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Abstract

A graceful labeling of a bipartite graph is an α-labeling if it has the property that
the labels assigned to the vertices of one stable set of the graph are smaller than the
labels assigned to the vertices of the other stable set. A concatenation of cycles is
a connected graph formed by a collection of cycles, where each cycle shares at most
either two vertices or two edges with other cycles in the collection. In this work we
investigate the existence of α-labelings for this kind of graphs, exploring the concepts of
vertex amalgamation to produce a family of Eulerian graphs, and edge amalgamation
to generate a family of outerplanar graphs. In addition, we determine the number of
graphs obtained with k copies of the cycle Cn, for both types of amalgamations.

1 Introduction

Since the introduction of the graceful graph concept, different types of studies related to this
idea have been published, some of these works present structural properties of this kind of
graph, or focus on an enumerative aspect, although the two most common topics correspond
to new families of graceful graphs and new alternatives to combine existing graceful graphs
to create new varieties of graceful graphs. In this work we study two methods where certain
even cycles are combined to generate Eulerian and outerplanar graphs that admit the most
restrictive sort of graceful labeling.

A difference vertex labeling of a graph G of size n is an injective mapping f from V (G)
into a set N of nonnegative integers, such that every edge uv of G has associated a weight
defined by |f(u) − f(v)|. The labeling f is called graceful when N = {0, 1, . . . , n} and the
set of induced weights is {1, 2, . . . , n}. When a graph admits such a labeling it is called
graceful. Let G be a bipartite graph and {A,B} be the natural bipartition of V (G), we say
that A and B are the stable sets of V (G) and assume that |A| = a and |B| = b. A bipartite
labeling of G is an injection f : V (G)→ {0, 1, . . . , s} for which there is an integer λ, named
the boundary value of f , such that f(u) ≤ λ < f(v) for every (u, v) ∈ A×B, that induces n
different weights. This is an extension of the original definition given by Rosa and Širáň [9].
From the definition we may conclude that s ≥ |E(G)|; furthermore, the labels assigned by f
on the vertices of A and B are in the sets {0, 1, . . . , λ} and {λ+ 1, λ+ 2, . . . , s}, respectively.
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Through this entire work, we may refer to the elements of A as the black vertices, while the
elements of B are the white vertices. If s = n, the function f is an α-labeling and G is an
α-graph. If f is an α-labeling of a tree and f−1(0) ∈ A, then its boundary value is λ = a−1.

Suppose that f : V (G)→ {0, 1, . . . , n} is a graceful labeling of a graph G of size n:

• f : V (G) → {0, 1, . . . , n}, defined for every v ∈ V (G) as f(v) = n − f(v), is the
complementary labeling of f .

• g : V (G)→ {c, c+1, . . . , c+n}, defined for every v ∈ V (G) and c ∈ N as g(v) = c+f(v),
is the shifting of f in c units.

Note that both, f and g preserve the weights induced by f . Suppose now that f is an
α-labeling of G with boundary value λ.

• fr : V (G)→ {0, 1, . . . , n}, defined for every v ∈ V (G) as fr(v) = λ− f(v) if f(v) ≤ λ,
and fr(v) = n+ λ+ 1− f(v) if f(v) > λ, is the reverse labeling of f . This function is
also an α-labeling with boundary value λ.

• g : V (G)→ N, defined for every v ∈ V (G) and any positive integer d as g(v) = f(v) if
f(v) ≤ λ and g(v) = f(v) + d− 1 if f(v) > λ, is the d-graceful labeling of G obtained
from f . The labels assigned by g on the stable sets of V (G) are in the intervals [0, λ]
and [λ+ d, n+ d− 1] and the set of induced weights is {d, d+ 1, . . . , n+ d− 1}.

Therefore, if f is an α-labeling with boundary value λ of a graph G of size n, for each
ω ∈ {1, 2, . . . , n}, there exists uv ∈ E(G), where u ∈ A and v ∈ B, such that f(v)−f(u) = ω.
Moreover, the weight of uv under the complementary labeling f is exactly the same, but u
and v change their colors. Since

fr(v)− fr(u) = n+ λ+ 1− f(v)− (λ− f(u))

= n+ λ+ 1− f(v)− λ+ f(u)

= n+ 1− (f(v)− f(u))

= n+ 1− ω,

this implies, for example, that the edges of weight 1 and n under f , have weights n and 1
under fr, but u and v have the same color under both labelings. Consequently, the edge uv
of weight ω under f has weight n + 1 − ω under f r and both u and v have different colors
under these two labelings. In Figure 1 we show these properties by exhibiting the labelings
f , f , fr, and f r for a tree of size 9, highlighting the stable sets and the edges with the
extreme weights.

We must observe that depending on the structure of the graph and the specific character-
istics of the labeling, it may occur that f = fr or f = f r. This is the case of the α-labeling
of the path Pn given by Rosa in [7], where f = fr when n is odd and f = f r when n is
even; e.g., for P9 consider f = (0, 8, 1, 7, 2, 6, 3, 5, 4). In [8], Rosa presented the following
α-labeling of the same graph: g = (1, 6, 2, 8, 0, 7, 4, 5, 3). Since the edges of weights 1 and
n = 8 are in different positions within the path, neither gr nor gr is the same as g.

