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ABSTRACT

Traditional selfish routing literature quantifies inefficiency in transportation systems

with single-attribute costs using price-of-anarchy (PoA), and provides various technical ap-

proaches (e.g. marginal cost pricing) to improve PoA of the overall network. Unfortunately,

practical transportation systems have dynamic, multi-attribute costs and the state-of-the-art

technical approaches proposed in the literature are infeasible for practical deployment. In

this paper, we offer a paradigm shift to selfish routing via characterizing idiosyncratic, multi-

attribute costs at boundedly-rational travelers, as well as improving network efficiency using

strategic information design. Specifically, we model the interaction between the system and

travelers as a Stackelberg game, where travelers adopt multi-attribute logit responses. We

model the strategic information design as an optimization problem, and develop a novel ap-

proximate algorithm to steerLogitResponse travelers towards social welfare using strategic

Information design (in short, LoRI). We tested the performance of LoRI and compare with

that of a SSSP algorithm on a Wheatstone network with multi-modal routes. We improved

LoRI and demonstrated the enhanced performance of LoRI V2 when compared to LoRI V1

in similar experiment settings. We considered a portion of Manhattan, New York, USA and

presented the performance of LoRI on a real world multi modal transportation network. In

all our simulation experiments, including real world networks, we find that LoRI outper-

forms traditional state of the art routing algorithms, in terms of system utility, and reduces

the cost at travelers when large number of travelers on the network interact with LoRI.
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1. INTRODUCTION

Smart navigation systems (e.g. GPS devices, navigation applications on mo-

bile/smart devices) have transformed the transportation domain in terms of reducing cogni-

tive overload in travelers. However, such technological advancements have had little impact

on several fundamental issues such as mitigating congestion [15] and reducing carbon

emissions [19], which have only worsened over time. For instance, current state-of-the-art

navigation systems employ traditional shortest paths algorithms, such as Dĳkstra’s algo-

rithm [18], Bellman–Ford or Warshall-Floyd, and �∗-algorithms [10] to recommend routes

and mitigate travelers’ cognitive overload. On the other hand, selfish travelers exhibit multi-

attribute preferences, which are typically misaligned from system’s interests. As a result,

travelers often reject route recommendations that involve non-personal transport modali-

ties, such as public transportation, ridesharing services and other micro-mobility services

[6, 26]. Although unintentional, people have steered away from personal car usage during

the ongoing COVID-19 pandemic in 2020 [35], which have resulted in significant cost

reductions in terms of congestion, carbon emissions as well as collisions. Our goal in this

thesis is to steer selfish travelers away from personal car usage (even under non-pandemic

conditions), via offering them alternative routing choices in a persuasive manner.

Selfish routing is a strategic framework where travelers employ their best-response

routes selfishly according to their respective preferences to form an equilibrium. How-

ever, the central authority (e.g., a city transportation department) chooses a social-welfare

objective that is not necessarily aligned with all travelers’ interests. This leads to system

inefficiency, which can be quantified by price-of-anarchy (PoA) [28]. Several techniques

have been proposed to drive PoA towards unity, which happens when the equilibrium out-

come is optimal in terms of the system’s objective. A seminal example is marginal cost

pricing, where selfish travelers are imposed taxes based on their marginal contribution to
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the system’s objective [29]. Although the idea of marginal cost pricing has been floating

around for several decades, the technique remains practically infeasible due to our inability

to estimate marginal costs accurately.

In [31], the authors studied the effects of underestimating marginal costs on the

optimality in terms of system objectives, and showed that taxing underestimating marginal

costs produces an outcome that is at least as good as having no taxes. Although attempts have

been made to implement such solutions by authoritarian regimes [38], the friction to adopt

marginal cost pricing continues to persist due to various political reasons in democratic

nations. Another powerful idea to influence traveler behavior is Stackelberg routing, where

a fraction of agents are routed centrally, while the remaining agents are allowed to choose

their routes selfishly [32]. A similar routing algorithm is proposed In [30] based on multi-

objective A∗ with a goal to design routes that decrease the overall network congestion.

Meanwhile, information-revelation systems have also been proposed [1, 2, 22],

where the traffic state is revealed to travelers as opposed to recommending routes. Although

such systems do not mitigate cognitive-overload at the travelers, they have been found to

generate a positive impact on traffic congestion and other global objectives even in non-

strategic settings. However, these systems still suffer from poor persuasive ability, in terms

of inducing behavior modification among travelers. A natural and effective solution is to

design information strategically at the city transportation department, and present it to the

travelers to steer their routing decisions towards socially optimal outcomes.

Recently, strategic information design has been studied in the transportation domain

when the network congestion state is uncertainly available at the travelers. For example, in

[11], the authors computed best-response signals under first-best, full information, public-

signal and optimal information structure scenarios in the context of Wheatstone Network;

they demonstrated that optimal information structures reveal only partial information rev-

elation to mitigate network congestion. Similar results have been found in [36] in the

case of Pigou networks (graphs with parallel routes between a single-source and a single-
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destination) in the presence of state uncertainty on one of the routes. Optimal information

structures have been found using Bayesian persuasion framework to reduce average traffic

spillover on a specific route in a Pigou network.

