁
𝑟=1

𝑛 𝑗∑︁
𝑠=1

𝐴
(𝑟,𝑠)
𝑖 𝑗
(𝑡1, 𝑡2; 𝜌(𝜹)).

Let ∇𝛿𝑙A(𝑡1, 𝑡2; 𝜌(𝜹)), 𝑙 = 1, ..., 𝑞, be the matrix of elementwise derivatives of A(𝑡, 𝜌(𝜹))

with respect to 𝛿𝑙 . Define

Π𝑙 = A−1 [
∇𝛿𝑙A

]
A−1,

where A is for A(𝑡1, 𝑡2; 𝜌(𝜹)) for compactness. Then, for 𝑙 = 1, ..., 𝑞, following Cressie

(1993), Page 483, it can be shown that E(M(𝑡))Π𝑙E(M(𝑡)) + tr(Π𝑙A) = 0, where tr(·)

denotes the trace of a matrix. Consequently, a score function can be defined for estimating

the 𝑙𝑡ℎ component of 𝜹 using two locations by

U𝑖 𝑗

𝛿𝑙
(𝑡1, 𝑡2) = M(𝑡)Π𝑙M′(𝑡) + tr(Π𝑙A) := M(𝑡)Π𝑙M′(𝑡) + tr(A−1A𝛿𝑙 ). (17)
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The expression in (17) can be viewed as a score process and its sum over all pairwise spatial

locations (𝑖, 𝑗) can serve as an estimating function for 𝛿𝑙 . So, the estimating function over

all pairs of spatial locations for 𝜹 is the 𝑞 × 1 vector U𝜹 (𝑡1, 𝑡2; 𝜌(𝜹)) = (U𝛿𝑙 (𝑡), 𝑙 = 1, ..., 𝑞)′

where U𝛿𝑖 (𝑠, 𝑡) is given by

U𝛿𝑙 (𝑡1, 𝑡2; 𝜌(𝜹)) =
∑︁
(𝑖, 𝑗),𝑖≤ 𝑗

U𝑖 𝑗

𝛿𝑙
(𝑡1, 𝑡2; 𝜌(𝜹)).

4.2. UNBIASED ESTIMATING FUNCTIONS

The unbiased estimating functions concept is one of the requirements for showing the

existence of consistent solutions to the equations U𝛿𝑙 (𝑡1, 𝑡2) = 0 and U[𝑖 𝑗] (𝜷; ·, ·|𝜹0) = 0,

respectively. Two conditions need to be satisfied for the existence and consistency of

the estimate: (i) the asymptotic unbiasedness of the two estimating functions, and (ii)

the existence of in-probability limit of the information matrix. To show (i) for U𝛿𝑙 (𝑡),

the concept of mixing coupled with the multivariate Chebyshev inequality is applied in

particular. As for U[𝑖 𝑗] (𝜷; ·, ·|𝜹0) = 0, some regularity conditions applied on its derivatives

yield the result. Finally, Theorem 2 of Foutz (1976) will be used to show existence and

consistency of 𝜷̂ and 𝜹, the sequence of solutions to the aforementioned equations.

In geostatistics, asymptotic properties can be investigated in two different ways: the

Increasing domain asymptotic or the Infill asymptotic. The increasing domain asymptotic is

a sampling structure in spatial statistics where new observations are added at the boundary

points of an area, whereas the infill asymptotic consists of a sampling structure where new

observations are added in between existing locations. The latter is appropriate when the

spatial locations are fixed and in a bounded domain and one is interested in adding new

observations to each location. This study will use the infill asymptotic since the number of
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locations is fixed at 𝑘 . Letting min𝑖{𝑛1, ..., 𝑛𝑘 } → ∞ satisfies the infill asymptotic criterion.

Therefore, in what follows, the statement 𝑛 = min𝑖𝑛𝑖 →∞means Infill Asymptotic. Readers

are refereed to Cressie (1993), Section 7.3.1, page 480 for details.

4.2.1. Regularity Conditions.

I For 𝑖 = 1, ..., 𝑘 , Λ0𝑖 (𝑡) < ∞.

II For each (𝑖, 𝑟) ∈ L × L𝑖 and 𝑡 ∈ T , x(𝑟)
𝑖
(𝑡) is uniformly bounded.

III For (𝑖, 𝑟) ∈ L ×L𝑖 and for each 𝑖, define 𝑆(𝑚)
𝑖
(𝜷, 𝑡) = ∑𝑛𝑖

𝑟=1𝑌
(𝑟)
𝑖
(𝑡) [x(𝑟)

𝑖
(𝑡)]⊗𝑚𝑒𝜷′x

(𝑟 )
𝑖
(𝑡) .

Let E denote expectation operator. There exists B ⊂ ℜ𝑝, a neighborhood of 𝜷0, and

functions 𝑠(𝑚)
𝑖
(𝜷, 𝑡) such that E(𝑆(𝑚)

𝑖
(𝜷, 𝑡)) = 𝑠(𝑚)

𝑖
(𝜷, 𝑡), and that, for each 𝑖 = 1, ..., 𝑘 ,

𝑚 = 0, 1, 2

sup
(𝜷,𝑡)∈B×[0,𝜏]

∥𝑆(𝑚)
𝑖
(𝜷, 𝑡) − 𝑠(𝑚)

𝑖
(𝜷, 𝑡)∥

𝑝
→ 0,

and the 𝑠(𝑚)
𝑖
(𝜷, 𝑡) are uniformly bounded on [0, 𝜏] × B with continuous partial deriva-

tives.

IV Define

𝛀̂(𝜽) = 𝛀(𝜽) = 1
𝑛2

∑︁
𝑖≤ 𝑗

∑︁
𝑖′≤ 𝑗 ′
E

[
V𝑖 𝑗 (𝜽)V′𝑖′ 𝑗 ′ (𝜽)

]
.

There exists a positive definite matrix 𝛀(𝜽0) such that

sup
𝑡∈[0,𝑡∗]

����𝛀̂(𝜽) −𝛀(𝜽0)
���� 𝑝
→ 0.

V Weight matrices conditions

i ∥W(𝜹) −W(𝜹0)∥
𝑝
→ 0, where ∥a − b∥ = sup𝑖 𝑗 |𝑎𝑖 𝑗 − 𝑏𝑖 𝑗 |.

ii For ·· ∈ {11, 12, 21, 22}, ∇𝜷𝑤
𝑖 𝑗
·· (𝜹)

𝑝
→ ∇𝜷𝑤

𝑖 𝑗
·· (𝜹0) and ∇𝜷𝑤

𝑖 𝑗
·· (𝜹) are continuous

functions of 𝜹0.
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VI For ·· ∈ {11, 22}, 𝑚 = 0, 1, 𝑛 =
∑𝑘
𝑖=1 𝑛𝑖, all of the following three quantities converge

in probability to zero.

sup
(𝜷,𝑡)∈B×[0,𝜏]






1
𝑛

∑︁
𝑖≥ 𝑗

𝑛𝑖∑︁
𝑟=1

𝐻
(𝑟)
𝑖
(𝑡)𝑤𝑖 𝑗·· 𝑌

(𝑟)
𝑖
(𝑡)𝑒𝜷′x

(𝑟 )
𝑖
(𝑡) ⊗ x(𝑟)𝑚

𝑖
(𝑡) − 𝑠(𝑤 (𝑚)·· , 𝜷; 𝑡)







sup

(𝜷,𝑡)∈B×[0,𝜏]






1
𝑛

∑︁
𝑖≥ 𝑗

𝑛 𝑗∑︁
𝑠=1

𝑛𝑖∑︁
𝑟=1

𝐻
(𝑟)
𝑖
(𝑡)𝑤𝑖 𝑗12𝑌

(𝑠)
𝑗
(𝑡)𝑒𝜷

′x(𝑠)
𝑗
(𝑡) ⊗ x(𝑠)𝑚

𝑗
(𝑡) − 𝑠(𝑤 (𝑚)12 , 𝜷; 𝑡)







sup

(𝜷,𝑡)∈B×[0,𝜏]






1
𝑛

∑︁
𝑖≥ 𝑗

𝑛 𝑗∑︁
𝑠=1

𝑛𝑖∑︁
𝑟=1

𝐻
(𝑠)
𝑗
(𝑡)𝑤𝑖 𝑗21𝑌

(𝑟)
𝑖
(𝑡)𝑒𝜷′x

(𝑟 )
𝑖
(𝑡) ⊗ x(𝑟)𝑚

𝑖
(𝑡) − 𝑠(𝑤 (𝑚)21 , 𝜷; 𝑡)







VII Mixing conditions for unbiasedness of the score process for 𝜹

i LetM𝑘
−∞ andM∞

𝑘
be the 𝜎-fields generated by the observables {O(I𝑖) : 𝑖 ≤ 𝑘}

and {O(I𝑖) : 𝑖 > 𝑘} respectively. The mixing condition is

sup
𝐴∈M𝑘

−∞,𝐵∈M∞𝑘
|𝑃(𝐴 ∩ 𝐵) − 𝑃(𝐴) · 𝑃(𝐵) | ≤ 𝐶 ( | |𝑖 − 𝑗 | |)

where 𝐶 (·) is some mixing function.

ii For (𝑖, 𝑗) ∈ L × L, the weight 𝒗𝑖 𝑗 (𝜹) on the compensators are uniformly bounded

with continuous partial derivatives with respect to 𝜹.

VIII Joint compensator condition

i The function 𝐴0(𝑡1, 𝑡2; 𝜹) exists and has bounded second derivatives in the range

of the arguments (𝜷, 𝜹) for all (𝜷, 𝜹) ∈ B × D, where D ⊂ ℜ𝑞. Moreover,

A0(𝑡1, 𝑡2; 𝜹) is continuously differentiable as a function of (𝜷, 𝜹) and the partial

derivative 𝐴0(𝑑𝑡1, 𝑡2, 𝜹) := 𝐴100
0 , 𝐴0(𝑡1, 𝑑𝑡2, 𝛿) := 𝐴010

0 , 𝐴0(𝑡1, 𝑡2,∇𝜹) := 𝐴001
0 and

𝐴0(𝑑𝑡1, 𝑑𝑡2, 𝜹) := 𝐴110
0 are bounded on B × D for all values of the arguments.

ii Any linear combination of the joint compensator partial derivatives with respect to

any of its arguments converges to a bounded function.
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Discussion on Regularity Conditions: Conditions I to III are the regular stability conditions

imposed on derivatives of the at-risk process that arise in models that involve the Cox

hazard functions. They are the expectations and variances of the covariates x(𝑟)
𝑖
(𝑡) of

(𝑖, 𝑟). Condition VI is on stability condition of the weight applied to the estimated spatial

correlation parameters, whereas VII are stability conditions guaranteeing convergence of the

variance-covariance matrix of the joint process, namely the block 𝚺11. Likewise, Condition

VI together with VII pertains to infill asymptotic stability of the block 𝚺21 and 𝚺22, with

VII only needed for the latter.

The following theorem pertains to the asymptotic unbiasedness of U(𝜷, 𝑡).

Theorem 2 Under Conditions I to V, as 𝑛→∞, sup𝑡∈[0,𝜏] 1
𝑛
U(𝜷, 𝑡 |𝜹) |

𝑝
→ 0.

Proof: Using the fact that U[𝑖 𝑗] (𝜷, 𝑡 |𝜹) is the sum of four terms, by the triangle inequality,

the following is true:

|U[𝑖 𝑗] (𝜷, 𝑡 |𝜹) | ≤ |U𝑖 𝑗

1 (𝜷, 𝑡) | + |U
𝑖 𝑗

2 (𝜷, 𝑡) | (18)

+|U𝑖 𝑗

3 (𝜷, 𝑡) | + |U
𝑖 𝑗

4 (𝜷, 𝑡) |.
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It suffices to show that each term in the RHS of (18) converges to zero in probability.

Without loss of generality, this is only shown for U𝑖 𝑗

1 (𝜷, 𝑡) only. Asymptotic negligibility

of the remaining terms are obtained in similar manner. Thus,

1
𝑛

U𝑖 𝑗

1 (𝜷, 𝑡) =
1
𝑛

𝑘∑︁
𝑖=1

𝑛𝑖∑︁
𝑟=1

∫ 𝜏

0

{
𝐻
(𝑟)
𝑖
(𝑡)

(∑︁
𝑖≤ 𝑗

𝑤
𝑖 𝑗

11

)
−
𝑠(𝑡, 𝑤 (0)11 )

𝑠
(0)
𝑖
(𝑡)

}
𝑑𝑀
(𝑟)
𝑖
(𝑡)

− 1
𝑠
(0)
𝑖
(𝑡)

{
1
𝑛

∑︁
𝑖≤𝑖

𝐻
(𝑟)
𝑖
(𝑡)𝑌 (𝑟)

𝑖
(𝑡)𝑒𝜷′0 x(𝑟 )

𝑖
(𝑡)𝑤𝑖 𝑗11 − 𝑠𝑖 (𝑡, 𝑤

(0)
11 )

}
𝑑𝑀
(𝑟)
𝑖
(𝑡)

−𝑠(𝑤 (0)11 (𝑡))

(

1
𝑛

𝑘∑︁
𝑖=1
𝑌
(𝑟)
𝑖
(𝑡)𝑒𝜷′0 x(𝑟 )

𝑖
(𝑡)

)−1

−
(
𝑠
(0)
𝑖
(𝑡)

)−1
 𝑑𝑀 (𝑟)𝑖 (𝑡) (19)

−

1
𝑛

∑︁
ß≤ 𝑗

𝐻
(𝑟)
𝑖
(𝑡)𝑌 (𝑟)

𝑖
(𝑡)𝑒𝜷′0x(𝑟 )

𝑖
(𝑡)𝑤𝑖 𝑗11 − 𝑠(𝑡, 𝑤

(0)
11 )


·

(

1
𝑛

𝑘∑︁
𝑖=1
𝑌
(𝑟)
𝑖
(𝑡)𝑒𝜷′0 x(𝑟 )

𝑖
(𝑡)

)−1

−
(
𝑠
(0)
𝑖
(𝑡)

)−1
 𝑑𝑀 (𝑟)𝑖 (𝑡).