A d-graceful labeling of a graph G on size n is an injection g : V (G)→ {0, 1, . . . , n+d−1}
such that the set of induced weights is {1, 2, . . . , n+ d− 1}. This definition was introduced
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Figure 1: Four related α-labelings of the same graph

in 1980 by Maheo and Thuillier [5] and Slater [10]. There is a method that transforms an
α-labeling f of G into a d-graceful labeling for each integer d > 1. Assuming that f has
boundary value λ, the function g is defined every v ∈ V (G) as g(v) = f(v) if f(v) ≤ λ and
g(v) = f(v) + d− 1 if f(v) > λ.

This work is organized in the following form. In Section 2 we study the use of vertex
amalgamations of α-cycles to produce a family of Eulerian graphs that admit an α-labeling.
Edge amalgamations of α-cycles are used in Section 3 to generate a family of outerplanar
graphs that can be α-labeled as well. We close this work in Section 4, where we determine
the number of members in both families, when k copies of the same cycle are used in the
corresponding amalgamations.

The graphs considered in this work are simple, that is, finite with no loops nor multiple
edges. All terms not defined in this work are taken from [3] and/or [4].

2 Vertex Amalgamation and Eulerian Graphs

Several of the best known constructions of graceful graphs use vertex amalgamations of
graphs with special characteristics. In this case, we use α-labeled graphs to perform the
amalgamations. For i = 1, 2, let Gi be a graph of order mi and size ni. A graph G of
order m1 + m2 − 1 and size n1 + n2 is said to be a vertex amalgamation of G1 and G2 if
E(G) = E(G1) ∪ E(G2) and a vertex of G1 is merged with a vertex of G2. The following
result is used to amalgamate α-labeled graphs, where the merged vertices of G1 and G2 are
those labeled λ and 0 or λ + 1 and n, respectively. We can trace its origins to the work of
Stanton and Zarnke [11]; we include its proof here for the sake of completeness.

Theorem 2.1. Suppose that for i ∈ {1, 2}, fi is an α-labeling with boundary value λi of a
graph Gi of size ni. If the vertex of G1 labeled λ1 (resp. λ1 + 1) is amalgamated with the
vertex of G2 labeled 0 (resp. n2), then the graph G that results of this amalgamation is an
α-graph.

Proof. Since G is built identifying a vertex of G1 with a vertex of G2 and the edges are not
touched in any way, the graph G has size n1 + n2.

We start transforming f1 into a (n2+1)-graceful labeling, adding the constant n2 to every
label greater than λ1. Then, the labels used on G1 are in the set {0, 1, . . . , λ1} ∪ {λ1 + 1 +



n2, λ1 + 2 + n2, . . . , n1 + n2} and the induced weights are 1 + n2, 2 + n2, . . . , n1 + n2. Since
the new labeling of G1 is the result of a partial shifting of the labels assigned by f1, it is also
an injective function.

Suppose first that the vertices, originally labeled, λ1 and 0 are selected to be amalga-
mated. The labels assigned by f2 to the vertices of G2 are shifted λ1; so, the new labeling of
G2 is injective as well and assigns labels from {λ1, λ1 + 1, . . . , λ1 +n2} to induce the weights
1, 2, . . . , n2. The vertex of G2 originally labeled 0 is now labeled λ1. Therefore, if this vertex
is amalgamated with the vertex of G1 labeled λ1, we obtain the graph G with a labeling that
assigns labels from {0, 1, . . . , n1 + n2} to induce the weights 1, 2, . . . , n1 + n2. Considering
the fact that the stable set of G that has the vertex labeled λ1 also contains all the vertices
with labels in {0, 1, . . . , λ1 + λ2}, and λ1 + λ2 is smaller than the smallest label in the other
stable set, we conclude that the final labeling of G is, indeed, an α-labeling which boundary
value is λ1 + λ2.

Suppose now that the vertices, originally labeled, λ1 + 1 and n2 are used in the amal-
gamation. In this case the labels assigned by f2, to the vertices of G2, are shifted λ1 + 1
units. As in the previous case, the new labeling of G2 is injective and assigns labels from
{λ1 +1, λ1 +2, . . . , λ1 +1+n2} to induce the weights 1, 2, . . . , n2. The vertex of G2 originally
labeled n2 is now labeled λ1+1+n2. Thus, when the vertex of G1 labeled λ1+1+n2 is amal-
gamated with it, an α-graph G is obtained; its α-labeling has boundary value λ1+λ2+1.

If either f1 or f2 is replaced by its complementary labeling, its reverse, or the com-
plementary of its reverse, several graphs can be constructed with G1 and G2 via vertex
amalgamation. In the next theorem we explore a family of graphs that can be obtained
using vertex amalgamations of some α-cycles.