Despite the above development, existing works in strategic information design in

transportation settings make several impractical assumptions. Since this is still a fledgling

topic, almost all efforts assume that travelers are expected utility maximizers (EUM). How-

ever, there has been a strong evidence from real-world observations that travelers deviate

from EUM behavior quite frequently. Such an effort was first made in [27], which stud-

ied strategic information design in a single-sender, single-receiver setting when both are

prospect-theoretic agents. Nevertheless, this framework is not applicable to transportation

domain where there are multiple receivers. Another impractical assumption is the consid-

eration of single-attribute costs and unimodal transportation networks, all of which are far

from reality. Therefore, in this thesis, we consider a more realistic transportation framework

and develop a novel strategic information design framework as stated below.

First, we assume that the travelers’ responses exhibit quantal response equilibrium

(QRE), where deviations from EUM at each traveler are captured by the randomness within

the stochastic utility maximization framework [21]. We model the strategic interaction with

the system as a novel Stackelberg-QRE game, where the system (leader) exhibits EUM

behavior, while the travelers (followers) exhibit logit responses. Second, we assume that

both the system and travelers exhibit non-identically weighted multi-attribute preferences.

Specifically, we assume that the system’s motive is to reduce both network congestion (in

terms of travel time) and carbon emissions on the entire transportation network, whereas

the traveler wishes to minimize travel time and/or carbon emissions along his/her personal

route.

Inspired fromBayesian persuasion [16] aswell as themethod in [4, 24], when there is

a single sender andmultiple receivers, we develop a novel, approximate strategic information

design algorithm to steer Logit Response travelers towards social welfare using strategic
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Information design (in short, LoRI). Our proposed algorithm LoRI uses the predictor-

corrector method to find quantal responses at the travelers, and finds a locally-optimal

state-information signal using interior-point algorithms that minimizes a non-convex system

cost.
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2. LITERATURE REVIEW

2.1. STRATEGIC SIGNALING INTERVENTIONS

Strategic signaling interventions has been extensively studied by diverse researchers

in various fields such as computer science, game theory and persuasion as signaling games

[4, 7, 24, 32, 37, 41], algorithmic information structure design [1, 2, 11, 12, 16, 22, 27, 36]

and recommendation systems [9, 14, 20, 22, 30, 40]. The reminder of this section reviews

various techniques from papers specially relevant to this thesis.

While Stackelberg games are the most basic form of signaling games, Bayesian

Stackelberg Games capture more real world scenarios. The notion of signaling in different

models of Bayesian Stackelberg games and their computational complexity is investigated

by Xu et al., in [37]. They show that the optimal combinations of mixed strategies and

signaling schemes can be computed in polynomial time in the case of a single leader and

multiple follower types. However, in security games, the problem is NP-hard in general,

though a special case that can be solved efficiently is identified. For the case with multiple

leader and a single follower types, it shows that the optimal combinations of mixed strategies

and signaling schemes can also be computed in polynomial time. Moreover, the polynomial

time solvability extends to security games in this setting. Also, these results can be easily

generalized to the case with both multiple leader and follower types.

On the other hand, Dugmi et al., in [12] study algorithmic information design.

Information structure design, also sometimes known as signaling or persuasion, refers to

understanding the effects of information on the outcomes of strategic interactions, and in

computing the information sharing strategies which optimize some design objective. This

paper focuses on information structure design in single agent and multi-agent cases. The

case of multi-agents is further divided into (i) multi-agents with public signals and (ii)

multi-agents with private signals to each agent. For each of the aforementioned cases,
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this paper discusses (i) model and examples, (ii) characterization of different signaling

schemes namely (a) no information, (b) full information and (c) optimal information, (iii)

negative/positive results,(iv) algorithmic perspective and computational complexity and (v)

future work and open questions. Motivated by specific applications, this paper talks about a

number of works in the computer science community that explores variants and extensions

of the basic models from a computational perspective.

Zhang et al., in their survey paper [40] presents an extensive review of recent re-

search efforts on deep learning based recommendation systems. It presents a taxonomy of

deep learning-based recommendation models, along with a comprehensive summary of the

state of the art. First, traditional recommendation models such as content based, collabora-

tive filtering and hybrid are reviewed. Then, basic deep learning techniques like multilayer

perceptron, autoencoders, convolutional neural networks and restricted boltzmann machine

are introduced. The paper then states some of the strengths and possible limitations of deep

learning based recommendation models such as nonlinear transformation, representative

learning, sequence modelling and flexibility. State of the art deep learning based recom-

mendation systems are discussed and are categorized based on the deep learning techniques

into (i) recommendation with neural building blocks and (ii) recommendation with deep

hybrid models. The paper then concludes by discussing several promising prospective

research directions.

2.2. STRATEGIC INTERVENTIONS IN TRANSPORTATION SYSTEMS

One of the first attempts to examine the question of designing information in games

of congestion using the framework of Bayesian Persuasion ismade byDas et al., in [11]. This

paper considers a simple network of two routes %1 and %2 between origin and destination

is considered (Pigou’s example). The cost of travel depends on the state of the network l
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for the route %1 and for %2, it depends on the number of travelers taking %2. This paper

minimizes the expected aggregate travel costs via designing the following information

structures,

• First-Best: where a central system mandates which route each traveler will take,

• Full information: where all the agents know the state l,

• Public Signal: where the agents can observe a public signal about l.

• Optimal information structure: where a central system only presents the information

to socially optimal share of travelers.

this paper analyzes the aforementioned information structures and demonstrated that op-

timal information structures reveal only partial information revelation to mitigate network

congestion. It also presents some practical issues of implementing information design to

reduce congestion such as competition between two central planners/systems and fairness.