1
𝑛

U𝑖 𝑗

2 (𝜷, 𝑡) =
1
𝑛

𝑘∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑛𝑖∑︁
𝑟=1

𝑛 𝑗∑︁
𝑠=1

∫ 𝜏

0

𝐻 (𝑟)𝑖 (𝑡)
(∑︁
𝑖≤ 𝑗

𝑤
𝑖 𝑗

12

)
−
𝑠(𝑡, 𝑤 (0)12 )

𝑠
(0)
𝑗
(𝑡)

 𝑑𝑀 (𝑠)𝑗 (𝑡)
− 1
𝑠
(0)
𝑗
(𝑡)

{
1
𝑛

∑︁
𝑖≤𝑖

𝐻
(𝑟)
𝑖
(𝑡)𝑌 (𝑠)

𝑗
(𝑡)𝑒𝜷

′
0 x(𝑠)

𝑗
(𝑡)
𝑤
𝑖 𝑗

12 − 𝑠𝑖 (𝑡, 𝑤
(0)
12 )

}
𝑑𝑀
(𝑠)
𝑗
(𝑡)

−𝑠(𝑤 (0)12 (𝑡))
©­«

1
𝑛

𝑘∑︁
𝑗=1
𝑌
(𝑠)
𝑗
(𝑡)𝑒𝜷

′
0 x(𝑠)

𝑗
(𝑡)ª®¬
−1

−
(
𝑠
(0)
𝑗
(𝑡)

)−1
 𝑑𝑀 (𝑠)𝑗 (𝑡) (20)

−

1
𝑛

∑︁
ß≤ 𝑗

𝐻
(𝑟)
𝑖
(𝑡)𝑌 (𝑠)

𝑗
(𝑡)𝑒𝜷

′
0x(𝑠)

𝑗
(𝑡)
𝑤
𝑖 𝑗

12 − 𝑠(𝑡, 𝑤
(0)
12 )


·
©­«

1
𝑛

𝑘∑︁
𝑗=1
𝑌
(𝑠)
𝑗
(𝑡)𝑒𝜷

′
0 x(𝑠)

𝑗
(𝑡)ª®¬
−1

−
(
𝑠
(0)
𝑗
(𝑡)

)−1
 𝑑𝑀 (𝑠)𝑗 (𝑡).
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1
𝑛

U𝑖 𝑗

3 (𝜷, 𝑡) =
1
𝑛

𝑘∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑛𝑖∑︁
𝑟=1

𝑛 𝑗∑︁
𝑠=1

∫ 𝜏

0

{
𝐻
(𝑠)
𝑗
(𝑡)

(∑︁
𝑖≤ 𝑗

𝑤
𝑖 𝑗

21

)
−
𝑠(𝑡, 𝑤 (0)21 )

𝑠
(0)
𝑖
(𝑡)

}
𝑑𝑀
(𝑟)
𝑖
(𝑡)

− 1
𝑠
(0)
𝑖
(𝑡)

{
1
𝑛

∑︁
𝑖≤𝑖

𝐻
(𝑠)
𝑗
(𝑡)𝑌 (𝑟)

𝑖
(𝑡)𝑒𝜷′0 x(𝑟 )

𝑖
(𝑡)𝑤𝑖 𝑗21 − 𝑠𝑖 (𝑡, 𝑤

(0)
21 )

}
𝑑𝑀
(𝑟)
𝑖
(𝑡)

−𝑠(𝑤 (0)21 (𝑡))

(

1
𝑛

𝑘∑︁
𝑖=1
𝑌
(𝑟)
𝑖
(𝑡)𝑒𝜷′0 x(𝑟 )

𝑖
(𝑡)

)−1

−
(
𝑠
(0)
𝑖
(𝑡)

)−1
 𝑑𝑀 (𝑟)𝑖 (𝑡) (21)

−

1
𝑛

∑︁
ß≤ 𝑗

𝐻
(𝑠)
𝑗
(𝑡)𝑌 (𝑟)

𝑖
(𝑡)𝑒𝜷′0x(𝑟 )

𝑖
(𝑡)𝑤𝑖 𝑗21 − 𝑠(𝑡, 𝑤

(0)
21 )


·

(

1
𝑛

𝑘∑︁
𝑖=1
𝑌
(𝑟)
𝑖
(𝑡)𝑒𝜷′0 x(𝑟 )

𝑖
(𝑡)

)−1

−
(
𝑠
(0)
𝑖
(𝑡)

)−1
 𝑑𝑀 (𝑟)𝑖 (𝑡).

1
𝑛

U𝑖 𝑗

4 (𝜷, 𝑡) =
1
𝑛

𝑘∑︁
𝑗=1

𝑛 𝑗∑︁
𝑠=1

∫ 𝜏

0

𝐻 (𝑠)𝑗 (𝑡)
(∑︁
𝑖≤ 𝑗

𝑤
𝑖 𝑗

22

)
−
𝑠(𝑡, 𝑤 (0)22 )

𝑠
(0)
𝑗
(𝑡)

 𝑑𝑀 (𝑠)𝑗 (𝑡)
− 1
𝑠
(0)
𝑗
(𝑡)

{
1
𝑛

∑︁
𝑖≤𝑖

𝐻
(𝑠)
𝑗
(𝑡)𝑌 (𝑠)

𝑗
(𝑡)𝑒𝜷

′
0 x(𝑠)

𝑗
(𝑡)
𝑤
𝑖 𝑗

22 − 𝑠 𝑗 (𝑡, 𝑤
(0)
22 )

}
𝑑𝑀
(𝑠)
𝑗
(𝑡)

−𝑠(𝑤 (0)22 (𝑡))
©­«

1
𝑛

𝑘∑︁
𝑗=1
𝑌
(𝑠)
𝑗
(𝑡)𝑒𝜷

′
0 x(𝑠)

𝑗
(𝑡)ª®¬
−1

−
(
𝑠
(0)
𝑗
(𝑡)

)−1
 𝑑𝑀 (𝑠)𝑗 (𝑡) (22)

−

1
𝑛

∑︁
ß≤ 𝑗

𝐻
(𝑠)
𝑗
(𝑡)𝑌 (𝑠)

𝑗
(𝑡)𝑒𝜷

′
0x(𝑠)

𝑗
(𝑡)
𝑤
𝑖 𝑗

22 − 𝑠(𝑡, 𝑤
(0)
22 )


·
©­«

1
𝑛

𝑘∑︁
𝑗=1
𝑌
(𝑠)
𝑗
(𝑡)𝑒𝜷

′
0 x(𝑠)

𝑗
(𝑡)ª®¬
−1

−
(
𝑠
(0)
𝑗
(𝑡)

)−1
 𝑑𝑀 (𝑠)𝑗 (𝑡).

Each one of the terms on the right hand side of (19), (20),(21) and (22) are 𝑜𝑝 (1)

when 𝑛→∞ per the regularity conditions I to V. Therefore 𝑛−1U𝑖 𝑗

1 (𝜷, 𝑡) = 𝑜𝑝 (1). Likewise,

under conditions I to V, it can be shown that the remaining three terms in 𝑛−1U[𝑖 𝑗] (𝜷, 𝑡) are

all asymptotically negligible. Hence sup𝑡∈[0,𝜏]𝑛−1U[𝑖 𝑗] (𝜷, 𝑡 |𝜹)
𝑝
→ 0 as 𝑛→∞, completing

the proof of the asymptotic unbiasedness of 𝑛−1U[𝑖 𝑗] (𝜷, 𝑡 |𝜹).
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For the purpose of showing unbiasedness of the score associated with the spatial

correlation parameter, let 𝑣𝑖 𝑗 be the weight between two sites. The weight 𝑣𝑖 𝑗 can be taken

to be a function of the spatial correlation 𝜌𝑖 𝑗 (𝜹) between locations 𝑖 and 𝑗 and will help

increase efficiency of 𝜹. With no loss of generality, it suffices to consider a score process

between two locations of the form

U𝑖 𝑗 (𝑡1, 𝑡2; 𝜹) = v𝑖 𝑗 [𝑀𝑖 (𝑡1)𝑀 𝑗 (𝑡2) − 𝐴𝑖 𝑗 (𝑡1, 𝑡2; 𝜹)],

where 𝐴𝑖 𝑗 (𝑡1, 𝑡2; 𝜹) =
∑𝑛𝑖
𝑟=1

∑𝑛 𝑗

𝑠=1 𝐴
(𝑟,𝑠)
𝑖 𝑗
(𝑡1, 𝑡2; 𝜹) and M𝑖 (𝑡1) =

∑𝑛𝑖
𝑟=1 M(𝑟)

𝑖
(𝑡1), M 𝑗 (𝑡2) =∑𝑛 𝑗

𝑠=1 M(𝑠)
𝑗
(𝑡2). The corresponding estimating function for 𝜹 over all pairs is given by

U(𝑡1, 𝑡2; 𝜹) =
∑︁
𝑖≤ 𝑗

U𝑖 𝑗 (𝑡1, 𝑡2; 𝜹).

The next theorem is on the asymptotic unbiasedness of U(𝑡1, 𝑡2; 𝜹).

Theorem 3 Under Conditions VI and VIII, as 𝑛→∞,

U(𝑡1, 𝑡2; 𝜹) = 1
𝑛

∑︁
(𝑖, 𝑗),𝑖≤ 𝑗

U𝑖 𝑗 (𝑡1, 𝑡2; 𝜹)
𝑝
→ 0.

Proof: The mixing condition along with Chebyshev inequality and Condition VII is applied.

Let 𝐼𝑛 (𝜄𝑛) = {𝑖, 𝑗/∥𝑖 − 𝑗 ∥ ≥ 𝜄𝑛}. The set 𝐼𝑛 (𝜄𝑛) gives the range beyond which the spatial

correlation impact is negligible. The cut off point 𝜄𝑛 depends on the number of locations.

In what follows, 𝐴′ denote complement of a set 𝐴. For 𝜖 > 0, via Chebyshev inequality and
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Condition VII,

𝑃
©­«𝑛−1

∑︁
(𝑖, 𝑗),𝑖≤ 𝑗

U𝑖 𝑗 (𝑡1, 𝑡2; 𝜹) > 𝜖ª®¬ = P ©­«
∑︁
(𝑖, 𝑗),𝑖≤ 𝑗

v𝑖 𝑗M𝑖 (𝑡1)M 𝑗 (𝑡2) > 𝑛𝜖

+
∑︁
(𝑖, 𝑗),𝑖≤ 𝑗

v𝑖 𝑗 𝐴𝑖 𝑗 (𝑡1, 𝑡2)ª®¬
≤

∑
(𝑖, 𝑗),𝑖≤ 𝑗 E(v𝑖 𝑗𝑀𝑖 (𝑡1)𝑀 𝑗 (𝑡2))
(𝑛𝜖 +∑

(𝑖, 𝑗),𝑖≤ 𝑗 v𝑖 𝑗 𝐴𝑖 𝑗 (𝑡1, 𝑡2))2

≤
∑
(𝑖, 𝑗)∈𝐼𝑛 (𝜄𝑛) E(𝑀𝑖 (𝑡1)𝑀 𝑗 (𝑡2))

𝑛2𝜖2

+
∑
(𝑖, 𝑗)∈𝐼′𝑛 (𝜄𝑛) E(𝑀𝑖 (𝑡1)𝑀 𝑗 (𝑡2))

𝑛2𝜖2 .

With a proper choice of mixing function, the last inequality in previous display converges

to 0 under the mixing condition VII.

5. LARGE SAMPLE PROPERTIES

This section is devoted to the large sample properties of the estimators. Let 𝜽 =

(𝜷, 𝜹), U1(𝜷, 𝑡) = U[𝑖 𝑗] (𝑡, 𝜷|𝜹0) and U2(𝑡1, 𝑡2; 𝜹) = U𝑖 𝑗 (𝑡1, 𝑡2; 𝜹). Consider the vector of

score processes V(𝑡) = (U1(𝜷, 𝑡),U2(𝑡1, 𝑡2; 𝜹))′ such that

V(𝜽; 𝑡, 𝑡1, 𝑡2) = V(𝜽) = 1
𝑛

∑︁
𝑖≤ 𝑗

©­­«
U1(𝜷)

U2(𝜹)

ª®®¬ =
1
𝑛

∑︁
𝑖≤ 𝑗

©­­«
U[𝑖 𝑗] (𝑡, 𝜷|𝜹0)

U𝑖 𝑗 (𝑡1, 𝑡2; 𝜹)

ª®®¬ :=
1
𝑛

∑︁
𝑖≤ 𝑗

V𝑖 𝑗 (𝜽).

(23)

The in-probability limit of the variance covariance matrix of V(𝜽; 𝑡, 𝑡1, 𝑡2) is given

by

𝚺𝑛 =
1
𝑛

∑︁
𝑖≤ 𝑗

(
𝜕

𝜕𝜽
V𝑖 𝑗 (𝜽)

)
=

©­­«
∇𝜷U1(𝜷, 𝑡) ∇𝜹U1(𝜷, 𝑡)

∇𝜷U2(𝜹, 𝑡) ∇𝜹U2(𝜹; 𝑡1, 𝑡2)

ª®®¬
𝑝
→ 𝚺 =

©­­«
𝚺11 𝚺12

𝚺21 𝚺22

ª®®¬ . (24)

The next theorem is on the existence and consistency of the solution to V(𝜽) = 0.
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Theorem 4 (a) There exists a sequence of solutions 𝜷̂𝑛 and 𝜹𝑛 to the sequence of estimating

equations U1(𝜷, 𝑡) = 0 and U2(𝑡1, 𝑡2; 𝜹) = 0.

(b) Under Conditions I to VIII, and the infill asymptotic, 𝜷̂𝑛
𝑝
→ 𝜷0 and 𝜹𝑛

𝑝
→ 𝜹0.

Before proving the theorem, a discussion on 𝜆̂0𝑖 (𝑡), 𝑖 = 1, ..., 𝑘 is warranted since its

consistency is required for the in-probability limit of the score variance. Recall that 𝜆̂0𝑖 (𝑡)

is given by

𝜆̂0𝑖 (𝑡) =
∑𝑛𝑖
𝑟=1 𝑑𝑁

(𝑟)
𝑖
(𝑡)

𝑆
(0)
𝑖
(𝜷, 𝑡)

,

and is a jump process and will possibly loses efficiency for large 𝑛. However, any loss of

efficiency using it for the limit is minor as compared to using a more complicated smoothed

estimator obtained via kernel and proposed in Ramlau-Hansen (1983) given by

𝜆̂𝐾0𝑖 (𝑡) =
1
ℎ𝑛

∫ 𝑡

0
𝐾

(
𝑡 − 𝑢
ℎ𝑛

)
𝑑Λ̂0𝑖 (𝑢),

where𝐾 (·) is some kernel function and ℎ𝑛, a sequence of positive constants. Although 𝜆̂𝐾0𝑖 (𝑡)

is smoother, both are, however consistent for 𝜆0𝑖 (𝑡), that is sup𝑡∈[0,𝜏] |𝜆̂0𝑖 (𝑡) − 𝜆0𝑖 (𝑡) |
𝑝
→ 0.

This proceeds to using the consistent version 𝜆̂0𝑖 (𝑡).

Proof: The inverse function theorem of Foutz (1976) is applied. Three conditions

need to be satisfied. (i) asymptotic unbiasedness of the estimating functions, (ii) existence

and continuity of the partial derivatives matrix and (iii) the negative definiteness of the

matrix of partial derivatives at the true parameter value 𝜽0. Condition (i) has been already

shown in Theorem 2 and Theorem 3. It remains to show (ii) and (iii). Consider U𝑖 𝑗

1 (𝑡) given

by

U𝑖 𝑗

1 (𝑡) =
1
𝑛

∑︁
𝑖≤ 𝑗

𝑛𝑖∑︁
𝑟=1

∫ 𝜏

0
𝑤
𝑖 𝑗

11𝐻
(𝑟)
𝑖
(𝑢, 𝜷)𝑀 (𝑟)

𝑖
(𝑑𝑢).
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Since 𝜆0𝑖 (𝑡) is unknown, substitute it by its consistent Breslow estimator. So the version is

𝑈̂
𝑖 𝑗

1 (𝑡) given by

𝑈̂
𝑖 𝑗

1 (𝑡) =
1
𝑛

∑︁
𝑖≤ 𝑗

𝑛𝑖∑︁
𝑟=1

∫ 𝑡

0
𝑤
𝑖 𝑗

11𝐻
(𝑟)
𝑖
(𝑢, 𝜷)

·
{
𝑑𝑁
(𝑟)
𝑖
(𝑢) − 𝑌 (𝑟)

𝑖
(𝑢)𝑒𝜷′x

(𝑟 )
𝑖
(𝑢)

·
(∑𝑛𝑖

𝑟=1 𝑑𝑁
(𝑟)
𝑖
(𝑢)

𝑆
(0)
𝑖
(𝜷, 𝑢)

)}
.