A kCn-snake is a connected graph in which the k ≥ 2 blocks are isomorphic to the cycle
Cn and the block-cutpoint graph is a path. In other terms, a kCn-snake is built with k copies
of the cycle Cn in such a way that for each i < k, a vertex of the i-th copy is amalgamated
with a vertex of the (i + 1)th copy, the degree of every vertex is either 2 or 4, and every
copy of Cn has exactly two vertices of degree 4 except the first and the last copies, which
only have one vertex of degree 4. Thus, the vertices of degree 4 are the cut-vertices of the
snake. Suppose that for each i ∈ {2, 3, . . . , k − 1}, where k ≥ 3, ui and vi are the vertices
of degree 4 in the ith copy of Cn, and di = dist(ui, vi). Then, the kCn-snake is associated
with the string d2, d3, . . . , dk−1, where di ∈ {1, 2, . . . , bn2 c}. In Figure 2 we show an example
of the 6C8-snake associated to the string 3, 2, 4, 1.

Cyclic snakes were introduced by Rosa [8]; a triangular cactus is a connected graph where
all the blocks are triangles and the block-cutpoint is a tree. A triangular snake (or kC3-
snake) is a triangular cactus whose block-cutpoint graph is a path. Rosa conjectured that
all triangular cacti with k blocks are graceful when k ≡ 0, 1(mod 4). Moulton [6] proved
this conjecture for the case of all kC3-snakes. Barrientos [1] proved that all kC4-snakes
admit an α-labeling. In the next theorem we prove that all kCn-snakes are α-graphs when
n = 8, 12, 16.

Suppose that v1, v2, . . . , vn are the consecutive vertices of the cycle Cn. For n = 4, 8, 12, 16,
the following α-labelings of Cn allow us to prove the existence of an α-labeling for any kCn-
snake.



For C4 : g1 = (0,4,1,2)

For C8 : g1 = (0,8, 1, 7, 3, 6,4,5)

g2 = (0,8, 3, 6,4,5, 1, 7)

For C12 : g1 = (0,12, 1, 11, 2, 10, 3, 8, 4, 7,5,6)

g2 = (0,12, 2, 10, 1, 8, 4, 9,6,7, 5, 11)

g3 = (0,12, 4, 8, 2, 9,6,7, 5, 10, 1, 11)

For C16 : g1 = (0,16, 1, 15, 2, 14, 3, 13, 4, 11, 5, 10, 6, 9,7,8)

g2 = (0,16, 2, 11, 3, 14, 1, 13, 6, 10, 4, 9,7,8, 5, 15)

g3 = (0,16, 4, 11, 6, 10, 2, 13, 3, 9,7,8, 5, 14, 1, 15)

g4 = (0,16, 2, 11, 4, 10, 6, 9,7,8, 3, 14, 1, 13, 5, 15)

Within the proof of the next result we use these labelings together with some of their
complementary labelings. The α-graph G constructed in Theorem 2.1 is the result of the
amalgamation of the vertices labeled λ in G1 and 0 in G2, or λ+1 in G1 and n2 in G2. In the
following diagram we summarize the distances between this type of vertices for each of the
labelings given above, the number within parenthesis is the distance using the corresponding
complementary labeling.

di di di di
0 and λ 0 and λ+ 1 n and λ n and λ+ 1

C4 g1 (or g1) 2 (2) 1 (1) 1 (1) 2 (2)
C8 g1 (or g1) 2 (2) 1 (3) 3 (1) 2 (2)

g2 (or g2) 4 (4) 3 (3) 3 (3) 4 (4)
C12 g1 (or g1) 2 (2) 1 (3) 3 (1) 2 (2)

g2 (or g2) 4 (4) 3 (5) 5 (3) 4 (4)
g3 (or g3) 6 (6) 5 (5) 5 (5) 6 (6)

C16 g1 (or g1) 2 (2) 1 (3) 3 (1) 2 (2)
g2 (or g2) 4 (4) 3 (5) 5 (3) 4 (4)
g3 (or g3) 6 (6) 5 (7) 7 (5) 6 (6)
g4 (or g4) 8 (8) 7 (7) 7 (7) 8 (8)

Theorem 2.2. For n = 8, 12, 16 and k ≥ 2, all kCn-snakes are α-graphs.

Proof. Let G be a kCn-snake, where n is either 8, 12, or 16. Denote by C1, C2, . . . , Ck the
consecutive copies of Cn in G; thus, for each 2 ≤ i ≤ k − 1, Ci has two cut-vertices of G
and Di is the distance between these cut-vertices. Assume that Ci has an initial labeling



that corresponds to one of the α-labelings given above, in particular, the labeling where the
distance between the vertex labeled 0 (or n) and the vertex labeled λ or λ+ 1 is di.

In order to prove that G is an α-graph we proceed by induction on k. If k = 2, then G
is the one-point union of two α-cycles; thus, by Theorem 2.1 we know that G is indeed an
α-graph.

Let G′ be the subgraph of G formed by C1, C2, . . . , Ck−1. Suppose that G′ is an α-graph
where the labeling of each block is a d-graceful labeling obtained from one of the α-labelings
given above or their variations, i.e., f , f , fr, or f r. The α-labeling of G′ has been obtained
by using recursively Theorem 2.1, but this theorem uses any α-labeling of the graph G2. In
the case of G′, the labeling of the copy Ck−1 is chosen in such a way that its cut-vertices have
the appropriate labels, in particular, if v is the cut-vertex of Ck−1 that is not a cut-vertex of
G′, then its label is λ or λ+ 1. Either way, to obtain an α-labeling of G we apply Theorem
2.1 with G1 = G′ and G2 = Ck. Therefore, G is an α-graph.