The problem of computing optimal ex ante persuasive signaling schemes in Bayesian

Network Congestion Game (BNCG) was analyzed by Castiglioni et al., in [7]. First, they

show that an optimal ex ante persuasive signaling scheme can be computed in polynomial

time in symmetric BNCGs (i.e., where all the players share the same source and destination

pair) with edge costs defined as affine functions of the edge congestion. Then, it is shown

that symmetry is a required crucial property for efficient signaling by proving that it is NP-

hard to compute an optimal ex ante persuasive signaling scheme in asymmetric BNCGs.

These results also work for some simple class of asymmetric congestion games such as

non-Bayesian singleton congestion games with affine costs. This paper also discusses a

solution concept to this problem setting which is optimal coarse correlated equilibrium.

On the other hand, the problem of large-scale multi-modal transportation recom-

mendation is explored by Liu et al., in [20]. A number of features are extracted from

multiple perspectives based on the domain knowledge of traffic engineering, including user
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preference, mode accessibility, and location popularity. Additionally, a bipartite graph is

designed to learn the embedded representation of user, origin, destination, and OD pair.

Considering the inconsistency between the objective function and the evaluation metric, a

post-processing algorithm is proposed to fine tune the predicted probability. Experimental

results on the querying records in four cities all demonstrate significant improvements using

the proposed model. platform.

To capture multiple modes of transportation in a transportation network, Samal

et.al. in [30] models the multi-modal transportation network as multi-layered graph where

different layers corresponds to the different modes supported by the network and travelers

switch modes using switch edges. This paper proposes an algorithm based on multi-

objective �∗ which designs routes that decrease the overall network congestion. A User

Optimal Multi-Modal Router (UO-MMR) is proposed which presents multi-modal paths to

the user that maximizes their objectives. Extending UO-MMR, this paper develops a Social

Optimal Multi-Modal Router (SO-UMMR) using a proactive approch to avoid congestion

by recommending routes that are socially optimal and improve system-level performance.

Using MATSim as a simulation tool, this paper shows that as the number of users using SO-

MMR increases, the average travel time of all travelers decrease and SO-MMR increasingly

offers transit route to the users.

While most of the literature assume utility maximizing agents in congestion games,

Zhao et al., in [41] consider boundedly rational agents and investigate quantal response

equilibrium (QRE) in congestion games. This paper establishes the travelers’ route choice

behavior with bounded rationality in the framework of QRE, where at equilibrium, the

route choice probability for the travelers follows logit probability. These probabilities are

obtained by assuming that each player chooses a “noisy” best response by maximizing

the travel time D8 + n8 instead of maximizing the travel time D8. Additionaly, the paper

enriches the QRE model by allowing the models’ bounded rationality parameter _ to

vary with time (increase exponentially with time). The model is further extended to the
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realm of different "types" of travelers, where the type corresponds to different values for

the parameter _ ∈ [0,∞). The relationship between travel time and bounded rationality

parameter _ is studied. Following the same direction, the authors in [8] compute the optimal

strategies to commit to against boundedly rational agents in sequential games. It first proves

that the aforementioned problem is NP-hard in general. To enable further analysis, this

paper introduces a non-fractional reformulation of the direct non-concave representation of

the equilibrium. Furthermore, using Dinkelbach-Type formulation of quantal stackelberg

equilibrium (QRE), this work identifies the conditions under which the problem can be

approximated in polynomial time in the size of representation. They show that a MILP can

approximate the reformulation with a guaranteed bounded error. The experimental results

demonstrate that this algorithm computes higher quality results, several orders of magnitude

faster than a baseline method for general non-linear optimization.

Considering a completely different signaling strategy, Chen et al., in [9] propose and

investigate a novel Dynamic Pricing Strategy (DPS) to price travelers’ trips in intelligent

transportation platforms. To solve the problem, first a route pricing model is designed to

compute the congestion contribution to global urban traffic systems made by a route. The

dynamic pricing strategy retrieves a matching between = travelers’ trips and the potential

travel routes (each trip has : potential routes) to minimize the global traffic congestion. This

is challenging due to its high computation complexity (there exist :=matching possibilities).

To solve this, an efficient and effective approximate matching algorithm based on local

search, aswell as pruning techniques is developed to further enhance thematching efficiency.

Experiments on two real-life data sets show that the proposed swap based algorithm is

capable of achieving both high efficiency and high accuracy compared against the exact

route matching algorithm.

In an attempt to reduce traffic pollution, Parchuri et al., in [17] model the prob-

lem of managing urban traffic pollution as a Maximum Flow Problem (MFA). This work

contributes to the literature of transportation research by developing a Pareto-optimal Max
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Flow Algorithm to suggest multiple max flow solutions. In this paper, Pareto Optimal max

flow refers to the fact that given a (max) flow solution, we cannot increase flow on one

route without decreasing flow on at least one other route. To compute maximum flow in

a flow network, this paper uses the popular Ford-Fulkerson Algorithm (FFA). Pareto Max

Flow Algorithm (PMFA) is developed that works on a directed graph to find all the possible

solutions that allow the maximum number of vehicles to flow from origin to destination.

Next, PMFA is extended to k-PMFA where the notion of k-optimality is introduced. In

particcular, it aims to filter the PMFA solution set so that the remaining solutions in the

Pareto solution set are k-distant from each other. Experiments are performed on New York

city map, simulated using SUMO. The experimental results showcases that the k-PMFA

indeed spreads pollution better, but with a cost of 21.75% increase in travel time on an

average for vehicles going from origin to destination.