The gradient of Û𝑖 𝑗

1 (𝑡) with respect to 𝜷 is

∇𝜷𝑈̂
𝑖 𝑗

1 (𝜷, 𝜏) =
1
𝑛

∑︁
𝑖≤ 𝑗

𝑛𝑖∑︁
𝑟=1

∫ 𝜏

0

[
∇𝜷𝐻

(𝑟)
𝑖
(𝑢, 𝜷)

]
·𝑤𝑖 𝑗11

(
𝑑𝑁
(𝑟)
𝑖
(𝑢) − 𝑌 (𝑟)

𝑖
(𝑢)𝑒𝜷′x

(𝑟 )
𝑖
(𝑢)𝜆̂0𝑖 (𝑢)𝑑𝑢

)
+1
𝑛

∑︁
𝑖≤ 𝑗

𝑛𝑖∑︁
𝑟=1

∫ 𝜏

0
𝐻
(𝑟)
𝑖
(𝑢, 𝜷)𝑤𝑖 𝑗11

[
− 𝑌 (𝑟)

𝑖
x(𝑟)
𝑖
(𝑢)𝑒𝜷′x

(𝑟 )
𝑖
(𝑢)𝜆̂0𝑖 (𝑢)𝑑𝑢

+𝑌 (𝑟)
𝑖
(𝑢)𝑒𝜷′x

(𝑟 )
𝑖
(𝑢) ⊗

𝑆
(1)
𝑖
(𝜷, 𝑢)

𝑆
(0)
𝑖
(𝜷, 𝑢)

𝜆̂0𝑖 (𝑢)𝑑𝑢
]

𝑝
→ 𝑜𝑝 (1) −

∫ 𝜏

0

[
𝑠

(
𝑢; 𝜷, 𝑤 (0)11

)
⊗
𝑠
(1)
𝑖
(𝜷, 𝑢)

𝑠
(0)
𝑖
(𝜷, 𝑢)

− 𝑠
(
𝑢; 𝜷, 𝑤 (1)11

)]
𝜆0𝑖 (𝑢)𝑑𝑢.
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Likewise, substituting the Breslow estimator in Û𝑖 𝑗

2 (𝑡), Û𝑖 𝑗

3 (𝑡) and Û𝑖 𝑗

4 (𝑡) the gradients of

𝑈̂
𝑖 𝑗

2 (𝑡), 𝑈̂
𝑖 𝑗

3 (𝑡) and 𝑈̂𝑖 𝑗4 (𝑡) are

∇𝜷𝑈̂
𝑖 𝑗

2 (𝜷, 𝜏) =
1
𝑛

∑︁
𝑖≤ 𝑗

𝑛 𝑗∑︁
𝑠=1

𝑛𝑖∑︁
𝑟=1

∫ 𝜏

0

[
∇𝜷𝐻

(𝑠)
𝑗
(𝑢, 𝜷)

]
×𝑤𝑖 𝑗12

(
𝑑𝑁
(𝑟)
𝑖
(𝑢) − 𝑌 (𝑟)

𝑖
(𝑢)𝑒𝜷′x

(𝑟 )
𝑖
(𝑢)𝜆̂0𝑖 (𝑢)𝑑𝑢

)
+1
𝑛

∑︁
𝑖≤ 𝑗

𝑛𝑖∑︁
𝑟=1

∫ 𝜏

0
𝐻
(𝑠)
𝑗
(𝑢, 𝜷)𝑤𝑖 𝑗12

[
− 𝑌 (𝑟)

𝑖
(𝑢)x(𝑟)

𝑖
(𝑢)𝑒𝜷′x

(𝑟 )
𝑖
(𝑢)𝜆̂0𝑖 (𝑢)𝑑𝑢

+𝑌 (𝑟)
𝑖
(𝑢)𝑒𝜷′x

(𝑟 )
𝑖
(𝑢) ⊗

𝑆
(1)
𝑖
(𝜷, 𝑢)

𝑆
(0)
𝑖
(𝜷, 𝑢)

𝜆̂0𝑖 (𝑢)𝑑𝑢
]

𝑝
→ 𝑜𝑝 (1) −

∫ 𝜏

0

[
𝑠

(
𝑡; 𝜷, 𝑤 (0)12

)
⊗
𝑠
(1)
𝑖
(𝜷, 𝑢)

𝑠
(0)
𝑖
(𝜷, 𝑢)

− 𝑠
(
𝑢; 𝜷, 𝑤 (1)12

)]
𝜆0𝑖 (𝑢)𝑑𝑢.

∇𝜷𝑈̂
𝑖 𝑗

3 (𝜷, 𝜏) =
1
𝑛

∑︁
𝑖≤ 𝑗

𝑛 𝑗∑︁
𝑠=1

𝑛𝑖∑︁
𝑟=1

∫ 𝜏

0

[
∇𝜷𝐻

(𝑟)
𝑖
(𝑢, 𝜷)

]
×𝑤𝑖 𝑗21

(
𝑑𝑁
(𝑠)
𝑗
(𝑢) − 𝑌 (𝑠)

𝑗
(𝑢)𝑒𝜷

′x(𝑠)
𝑗
(𝑢)
𝜆̂0 𝑗 (𝑢)𝑑𝑢

)
+1
𝑛

∑︁
𝑖≤ 𝑗

𝑛𝑖∑︁
𝑟=1

∫ 𝜏

0
𝐻
(𝑟)
𝑖
(𝑢, 𝜷)𝑤𝑖 𝑗21

 − 𝑌 (𝑠)𝑗 (𝑢)x(𝑠)𝑗 (𝑢)𝑒𝜷
′x(𝑠)

𝑗
(𝑢)
𝜆̂0 𝑗 (𝑢)𝑑𝑢

+𝑌 (𝑠)
𝑗
(𝑢)𝑒𝜷

′x(𝑠)
𝑗
(𝑢) ⊗

𝑆
(1)
𝑗
(𝜷, 𝑢)

𝑆
(0)
𝑗
(𝜷, 𝑢)

𝜆̂0 𝑗 (𝑢)𝑑𝑢


𝑝
→ 𝑜𝑝 (1) −

∫ 𝜏

0

𝑠
(
𝑡; 𝜷, 𝑤 (0)21

)
⊗
𝑠
(1)
𝑗
(𝜷, 𝑢)

𝑠
(0)
𝑗
(𝜷, 𝑢)

− 𝑠
(
𝑢; 𝜷, 𝑤 (1)21

) 𝜆0 𝑗 (𝑢)𝑑𝑢.
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∇𝜷𝑈̂
𝑖 𝑗

4 (𝜷, 𝜏) =
1
𝑛

∑︁
𝑖≤ 𝑗

𝑛 𝑗∑︁
𝑠=1

∫ 𝜏

0

[
∇𝜷𝐻

(𝑠)
𝑗
(𝑢, 𝜷)

]
·𝑤𝑖 𝑗22

(
𝑑𝑁
(𝑠)
𝑗
(𝑢) − 𝑌 (𝑠)

𝑗
(𝑢)𝑒𝜷

′x(𝑠)
𝑗
(𝑢)
𝜆̂0 𝑗 (𝑢)𝑑𝑢

)
+1
𝑛

∑︁
𝑖≤ 𝑗

𝑛 𝑗∑︁
𝑠=1

∫ 𝜏

0
𝐻
(𝑠)
𝑗
(𝑢, 𝜷)𝑤𝑖 𝑗22

 − 𝑌 (𝑠)𝑗 x(𝑠)
𝑗
(𝑢)𝑒𝜷

′x(𝑠)
𝑗
(𝑢)
𝜆̂0 𝑗 (𝑢)𝑑𝑢

+𝑌 (𝑠)
𝑗
(𝑢)𝑒𝜷

′x(𝑠)
𝑗
(𝑢) ⊗

𝑆
(1)
𝑗
(𝜷, 𝑢)

𝑆
(0)
𝑗
(𝜷, 𝑢)

𝜆̂0 𝑗 (𝑢)𝑑𝑢


𝑝
→ 𝑜𝑝 (1) −

∫ 𝜏

0

𝑠
(
𝑢; 𝜷, 𝑤 (0)22

)
⊗
𝑠
(1)
𝑗
(𝜷, 𝑢)

𝑠
(0)
𝑗
(𝜷, 𝑢)

− 𝑠
(
𝑢; 𝜷, 𝑤 (1)22

) 𝜆0 𝑗 (𝑢)𝑑𝑢.

Taking the gradient with respect to 𝜷 of all four terms in 𝑈̂ [𝑖 𝑗] (𝑡), and taking their

limits according to the regularity conditions, obtain that, at 𝜽0, the first block of 𝚺, namely

𝚺11 =
(
𝝈𝑖 𝑗

)
𝑖, 𝑗=1,...,𝑘 with the (𝑖, 𝑗)th element given by

𝝈𝑖 𝑗 = −
∫ 𝜏

0

[
𝑠

(
𝑢; 𝜷, 𝑤 (0)11

)
⊗
𝑠
(1)
𝑖
(𝜷, 𝑢)

𝑠
(0)
𝑖
(𝜷, 𝑢)

− 𝑠
(
𝑢; 𝜷, 𝑤 (0)12

)
⊗
𝑠
(1)
𝑖
(𝜷, 𝑢)

𝑠
(0)
𝑖
(𝜷, 𝑢)

−𝑠
(
𝑢; 𝜷, 𝑤 (1)11

)
− 𝑠

(
𝑢; 𝜷, 𝑤 (1)12

) ]
𝜆0𝑖 (𝑢)𝑑𝑢

−
∫ 𝜏

0

𝑠
(
𝑢; 𝜷, 𝑤 (0)21

)
⊗
𝑠
(1)
𝑖
(𝜷, 𝑢)

𝑠
(0)
𝑖
(𝜷, 𝑢)

− 𝑠
(
𝑢; 𝜷, 𝑤 (0)22

)
⊗
𝑠
(1)
𝑗
(𝜷, 𝑢)

𝑠
(0)
𝑗
(𝜷, 𝑢)

−𝑠
(
𝑢; 𝜷, 𝑤 (1)22

)
− 𝑠

(
𝑢; 𝜷, 𝑤 (1)21

) ]
𝜆0 𝑗 (𝑢)𝑑𝑢.

Note that 𝝈𝑖 𝑗 is a 𝑝 × 𝑝 matrix. Obviously 𝚺12 = 0, a matrix of 0. The 𝚺22 block is the

gradient of U2(𝜹; 𝑡1, 𝑡2) with respect to 𝜹. To see how it is derived, let v𝑖 𝑗 be a 1 × 𝑞 row

vector and ∇𝜹A𝑖 𝑗 (𝑡1, 𝑡2; 𝜹) defined by

v𝑖 𝑗 = (𝑣𝑖 𝑗1 , ..., 𝑣
𝑖 𝑗
𝑞 ); ∇𝜹A𝑖 𝑗 (𝑡1, 𝑡2; 𝜹) =

(
𝜕

𝜕𝛿1
𝐴𝑖 𝑗 , ...,

𝜕

𝜕𝛿𝑞
𝐴𝑖 𝑗

)
:= ∇𝜹A𝑖 𝑗
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respectively. To make notation compact, for 𝑙 = 1, ..., 𝑞, let

𝜕

𝜕𝛿𝑙
𝐴𝑖 𝑗 (𝑡1, 𝑡2; 𝜹) = 𝜕

𝜕𝛿𝑙
𝐴𝑖 𝑗 ((𝛿)) = ∇𝛿𝑙𝐴𝑖 𝑗 (𝛿) := 𝐴𝑖 𝑗

𝛿𝑙
.

Then, the (𝑖, 𝑗)th element of 𝚺22 is the 𝑞 × 𝑞 matrix given by

𝚺𝑖 𝑗22(𝜹) = v𝑖 𝑗 ⊗ ∇𝜹A𝑖 𝑗 =

©­­­­­­­­«

𝑣
𝑖 𝑗

1 𝐴
𝑖 𝑗

𝛿1
𝑣
𝑖 𝑗

1 𝐴
𝑖 𝑗

𝛿2
· · · 𝑣

𝑖 𝑗

1 𝐴
𝑖 𝑗

𝛿𝑞

𝑣
𝑖 𝑗

2 𝐴
𝑖 𝑗

𝛿2
𝑣
𝑖 𝑗

2 𝐴
𝑖 𝑗

𝛿2
· · · 𝑣

𝑖 𝑗

2 𝐴
𝑖 𝑗

𝛿𝑞

...
...

...
...

𝑣
𝑖 𝑗
𝑞 𝐴

𝑖 𝑗

𝛿1
𝑣
𝑖 𝑗
𝑞 𝐴

𝑖 𝑗

𝛿2
· · · 𝑣

𝑖 𝑗
𝑞 𝐴

𝑖 𝑗

𝛿𝑞

ª®®®®®®®®¬
. (25)

Recall also that

∇𝛿𝑙𝐴𝑖 𝑗 (𝜹) =
𝑛𝑖∑︁
𝑟=1

𝑛 𝑗∑︁
𝑠=1

𝜕

𝜕𝛿𝑙
𝐴
(𝑟,𝑠)
𝑖 𝑗
(𝑡1, 𝑡2, ; 𝜹).

So that, for example, the (1, 1) component of 𝚺𝑖 𝑗22 is given by

[
𝚺𝑖 𝑗22

]
(1,1)

= 𝑣
𝑖 𝑗

1 𝐴
𝑖 𝑗

𝛿1
= 𝑣

𝑖 𝑗

1

𝑛𝑖∑︁
𝑟=1

𝑛 𝑗∑︁
𝑠=1

𝜕

𝜕𝛿1
𝐴
(𝑟,𝑠)
𝑖 𝑗
(𝑡1, 𝑡2; 𝜹).

The in-probability limit of
[
𝚺𝑖 𝑗22

]
(1,1)

is

[
𝚺𝑖 𝑗22

]
(1,1)

= lim
𝑛→∞

1
𝑛

∑︁
𝑖≤ 𝑗

v𝑖 𝑗
[
∇𝜹1A

𝑖 𝑗 (𝑡1, 𝑡2; 𝜹)
]′
.

By virtue of the previous derivations, a compact notation for 𝚺22 is then

𝚺22 = lim
𝑛→∞

1
𝑛

∑︁
𝑖≤ 𝑗

𝑛𝑖∑︁
𝑟=1

𝑛 𝑗∑︁
𝑠=1

v𝑖 𝑗 ⊗ ∇𝜹𝐴
(𝑟,𝑠)
𝑖 𝑗
(𝑡1, 𝑡2; 𝜹).