In Figure 2 we show an example of this method for a 6C8-snake, where the distances
between consecutive cut vertices are d2 = 3, d3 = 2, d4 = 4 and d5 = 1. In this cyclic snake,
the first copy of C8 is the one containing the vertex labeled 0.
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Figure 2: An α-labeling of a 6C8-snake

A wider range of α-labeled cyclic snakes can be built employing the labelings given above.
A blended cyclic snake is any cyclic snake where not all the blocks are isomorphic. The fact
that any blended cyclic snake, formed with the cycles C4, C8, C12, and C16, is an α-graph
can be proved by induction as we did with Theorem 2.2. In Figure 3 we show an α-labeled



blended cyclic snake described by the sequence C16, C4, C8, C12, C4, C8 with associated string
d2 = 2, d3 = 3, d4 = 5, d5 = 1.

Theorem 2.3. Let G be a blended cyclic snake composed of cycles C1, C2, . . . , Ck, where
each Ci is one of C4, C8, C12, C16. An α-labeling of G is obtained amalgamating the vertex
labeled λ in Ci with the vertex labeled 0 in Ci+1.
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Figure 3: An α-labeling of a blended cyclic snake

3 Edge Amalgamation and Outerplanar Graphs

Let G1 and G2 be two graphs of positive size. The graph G obtained identifying and edge
of G1 with an edge of G2 is called an edge amalgamation of G1 and G2. The order of G is
|V (G1|+ |V (G2| − 2 and its size is |E(G1)|+ |E(G2)| − 1.

In [2], Barrientos and Minion proved that when G1 and G2 are α-graphs, the edge amal-
gamation of them, obtained identifying the edge of weight 1 in G1 with the edge of maximum
weight in G2, is an α-graph. For the sake of completeness, we present its proof again. This
result is used later to construct three families of α-labeled outerplanar graphs. Given the
simplicity of the argument used to in its proof and the similarity with Theorem 2.1 we omit
its proof, that can be found in [2].

Theorem 3.1. If G1 and G2 are two α-graphs, then there is an edge amalgamation G of G1

and G2 that is an α-graph.

Two important properties of α-graphs and α-labelings, that we use in the rest of this
section, are:



• Suppose that G is a graph of size n > 1 and f is an α-labeling of G which boundary
value is λ. Assuming that the vertices of G have been labeled by f , then the edge of
weight n has end-vertices labeled 0 and n; the edge of weight 1 has end-vertices labeled
λ and λ+1. If these two edges are incident, then either 0 = λ or n = λ+1. Both cases
imply that G is the star Sn = K1,n. Thus, if G is an α-graph, other than the star, the
extreme weights, i.e., 1 and n, are induced on two non-incident edges, regardless of the
α-labeling that induced these extreme weights.

• If f is an α-labeling f of a graph, then there are other three α-labelings that can be
easily obtained: f , fr, and f r. This implies that if e = uv is the edge of G which weight
under f is ω, with u ∈ A and v ∈ B, then under f its weight is still the same but
u ∈ B and v ∈ A; under fr its weight is n+ 1−ω with u ∈ A and v ∈ B, consequently,
under f r its weight is also n+ 1− ω but u ∈ B and v ∈ A. Hence, if one of these four
labelings is known, the remaining three are automatically known.

Let G be an α-graph of size n and e1, e2 be any pair of non-incident edges of G. Suppose
that for each i ∈ {1, 2, . . . , t}, fi is an α-labeling of G. We say that L = {f1, f2, . . . , ft}
is a complete set of α-labelings of G if there exists a unique i ∈ {1, 2, . . . , t} such that fi
induces the weights 1 and n on the edges e1 and e2. In order to determine the cardinality
of L we must take under consideration the size of the graph, automorphisms, and the fact
that e1 and e2 are non-incident; in Figure 4 we show two examples of this type of set, for
two unicyclic graphs of size 7; if we analyze the first graph on the top row, its group of
automorphisms has order 12, given by the permutations of the vertices labeled 3, 4, and 7,
and the permutations of the vertices labeled 2 and 6; since the vertices labeled 3, 4, and 7
are equivalent as well as the vertices 2 and 6, there are only two essentially different sets of
non-incident edges, which are represented with blue and red lines.

Suppose that G1, G2, . . . , Gk are copies of a graph G of order m and size n; for each
i ∈ {1, 2, . . . , k}, let ei1 and ei2 be two non-incident edges of Gi. The family Gk is formed for
all those graphs of order k(m−2) + 2 and size k(n−1) + 1 built using edge amalgamation of
G1, G2, . . . , Gk in such a way that for each i ∈ {2, 3, . . . , k − 1}, the edge ei1 is amalgamated
with ei−12 and ei2 is amalgamated with ei+1

1 . Figure 5 exhibits an example of a member of G5

where G ∼= C12. In the next theorem we prove that when a graph G has a complete set of
α-labelings, then any member of Gk is an α-graph.