In the remaining sections of this thesis, we model the problem, design and develop

an approximate response signaling algorithm - LoRI and validate the performance by

simulating multiple travelers on a multi modal Wheatstone transportation network and real

world data.
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3. STRATEGIC INFORMATION DESIGN FOR QUANTAL RESPONSE
TRAVELERS

3.1. MODELING MULTI-MODAL TRANSPORTATION NETWORK

The literature of modeling multi-modal networks is vast and various techniques are

used to represent multi-modal transportation networks using graphs. Some of the prominent

models are discussed below:

• Multi Layered Network: A multimodal transport network is modeled as a graph

� (+, �) with |+ | = = such that each layer corresponds to a mode< ∈ " [3] as shown

in the Figure 3.1. Hence, a mode <8 ∈ " is defined for each node 8 ∈ + while a

travel time 38, 9 is associated to each arc (8, 9) ∈ � . An arc (8, 9) such that <8 ≠ < 9 is

called a transfer arc. In terms of multi-modal characteristics, each path in G yields a

sequence (or string)of modes.

Figure 3.1. Multi-Layered Graph
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The acceptable mode sequences are represented via a non-deterministic finite state

automaton (NFA) as shown in Figure 3.2, possibly issued from a user-defined

regular expression. This NFA is given by a 5-tuple � = ((, ", X, B0, �) where

( = {1, · · · , |( |} is the set of states, B0 is the initial state, � is the set of final states

and X : " × " × ( → 2( is the transition function such that X(<, <′, B) gives the

set of states obtained when traversing, from state B, an arc (8, 9) with <8 = < and

< 9 = <
′. We assume that X(<, <′, B) = ∅ denotes the case where the transition is

infeasible. Note that the case were X(<, <′, B) is either the empty set or a singleton

yields a deterministic finite state automaton (DFA).

Figure 3.2. Initial NFA for mode scenario "3 = {F, =, 2, B}
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• Time-Expanded model [14]: In this model, public transport stops (e.g., bus stops)

are simply modeled as “stop”- labeled nodes. Other nodes represent time events from

the timetable. Directed edges between these nodes are added whenever it is possible

to transfer from one to the other (i.e., the departure of one transport vehicle is after

the arrival of the other). These time nodes are also linked to nodes of their owning

stops. While these models often lead to a large number of nodes and edges, standard

route planning algorithm and their speedup techniques can be directly applied on

the resulting graph. Multimodal route planning can be achieved by merging the

involved network graphs into a single graph, and applying routing algorithms on the

merged graph. A common approach for merging different networks is to solve the

nearest neighbor problem, which simply connects spatially close stops from different

networks. Figure 3.3, Figure 3.4, Figure 3.5 and Figure 3.6 show the time-expanded

models under different scenarios.

Figure 3.3. A time-expanded model of a public transport network: A trip is composed of a
sequence of time nodes (C%)

8
) at different stop nodes (B%)

8
), and it belongs to a route.

After modeling public transport and carpooling as time-expanded graphs, the next

step is to merge and link these graphs.
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Figure 3.4. A time-expanded model of carpooling: A trip is composed of a sequence of
time nodes (C�%

8
) at different stop nodes (B�%

8
), and it belongs to a route.

Figure 3.5. A carpooling stop is contained by drive-time areas of two public transport stops.
(a) the example; (b) schematic representation of the carpooling stop linked to the meta-stops
of the two public transport stops.
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Figure 3.6. Schematic representation of a transfer between carpooling and public transport.
If a given conditional is true, a transfer edge (C�%, C%) ) is created.

In this work, we model the multi-modal transportation network as multi-layer graph.

Let a multi-modal transportation network consisting ofΛC travelers at time C, be represented

as a graph G = {V, E}, where V = {0, 1, · · · , #} represents the set of physical locations

(vertices), and E represents the transport interconnections (edges) between various locations

in V. Let G support a gamut of transport modalitiesM = {1, · · · , "}. For the sake of

convenience, we expand the network G into a multi-layered graph G4G?. using unimodal

subgraphs {G<}<∈M , and switch edge sets E8, 9 which interconnect 8Cℎ modality to 9 Cℎ

modality within each vertex. For example, consider a Wheatstone road network with four

vertices and ten edges, as illustrated in Figure 3.7. Consider " = 3 transport modalities on

this network, andM ={Private Car (colored black),Metro Train (colored blue) andWalking

(colored green)}.Using unimodal subgraphs and switch edges (depicted using dashed lines),

we expand the example network into a multi-layered graph G4G?., as shown in Figure 3.8.

We model the network state as BC =
{
24,C

}
4∈E , where 24,C is the number of travelers on edge

4 ∈ E at time C.
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Figure 3.7. An Example Multi-Modal Transportation Network

Figure 3.8. Multi-layered expansion of the Multimodal Transportation Network shown in
Figure 3.7

3.2. PROBLEM FORMULATION

Assume a central entity (a.k.a. the system), which evaluates the network state in

terms of the overall traffic congestion and carbon emissions using a weighted multi-attribute

cost. Assuming that there are  attributes, each edge 4 ∈ E has a multi-attribute cost vector

x(24,C) = [G1(24,C), · · · , G (24,C)]. The system evaluates the cost of each edge 4 at time C

as

H(24,C) =
 ∑
:=1

0: · G: (24,C). (3.1)

Since centralized systems typically have access to sensing infrastructure across the network

to measure the network state in real-time, we assume that the system has greater information

regarding the current state BC than the travelers.
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In this thesis, we assume that the system constructs a multi-dimensional signal

-ℓ,C =
[
`ℓ,4,C

]
4∈E to steer ℓ

Cℎ traveler’s decision, where

`ℓ,4,C ([, _) = [Pℓ (24,C+1 = _ |24,C = [)]24_=0, (3.2)

is the state transition probability shared by the system to the ℓCℎ traveler. The system

constructs this signal with the goal of steering travelers’ decisions towards system’s optimal

(a.k.a. social welfare).