That limiting matrix is assumed to exist per Condition VII and is negative definite.
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Now consider the block 𝚺21. It is easy to show that the (𝑖, 𝑗)𝑡ℎ element, 𝑖 = 𝑗 =

1, ..., 𝑘 of the gradient of U2(𝑡1, 𝑡2; 𝜹) with respect to 𝜷 is 𝚺𝑖 𝑗21

𝚺𝑖 𝑗21 =

∫ 𝜏

0
v𝑖 𝑗 ⊗

[{
𝑛𝑖∑︁
𝑟=1

𝐻
(𝑟)
𝑖
(𝑢, 𝜷) −

𝑆
(1)
𝑖
(𝜷, 𝑢)

𝑆
(0)
𝑖
(𝜷, 𝑢)

}
·
(
𝑛𝑖∑︁
𝑟=1

𝑌
(𝑟)
𝑖
(𝑢)𝑒𝜷′x

(𝑟 )
𝑖
(𝑢)

) {
𝑛 𝑗∑︁
𝑠=1

𝑀
(𝑠)
𝑗
(x(𝑠)
𝑗
(𝑢))

+
𝑛𝑖∑︁
𝑟=1

𝑛 𝑗∑︁
𝑠=1

𝐴
(𝑟,𝑠)
𝑖 𝑗
(𝑑𝑢1, 𝑢2; 𝜌(𝜹))

}]
𝜆̂0𝑖 (𝑢)𝑑𝑢

+
∫ 𝜏

0
v𝑖 𝑗 ⊗


𝑛 𝑗∑︁
𝑠=1

𝐻
(𝑠)
𝑗
(𝑢, 𝜷) −


𝑆
(1)
𝑗
(𝜷, 𝑢)

𝑆
(0)
𝑗
(𝜷, 𝑢)


·
𝑛 𝑗∑︁
𝑠=1
𝑌
(𝑠)
𝑗
(𝑢)𝑒𝜷

′x(𝑠)
𝑗
(𝑢)

{
𝑛𝑖∑︁
𝑟=1

𝑀
(𝑟)
𝑖
(x(𝑟)
𝑖
(𝑢))

+
𝑛𝑖∑︁
𝑟=1

𝑛 𝑗∑︁
𝑠=1

𝐴
(𝑟,𝑠)
𝑖 𝑗
(𝑢1, 𝑑𝑢2; 𝜌(𝜹))

}]
𝜆̂0 𝑗 (𝑢)𝑑𝑢.

Note that 𝚺𝑖 𝑗21 is a 𝑝 × 𝑝 matrix and the in-probability limit. Assuming the integration

operation is interchangeable and limit is given by

E(𝚺𝑖 𝑗21) = lim
𝑛→∞

1
𝑛

∑︁
(𝑖, 𝑗),𝑖≤ 𝑗

𝚺𝑖 𝑗21.

Hence, the partial derivative matrix converges to a matrix 𝚺 which is negative definite

at the true parameter value (𝜷0, 𝜹0). It then follows from the inverse function theorem

of Foutz (1976) that there exists a unique sequence ( 𝜷̂, 𝜹) such that V̂(𝑡; 𝜷̂, 𝜹) = 0 and

( 𝜷̂, 𝜹)
𝑝
→ (𝜷0, 𝜹0) as 𝑛→∞.

The next theorem is on the asymptotic normality of ( 𝜷̂𝑛, 𝜹𝑛) when properly stan-

dardized.

Theorem 5 Under regularity Conditions I and VIII,

√
𝑛{(𝜷𝑛

′
, 𝜹𝑛
′)′ − (𝜷′0, 𝜹

′
0)
′} 𝑑→ N𝑝+𝑞 (0𝑝+𝑞,Φ),
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where 𝚽 is a (𝑝 + 𝑞) × (𝑝 + 𝑞) matrix given by 𝚽 = 𝚺−1𝛀𝚺−1.

Proof: The central limit theorem is applied for random field given in Remarks (3), page 112

of Guyon (1995). Taylor expansion of V(𝑡, 𝜽) at 𝜽 = 𝜽0 yields

√
𝑛(𝜽𝑛 − 𝜽0) =

[
𝜕

𝜕𝜽
V(𝑡, 𝜽) |𝜽=𝜽∗

]−1√
𝑛V(𝑡, 𝜽0),

where 𝜽∗ is between 𝜽𝑛 and 𝜽0, and 𝜽∗
𝑝
→ 𝜷0 under the infill asymptotic domain setting.

Furthermore, note that [
𝜕

𝜕𝜽
V(𝑡, 𝜽) |𝜽=𝜽∗

]
𝑝
→ 𝚺

as 𝑛→ ∞. The 𝛀 matrix in 𝚽 is the variance of the score vector, which under Conditions

V and VI is assumed to exist and converges to a positive definite matrix. The expression

of 𝚽 is obtained by applying the result of multivariate central limit theorem. Finally, the

theorem follows upon applying Remark(3), page 112 of Guyon (1995).

6. NUMERICAL ASSESSMENT AND APPLICATION

This section discusses how the simulation study was done together with the illustra-

tive application.

6.1. NUMERICAL ASSESSMENT

This begins with the selection of the different regions that will be used. The package

raster on Geographic Data Analysis and Modeling contains the geographical coordinates

of many countries. The United States was used the country.

6.1.1. Regions. The raster package in R contains the data on the geographical

coordinates of well defined subdivisions in many countries. This package was used to get

the coordinates for states, counties etc... for the United States. Depending on the country,

this package also allows users to select location data with several levels of depth. For
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the United States, the users can specify either Level 1 for statewise locations or Level 2

for the county wise locations. We use Level 2 data from raster for the simulations. The

geographical centers of the 3117 contiguous counties, excluding Hawaii and Alaska are our

I𝑖, 𝑖 = 1, ..., 3117. The other alternative is to choose a state and randomly select counties

within the selected state. In Figure 2, the state of Missouri is provided as an example with

the coordinates for a couple of the counties. For example, the longitude and latitude of the

center of Newton county in the state of Missouri is (−94.34, 36.91).

(-94.34001,36.90553)→
Newton

← ( -90.53725, 38.26482)
Jefferson

( -92.14942 , 40.45480)
↓

Scotland

Figure 2. Missouri counties map

6.1.2. Simulation Design. A random sample of {𝑛𝑖 : 𝑖 = 1, .., 3117} people from

each county was obtained where 𝑛𝑖 is proportional to the county population from the lat-

est census available in R while making sure 𝑛 =
∑3117
𝑖=1 𝑛𝑖 ∈ {93510, 155850, 311700}.

Two covariates were considered x = (𝑥1, 𝑥2), where 𝑥1 follows the binomial distribu-

tion with parameters 𝑛 = 𝑛𝑖 and 𝑝 = 0.5 and 𝑥2 ∼ N(0, 0.5) resulting in a mixture
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of categorical and quantitative covariates. The spatial correlation parameter was set at

𝜹 = (𝛿1, 𝛿2) = (range, sill) = (0.5, 1.5). The regression coefficient vector in the Cox

model is 𝜷 = (𝛽1, 𝛽2) = (1, 2). As for the proportion of censored observation, less censor-

ing to severe censoring is allowed in order to assess its impact on the spatial correlation.

The proportion of censored units was taken to be in {5%, 10%, 20%, 25%}, allowing for

mild to severe censoring. For the baseline hazard, the Weibull hazard was used given by

𝜆0(𝑡) = 𝜃1𝜃2(𝜃1𝑡)𝜃2−1. We set 𝜃1 = 1 since it is the scale parameter and is irrelevant in our

simulation. However, the shape parameter 𝜃2 was taken in {0.8, 1.5} to allow for increasing

failure over time for 𝜃2 = 2 and decreasing for 𝜃2 = 0.8.

6.1.3. Event Times Generation. Under the Cox model with Weibull baseline haz-

ard, failure times were generated via the probit transformation using the following steps:

(i) If Φ(·) denotes the probit transformation, then solving for the Cox’s model, we obtain

for (𝑖, 𝑟) ∈ L × L𝑖

Λ0𝑖 (𝑇 (𝑟)𝑖 ) = − ln
(
1 −Φ(𝑇 (𝑟)

𝑖
)
)

exp[−𝜷x(𝑟)
𝑖
(𝑡)] .

Solving for 𝑇 (𝑟)
𝑖

, we obtain

𝑇
(𝑟)
𝑖

= Λ−1
0𝑖

[
− ln

(
1 −Φ(𝑇 (𝑟)

𝑖
)
)

exp(−𝜷x(𝑟)
𝑖
(𝑡))

]
,

where Λ−1
0𝑖 (·) is the inverse of the Weibull cumulative hazard given by Λ−1

0 (𝑡) = 𝑡
1
𝜃2 .

(ii) For (𝑖, 𝑟) ∈ L × L𝑖, the 𝑇 (𝑟)
𝑖

s are generated using the expression

𝑇
(𝑟)
𝑖

=

[
− ln

(
1 −Φ(𝑇 (𝑟)

𝑖
)
)

exp(−𝜷x(𝑟)
𝑖
(𝑡))

] 1
𝜃1
,

where Φ(𝑇 (𝑟)
𝑖
) ∼ U(0, 1).



55

6.1.4. Simulated Data. For the purpose of estimating parameters, the study con-

siders two spatial correlation models, namely the exponential and Gaussian model as given

in (4), (5) and powered spatial correlation function. For all models, 500 simulation repli-

cations were performed with each parameter specification and sample size combination.

The results are given in Table 1, Table 2, Table 3, and Table 4. CP stands for censoring

percentage.

6.1.5. Comments on The Simulation Results. The results of the simulation study

indicate that the estimators of the spatial correlation 𝜹 as well as regression coefficients 𝜷

perform well. One thing to note here is that as the percentage of censoring increases, the

biases of the 𝜷 increase regardless of the sample size, whereas the biases of the 𝜹 remain

very steady close to each other. This makes sense since the spatial correlation parameters is

the correlation between two areas so it is not affected by large samples. However, the bias

of 𝜷 will increase because higher censoring translates into less failure times. There is no

significant difference in the results between the exponential and Gaussian spatial correlation

models. The reason why this is so is both have exponential components so the impact of the

large sample will be minor. However, the standard deviations of the estimates of 𝜹 remain

without any noticeable pattern with the increasing sample size.

6.2. ILLUSTRATIVE APPLICATION

The foregoing procedures are applied to the Leukemia survival data which was

also analyzed in Henderson et al. (2002). The data contains 1, 043 cases of Acute Myeloid

Leukemia (AML) which were recorded between 1982 and 1998 at 24 administrative districts.

It contains the time 𝑇 (𝑟)
𝑖

for each unit (𝑖, 𝑟) ∈ L × L𝑖, and the censoring indicator

𝛿
(𝑟)
𝑖

. There were 16% of censored observations. Four covariates were available, that

is x = (age, gender,wbc, tpi), where wbc stands for white blood cell count and tpi for
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Townsend score. The Townsend score is a qualitative value in [−7, 10] describing quality

of life in a given area. High values indicate less affluent areas. The factors affecting survival

were investigated while accounting for spatial correlation.
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Figure 3. Leukemia data with the 24 districts

Figure 3 shows residential locations of the AML cases during the observation

window. Henderson et al. (2002) investigated whether the survival distribution in AML

in adults is homogeneous across the region after allowing for known risk factors. In their

manuscript, they employ a multivariate frailty that incorporates the effects of covariates,
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individual heterogeneity, and spatial traits. This study’s approach and theirs are different.

Whereas both use the Cox model as the instantaneous failure rate, their approach in studying

spatial variation is done via the use of conditional frailty, where the conditioning random

variable for all 24 districts is the vector of mean frailty 𝝁 = (𝜇1, ..., 𝜇24). Specifically, if

𝑍𝑟 is the frailty for unit 𝑟 in location I 𝑗 , and 𝜇 𝑗 the mean frailty of all individuals in that

location, they postulate that

𝑍𝑟 |𝜇 𝑗 ∼ Γ(𝜉−1, (𝜉𝜇 𝑗 )−1),
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with a N(1,𝚵) on 𝜇 𝑗 where 𝚵 measure the spatial variation between districts. Whereas

they use a conditional frailty model with variance covariance matrix that is a function of the

distance between regions, we embed the spatial correlation in the transformed failure times

giving us a multivariate Gaussian random field with variance covariance that is a function

of the distance between regions via the Matérn spatial correlation function.
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Figure 5. Survival curve of area categories

Before applying our methods, a set of initial data analysis was run. Figure 5 shows

the Kaplan-Meier plots by gender. It is clear that survival curve for the female group lies

above that of male group. This concurs with the summary statistics in Table5. The variable

tpi represents the Townsend score. The higher values for tpi indicates less affluent areas.

All individuals in the study were grouped into 3 categories based on tpi. If tpi of a person is

lower than −1.5, he or she is categorized into Rich group. Likewise, if tpi of a person falls

between −1.5 and −4.5, the person is grouped into Medium category. Lastly, if a persons

tpi is greater than 4.5, that person is categorized into Poor group. Figure 5 presents the
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Table 5. Summary statistics of Leukemia data by gender

Female Male

Survival time Min 1.0 1.0
Q1 37.0 45.5
Q2 182.0 186.0
Mean 581.5 489.0
Q3 574.8 490.5
Max 4922.0 4977.0

Age Min 14.00 14.0
Q1 48.00 50.0
Q2 65.00 65.0
Mean 60.98 60.5
Q3 75.00 74.0
Max 92.00 92.0

wbc Min 0.00 0.00
Q1 1.80 1.70
Q2 7.35 8.10
Mean 40.42 36.94
Q3 36.60 41.10
Max 500.00 500.00

survival curves according to these three areas. From near day 100 to 5000 survival curve

of Medium group always lies below than survival curves of other two groups. Moreover,

comparing data of Poor and Rich groups, from day 0 to near day 2400, survival curve for

Rich group is always above the Poor group. But, interestingly from near day 2400 to 5000

survival curve for poor group is above that of Rich group.

These methods are used to analyze the Leukemia data. Factors that may increase the

risk of acute myeloid leukemia include age, gender, prior cancer treatment, environmental

factors, blood disorder, genetic disorder, to name a few. Only covariates in the data, were

considered assuming that age at onset of acute myeloid leukemia (AML) on adults follows

the Cox model. The Mat𝑒rn model was used to account for the spatial dependence between
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pair of districts. The hazard function for an 𝑟 𝑡ℎ unit in district 𝑖 is given by

𝜆
(𝑟)
𝑖
(𝑡) = 𝜆0𝑖 (𝑡) exp[𝛽𝑎𝑔𝑒 × age + 𝛽𝑠𝑒𝑥 × sex + 𝛽𝑤𝑝𝑐 × wpc]
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Figure 6. Survival curve of gender

The estimated regression coefficients and the spatial correlation parameters using

the estimating functions in Section 5 were obtained. And also the associated standard

deviations and confidence intervals were calculated. The results are presented in Table 6.

The results of Henderson’s approach are also presented in Table 7. The results in both

tables show in both models that all regression coefficient are significant concurring with

the fact that all the covariates age, sex, and wpc increase the risk of aml. That is more

so with our models, and the results concur with our preliminary analysis of the data. The

estimated value of the range, which is 1.2418 indicates that the impact of environment

vanishes when two units are separated by at least 1.2418 units of distance. The log pseudo

marginal likelihoods (LPML) for each model is also given. Despite the fact that this model
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has more parameters, it has a better LPML, indicating it is the best model between the

two. However, this needs to be taken with cautious and deep investigation such as each unit

personal geographical location would be needed to arrive at the best model in this situation.