Theorem 3.2. Let G be an α-graph of order m and size n. If G has a complete set of
α-labelings, then any member of Gk admits an α-labeling for any positive integer k.

Proof. Let H ∈ Gk and G1, G2, . . . , Gk be the copies of G used to build H. The colors of the
stable sets of H are extended to the stable sets of each Gi. For each i ∈ {2, 3, . . . , k − 1},
let ei1 and ei2 be the non-incident edges of Gi used to amalgamate Gi to Gi−1 and Gi+1,
respectively. Since G has a complete set of α-labelings, we know that there exists an α-
labeling of Gi, denoted by fi, such that the weights induced by fi on ei1 and ei2 are n and 1,
respectively. Let λi be the boundary value of fi. The α-labelings of G1 and Gk, are chosen
in such a way that e11 has weight 1 and ek2 has weight n. All these labelings are selected in
such a way that they are also consistent with the colors of the stable sets of H.
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Figure 4: Complete set of α-labelings for two unicyclic graphs of size 7

Now that the α-labeling of each copy of G has been identified, we modify them to
produce the final α-labeling of the graph H. The labeling fi of Gi is transformed into a
di-graceful labeling, where di = (n − 1)(k − i) + 1. In this way, the weights on the edges
of Gi form the set Wi = {(n − 1)(k − i) + 1, (n − 1)(k − i) + 2, . . . , (n − 1)(k − i) + n}.
Note that ∪ki=1Wi = {1, 2, . . . , k(n− 1) + 1}, where k(n− 1) + 1 is the size of the graph H.
Moreover, since max(Wi+1) = (n − 1)(k − (i + 1)) + n = (n − 1)(k − i) + 1, we conclude
that min(Wi)=max(Wi+1); in other terms, there is only one weight repeated between Wi and
Wi+1, that weight corresponds to the original weight 1 in Gi and the original weight n in
Gi+1. The labels on the end-vertices of ei1 are 0 and di +n− 1, the labels on the end-vertices
of ei2 are λi and λi + di.

In order to proceed with the edge amalgamation, we need to conveniently shift the labels
of the copies of G; in general, the shifting of the labeling of Gi is decided by the final labeling
of Gi−1. The final labeling of G1 is the d1-graceful labeling obtained from f1. Thus, the labels
on the end-vertices of the edge e12 are λ1 and λ1 + d1. For each i ∈ {2, 3, . . . , k}, the final
labeling of Gi is a shifting in ci =

∑i−1
j=1 λj units of the di-graceful labeling obtained from

fi. In this way, the weights on Gi remain the same and the labels on the end-vertices of ei1
are ci and ci + di + n − 1; the labels on the end-vertices of ei2 are ci + λi and ci + λi + di.
Recall that the edges ei2 and ei+1

1 will be amalgamated, which implies that the labels on the
end-vertices must match. Indeed, since

ci+1 =
i∑

j=1

λj = λi +
i−1∑
j=1

λj = λi + ci



and

ci+1 + di+1 + n− 1 = λi + ci + (n− 1)(k − i− 1) + 1 + n− 1

= λi + ci + (n− 1)(k − i) + 1

= ci + λi + di,

we conclude that the labels on the end-vertices of these two edges actually match.
Once the edge ei2 has been amalgamated with the edge ei+1

1 for all i ∈ {1, 2, . . . , k − 1},
we obtain the graph H, which has been α-labeled.

The process of edge amalgamation presented within the proof of the last theorem can
be extended even further. If each Gi is a graph that has a complete set of α-labelings, any
graph obtained by edge amalgamation of G1, G2, . . . , Gk admits an α-labeling provided that
there exists an α-labeling of Gi, on the edges ei1 and ei2 that connect Gi with Gi−1 and Gi+1.
We must observe that the proofs of these last two theorems can also be done by induction
on k.

Theorem 3.3. For i ∈ {1, 2, . . . , k}, let Gi be a graph of size ni and ei1, e
i
2 be any pair of

non-incident edges of Gi. If Gi has a complete set of α-labelings, then an α-graph is obtained
when ei1 is amalgamated with ei−12 for each i ≥ 2.

Recall that Gk is the family of all graphs obtained via edge amalgamation of k copies of
a graph G, where the copy Gi shares exactly one edge with Gi−1, one edge with Gi+1, and
these two edges are non-incident. The labeling f = (4, 0, 2, 1) of G = C4 constitutes, by
itself, a complete set of α-labelings, but in this case, for a fixed value of k, Gk has only one
member that is the ladder Lk+1 = Pk+1 × P2. When G = C8, there is no complete set of
α-labelings of G, we searched all the α-labelings of this cycle and found that between the
distinguished edges e1 and e2, there is always an odd number of edges, as in the following
two examples: f1 = (8, 0, 5, 4, 6, 3, 7, 1) and f2 = (8, 0, 7, 1, 5, 4, 6, 3). In the next result we
prove that when G ∼= C12 or G ∼= C16, any member of Gk is an α-graph. The result of these
edge amalgamations is an outerplanar graph where the maximum degree is ∆ = 3 and each
induced cycle is isomorphic to G.