Note that the overall system cost after a finite time horizon ) depends on decisions

taken by all the active travelers and all the signals presented to the active travelers. It

comprises of both past and future costs, and is given by

*0,) (-) , p) ) =

)∑
C=1

∑
4∈E

∞∑
_=1

X4,C (_)H(_), (3.3)

where -) = [-1,) , · · · , -Λ) ,) ] is the signal profile sent to all the travelers in the network;

p) = [?1,) , · · · , ?Λ) ,) ] is the path profile chosen by the travelers; and X4,C (_) denotes the

a priori system’s belief probability regarding the state of edge 4 being 24,C = _ at time C.

Then, we define the system’s rationality as follows:

Definition 1. The system’s motive is to minimize its cost function that depends on all the

travelers’ decisions and the signals presented by the system. The motive is given by:

min
-)

*0,) (-) , p) ) (3.4)

Although these signals can be revealed by the system at any time, the travelers can

take advantage of this information and change their path only when they are present at some

node. We label such agents as active travelers. In other words, we can define the state of
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Figure 3.9. State Transitions at the ℓCℎ Traveler

the ℓCℎ traveler at time C as

Uℓ,C =


1 if the ℓCℎ traveler is active,

0 if the ℓCℎ traveler is inactive.

(3.5)

In other words, an active traveler’s state gets updated to an inactive state as soon as an active

traveler chooses the next edge, and remains so until he/she traverses that edge completely

and reaches the other vertex as shown in Figure 3.9. That is, 24,C is equal to the total number

of inactive travelers {Uℓ,C = 0} on edge 4 at time C.

Furthermore, we assume that the travelers cannot fully observe the true network

state BC at any given time, but can construct a multi-dimensional belief qℓ,C =
[
qℓ,4,C

]
4∈E

about BC at time C based on prior experiences, where

qℓ,4,C =

{
qℓ,4,C (2)

}∞
2=0

(3.6)
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is the traveler’s belief vector regarding the state of the edge 4 ∈ E at time C, and qℓ,4,C (2) =

Pℓ (24,C = 2). Assuming that the ℓCℎ traveler’s multi-attribute cost1 on edge 4 at time C is a

weighted linear combination of all attribute-wise edge costs x(24, C), as given by

Iℓ (24,C) =
 ∑
:=1

1ℓ,: · G: (24, C), (3.7)

we model the ℓCℎ traveler’s stochastic expected cost for choosing a path ?ℓ,) as

+ℓ,) (-) , 0) ) = E p) ∼0)
[
*ℓ,) (-) , p) )

]
+ n?ℓ,) , (3.8)

where 0Z is a set of probability distributions over the set of all paths Pℓ at every traveler

ℓ ∈ Λ) , *ℓ,) (-) , p) ) denotes the nominal (known) expected cost of the traveler, and n?ℓ,)

is the noise (random parameter) term that captures any uncertainty regarding ℓCℎ traveler’s

rationality. The decision policy adopted by the ℓCℎ traveler at time C is denoted as the path

pℓ,C ∈ Pℓ, where Pℓ represents the set of all paths available for the ;Cℎ traveler.

Let pℓ,1:) denote the sequence of edges that the ℓCℎ traveler has already taken

(committed) until time ) . Then, the ℓCℎ traveler’s expected cost*ℓ,) (-) , p) ) comprises of

two terms: the incurred (deterministic) cost from traversed, and the future (unknown) cost

from the remaining path to be traversed. In other words, we have

*ℓ,) (-) , p) ) =
∑

4∈ pℓ,1:)

Iℓ (24,Cℓ,4)

+
∑

4∈ pℓ,) − pℓ,1:)

( ∞∑
_=1

qℓ,4,C (_) · Iℓ (_)
)
,

(3.9)

where Cℓ,4 is the time at which the traveler is at the head of edge 4, and pℓ,)− pℓ,1:) represents

the sequence of edges that the traveler will travel in the future, if he/she continues to stay

on the same decision policy pℓ,) . Then, the traveler’s rationality is defined as follows:

1If some attribute : is not applicable to a given edge 4 ∈ � , then we let G: (24) = 0. For example,
the attribute ‘CO emissions’ is not applicable to all the edges of mode "walking", for these edges, we let
G�$ (24) = 0.
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Definition 2. The traveler’s motive is to minimize the random cost function that depends

on the signals presented by the system and the path chosen by the traveler, which is given

as:

min
cℓ,) ∈Δ(Pℓ )

+ℓ,) (-) , 0) ) . (3.10)

Given that both the system and travelers have non-identical utilities (i.e., mismatched

motives), it is natural to model their interaction as a one-shot Stackelberg-Quantal-Response

(SQR) game, where the system commits to its signaling strategy as defined in Definition 1,

before travelers choose their stochastic policies as per Definition 2 [13].