Table 6. Summary of means and standard deviations of regression parameters and spatial
parameters for Leukemia data using our models. 𝐿𝑃𝑀𝐿 = −5991.082

Mean Median Std.Dev. 95%CI-Low 95% CI-Upp

age 30.65 ×10−3 27.95 ×10−3 3.70 ×10−3 27.95 ×10−3 34.69 ×10−3

sex 70.40 ×10−3 70.61×10−3 0.30 ×10−3 70.07 ×10−3 70.61 ×10−3

wbc 3.00 ×10−3 3.03 ×10−3 0.04 ×10−3 2.95 ×10−3 3.03 ×10−3

tpi 34.30 ×10−3 33.77 ×10−3 0.72 ×10−3 33.77 ×10−3 35.09 ×10−3

sill 891.25 ×10−3 913.18 ×10−3 48.35 ×10−3 815.88 ×10−3 913.18 ×10−3

range 1241.79 ×10−3 1201.53 ×10−3 90.02 ×10−3 1201.53 ×10−3 1382.70 ×10−3

Table 7. Summary of means and standard deviations of regression parameters and spatial
parameters for Leukemia data using Henderson’s model: 𝐿𝑃𝑀𝐿 = −5925.385

Mean Median Std.Dev. 95%CI-Low 95% CI-Upp

age 51.95 ×10−3 52.00 ×10−3 3.35 ×10−3 45.07 ×10−3 58.46 ×10−3

sex 108.04 ×10−3 105.01 ×10−3 108.38 ×10−3 -101.16 ×10−3 325.87 ×10−3

wbc 5.94 ×10−3 5.94 ×10−3 0.79 ×10−3 4.39 ×10−3 7.53 ×10−3

tpi 61.37 ×10−3 61.24 ×10−3 15.46 ×10−3 33.07 ×10−3 93.25 ×10−3

fv 64.22 ×10−3 40.42 ×10−3 80.68 ×10−3 1.01 ×10−3 252.93 ×10−3

7. CONCLUDING REMARKS

The situation where many units clustered in different geographical areas described

by their longitude and latitude are monitored for the occurrence of some event. A method-

ology was developed using a combination of modern survival analysis and geostatistical
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formulation. Parameters of these models are estimated using unbiased estimating functions

and their large sample properties were also examined using infill asymptotic approach that

one encounters with spatial data. The methodology can be easily generalized to the case

of recurrent events. Another generalization is to consider the geographical coordinate of

each unit within a given geographical area. It is also possible to consider both within and

between areas spatial correlation. Another important area of interest is to develop models

that account for correlation between event time via frailty when the event is allowed to

recur. Another possible future direction is using another model for modeling connection

between failure covariates and failure times such as the accelerated failure time model.

However, other estimating approaches, such as rank-based would need to be applied to the

transformed event times.
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ABSTRACT

We consider the same setting, namely a fixed number of clustered areas identified

by their geographical coordinate that are monitored for the occurrences of an event such as

pandemic, epidemic, migration to name a few. Data collected on units at all areas include

time varying covariates and environmental factors. We allow for association between event

times in every area using an unobservable frailty. The frailty are assumed to be the same per

area, and are independent. The collected data is again considered pairwise to account for

spatial correlation between all pair of areas, and their frailty unobservables 𝑍𝑖 and 𝑍 𝑗 . The

pairwise right censored data is again probit-transformed yielding a multivariate Gaussian

random field given the values of the frailties. We provide a detailed small sample numerical

studies and we show that ignoring correlation between unit in a given area leads to biased

estimators.

Keywords: Spatial correlation; Gaussian random fields; Composite likelihood; Estimating

function; Frailty; Mixing; Clustered failure times
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1. INTRODUCTION

Spatially correlated data arise in various crucial fields such as ecology, clinical trials,

and epidemiology to name a few. Therefore, developing statistical models that are capable

of accounting for spatial correlation is of utmost importance.

In addition to possible covariates, it may be possible for a survival model to be

affected by unobserved random factors called frailties via its hazard function. Ignoring

so called frailties and solely depending on covariates in modeling survival times can have

consequences including ending up having unreliable parameter estimates. Therefore, it is

of significant importance to account for frailty variables.

Spatial statistical methods have been described in detail by Cressie (1993) and sta-

tistical tools needed for modeling normally distributed data have been developed. However,

modeling spatially correlated survival data with frailties has not been considered by Cressie

(1993). Sudipto, Banerjee et al. (2003) and Bradley (2005) discussed a few hierarchi-

cal methods for modeling survival data which are spatially correlated. They considered

spatially arranged clusters according to their frailties and used two different approaches

called "geostatistical" and "lattice" to model survival times taking spatially correlated haz-

ards into account. However, the covariance structure they obtained in their study did not

correspond to a proper covariance structure. Kosorok et al. (2004) considered a class of

semiparametric regression models that are one parameter extension of Cox model. They

performed non-parametric likelihood based inferences while assuming hazard given the

covariates and random frailty has proportional hazard form multiplied by the corresponding

frailty. However, they did not consider spatial dependence of survival times. Petersen

(1998) used an additive frailty model for modeling correlated survival time. Even though

he did not take spatial correlation as the specific correlation in his study, the frailty model

he proposed and the corresponding estimation methods he derived give an easy and flexible

approach to model multivariate correlated survival times by clearly distinguishing between

dependence parameters and regression parameters with baseline hazards. However, they
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restricted associations between individuals to be always positive which might not be the

case in applications. Moreover, they did not consider how the effect of the choice of frailty

distribution can be problematic in modeling. Li and Lin (2006) proposed a new class of

semiparametric normal transformation models for right censored spatially correlated sur-

vival data. Their model is a flexible one that provides a semiparametric likelihood approach

to generate censored spatial survival data that have a spatial correlation structure which

allows individual observations to marginally follow the Cox proportional hazard model.

However, their model does not account for frailties associated with survival times.

Li and Lin (2006) considered right-censored spatially correlated survival data and

performed semi parametric inferences. They assumed that each of the clusters in their

study had only one subject. In addition, they did not consider frailties. However, in real

world applications, one observation per cluster is a quite rare case and also, unobservable

random factors are often thought to interfere with the observations. Therefore, in our study,

we extend his idea to a general setting so that, our model is capable of handling many

observations per cluster as well as unobservable random factors.

The rest of this part of the dissertation is structured as follows. In Section 2, a

semiparametric model is introduced with a normal transformation that can handle spa-

tially correlated survival data including unobservable random factors. Section 3 describes

developing estimating equations, that are spatial semiparametric, for spatial correlation

parameters and regression coefficients given the corresponding frailties. In Section 4, a

simulation study was performed using R software package to assess the performance of the

proposed method when finite samples are taken into account.

2. SPATIALLY CORRELATED SURVIVAL DATA WITH FRAILTY

This section gives a discussion on notation, pairwise survival data, Cox model used,

Multivariate Gaussian Random fields and spatial correlation models.
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2.1. NOTATION

The previous chapter and the current one have similar notations except the inclusion

of the unobserved frailty.

In addition, let Z = (𝑍1, 𝑍2, ..., 𝑍𝑘 ) be a k-dimensional vector of independently and

identically distributed positive random variables called frailties which are unobservable

random factors affecting the event occurrences of the subjects at each geographical location.

We also assume that each subject in the same geographical location has the same frailty.

Therefore, the frailty shared by all subjects in location 𝑖 is denoted by 𝑍𝑖.

The censoring times 𝐶 (𝑟)
𝑖

and true survival times 𝑊 (𝑟)
𝑖

are assumed independent of

each other, given the independent frailties 𝑍𝑖 and covariates x(𝑟)
𝑖
(𝑡).

The observable data per area given frailty is

O(I𝑖 |𝑍𝑖) = {x(𝑟)𝑖 (𝑡), 𝑇
(𝑟)
𝑖
, 𝛿
(𝑟)
𝑖
, 𝑍𝑖}

2.2. THE MODEL

According to our model, hazard function of true survival time 𝑇 (𝑟)
𝑖

is assumed to

follow the following shared frailty model given below in (1) marginally, where 𝜆0𝑖 (𝑡) is

the baseline hazard function for the 𝑖𝑡ℎ geographical location with different baseline per

location, but same regression parameter 𝜷 for all locations. As we stated before, it is

assumed that all the individuals in a given geographical location 𝑖 have the same frailty 𝑍𝑖.

Hence 𝜆(𝑟)
𝑖
(·) has the form

𝜆
(𝑟)
𝑖
(𝑡 |𝑍𝑖) = 𝑍𝑖𝜆0𝑖 (𝑡) exp

(
𝜷′x(𝑟)

𝑖
(𝑡)

)
. (1)

In (1), 𝜷 is a p-dimensional regression parameters vector and 𝜷′ stands for its transpose. For

𝑖 = 1, ..., 𝑘, the baseline hazard functions 𝜆0𝑖 (𝑡) are unspecified and need to be estimated.
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2.3. MGRF FRAMEWORK WITH FRAILTY

First, let Λ𝑖 (𝑡 |x(𝑟)𝑖 (𝑡), 𝑍𝑖) be the cumulative hazard function for 𝑖𝑡ℎ geographical

location. Then the cumulative survival function 𝐹̄ (𝑟)
𝑖
(𝑡 |x(𝑟)

𝑖
(𝑡), 𝑍𝑖) = exp

[
−Λ(𝑡 |x(𝑟)

𝑖
(𝑡), 𝑍𝑖)

]
follows a uniform distribution on (0, 1). It can also be shown that Λ(𝑟)

𝑖
(𝑇 (𝑟)
𝑖
|x(𝑟)
𝑖
(𝑡), 𝑍𝑖)

follows a unit exponential distribution EXP(1). If Φ(·) is the cumulative distribution

function of the standard normal distribution, then the probit transformation of a variable𝑈

in (0, 1) is Φ−1(𝑈). Based on this we probit transform our failure time 𝑇 (𝑟)
𝑖

to obtain 𝑇 (𝑟)
𝑖

as follows.

T̃(𝑟)𝑖 := Φ−1
[
1 − 𝑒−𝑍𝑖Λ0𝑖 (𝑇 (𝑟 )𝑖

) exp(𝜷′x(𝑟 )
𝑖
(𝑡)) |𝑍𝑖

]
This transformed version of event times follows a standard normal distribution 𝑁 (0, 1). By

defining a vector of transformed failure times for each subject in location 𝑖 as below

T̃𝑖 = (𝑇 (1)𝑖
, 𝑇
(2)
𝑖
, ..., 𝑇

(𝑛𝑖)
𝑖
),

it can be shown to follow an 𝑛𝑖 variate joint multivariate normal distribution. As a re-

sult, a multivariate Gaussian random field (MGRF) can be constructed using each of the

transformed failure times T̃𝑖, 𝑖 = 1, ..., 𝑘 of all geographical locations, namely

T̃ =

(
T̃1, T̃2, ..., T̃𝑘

)
(𝑛1,...,𝑛𝑘)

3. SEMI PARAMETRIC ESTIMATING EQUATIONS

This section gives essentials of method of moment estimator, joint modeling and

estimation of regression and spatial parameters.
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3.1. METHOD OF MOMENT ESTIMATOR

In this section some useful notation similar to those in the previous chapter are

introduced to describe the mathematical setup of the problem of interest using stochastic

process framework.

For (𝑖, 𝑟) ∈ L × L𝑖, define the counting process N(𝑟)
𝑖
(𝑡) = 𝛿

(𝑟)
𝑖

I(𝑇 (𝑟)
𝑖
≤ 𝑡) where

𝐼 (· ) is an indicator function and 𝛿𝑖 = 𝐼
(
𝐶
(𝑟)
𝑖
≤ 𝑊 (𝑟)

𝑖

)
is a non-censoring indicator. At risk

process is defined as Y(𝑟)
𝑖
(𝑡) = I(𝑇 (𝑟)

𝑖
≥ 𝑡). Note that N(𝑟)

𝑖
(𝑡) indicates if an event has

occurred by time 𝑡, whereas Y(𝑟)
𝑖
(𝑡) indicates if unit (𝑖, 𝑟) is at risk at time 𝑡. Furthermore,

it is assumed that the study ends at a time 𝜏 with 𝜏 ≥ max𝑟,𝑖T(𝑟)𝑖 . Therefore, the observation

time window is [0, 𝜏] = T . The entire history at all geostatistical locations at the end of

the study is contained in the 𝜎-field F =
∨𝑘
𝑖=1

∨𝑛𝑖
𝑟=1 F

(𝑟)
𝑖,𝜏

with

F (𝑟)
𝑖,𝜏

= 𝜎

(
𝑁
(𝑟)
𝑖
(𝑡), 𝑌 (𝑟)

𝑖
(𝑡), 𝑡 ∈ T

)
.

In this dissertation, instantaneous hazard function is assumed to be different from one

geographical region to another. From stochastic integration theory, the compensator process

of 𝑁 (𝑟)
𝑖
(𝑡) conditional on 𝑍𝑖 = 𝑧𝑖 is 𝐴(𝑟)

𝑖
(𝑡 |𝑧𝑖) given by 𝐴(𝑟)

𝑖
(𝑡 |𝑧𝑖) = 𝑧𝑖

∫ 𝑡

0 𝑌
(𝑟)
𝑖
(𝑢)𝜆𝑖 (𝑢)𝑑𝑢 so

that for each (𝑖, 𝑟) the process

𝑀
(𝑟)
𝑖
(𝑡 |𝑍𝑖) = 𝑁 (𝑟)𝑖 (𝑡) −

∫ 𝑡

0
𝑌
(𝑟)
𝑖
(𝑢)𝑍𝑖𝜆0𝑖 (𝑢) exp

(
𝜷′x(𝑟)

𝑖
(𝑢)

)
𝑑𝑢 : 𝑡 ∈ T

is a zero-mean square-integrable martingale with respect to the filtration F (𝑟)
𝑖,𝑡

conditional

on 𝑍𝑖. Hence by method of moments, an Aalen-Breslow estimator for Λ0𝑖 (·) =
∫ ·

0 𝜆0𝑖 (𝑢)𝑑𝑢,

for 𝑖 ∈ L is given by

Λ̂0𝑖 (𝑡 |𝑧𝑖) =
∫ 𝑡

0

∑𝑛𝑖
𝑟=1 𝑑𝑁

(𝑟)
𝑖
(𝑢)∑𝑛𝑖

𝑟=1𝑌
(𝑟)
𝑖
(𝑢)𝑧𝑖 exp

(
𝜷′x(𝑟)

𝑖
(𝑢)

) . (2)



76

Thus, the estimator of Λ0(𝑡 |Z) would be a 𝑘 × 1 vector

𝚲̂0(𝑡 |Z) =



Λ̂01(𝑡 |𝑍1)

Λ̂02(𝑡 |𝑍2)
...

Λ̂0𝑘 (𝑡 |𝑍𝑘 )

 𝑘×1

. (3)

Since 𝜷 = (𝛽1, ..., 𝛽𝑝) is an unknown regression parameter vector, 𝚲̂0(𝑡 |Z) is not yet an

estimator. Therefore expression in (3) will be used as substitution for 𝜆0𝑖 (𝑡) to estimate 𝜷

and also to obtain the in-probability limits of the score matrix.

3.2. JOINT MODELING

With a view towards joint modeling, for a pair of units (𝑟, 𝑠) ∈ (L𝑖,L 𝑗 ) and 𝑡 ∈

[0, 𝜏], let [𝑁 (𝑟)
𝑖
(𝑡), 𝑌 (𝑟)

𝑖
(𝑡), 𝐴(𝑟)

𝑖
(𝑡 |𝑧𝑖)] and [𝑁 (𝑠)

𝑗
(𝑡), 𝑌 (𝑠)

𝑗
(𝑡), 𝐴(𝑠)

𝑗
(𝑡 |𝑧 𝑗 )] be their counting,

at-risk, and conditional compensator processes respectively. Note that then there are zero

mean martingale processes conditional on 𝑧𝑖 and 𝑧 𝑗 namely, {𝑀 (𝑟)
𝑖
(𝑡 |𝑧𝑖) : 𝑡 ∈ [0, 𝜏]} and

{𝑀 (𝑠)
𝑗
(𝑡 |𝑧 𝑗 ) : 𝑡 ∈ [0, 𝜏]} with respect to their corresponding filtrations denoted by F (𝑟)

𝑖,𝑡
and

F (𝑠)
𝑗 ,𝑡

respectively. Next for (𝑡1, 𝑡2) ∈ [0, 𝜏]2, define the joint counting process 𝑁 (𝑟,𝑠)
𝑖 𝑗
(·, ·) by

𝑁
(𝑟,𝑠)
𝑖 𝑗
(𝑡1, 𝑡2) = I{𝑇 (𝑟)

𝑖
≥ 𝑡1, 𝑇 (𝑠)𝑗 ≥ 𝑡2}. The covariance function ⟨𝑀 (𝑟)

𝑖
(𝑡1 |𝑧𝑖), 𝑀 (𝑠)𝑗 (𝑡2 |𝑧 𝑗 )⟩

is defined by

𝐸 (𝑀 (𝑟)
𝑖
(𝑡1)𝑀 (𝑠)𝑗 (𝑡2) |𝑇

(𝑟)
𝑖

> 𝑡1, 𝑇
(𝑠)
𝑗
> 𝑡2, 𝑍𝑖, 𝑍 𝑗 ) = 𝐴

(𝑟,𝑠)
𝑖, 𝑗
(𝑡1, 𝑡2 |𝑍𝑖, 𝑍 𝑗 )

= ⟨𝑀 (𝑟)
𝑖
, 𝑀
(𝑠)
𝑗
⟩(𝑡1, 𝑡2 |𝑍𝑖, 𝑍 𝑗 ).