Theorem 3.4. If G ∼= C12 or G ∼= C16, then any graph H in Gk is an α-graph.

Proof. Based on Theorem 3.2, we just need to show that for both C12 and C16, there exists
a complete set of α-labelings.

For C12, consider the following labelings, where the end-vertices of e1 and e2 are in red
and blue, respectively:

f1 = (12, 0, 6, 5, 7, 4, 8, 3, 10, 2, 11, 1),

f2 = (12, 0, 11, 5, 6, 4, 7, 3, 8, 1, 10, 2),

f3 = (12, 0, 11, 1, 6, 5, 7, 4, 8, 2, 10, 3),

f4 = (12, 0, 7, 3, 8, 5, 6, 4, 10, 2, 11, 1),

f5 = (12, 0, 11, 3, 7, 4, 6, 5, 10, 1, 8, 2).



Thus, in the labeling fi the distance between e1 and e2 is exactly i. It is not complicated to
check that all these are α-labelings of C12.Therefore, {f1, f2, f3, f4, f5} is a complete set of
α-labelings.

Similarly, for C16, consider the following labelings, where the end-vertices of e1 and e2
are in red and blue, respectively:

f1 = (16, 0, 8, 7, 9, 6, 10, 5, 11, 4, 13, 3, 14, 2, 15, 1),

f2 = (16, 0, 10, 7, 8, 6, 13, 4, 9, 5, 11, 3, 14, 2, 15, 1),

f3 = (16, 0, 13, 7, 9, 8, 11, 6, 10, 2, 12, 5, 14, 3, 15, 1),

f4 = (16, 0, 13, 5, 11, 8, 9, 7, 12, 2, 14, 3, 10, 6, 15, 1),

f5 = (16, 0, 14, 6, 10, 7, 9, 8, 13, 3, 15, 2, 11, 5, 12, 1),

f6 = (16, 0, 15, 5, 11, 6, 9, 7, 8, 4, 13, 1, 14, 3, 10, 2),

f7 = (16, 0, 15, 4, 14, 1, 13, 5, 8, 7, 9, 3, 10, 6, 11, 2).

Thus, in the labeling fi the distance between e1 and e2 is exactly i. It is not complicated to
check that all these are α-labelings of C16.Therefore, {f1, f2, f3, f4, f5, f6, f7} is a complete
set of α-labelings.

In Figure 5 we show an example for a graph H in G5 where G ∼= C12. Note that H is an
outerplanar graph, where the chords are ”parallel”, that is, an outerplanar where any given
vertex has degree 2 or 3 and every induced cycle, other than the outercycle, is isomorphic
to C12.
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Figure 5: An α-labeling of a member of G5 where G ∼= C12



4 Enumerating Concatenated Cycles

Let G be any kCn-snake. Recall that for each i ∈ {2, 3, . . . , k−1}, where k ≥ 3, ui and vi are
the vertices of degree 4 in the ith copy of Cn, and di = dist(ui, vi). Then, every kCn-snake
is associated with the string d2, d3, . . . , dk−1, where di ∈ {1, 2, . . . , bn2 c}. We must note that
the strings d2, d3, . . . , dk−1 and dk−1, . . . , d3, d2 correspond to the same snake, they depend
on which of the two extreme blocks of the snake is considered the first one. So, in order to
determine the number T (n, k) of nonisomorphic kCn-snakes, we must find first the number
of reversible strings, that is, the number of those strings of the form d2, d3, . . . , dk−1 such
that di = dk+1−i.

When k is odd, a reversible string of length k − 2 has the form

d2, d3, . . . , d k−1
2
, d k+1

2
, d k−1

2
, . . . , d3, d2.

Hence, bn
2
c k−1

2 is the number of reversible strings when k is odd and 1
2
(bn

2
ck−2 + bn

2
c k−1

2 ) is
the number of nonisomorphic kCn-snakes.

Similarly, when k is even, a reversible string of length k − 2 has the form

d2, d3, . . . , d k
2
, d k

2
, . . . , d3, d2.

Then, bn
2
c k−2

2 is the number of reversible strings when k is even and 1
2
(bn

2
ck−2 + bn

2
c k−2

2 ) is
the number of nonisomorphic kCn-snakes.

Thus, we have proven the following theorem.

Theorem 4.1. For n ≥ 3 and k ≥ 2, the number of nonisomorphic kCn-snakes is

T (n, k) = 1
2
(bn

2
ck−2 + bn

2
cb k−1

2
c).

Note that for each odd value on n ≥ 5, T (n, k) = T (n − 1, k). In Table 1 we show the
first values of T (n, k). When the entries of this table are read by anti-diagonals, they form
the sequence A308203 in OEIS. Several other sequences in OEIS can be found within the
sequence formed by the values of T (n, k); for instance, from T (n, 4) until T (n, 12) we get:
A000217, A002411, A037270, A168178, A071232, A168194, A071231, A168372, A071236;
and from the even values of n ≥ 4 we get A005418, A032120, A032121, A032122, A056308.