Definition 3. The equilibrium of an SQR game between the system and travelers is defined

as the pair (-∗C , c∗ℓ,C), where

-∗C , arg min
-C

*0,)
(
-C , p

∗
C

)
,where p∗C ∼ 0∗C , and

c∗
ℓ,C
, arg min

cℓ,C

+ℓ,C

(
-∗C , cℓ,C , c

∗
−ℓ,C

)
, for all ℓ ∈ Λ) .

(3.11)

Similar to solving traditional Stackelberg-Nash games, we propose a novel solution

approach named LoRI based on backward induction, which evaluates travelers’ quantal

response equilibrium as a function of system’s signal -) , and then evaluate the best response

signal at the system. Wepresent the technical details of our approach in the following section,

and later analyze its performance in simulation experiments.
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Algorithm 1: LoRI
Data: Travelers ΛC , Network State BC
for time C = 1 to infinity do

forall ℓ ∈ ΛC do
if Uℓ,C = 1 then

; /* If traveler is active */
02C8E4)A0E4;4AB.033 (ℓ)

end
end
forall ℓ ∈ 02C8E4)A0E4;4AB do

2>BC ← 2>BC"0CA8G(ℓ);
0∗C ← &'� (2>BC);
-∗ ← arg min

-C

*0,C
(
-C , pC

)
2ℎ>B4=%0Cℎ← ?0Cℎ(ℓ, `∗, BC) ;

4 ← 2ℎ>B4=%0Cℎ[2DAA4=C�364];
if ℓ.;>20C8>= = ℓ.34BC8=0C8>= then

02C8E4)A0E4;4AB.A4<>E4(ℓ)
end

end
end

3.3. STRATEGIC INFORMATION DESIGN USING LORI

Given 24,C at time C on every edge 4 ∈ E, the state transition probability is defined as

k4,C+1([, _ |ΛC) = P
(
24,C+1 = _

�� 24,C = [)
= P

(
ΛC+1∑
ℓ=1

1(4ℓ,C+1 = 4) = _
����� ΛC∑
ℓ=1

1(4ℓ,C = 4) = [
)
.

(3.12)

Let dℓ,C (4, 4′) denote the probability that the ℓCℎ traveler is present on edge 4 at time C

given that he is on edge 4′ at time C − 1. Then, the state transition probability k4,C+1 can be

evaluated using the following recursive relation:

k4,C+1([, _ |ΛC) = dℓ,C+1(4, 4′) · k4,C+1([, _ − 1|ΛC − 1)

+(1 − dℓ,C+1(4, 4′)) · k4,C+1([, _ |ΛC − 1)
(3.13)
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where
dℓ,C+1(4, 4′, Uℓ,C) =∑

?ℓ,C∈P;,C
cℓ,C (?ℓ,C |`ℓ,C , 4 ∈ ?ℓ,C , 4′ ∈ ?ℓ,C−1, Uℓ,C = 1)

(3.14)

is the probability that the ℓCℎ traveler switches from edge 4′ to 4 at time C, and the ℓCℎ

traveler’s logit choice probability [21] for the path ?ℓ,C at time C is given by

cℓ,) (?ℓ,) ) =
exp

(
U ·*ℓ,) (-) , p) )

)∑
?′
ℓ,)
∈Pℓ,)

exp
(
U ·*ℓ,) (-) , p) )

) , (3.15)

where U ≥ 0 is the parameter of the quantal response model. Note that these logit

probabilities depend on the traveler’s utilities *ℓ,) , which in turn depends on the posterior

belief qℓ,4,C as defined in Equation (3.9).

Let every traveler’s belief regarding the future state of the network remains stationary

until the system presents a signal. Then, we assume that the traveler updates his prior belief

defined in Equation (3.6) using Bayes rule to obtain the following posterior belief regarding

the network state:

qℓ,4,C+1(_) =
qℓ,4,C ([) · `ℓ,4,C ([, _)
∞∑
_=0

qℓ,4,C ([) · `ℓ,4,C ([, _)
. (3.16)

Without any significant loss in practical applicability, we assume that the denominator in

Equation (3.16) always converges to some value in the region [0, 1].

To compute the Quantal Response Equilibrium for the travellers, we use Gambit

[25]. Gambit is a library of game theory software and tools for the construction and

analysis of finite extensive and strategic games. We build a strategic game (Normal-Form

game) between all the travellers and use Gambit’s tool 60<18C − ;>68C to solve for QRE.

Gambit computes the principle branch of the (logit) quantal response correspondence using

the predictor-corrector method based on the procedure described in [33]. The predictor-
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*0,) =

)∑
C=1

∑
4∈E

H(24,C) +
∞∑

C=)+1

∑
4∈E

∞∑
_=1

[
dℓ,C (4, 4′)k4,C ([, _ − 1|ΛC−1 − 1)

+
(
1 − dℓ,C (4, 4′)

)
k4,C ([, _ |ΛC−1 − 1)H(_)

]
=

)∑
C=1

∑
4∈E

H(24,C) +
∞∑

C=)+1

∑
4∈E

∞∑
_=1

©«
∑

?ℓ,C∈P;,C
cℓ,C (?ℓ,C |`ℓ,C)

ª®¬ · k4,C ([, _ − 1|ΛC−1 − 1)

+ ©«1 −
∑

?ℓ,C∈P;,C
cℓ,C (?ℓ,C |`ℓ,C)

ª®¬ · k4,C ([, _ |ΛC−1 − 1)H(_)
 .
(3.17)

corrector method first generates a prediction using differential equations describing the

branch of the correspondence, followed by a corrector step which refines the prediction

using Newton’s method for finding a zero of a function.