Further, by stochastic integration theory,

𝐸

(
𝑀
(𝑟)
𝑖
(𝑡1 |𝑍𝑖)𝑀 (𝑠)𝑗 (𝑡2 |𝑍 𝑗 ) −

∫ 𝑡1

0

∫ 𝑡2

0
𝑌
(𝑟)
𝑖
(𝑢1)𝑌 (𝑠)𝑗 (𝑢2)𝑍𝑖𝑍 𝑗 𝐴(𝑟,𝑠)𝑖, 𝑗

(𝑑𝑢1, 𝑑𝑢2)
)
= 0.
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Next, for the i𝑡ℎ and j𝑡ℎ geographical locations𝑇 (1)
𝑖
, 𝑇
(2)
𝑖
, ..., 𝑇

(𝑛𝑖)
𝑖

conditional on 𝑍𝑖 are i.i.d..

Similarly, 𝑇 (1)
𝑗
, 𝑇
(2)
𝑗
, ..., 𝑇

(𝑛 𝑗 )
𝑗

conditional on 𝑍 𝑗 are also i.i.d.. They have the conditional

survivor function 𝐹̄
(𝑟)
𝑖
(𝑡 |𝑍𝑖) and 𝐹̄

(𝑠)
𝑗
(𝑡 |𝑍 𝑗 ) respectively. Conditional bivariate survivor

function 𝐹̄ (𝑟,𝑠)
𝑖 𝑗
(𝑡1, 𝑡2; 𝜌𝑖 𝑗 |𝑍𝑖, 𝑍 𝑗 ) for (𝑟, 𝑠) ∈ (L𝑖,L 𝑗 ) is given by

𝐹̄
(𝑟,𝑠)
𝑖 𝑗
(𝑡1, 𝑡2; 𝜌𝑖 𝑗 |𝑍𝑖, 𝑍 𝑗 ) = P

(
𝑇
(𝑟)
𝑖

> 𝑡1, 𝑇
(𝑠)
𝑗
> 𝑡2; 𝜌𝑖 𝑗 |𝑍𝑖, 𝑍 𝑗

)
= 𝐺

[
Φ−1(𝐹 (𝑟)

𝑖
) (𝑡1 |𝑍𝑖),Φ−1(𝐹 (𝑠)

𝑗
(𝑡2 |𝑍 𝑗 ))

]
,

where 𝜌𝑖 𝑗 and 𝐺 (·, ·; 𝜌𝑖 𝑗 |𝑍𝑖, 𝑍 𝑗 ) are spatial correlation and conditional bivariate survival

function of the transformed failure times 𝑇𝑖 and 𝑇𝑗 respectively. Following Prentice and Cai

(1992) the conditional joint compensator, 𝐴(𝑟,𝑠)
𝑖 𝑗
(𝑡1, 𝑡2 |𝑍𝑖, 𝑍 𝑗 ), is given by

𝐴
(𝑟,𝑠)
𝑖 𝑗
(𝑑𝑡1, 𝑑𝑡2; 𝜌𝑖 𝑗 |𝑍𝑖, 𝑍 𝑗 ) = 𝐴0 [Λ(𝑟)𝑖 (𝑡1 |𝑍𝑖),Λ

(𝑠)
𝑗
(𝑡2 |𝑍 𝑗 ); 𝜌𝑖 𝑗 ]Λ(𝑟)𝑖 (𝑑𝑡1 |𝑍𝑖)Λ

(𝑠)
𝑗
(𝑑𝑡2 |𝑍 𝑗 ),

where the baseline joint compensator 𝐴0 [·, ·; 𝜌𝑖 𝑗 ] is given by

𝐴0(𝑡1, 𝑡2; 𝜌𝑖 𝑗 |𝑍𝑖, 𝑍 𝑗 ) =
𝜕2

𝜕𝑡1𝜕𝑡2
𝐹̄
(𝑟,𝑠)
𝑖 𝑗
(𝑡1, 𝑡2; 𝜌𝑖 𝑗 |𝑍𝑖, 𝑍 𝑗 ) + 𝐹̄ (𝑟,𝑠)𝑖 𝑗

(𝑡1, 𝑡2; 𝜌𝑖 𝑗 |𝑍𝑖, 𝑍 𝑗 )

+ 𝜕
𝜕𝑡1

𝐹̄
(𝑟,𝑠)
𝑖 𝑗
(𝑡1, 𝑡2; 𝜌𝑖 𝑗 |𝑍𝑖, 𝑍 𝑗 ) +

𝜕

𝜕𝑡2
𝐹̄
(𝑟,𝑠)
𝑖 𝑗
(𝑡1, 𝑡2; 𝜌𝑖 𝑗 |𝑍𝑖, 𝑍 𝑗 ).

3.3. ESTIMATION

This section gives the theory on estimating regression and spatial parameters.

3.3.1. Estimating 𝜷. The model in our study was assumed to have independent and

identically distributed (i.i.d) frailty random variables that come from a known distribution.

Particularly, the gamma distribution with unit mean and variance 1/𝛼, Gamma(𝛼,𝛼) will be

used as the known distribution. It is difficult to apply direct maximum likelihood methods to

estimate parameters of interest due to the high dimensionality of the likelihood and the fact
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𝑍𝑖 are not observed. Again we use pairwise likelihood approach to estimate the parameters

using expectation-maximization algorithm. This approach uses data in two spatial locations

that can be the basis of an unbiased estimating function.

More notation in the sequel are introduced with a view toward estimating 𝜷 that

accounts for pairwise spatial correlation between two locations (𝑖, 𝑗) ∈ L2. If a = (𝑎1, 𝑎2) is

a 1×2 row vector and its transpose denoted by a′ is a 2×1 column vector. Using usual notation

used in the first part of this dissertation, for (𝑟, 𝑠) ∈ (L𝑖,L 𝑗 ), we define H(𝑟,𝑠)
𝑖 𝑗
(𝑡 |𝑍𝑖, 𝑍 𝑗 ) =

(𝐻 (𝑟)
𝑖
(𝑡 |𝑍𝑖), 𝐻 (𝑠)𝑗 (𝑡 |𝑍 𝑗 )) and M(𝑟,𝑠)

𝑖 𝑗
(𝑡 |𝑍1, 𝑍 𝑗 ) = (𝑀 (𝑟)𝑖 (𝑡 |𝑍𝑖), 𝑀

(𝑠)
𝑗
(𝑡 |𝑍 𝑗 ))′.

In our case, the pairwise likelihood can be written as

𝐿𝑖 𝑗 (𝜷|𝜹0, 𝑍𝑖, 𝑍 𝑗 ) =

𝑛𝑖∏
𝑟=1

𝑛 𝑗∏
𝑠=1


𝑡∏
𝑢=0

[
𝑌
(𝑟)
𝑖
(𝑢)𝑧𝑖𝑒𝜷

′x(𝑟 )
𝑖
(𝑢)𝜆̂0𝑖 (𝑢)

]𝑤𝑖 𝑗

11𝑑𝑁
(𝑟 )
𝑖
(𝑢)

× exp

[
−

∫ 𝑡

0

𝑛𝑖∑︁
𝑟=1

𝑌
(𝑟)
𝑖
(𝑢)𝑧𝑖𝑒𝜷

′x(𝑟 )
𝑖
(𝑢)𝜆̂0𝑖 (𝑢)𝑑𝑢

]}

×


𝑡∏
𝑢=0

[
𝑌
(𝑠)
𝑗
(𝑢)𝑧 𝑗𝑒𝜷

′x(𝑠)
𝑗
(𝑢)
𝜆̂0𝑖 (𝑢)

]𝑤𝑖 𝑗

12𝑑𝑁
(𝑟 )
𝑖
(𝑢)

× exp

[
−

∫ 𝑡

0

𝑛 𝑗∑︁
𝑠=1
𝑌
(𝑠)
𝑗
(𝑢)𝑧 𝑗𝑒𝜷

′x(𝑠)
𝑗
(𝑢)
𝜆̂0𝑖 (𝑢)𝑑𝑢

]}

×


𝑡∏
𝑢=0

[
𝑌
(𝑟)
𝑖
(𝑢)𝑧𝑖𝑒𝜷

′x(𝑟 )
𝑖
(𝑢)𝜆̂0 𝑗 (𝑢)

]𝑤𝑖 𝑗

21𝑑𝑁
(𝑟 )
𝑗
(𝑢)

× exp

[
−

∫ 𝑡

0

𝑛𝑖∑︁
𝑟=1

𝑌
(𝑟)
𝑖
(𝑢)𝑧𝑖𝑒𝜷

′x(𝑟 )
𝑖
(𝑢)𝜆̂0 𝑗 (𝑢)𝑑𝑢

]}

×


𝑡∏
𝑢=0

[
𝑌
(𝑠)
𝑗
(𝑢)𝑧 𝑗𝑒𝜷

′x(𝑠)
𝑗
(𝑢)
𝜆̂0 𝑗 (𝑢)

]𝑤𝑖 𝑗

22𝑑𝑁
(𝑠)
𝑗
(𝑢)

× exp

[
−

∫ 𝑡

0

𝑛 𝑗∑︁
𝑠=1
𝑌
(𝑠)
𝑗
(𝑢)𝑧 𝑗𝑒𝜷

′x(𝑠)
𝑗
(𝑢)
𝜆̂0 𝑗 (𝑢)𝑑𝑢

]}
.
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Then the corresponding log likelihood can be written as

𝑙𝑖 𝑗 (𝜷|𝜹0, 𝑍𝑖, 𝑍 𝑗 ) ∝
𝑛𝑖∑︁
𝑟=1

𝑛 𝑗∑︁
𝑠=1

{∫ 𝑡

0
𝑤
𝑖 𝑗

11 [𝜷
′x(𝑟)
𝑖
(𝑢) − log 𝑆(0)

𝑖
(𝑢)]𝑑𝑁 (𝑟)

𝑖
(𝑢)

+
∫ 𝑡

0
𝑤
𝑖 𝑗

12 [𝜷
′x(𝑠)
𝑗
(𝑢) − log 𝑆(0)

𝑖
(𝑢)]𝑑𝑁 (𝑟)

𝑖
(𝑢)

+
∫ 𝑡

0
𝑤
𝑖 𝑗

21 [𝜷
′x(𝑟)
𝑖
(𝑢) − log 𝑆(0)

𝑗
(𝑢)]𝑑𝑁 (𝑠)

𝑗
(𝑢)

+
∫ 𝑡

0
𝑤
𝑖 𝑗

22 [𝜷
′x𝑠𝑟)
𝑗
(𝑢) − log 𝑆(0)

𝑗
(𝑢)]𝑑𝑁 (𝑠)

𝑗
(𝑢)

}
.
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To estimate 𝜷, if the Z = z = (𝑧1, 𝑧2, ..., 𝑧𝑘 ) are observed, then the complete likelihood

function for the model parameter 𝜷 is given by

𝐿𝑖 𝑗 (𝜷, 𝑍𝑖, 𝑍 𝑗 |𝜹0) =

𝑛𝑖∏
𝑟=1

𝑛 𝑗∏
𝑠=1



𝑧

1
𝛼
−1

𝑖

(
1
𝛼

) 1
𝛼 exp

(−𝑧𝑖
𝛼

)
Γ

(
1
𝛼

) 

𝑧

1
𝛼
−1

𝑗

(
1
𝛼

) 1
𝛼 exp

(
−𝑧 𝑗
𝛼

)
Γ

(
1
𝛼

) 
×


𝑡∏
𝑢=0

[
𝑌
(𝑟)
𝑖
(𝑢)𝑧𝑖𝑒𝜷

′x(𝑟 )
𝑖
(𝑢)𝜆̂0𝑖 (𝑢)

]𝑤𝑖 𝑗

11𝑑𝑁
(𝑟 )
𝑖
(𝑢)

× exp

[
−

∫ 𝑡

0

𝑛𝑖∑︁
𝑟=1

𝑌
(𝑟)
𝑖
(𝑢)𝑧𝑖𝑒𝜷

′x(𝑟 )
𝑖
(𝑢)𝜆̂0𝑖 (𝑢)𝑑𝑢

] 
×


𝑡∏
𝑢=0

[
𝑌
(𝑠)
𝑗
(𝑢)𝑧 𝑗𝑒𝜷

′x(𝑠)
𝑗
(𝑢)
𝜆̂0𝑖 (𝑢)

]𝑤𝑖 𝑗

12𝑑𝑁
(𝑟 )
𝑖
(𝑢)

× exp

[
−

∫ 𝑡

0

𝑛 𝑗∑︁
𝑠=1
𝑌
(𝑠)
𝑗
(𝑢)𝑧 𝑗𝑒𝜷

′x(𝑠)
𝑗
(𝑢)
𝜆̂0𝑖 (𝑢)𝑑𝑢

] 
×


𝑡∏
𝑢=0

[
𝑌
(𝑟)
𝑖
(𝑢)𝑧𝑖𝑒𝜷

′x(𝑟 )
𝑖
(𝑢)𝜆̂0 𝑗 (𝑢)

]𝑤𝑖 𝑗

21𝑑𝑁
(𝑟 )
𝑗
(𝑢)

× exp

[
−

∫ 𝑡

0

𝑛𝑖∑︁
𝑟=1

𝑌
(𝑟)
𝑖
(𝑢)𝑧𝑖𝑒𝜷

′x(𝑟 )
𝑖
(𝑢)𝜆̂0 𝑗 (𝑢)𝑑𝑢

] 
×


𝑡∏
𝑢=0

[
𝑌
(𝑠)
𝑗
(𝑢)𝑧 𝑗𝑒𝜷

′x(𝑠)
𝑗
(𝑢)
𝜆̂0 𝑗 (𝑢)

]𝑤𝑖 𝑗

22𝑑𝑁
(𝑠)
𝑗
(𝑢)

× exp

[
−

∫ 𝑡

0

𝑛 𝑗∑︁
𝑠=1
𝑌
(𝑠)
𝑗
(𝑢)𝑧 𝑗𝑒𝜷

′x(𝑠)
𝑗
(𝑢)
𝜆̂0 𝑗 (𝑢)𝑑𝑢

] 
 .
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Note that the above equation, as a function of 𝑧𝑖, is proportional to

𝐿𝑖 𝑗 (𝜷, 𝑍𝑖, 𝑍 𝑗 |𝜹0) ∝
𝑛𝑖∏
𝑟=1

𝑛 𝑗∏
𝑠=1

𝑧
1
𝛼
+𝑤𝑖 𝑗

11𝑑𝑁
(𝑟 )
𝑖
(𝑢)+𝑤𝑖 𝑗

21𝑑𝑁
(𝑠)
𝑗
(𝑢)−1

𝑖

× exp

{
−𝑧𝑖

[
1
𝛼
+

∫ 𝑡

0

𝑛𝑖∑︁
𝑟=1

𝑌
(𝑟)
𝑖
(𝑢)𝑒𝜷′x

(𝑟 )
𝑖
(𝑢)𝜆̂0𝑖 (𝑢)𝑑𝑢

+
∫ 𝑡

0

𝑛𝑖∑︁
𝑟=1

𝑌
(𝑟)
𝑖
(𝑢)𝑒𝜷′x

(𝑟 )
𝑖
(𝑢)𝜆̂0 𝑗 (𝑢)𝑑𝑢

]}
×𝑧

1
𝛼
+𝑤𝑖 𝑗

12𝑑𝑁
(𝑟 )
𝑖
(𝑢)+𝑤𝑖 𝑗

22𝑑𝑁
(𝑠)
𝑗
(𝑢)−1

𝑖

× exp

{
−𝑧 𝑗

[
1
𝛼
+

∫ 𝑡

0

𝑛 𝑗∑︁
𝑠=1
𝑌
(𝑠)
𝑗
(𝑢)𝑒𝜷

′x(𝑠)
𝑗
(𝑢)
𝜆̂0𝑖 (𝑢)𝑑𝑢

+
∫ 𝑡

0

𝑛 𝑗∑︁
𝑠=1
𝑌
(𝑠)
𝑗
(𝑢)𝑒𝜷

′x(𝑠)
𝑗
(𝑢)
𝜆̂0 𝑗 (𝑢)𝑑𝑢

] }
.