A k-cell polygonal chain is an outerplanar graph whose vertices have either degree 2 or
3 and any of the k polygons, established by the k − 1 chords, shares at most two edges (the
chords) with other polygons. In particular, a k-cell Cn-chain is a connected graph formed
with k copies of the cycle Cn, denoted by C1, C2, . . . , Ck, in such a way that for every
i ∈ {2, 3, . . . , k−1}, Ci shares two non-incident edges, one with Ci−1 and the other one with
Ci+1. Thus, if G is a k-cell Cn-chain, then |V (G)| = n+ (k − 1)(n− 2) = k(n− 2) + 2 and
|E(G)| = kn− (k − 1) = k(n− 1) + 1.

An edge shared by two copies of Cn is called link. We denote by ui and vi the endvertices of
the link between Ci and Ci+1. Since links are non-incident edges, for each i ∈ {2, 3, . . . , k−1},
Ci has n−3 edges that can be selected to be the link with Ci+1. In order to characterize and
count this type of polygonal chain, we use some strings of numbers that can be associated
to them.



n\k 2 3 4 5 6 7 8 9 10 11 12

3 1 1 1 1 1 1 1 1 1 1 1
4 1 2 3 6 10 20 36 72 136 272 528
5 1 2 3 6 10 20 36 72 136 272 528
6 1 3 6 18 45 135 378 1134 3321 9963 29646
7 1 3 6 18 45 135 378 1134 3321 9963 29646
8 1 4 10 40 136 544 2080 8320 32896 131584 524800
9 1 4 10 40 136 544 2080 8320 32896 131584 524800
10 1 5 15 75 325 1625 7875 39375 195625 978125 4884375
11 1 5 15 75 325 1625 7875 39375 195625 978125 4884375
12 1 6 21 126 666 3996 23436 140616 840456 5042736 30236976
13 1 6 21 126 666 3996 23436 140616 840456 5042736 30236976
14 1 7 28 196 1225 8575 58996 412972 2883601 20185207 141246028
15 1 7 28 196 1225 8575 58996 412972 2883601 20185207 141246028
16 1 8 36 288 2080 16640 131328 1050624 8390656 67125248 536887296
17 1 8 36 288 2080 16640 131328 1050624 8390656 67125248 536887296
18 1 9 45 405 3321 29889 266085 2394765 21526641 193739769 1743421725
19 1 9 45 405 3321 29889 266085 2394765 21526641 193739769 1743421725
20 1 10 55 550 5050 50500 500500 5005000 50005000 500050000 5000050000

Table 1: Number on non isomorphic kCn-snakes

Suppose that G is a k-cell Cn-chain. There is a ui-vi path that only uses edges of the
outer cycle (i.e., no links are used) and includes all vertices of degree 3. Within this path,
the vertices of degree 3 appear in the sequence u1, u2, . . . , uk−2, uk−1, vk−1, vk−2, . . . , v2, v1.
For each i ∈ {1, 2, . . . , k − 2}, Di denotes the number of vertices of degree 2 between ui
and ui+1. Thus, d1, d2, . . . , dk−2 is a string of numbers where di ∈ {0, 1, . . . , n− 4}. Clearly,
every string of length k−2, whose entries are in {0, 1, . . . , n−4}, is associated with a unique
k-cell Cn-chain. In the opposite direction, the situation is different, because for any given
k-cell Cn-chain, the associated string depends on the selection of the first cell and the vertex
ui. Thus, the graph G may be associated to four different strings, or maybe two or one,
depending on its group of automorphisms.

Let D = {0, 1, . . . , n − 4} and d = d1, d2, . . . , dk−2 be a string of length k − 2 where
each di ∈ D. There are (n − 3)k−2 such trings. Suppose that a = a1, a2, . . . , ak−2 and
b = b1, b2, . . . , bk−2 are two of these strings. We say that a and b are equivalent if, for each
i ∈ {1, 2, . . . , k − 2}, one of the following conditions holds:

(1) bi = ai,

(2) bi = ak−1−i,

(3) bi = n− 4− ak−1−i,

(4) bi = n− 4− ai.

It is straightforward to see that this is an equivalence relation on the set of all strings
of length k − 2 with elements of D. In addition, there is a bijection between the set of all
k-cell Cn-chains and the set of equivalence classes determined by this equivalence relation.
Therefore, instead of counting non-isomorphic polygonal chains, we count equivalence classes.

Theorem 4.2. For every n ≥ 4 and k ≥ 2, the number S(n, k) of non-isomorphic k-cell
Cn-chains is:



• 1
4
((n− 3)k−2 + 2(n− 3)

k−2
2 + 1) when n is even and k is even,

• 1
4
((n− 3)k−2 + (n− 3)

k−1
2 + (n− 3)

k−3
2 + 1) when n is even and k is odd,

• 1
4
((n− 3)k−2 + 2(n− 3)

k−2
2 ) when n is odd and k is even,

• 1
4
((n− 3)k−2 + (n− 3)

k−1
2 ) when n is odd and k is odd,

Proof. Let A be the set of all strings of length k−2 which entries are in D = {0, 1, . . . , n−4}.
Thus, |A| = (n − 3)k−2. Assume that d = d1, d2, . . . , dk−2 is one of these strings and [d] is
the equivalence class of d induced by the equivalence relation given above. Suppose that for
each i ∈ {1, 2, . . . , k − 2}, one of the following conditions holds:

(i) di = dk−1−i,

(ii) di = n− 4− dk−1−i.