The leader’s optimal strategy is to minimize its cost*0,) which can be computed as:

min
`ℓ,)

*0,)
(
`ℓ, `−ℓ, cℓ,) (?ℓ,) |`ℓ,) ), ?−ℓ,)

)
(P1)

Using Equation (3.13), we write the term k4,C (_) and expand *0,) as shown in Equation

(3.17).

Upon computing the travelers’ QRE, the system can evaluate its optimal strategy

via minimizing*0,) . Using Equation (3.13) and (3.14), we expand the term*0,) as shown

in Equation (3.17), where ΛC−1,−ℓ = ΛC−1 − {ℓ} is the set of travelers excluding the ℓCℎ

traveler. Since -) is a right stochastic matrix, the feasibility (search) space is convex.

However, it is analytically hard to verify whether or not, the objective function *0,) stated

in Equation (3.17) is convex in `. Note that the term cℓ,C represents logit probabilities which

are known to be non-convex. Equation (3.17) comprises of convex combination of sum
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Algorithm 2: Computing the Cost Matrix - Version 1
Data: Traveler ℓ, Network State BC , ΛC
Result: cost matrix
for ?ℓ,C ∈ Pℓ,C do

for ?A> 5 8;4 ∈ ?0Cℎ%A> 5 8;4B(ΛC) do
?0Cℎ�>BC ← +ℓ,C (-C , pC);
2>BC"0CA8G [?ℓ,C] [?A> 5 8;4] .D?30C4(?0Cℎ�>BC);

end
end

of logit probabilities whose convexity properties are hard to verify. Therefore, we employ

interior point algorithms using CVX* package [5] to compute the approximate signal that

minimizes expected cost at the system.

In order to design strategic information at the system, we evaluate the cost of

traversing every feasible path ?ℓ,C ∈ Pℓ,C at the ℓCℎ traveler using Algorithm 2.

3.4. SCALABLE SID USING LORI-V2

The first version of LoRI has a significant bottle neck while computing the cost

matrices in Algorithm 2. This bottleneck is caused because size of cost matrix increases

exponentially in number of active travelers i.e., if we consider Λ active travelers, each with

? number of possible route choices, then the size of the cost matrix will be ? × ?Λ. To

address this concern, we consider a reduced cost matrix by considering only the number

of active travelers as shown in Algorithm 3. Specifically, we assume that traveler 9 can

influence the cost matrix of traveler 8 only if �=2834=24(4C (8) ∩ �=2834=24(4C ( 9) ≠ ∅,

where �=2834=24(4C (8) represents the set of all edges that are incident to traveler 8’s current

node. If Algorithm 3 is used to computing costs in Algorithm 1, we call this new algorithm

as LoRI-v2.
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Algorithm 3: Computing the Cost Matrix - Version 2
Data: Traveler ℓ, Network State BC , ΛC
Result: cost matrix
for 8 ∈ ΛC do

if �=2834=24(4C (8) ∩ �=2834=24(4C ( 9) ≠ ∅ then
ΛA43D243 .add(8)

end
end
for ?ℓ,C ∈ Pℓ,C do

for ?A> 5 8;4 ∈ ?0Cℎ%A> 5 8;4B(ΛA43D243) do
?0Cℎ�>BC ← +ℓ,C (-C , pC);
2>BC"0CA8G [?ℓ,C] [?A> 5 8;4] .D?30C4(?0Cℎ�>BC);

end
end

3.5. RESULTS AND DISCUSSIONS

In this section, we present the simulation results of LoRI V1 and V2 and com-

pare their performances across various scenarios with two single attribute (travel time)

algorithms: (i) A route recommendation algorithm that uses Dĳkstra’s routing algorithms

(SSSP), (ii) An information revelation algorithm that reveals the true full network state

information to the travelers (Full_Info).

3.5.1. Simulating Using Wheatstone Network. We first test the performance of

LoRI on a simple Wheatstone network as shown in Figure 3.8 and then demonstrate the

performance of LoRI on a real world data set. Depending on the transport mode, we

employed well-known cost models found in the literature, to carry out our simulation

experiments. For example, travel time ))4 on edge 4 can be calculated for transport modes

serviced on a road network (e.g. car, taxi, bus) using Bureau of Public Roads (BPR) formula

[23]:

))4 (24,C) = 54

[
1 + 0

(
=4,C+1
24

)1]
, (3.18)
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where =4,C is the number of vehicles at time C, 24 is the capacity, of the edge on edge 4,

54 denotes the free-flow travel time of edge 4. 0 and 1 ares constants in the BPR function

(usually 0 is 0.15 and 1 is 4). Similarly, the rate of carbon emissions per vehicle can be

calculated using a a non-linear, static emissionmodel for network links proposed byWallace

et al. [34], as shown below:

�$4 ())4 (=4,C)) = 0.2038))4 (=4,C) exp
0.7962;4
))4 (=4,C)

(3.19)

where ;4 is the link length (in kilometers), )4 (=4,C) is the travel time (in minutes) for link 4,

and �$4 is measured in grams per vehicle per hour.

We combine the two costs by evaluating travel time and CO emissions in terms of

their monetary value, as discussed in [39].