Since 𝑧𝑖 and 𝑧 𝑗 are independent, given 𝛼, Λ0𝑖 (·), Λ0 𝑗 (·), 𝑁 (𝑟)𝑖 and 𝑁 (𝑠)
𝑗

;

𝐿 (𝑧𝑖, 𝑑𝑎𝑡𝑎) ∼ 𝑔𝑎𝑚𝑚𝑎 (𝐴, 𝐵)



82

where 𝐴 = 1
𝛼
+ 𝑤𝑖 𝑗11𝑁

(𝑟)
𝑖
(𝑢) + 𝑤𝑖 𝑗21𝑁

(𝑠)
𝑗
(𝑢) and 𝐵 = 1

𝛼
+

∫ 𝑡

0
∑𝑛𝑖
𝑟=1𝑌

(𝑟)
𝑖
(𝑢)𝑒𝜷′x

(𝑟 )
𝑖
(𝑢)𝜆̂0𝑖 (𝑢)𝑑𝑢 +∑𝑛𝑖

𝑟=1𝑌
(𝑟)
𝑖
(𝑢)𝑒𝜷′x

(𝑟 )
𝑖
(𝑢)𝜆̂0 𝑗 (𝑢)𝑑𝑢 and 𝐿𝑖 (𝜃, 𝑧𝑖) has the form

𝐿𝑖 (𝜷, 𝑍𝑖 |𝜹0) =

𝑛𝑖∏
𝑟=1

𝑛 𝑗∏
𝑠=1



𝑧

1
𝛼
−1

𝑖

(
1
𝛼

) 1
𝛼 exp

(−𝑧𝑖
𝛼

)
Γ

(
1
𝛼

) 
×

{
𝑡∏
𝑢=0

[
𝑌
(𝑟)
𝑖
(𝑢)𝑧𝑖𝑒𝜷

′x(𝑟 )
𝑖
(𝑢)𝜆̂0𝑖 (𝑢)

]𝑤𝑖 𝑗

11𝑑𝑁
(𝑟 )
𝑖
(𝑢)

× exp

[
−

∫ 𝑡

0

𝑛𝑖∑︁
𝑟=1

𝑌
(𝑟)
𝑖
(𝑢)𝑧𝑖𝑒𝜷

′x(𝑟 )
𝑖
(𝑢)𝜆̂0𝑖 (𝑢)𝑑𝑢

]}
×

{
𝑡∏
𝑢=0

[
𝑌
(𝑟)
𝑖
(𝑢)𝑧𝑖𝑒𝜷

′x(𝑟 )
𝑖
(𝑢)𝜆̂0 𝑗 (𝑢)

]𝑤𝑖 𝑗

21𝑑𝑁
(𝑟 )
𝑗
(𝑢)

× exp

[
−

∫ 𝑡

0

𝑛𝑖∑︁
𝑟=1

𝑌
(𝑟)
𝑖
(𝑢)𝑧𝑖𝑒𝜷

′x(𝑟 )
𝑖
(𝑢)𝜆̂0 𝑗 (𝑢)𝑑𝑢

]}}
. (4)

Letting

𝜂 =
1
𝛼
+

∫ 𝑡

0

𝑛𝑖∑︁
𝑟=1

𝑌
(𝑟)
𝑖
(𝑢)𝑒𝜷′x

(𝑟 )
𝑖
(𝑢)𝜆̂0𝑖 (𝑢)𝑑𝑢 +

∫ 𝑡

0

𝑛𝑖∑︁
𝑟=1

𝑌
(𝑟)
𝑖
(𝑢)𝑒𝜷′x

(𝑟 )
𝑖
(𝑢)𝜆̂0 𝑗 (𝑢)𝑑𝑢

and substituting it in (4) we get

𝐿𝑖 (𝜷, 𝑍𝑖 |𝜹0) =

𝑛𝑖∏
𝑟=1

𝑛 𝑗∏
𝑠=1

𝑡∏
𝑢=0

[
𝑌
(𝑟)
𝑖
(𝑢)𝜆̂0𝑖 (𝑢)𝑒𝜷

′x(𝑟 )
𝑖
(𝑢)

]𝑤𝑖 𝑗

11𝑑𝑁
(𝑟 )
𝑖
(𝑢)

×
[
𝑌
(𝑟)
𝑖
(𝑢)𝜆̂0𝑖 (𝑢)𝑒𝜷

′x(𝑟 )
𝑖
(𝑢)

]𝑤𝑖 𝑗

21𝑑𝑁
(𝑠)
𝑗
(𝑢)

×[𝜂𝑧𝑖]
1
𝛼
+𝑤𝑖 𝑗

11𝑑𝑁
(𝑟 )
𝑖
(𝑢)+𝑤𝑖 𝑗

21𝑑𝑁
(𝑠)
𝑗
(𝑢)−1 exp(−𝜂𝑧𝑖)𝑑 (𝜂𝑧𝑖)

×
[
𝜂

1
𝛼
+𝑤𝑖 𝑗

11𝑑𝑁
(𝑟 )
𝑖
(𝑢)+𝑤𝑖 𝑗

21𝑑𝑁
(𝑠)
𝑗
(𝑢) · Γ

(
1
𝛼

)
𝛼

1
𝛼

]−1
.



83

Since 𝑍𝑖 are not observed, integrating out 𝑍𝑖 we get

𝐿𝑖 (𝜷|𝜹0) =

𝑛𝑖∏
𝑟=1

𝑛 𝑗∏
𝑠=1

𝑡∏
𝑢=0

[
𝑌
(𝑟)
𝑖
(𝑢)𝜆̂0𝑖 (𝑢)𝑒𝜷

′x(𝑟 )
𝑖
(𝑢)

]𝑤𝑖 𝑗

11𝑑𝑁
(𝑟 )
𝑖
(𝑢)

×
[
𝑌
(𝑟)
𝑖
(𝑢)𝜆̂0𝑖 (𝑢)𝑒𝜷

′x(𝑟 )
𝑖
(𝑢)

]𝑤𝑖 𝑗

21𝑑𝑁
(𝑠)
𝑗
(𝑢)

×Γ
(

1
𝛼
+ 𝑤𝑖 𝑗11𝑑𝑁

(𝑟)
𝑖
(𝑢) + 𝑤𝑖 𝑗21𝑑𝑁

(𝑠)
𝑗
(𝑢)

)
×

[
1
𝛼
+

∫ 𝑡

0

𝑛𝑖∑︁
𝑟=1

𝑌
(𝑟)
𝑖
(𝑢)𝑒𝜷′x

(𝑟 )
𝑖
(𝑢)𝜆̂0𝑖 (𝑢)𝑑𝑢

+
∫ 𝑡

0

𝑛𝑖∑︁
𝑟=1

𝑌
(𝑟)
𝑖
(𝑢)𝑒𝜷′x

(𝑟 )
𝑖
(𝑢)𝜆̂0 𝑗 (𝑢)𝑑𝑢

]−( 1
𝛼
+𝑤𝑖 𝑗

11𝑑𝑁
(𝑟 )
𝑖
(𝑢)+𝑤𝑖 𝑗

21𝑑𝑁
(𝑠)
𝑗
(𝑢)

)

×
(
Γ

(
1
𝛼

)
𝛼

1
𝛼

)−1
. (5)

And also the full log likelihood is obtained by taking logarithm of (4) which yields,

𝑙𝑖 (𝜷|𝜹0) =

[
1
𝛼
− 1 + 𝑤𝑖 𝑗11𝑁

(𝑟)
𝑖
(𝑡) + 𝑤𝑖 𝑗21𝑁

(𝑠)
𝑗
(𝑡)

]
log 𝑧𝑖

−𝑛𝑖
𝛼

log𝛼 − 𝑛𝑖 log Γ
(

1
𝛼

)
− 𝑛𝑖
𝛼
𝑧𝑖

+
𝑛𝑖∑︁
𝑟=1

∫ 𝑡

0

[
log𝑌 (𝑟)

𝑖
(𝑢) + log 𝑧𝑖 + 𝜷′x(𝑟)𝑖 (𝑢) + log 𝜆̂0𝑖 (𝑢)

]
𝑤
𝑖 𝑗

11𝑑𝑁
(𝑟)
𝑖
(𝑢)

+
𝑛 𝑗∑︁
𝑠=1

∫ 𝑡

0

[
log𝑌 (𝑟)

𝑖
(𝑢) + log 𝑧𝑖 + 𝜷′x(𝑟)𝑖 (𝑢) + log 𝜆̂0 𝑗 (𝑢)

]
𝑤
𝑖 𝑗

21𝑑𝑁
(𝑠)
𝑗
(𝑢)

−
∫ 𝑡

0

𝑛𝑖∑︁
𝑟=1

𝑌
(𝑟)
𝑖
(𝑢)𝑧𝑖𝑒𝜷

′x(𝑟 )
𝑖
(𝑢)𝜆̂0𝑖 (𝑢)𝑑𝑢

−
∫ 𝑡

0

𝑛𝑖∑︁
𝑟=1

𝑌
(𝑟)
𝑖
(𝑢)𝑧𝑖𝑒𝜷

′x(𝑟 )
𝑖
(𝑢)𝜆̂0 𝑗 (𝑢)𝑑𝑢.

The maximum likelihood estimator of the model parameters is the maximizer of this full

likelihood process. Expectation maximization algorithm (EM) is used for the computations

of the estimate. We give the main steps of this algorithm below. We will have the algorithm

in detail in simulation section later. For the expectation step given 𝜽 , 𝑟 = 1, ..., 𝑛𝑖 and
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𝑢 ∈ [0, 𝑡], the conditional expectation of the 𝑧𝑖 is given by,

𝐸 (𝑧𝑖 |𝛼,Λ0𝑖 (𝑢),Λ0 𝑗 (𝑢), 𝑁 (𝑟)𝑖 (𝑢), 𝑁
(𝑠
𝑗
(𝑢)) =

1
𝛼
+ 𝑤𝑖 𝑗11𝑁

(𝑟)
𝑖
(𝑢) + 𝑤𝑖 𝑗21𝑁

(𝑠)
𝑗
(𝑢)

𝐶

where, 𝐶 = 1
𝛼
+

∫ 𝑡

0
∑𝑛𝑖
𝑟=1𝑌

(𝑟)
𝑖
(𝑢)𝑒𝜷′x

(𝑟 )
𝑖
(𝑢) [𝜆̂0𝑖 (𝑢) + 𝜆̂0 𝑗 (𝑢)]𝑑𝑢. And conditional expectation

of the log(𝑧𝑖) is given by,

𝐸 [log 𝑧𝑖 |𝛼,Λ0𝑖 (𝑢),Λ0 𝑗 (𝑢), 𝑁 (𝑟)𝑖 (𝑢), 𝑁
(𝑠
𝑗
(𝑢)] = log

[
1
𝛼
+ 𝑤𝑖 𝑗11𝑁

(𝑟)
𝑖
(𝑢) + 𝑤𝑖 𝑗21𝑁

(𝑠)
𝑗
(𝑢)

]
+𝜑

[
1
𝛼
+ 𝑤𝑖 𝑗11𝑁

(𝑟)
𝑖
(𝑢) + 𝑤𝑖 𝑗21𝑁

(𝑠)
𝑗
(𝑢)

]
−𝐷

where 𝐷 = log 𝐸 [𝑧𝑖 |𝛼,Λ0𝑖 (𝑢),Λ0 𝑗 (𝑢), 𝑁 (𝑟)𝑖 (𝑢), 𝑁
(𝑠
𝑗
(𝑢)] and, 𝜑(·) is the digamma function.

For maximization procedure, the only difference with the case without frailties is that𝑌 (𝑟)
𝑖
(𝑡)

will be replaced by 𝑧𝑖𝑌 (𝑟)𝑖 (𝑡). Similar to the estimating equation for 𝜷 in the case of model

without frailties, given Z and Λ0(𝑡 |𝑧, 𝜷, 𝛿), 𝜷 can be estimated by solving the estimating

equation below

U[𝑖 𝑗] (𝑡, 𝜷|𝜹0, 𝑍𝑖, 𝑍 𝑗 ) =
𝑛𝑖∑︁
𝑟=1

𝑛 𝑗∑︁
𝑠=1

∫ 𝑡

0
H(𝑟,𝑠)
𝑖 𝑗
(𝑢 |𝑍𝑖, 𝑍 𝑗 )W𝑖 𝑗 (𝜹0)M(𝑟,𝑠)𝑖 𝑗

(𝑢 |𝑍𝑖, 𝑍 𝑗 )𝑑𝑢. (6)

where

H(𝑟,𝑠)
𝑖 𝑗
(𝑢 |𝑍𝑖, 𝑍 𝑗 ) = (𝐻 (𝑟)𝑖 (𝑢 |𝑍𝑖), 𝐻

(𝑠)
𝑗
(𝑢 |𝑍 𝑗 )),

𝐻
(𝑟)
𝑖
(𝑢 |𝑍𝑖) = x(𝑟)

𝑖
(𝑢) −

∑𝑛𝑖
𝑟=1 x(𝑟)

𝑖
(𝑢)𝑌 (𝑟)

𝑖
(𝑢)𝑍𝑖𝜆0𝑖 (𝑢)𝑒𝜷

′x(𝑟 )
𝑖
(𝑢)∑𝑛𝑖

𝑟=1𝑌
(𝑟)
𝑖
(𝑢)𝑍𝑖𝜆0𝑖 (𝑢)𝑒𝜷

′x(𝑟 )
𝑖
(𝑢)

,

and

𝐻
(𝑠)
𝑗
(𝑢 |𝑍 𝑗 ) = x(𝑠)

𝑗
(𝑢) −

∑𝑛 𝑗

𝑠=1 x(𝑠)
𝑗
(𝑢)𝑌 (𝑠)

𝑗
(𝑢)𝑍 𝑗𝜆0 𝑗 (𝑢)𝑒𝜷

′x(𝑠)
𝑗
(𝑢)∑𝑛 𝑗

𝑠=1𝑌
(𝑟)
𝑗
(𝑢)𝑍 𝑗𝜆0 𝑗 (𝑢)𝑒𝜷

′x(𝑠)
𝑗
(𝑢)

.
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Also, W𝑖 𝑗 (𝜹) = (𝑤𝑖 𝑗 (𝜹)) is a 2×2 matrix whose elements are function of the spatial

correlation 𝜹 and the number of units in locations 𝑖 and 𝑗 by

W𝑖 𝑗 (𝜹0) =
©­­«
𝑤
𝑖 𝑗

11(𝜹0) 𝑤
𝑖 𝑗

12(𝜹0)

𝑤
𝑖 𝑗

21(𝜹0) 𝑤
𝑖 𝑗

22(𝜹0)

ª®®¬ .
Then, at time 𝑡 ∈ T , we can write the generalized estimating equation for 𝜷 over all pairs as

U(𝑡, 𝜷|𝜹0, 𝑍𝑖, 𝑍 𝑗 ) =
∑︁
𝑖≤ 𝑗

U[𝑖 𝑗] (𝑡, 𝜷|𝜹0, 𝑍𝑖, 𝑍 𝑗 ).