Then, [d] = {d, d∗}, where d∗ = n − 4 − d1, n − 4 − d2, . . . , n − 4 − dk−2 because d and d∗

satisfy condition (3).
If conditions (i) and (ii) are satisfied simultaneously, then [d] = d, because di = n−4−di,

which is equivalent to say that di = n−4
2

. But this is only possible when n is even.
If none of (i) and (ii) is satisfied, then [d] = {d, dr, dcr, dc}, where dr = dk−2, dk−3, . . . , d1

(condition (2)), dcr = n − 4 − dk−2, n − 4 − dk−3, . . . , n − 4 − d1 (condition (3)), and dc =
n− 4− d1, n− 4− d2, . . . , n− 4− dk−2 (condition (4)).

We define S1 to be the subset of A containing all the strings that satisfy condition (i);
similarly, S2 contains those strings satisfying (ii), and S3 consists of all the strings complying
with (i) and (ii) simultaneously. Thus, every element of either S1 or S2 is also in A, and
every element in S3 is in A, S1, and S2. Hence,

S(n, k) = 1
4
(|A|+ |S1|+ |S2|+ |S3|).

So, in order to determine the exact value of S(n, k), we need to calculate the cardinality
of each of these sets.

If d = d1, d2, . . . , dk−2 is in S1, then for each 1 ≤ i ≤ dk−2
2
e, di = dk−1−i. Since di ∈ D,

there are (n − 3)d
k−2
2
e posibilities for d. Hence, |S1| = (n − 3)

k−2
2 when k is even and

|S1| = (n− 3)
k−1
2 when k is odd.

If d ∈ S2, then for each 1 ≤ i ≤ dk−2
2
e, then di = n− 4− dk−1−i. This implies that when

k is odd, the central entry of d, that is, d k−1
2

, must be self-complementary, i.e., d k−1
2

= n−4
2

,

which on its own implies that n must be even. Thus, when n and k are odd, |S2| = 0; when

n is even and k is odd, |S2| = (n− 3)
k−3
2 . If k is even, |S2| = (n− 3)

k−2
2 regardless the parity

of n.
If d ∈ S3, then |S3| = 0 when n is odd, because for each 1 ≤ i ≤ dk−2

2
e, di 6= n−4−dk−1−i,

which implies that d 6= dr and condition (i) is not satisfied. When n is even, the only number
in D that is self-complementary is n−2

2
; so every entry of d must equal this value. In other

terms, |S3| = 1.
Analyzing, independently, the four possible cases we get:



n\k 2 3 4 5 6 7 8 9 10 11 12

4 1 1 1 1 1 1 1 1 1 1 1
5 1 1 2 3 6 10 20 36 72 136 272
6 1 2 4 10 25 70 196 574 1681 5002 14884
7 1 2 6 20 72 272 1056 4160 16512 65792 262656
8 1 3 9 39 169 819 3969 19719 97969 489219 2442969
9 1 3 12 63 342 1998 11772 70308 420552 2521368 15120432
10 1 4 16 100 625 4300 29584 206572 1442401 10093204 70627216
11 1 4 20 144 1056 8320 65792 525312 4196352 33562624 268451840
12 1 5 25 205 1681 14965 133225 1197565 10764961 96871525 871725625
13 1 5 30 275 2550 25250 250500 2502500 25005000 250025000 2500050000
14 1 6 36 366 3721 40626 443556 4875786 53597041 589530846 6484436676
15 1 6 42 468 5256 62640 747360 8963136 107505792 1290007296 15479465472
16 1 7 49 595 7225 93415 1207801 15694819 203946961 2651224807 34464808609
17 1 7 56 735 9702 135142 1883756 26362980 368966472 5165396152 72313932656
18 1 8 64 904 12769 190744 2849344 42728344 640747969 9611042344 144162977344
19 1 8 72 1088 16512 263168 4196352 67125248 1073774592 17180131328 274878431232
20 1 9 81 1305 21025 356265 6036849 102606777 1743981121 29647344969 503999185041

Table 2: Number on non-isomorphic k-cell Cn-chains

• S(n, k) = 1
4
((n− 3)k−2 + (n− 3)

k−2
2 + (n− 3)

k−2
2 + 1) when both n and k are even.

• S(n, k) = 1
4
((n− 3)k−2 + (n− 3)

k−1
2 + (n− 3)

k−3
2 + 1) when n is even and k is odd.

• S(n, k) = 1
4
((n− 3)k−2 + (n− 3)

k−2
2 + (n− 3)

k−2
2 ) when n is odd and k is even.

• S(n, k) = 1
4
((n− 3)k−2 + (n− 3)

k−1
2 ) when both n and k are odd.

This concludes the proof.

In Table 2 we show the first values of S(n, k), for 4 ≤ n ≤ 20 and 2 ≤ k ≤ 12.
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