3.5.1.1. Scenario 1: Comparing agents costs across different motives. We sim-

ulate travelers with unique origin-destination pairs, each of whom interacts with each of

the algorithms network state information. In our first experiment, we assume the LoRI’s

weight for travel time to be 0.7. We compute the empirical average costs across different

traveler motives at both traveler and system. Due to the computational bottle neck of LoRI

V1, we run the simulation for three travelers, and plot the results as a bar plot as shown in

Figure 3.10. The system’s cost reduces by 25% when the travelers interact with the LoRI

V1 in lieu of SSSP/Full_Info. We also compute the run-times of LoRI V1, as shown in

Table 3.1 to study the scalability of LoRI V1. The table compares the run times of LoRI

V1 and SSSP when they interact with different number of travelers. In the case of LoRI

V2, we consider 35 different travelers under scenario 1 and plot the graph as shown in the

Figure 3.11.
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Figure 3.10. Comparison of agents costs due to LoRI - V1, Full-Info and SSSP under
Scenario 1

Figure 3.11. Comparison of agents costs due to LoRI - V2, Full-Info and SSSP under
Scenario 1
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Table 3.1. Run Time under Scenario 2

Number of Travelers LoRI V1 SSSP
1 0.2467 0.00112
2 0.41092 0.00200
3 2.24961 0.00280
4 909.98529 0.00276

We can observe that the performance of LoRI V2 is similar to V1, even when the

number of travelers jumped from 3 to 35. We also compare the run times LoRI V1 and

LoRI V2 as shown in Figure 3.12.

Figure 3.12. Comparison of run times of LoRI - V1 and LoRI V2, when they interact with
different number of travelers.
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3.5.1.2. Scenario 2: Comparing systems costs across different motives. In our

second experiment, we vary LoRI V2 weights across {0, 0.1, 0.2, · · · , 1.0}. We evaluated

average system costs across different travelers with varied origin-destination pairs and

plot them as shown in Figure 3.13. It is quite evident that LoRI performs better than

Figure 3.13. Comparison of system costs across different motives due to LoRI and SSSP in
second experiment under Scenario 1

SSSP/Full_Info, across all possible motives of the system. Specifically, system obtains a

tremendous gain by adopting LoRI when there is a motive mismatch between SSSP and the

system. For example, when the system’s weight for travel time is 0, the adoption of LoRI

reduces the overall network congestion by more than 50%.

3.5.2. Simulating Using Real World Data Set. To demonstrate the performance

of LoRI on a real world transportation network, we designed multi-modal transportation

network for a small selected portion ofManhattan, NewYork, USA as shown in Figure 3.14.

In this simulation, we considered two modes of transportation {�0A,,0;:} and designed

the multi layered multi modal transportation network. This transportation network consists
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Figure 3.14. Portion of Manhattan, New York, USA selected for the simulation experiment

of 4410 vertices and 15089 edges of car, walk and switch modes. We consider 10 different

travelers with varying motives and origin-destination pairs such that the potential paths

between these 10 travelers overlap at some point and there is a game among the active

travelers.

For the real world data set, we compare LoRI with SSSP and Full_Info. Under

scenario 1 as discussed above, we assume that the 10 travelers interact with LoRI, SSSP

and Full_Info and plot the average travelers and system costs for different algorithms, as

shown in Table 3.2.

We can observe that the system level costs reduces by almost 14%when the travelers

interactwith LoRI in lieu of SSSP/Full_Info. Under scenario 2,We evaluated average system

costs across different travelers with varied origin-destination pairs and plot them as shown

in Figure 3.15.
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Table 3.2. Comparison of agents costs due to SSSP, Full-Info and LoRI

Algorithm Agent Cost System Cost
SSSP $3.276 $32250.03

Full-Info $1.26 $31122.4
LoRI $1.350 $27572.46

Figure 3.15. Comparison of system costs across different motives due to LoRI and
SSSP/Full-Info in second experiment under Scenario 1 for the Manhattan Network
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4. CONCLUSION AND FUTUREWORK

In summary, we proposed a novel Stackelberg signaling framework to improve the

inefficiency of selfish routing in the presence of behavioral agents. We modeled the interac-

tion between the system and quantal response travelers as a Stackelberg game, and developed

a novel approximate algorithm LoRI that constructs strategic, personalized information re-

garding the state of the network. The system presents this information as a private signal to

each traveler to steer their route decisions towards socially optimal outcomes. We tested the

performance of LoRI and compare with that of a SSSP algorithm on a Wheatstone network

with multi-modal routes. We improved LoRI and demonstrated the enhanced performance

of LoRI V2 when compared to LoRI V1 in similar experiment settings. We considered a

portion of Manhattan, New York, USA and presented the performance of LoRI on a real

world transportation network. In all our simulation experiments, including real world multi

modal transportation networks, we find that LoRI outperforms traditional state of the art

routing algorithms in terms of system utility, and reduces the cost at travelers when large

number of travelers on the network interact with LoRI.

In all the current versions of LoRI, information about the number of travelers

on every edge of the network is sent as a signal to each traveler interacting with LoRI.

Nevertheless, it is intuitive that information about the entire network is not required and

information about only potential paths of a traveler is relevant and sufficient. For example, in

our current experiment set up, LoRI presents information about all 15089 edges as a signal

to every traveler, whereas only information about the edges that would potentially effect

the cost of traveler would suffice. This particular bottleneck has accounted for significant

increase in the run time of LoRI. In the future, we will solve the aforementioned bottleneck

and design computationally efficient, approximate algorithms at the system that can support
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large number of travelers and higher number of transportation modalities in a real world

network . We will also consider the problem of strategic information structure design for

travelers with diverse rationalities.
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