Examining U[𝑖 𝑗] (·, ·|𝜹0, 𝑍𝑖, 𝑍 𝑗 ), it can be written as a sum of four terms each of which is

given below

𝑈
𝑖 𝑗

1 (𝑡 |𝑍𝑖) =
𝑛𝑖∑︁
𝑟=1

∫ 𝑡

0
𝑤
𝑖 𝑗

11𝐻
(𝑟)
𝑖
(𝑢, 𝜷|𝑍𝑖)𝑀 (𝑟)𝑖 (𝑑𝑢),

𝑈
𝑖 𝑗

2 (𝑡 |𝑍 𝑗 ) =
𝑛𝑖∑︁
𝑟=1

𝑛 𝑗∑︁
𝑠=1

∫ 𝑡

0
𝑤
𝑖 𝑗

12𝐻
(𝑠)
𝑗
(𝑢, 𝜷|𝑍 𝑗 )𝑀 (𝑟)𝑖 (𝑑𝑢),

𝑈
𝑖 𝑗

3 (𝑡 |𝑍𝑖) =
𝑛𝑖∑︁
𝑟=1

𝑛 𝑗∑︁
𝑠=1

∫ 𝑡

0
𝑤
𝑖 𝑗

21𝐻
(𝑟)
𝑖
(𝑢, 𝜷|𝑍𝑖)𝑀 (𝑠)𝑗 (𝑑𝑢),

𝑈
𝑖 𝑗

4 (𝑡 |𝑍 𝑗 ) =
𝑛 𝑗∑︁
𝑠=1

∫ 𝑡

0
𝑤
𝑖 𝑗

22𝐻
(𝑠)
𝑗
(𝑢, 𝜷|𝑍 𝑗 )𝑀 (𝑠)𝑗 (𝑑𝑢).

3.3.2. Estimating 𝜹. To estimate 𝜹, a function which is an unbiased estimator of 0 is

sought. Consequently, the objective is to find a weighted function of𝑀 (𝑟)
𝑖
(𝑡1 |𝑍𝑖)𝑀 (𝑠)𝑗 (𝑡2 |𝑍 𝑗 )−

𝐴
(𝑟,𝑠)
𝑖, 𝑗
(𝑑𝑡1, 𝑑𝑡2; 𝜌𝑖 𝑗 |𝑍𝑖, 𝑍 𝑗 ) which will be an estimating function for 𝜹 with the flavor of score

function.

Define the (𝑘 × 𝑘) matrix A(𝑡1, 𝑡2; 𝜌(𝜹) |𝑍𝑖, 𝑍 𝑗 ) =
(
𝐴𝑖 𝑗 (𝑡1, 𝑡2; 𝜌(𝜹) |𝑍𝑖, 𝑍 𝑗 )

)
with

(𝑖, 𝑗)𝑡ℎ entry given by

𝐴𝑖 𝑗 (𝑡1, 𝑡2; 𝜌(𝜹) |𝑍𝑖, 𝑍 𝑗 ) =
𝑛𝑖∑︁
𝑟=1

𝑛 𝑗∑︁
𝑠=1

𝐴
(𝑟,𝑠)
𝑖 𝑗
(𝑡1, 𝑡2; 𝜌(𝜹) |𝑍𝑖, 𝑍 𝑗 ).
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Let ∇𝛿𝑙A(𝑡1, 𝑡2; 𝜌(𝜹)), 𝑙 = 1, ..., 𝑞, be the matrix of element-wise derivatives of

A(𝑡, 𝜌(𝜹)) with respect to 𝛿𝑙 . Define

Π𝑙 = A−1 [
∇𝛿𝑙A

]
A−1,

where we use A for A(𝑡1, 𝑡2; 𝜌(𝜹) |𝑧𝑖, 𝑧 𝑗 ) for compactness. Then, for 𝑙 = 1, ..., 𝑞, following

Cressie (1993), Page 483, it can be shown that E(M(𝑡))Π𝑙E(M(𝑡)) + tr(Π𝑙A) = 0, when

the frailties are observed, where tr(·) denotes the trace of a matrix. Consequently, a score

function can be defined for estimating the 𝑙𝑡ℎ component of 𝜹 using two locations by

U𝑖 𝑗

𝛿𝑙
(𝑡1, 𝑡2 |𝑍𝑖, 𝑍 𝑗 ) = M(𝑡 |𝑍𝑖, 𝑍 𝑗 )Π𝑙M′(𝑡 |𝑍𝑖, 𝑍 𝑗 ) + tr(Π𝑙A)

= M(𝑡 |𝑍𝑖, 𝑍 𝑗 )Π𝑙M′(𝑡 |𝑍𝑖, 𝑍 𝑗 ) + tr(A−1A𝛿𝑙 ). (7)

The expression in (7) can be viewed as a score process and its sum over all pairwise

spatial locations (𝑖, 𝑗) can serve as an estimating function for 𝛿𝑙 . So, the estimating

function over all pairs of spatial locations for 𝜹 is the 𝑞 × 1 vector U𝜹 (𝑡1, 𝑡2; 𝜌(𝜹) |𝑍𝑖, 𝑍 𝑗 ) =

(U𝛿𝑙 (𝑡1, 𝑡2; 𝜌(𝜹) |𝑍𝑖, 𝑍 𝑗 ), 𝑙 = 1, ..., 𝑞)′ where

U𝛿𝑙 (𝑡1, 𝑡2; 𝜌(𝜹) |𝑍𝑖, 𝑍 𝑗 ) =
∑︁
(𝑖, 𝑗),𝑖≤ 𝑗

U𝑖 𝑗

𝛿𝑙
(𝑡1, 𝑡2; 𝜌(𝜹) |𝑍𝑖, 𝑍 𝑗 ).

4. NUMERICAL IMPLEMENTATION

This section gives a description on the simulation design and discusses the simulation

results obtained.

4.1. SIMULATION DESIGN

We are in the same simulation setting as in the first part of this dissertation. The

only difference is we generate the unobservables frailty.
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The parameter 𝛼 which governs the gamma frailty variable was set to 1 and 80.

The choice of 1 was to mimic the presence of frailty where as 80 was chosen to mimic the

absence of frailty.

300 replications were performed with each sample size and parameter combination.

We have listed the results obtained in Table 1, Table 2, Table 3, Table 4, Table 5, Table 6,

Table 7 and Table 8 where CP stands for censoring percentage.

Basically, in this simulation part of this chapter, the procedures developed for the

case without frailties in the first part of the dissertation were adapted for the case with

frailties.

4.2. EXPECTATION-MAXIMIZATION ALGORITHM

Expectation-maximization (EM) algorithm is typically used in the presence of frailty,

in order to estimate regression coefficients and frailty parameters. We use this algorithm in

our work.

Mainly, this algorithm has two steps which are called the expectation step (E-Step)

and maximization step (M- Step). In Expectation step, we calculate conditional expectation

of unobserved frailties conditional on the observed information and obtain the current

parameter estimates. In the maximization step, we take these expected values found in

E-step as the true information. Then by maximizing the likelihood we obtain new estimates

of the parameters of interest, given the expected values.

4.2.1. Initialization Step. First, by setting 𝑍𝑖 to 1, an ordinary Cox model is fitted

and 𝜷𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is estimated. So, we call 𝜷𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝜷̂(0) . Then the initial value for the cumulative

hazard function is estimated by

Λ̂
(0)
0𝑖 (𝑡 |𝑍𝑖

(0)
, 𝜷̂(0)) =

∫ 𝑡

0

∑𝑛𝑖
𝑟=1 𝑑𝑁

(𝑟)
𝑖
(𝑢)∑𝑛𝑖

𝑟=1𝑌
(𝑟)
𝑖
(𝑢)𝑍𝑖

(0) exp
(
𝜷̂(0)′x(𝑟)

𝑖
(𝑢)

) . (8)

Next, an initial estimate 𝛼̂(0) of 𝛼 is also specified.
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4.2.2. E-Step. Using initial values specified in initialization step, namely 𝛼̂(0) , 𝜷̂(0)

and Λ̂
(0)
0𝑖 (𝑡 |𝑍𝑖

(0)
, 𝜷̂(0)) obtain 𝑍𝑖

(1) and ̂log 𝑍𝑖 (1) by

𝑍𝑖
(1)

=

1
𝛼̂ (0)
+ 𝑤𝑖 𝑗11𝑁

(𝑟)
𝑖
(𝑢) + 𝑤𝑖 𝑗21𝑁

(𝑠)
𝑗
(𝑢)

1
𝛼̂ (0)
+

∫ 𝑡

0
∑𝑛𝑖
𝑟=1𝑌

(𝑟)
𝑖
(𝑢)𝑒 𝜷̂ (0)

′x(𝑟 )
𝑖
(𝑢) [𝜆̂(0)0𝑖 (𝑢) + 𝜆̂

(0)
0 𝑗 (𝑢)]𝑑𝑢

and

̂log 𝑍 (1)
𝑖

= log
[

1
𝛼̂(0)
+ 𝑤𝑖 𝑗11𝑁

(𝑟)
𝑖
(𝑢) + 𝑤𝑖 𝑗21𝑁

(𝑠)
𝑗
(𝑢)

]
+𝜑

[
1
𝛼̂(0)
+ 𝑤𝑖 𝑗11𝑁

(𝑟)
𝑖
(𝑢) + 𝑤𝑖 𝑗21𝑁

(𝑠)
𝑗
(𝑢)

]
− log 𝐸 [𝑧𝑖 |𝛼̂(0) ,Λ(0)0𝑖 (𝑢),Λ

(0)
0 𝑗 (𝑢), 𝑁

(𝑟)
𝑖
(𝑢), 𝑁 (𝑠

𝑗
(𝑢)]

where 𝜑 is the di gamma function. i.e., the first derivative of the logarithm of the gamma

function.

4.2.3. M-Step.

1. Using (8), obtain Λ̂
(1)
0𝑖 (𝑡 |𝑍𝑖

(1)
, 𝜷̂(0)).

2. Obtain 𝜷̂1 by substituting 𝑍𝑖
(1) for 𝑍 in equation (6).

3. Calculate 𝛼̂ by maximizing the full likelihood in (5) with respect to 𝛼 given the current

values (Λ̂(1)0𝑖 , 𝜷̂
(1)).

4. Compare the values (Z(1) ,𝜶(1)) with the values (Z(0) ,𝜶(0)) until the values of Ẑ and

𝜶̂ have stabilized. After that, terminate the algorithm. At that time the estimates will

be the final values. If not, replace (𝛼̂(0) , 𝜃 (0)
𝑖
) by (𝛼̂(1) , 𝜃 (1)

𝑖
) and proceed to step 1 of

the algorithm.
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4.3. DISCUSSIONS OF SIMULATION RESULTS

Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8 list mean

values and the standard deviations of the estimators of 𝛽1, 𝛽2, 𝛿1 and 𝛿2 according to the

values of 𝜂2 (0.8, 1.5), sample size (30×3117, 50×3117, 100×3117) and spatial correlation

model (exponential, powered exponential). Additionally, Table 1, Table 2, Table 3 and Table

4 contain mean values of 𝛼. Effects of changing the values of sample size, CP, 𝜂2, 𝛼 and

spatial correlation model on the estimators of 𝜷 and 𝜹 are investigated.

As the sample size increases the estimators of the regression coefficient 𝜷 improves,

with deceasing biases and standard errors. This is true for both exponential and powered

exponential spatial correlation models.

Moreover, the estimates of frailty parameter which were obtained using EM algo-

rithm were close to the true values.

In Figure 2 we also observe that bias of the estimator of 𝜷 decreases as the 𝛼

decreases. Regardless of the sample size, it is noted that as censoring percentage (CP)

increases, the bias of 𝜷 increases. It is justifiable since, higher censoring means less failure

times. On the other hand, regardless of the sample size, the biases of the 𝜹 remain very

steady and are not affected by the change in CP. This is clear since the spatial correlation

parameter is the correlation between two areas and hence it is not affected by sample size.

No significant difference in the results between exponential and powered exponential

was observed. It was not a surprise since both model have exponential components.

However, the standard deviations of the estimates of 𝜹 do not have any noticeable

pattern with the increasing sample size. This is also true because of above mentioned

reason.

It is worthwhile noting the fact that accounting for frailty in the model improved

the performance of the regression parameter in the presence of frailty. This was evident as

bias of estimator of regression parameter decreases when frailty variance increase. This
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can be justified because subjects in the same location are not independent due to the effects

of frailty. So, it becomes clear that, ignoring the frailties when they are present can make

unreliable estimates of the regression parameters.

5. CONCLUDING REMARKS

This research was conducted based on the assumption that the subjects in each

geographical region are concentrated in the center. In reality, this may not be the case.

Therefore, it would be worthwhile to the situation where the geostatistical location of

each unit is considered. Another aspect needing further investigation is the possibility of

allowing the event to recur which has applications in many area. Techniques in Adekpedjou

and Niang Dabo (2021) can be used. It will be also interesting to investigate asymptotic

properties of the estimators with frailty. Techniques in Murphy (1995) and Parner (1998)

can be used. In this work, we have assumed the Cox model as a model for failure time.

Others such as Accelerated failure time, additive model, or additive/multiplicative models

can be considered in future.
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SECTION

2. CONCLUSIONS

In this research a method was explored for modeling failure time data in the presence

of possible spatial correlation by probit transforming failure times and constructing multi-

variate Gaussian random fields. Particularly, we account for spatial correlation by including

a spatially dependent variance-covariance matrix for the Gaussian random fields, whose

elements are a function of Euclidean distance between geographical locations, and those

elements represent the spatial dependency among all pairs of geographical locations of the

study. In literature, there have been some work to model spatially correlated failure time

data which only consider one subject per location. We generalize this setting to have many

units per any given geographical location, since this is the more practical situation according

to real world applications. For Paper I we considered the case with no frailty. We obtained

weighted pairwise semi parametric estimating equations in order to estimate regression and

spatial parameters. Our estimators were shown to be consistent and asymptotically normally

distributed under infill asymptotic. The simulation study we conducted gave results that

were in agreement with developed methods. In Paper II we included frailty variables with

a view towards investigating their effects in estimating procedure. Specifically, we assume

that each subject in a given geographical region has the same frailty, where as the frailty

is different from one geographical region to the other. We then used the same methods

that we used in Paper I adapting to the case with frailty. Finally, we conducted a separate

simulation study to examine the effects of frailty when modeling failure times.
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