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INVESTIGATING COST VARI ANCES: 
A MARKOVIAN APPROACH 

Gerald H. Lander 
Alan Reinstein and 
Michael L. Gibson 

One constant factor in today's ever-changing business world is the perva-
sive interest in methods or controlling costs. This study analyzes various 
methods or evaluating efforts to determine the ~ources or cost variance~ and 
suggests that a Markovian decision process should be used when the under-
lying probability distributions are obtainable. 

Many businesses use variance analysis for both process and model con-
trol. Three items are important here. Process control concentrates on con-
trolling individual operations to reduce performance error costs . Proce~\ 
control variance analysis focuses on identifying problems signaled by devia-
tions from a "standard." Model control implies that once a decision model 
is formulated, changes in the parameter~ of the model, as the busines~ cl i-
mate changes, may cau~c a new model to be preferred to the one currently 
employed. Model control variance analysis auempb to mca!>ure the co~t of 
not revising or replacing the original model. The evaluation of alternative 
actions depends on the differences in incremental cost. Incremental cost 
represents the difference between actual performance and the performance 
suggested by revising the model in order to return 10 the optimal solution . 

Method~ of Analp ing the Significance of Co,t Variablt•s 

Most literature deals with determining whether a proces!> is in control and, 
hence, whether to investigate it. Kaplan (1975) has suggested that the inve~-
tigation of cost variances should be classified along two dimensions. The first 
dimension relates to whether the investigative decision is based on a single 
or historical sequence of observatiom. including the most recent one, e .g. 
distinguishing between single and multi-period modeb. A standard Shewhart 
control chart approach in which a variance is investigated if it fall~ oui,ide 
a pre-specified :imit (e.g., 2 or 3 standard deviations from the expected value) 
exemplifies a single-period model. A multi-period model occurs if all of the 
most recent observations are u~ed to estimate the current mean of the proces~ 
to determine whether the proce~s is within the pre-specified control limits. 

The second dimension is based on whether the relevant model explicitly 
considers the expected costs of investigating itself relati\ e to co~t variance. 
Figu1e I identifies the two types of com as~ociated with model investigation. 

In Control 
Out o f Control 

Figure I 

Investigate 

Type I Error 
O.K. 
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Don't 
Investigate 

O.K. 
Type II Error 



Some models developed for cost-variance investigation have considered 
only Type I errors in their development. Using the two dimensions of Figure 
I, the cost variance investigation models developed previously fall into the 
classes shown in Table I. Table I represents an update of Kaplan's (1969) 
taxonomy. 

Table I 
Variance Investigation Models 

Costs and Benefits 
of Investigation 

NOT Considert'd 

Single Period Zannetos ( I 964) 
Juers (1967) 
Koehler ( I 968) 
Luh ( 1968) 
Probst ( 1971 ) 
Buzby (1974) 

Multi Period Page (1964) 
Barnard ( 1959) 
Chernoff and 

Zacks ( 1964) 

Costs and Benefits 
of lm·estigation 

Considrn:d 
Duncan (1956) 
Bierman, Fouraker and .laedicke 

( I 961) 

Bather (1963) 
Duvall (1967) 
Kaplan (1969) 
Dyckman (1969) 
Magee ( 1976) 
Dittman and Prakash ( 1978) 
Dittman and Praka\h (1979) 
Magee (I 977) 
Buckman and Miller (1981) 
Waller and Mitchell ( 1984) 
Cheng, Jacobs and Marshall (I 984) 
Gullege, Wormer and Tarimcilar 

(1985) 

Note: Appendix A contains a reviev. of the related literature. 

Using a Marl.o, proce~s. with known transition matrices. our multi-period 
model considers the cmts/bencfits of investigation of cost variances. It should 
be noted that knowing the propensity to change docs not reduce uncertainty 
of outcomes. Certainty concerning the transition matrix does not imply cer-
tainty concerning the decision. A good decision can be made in spite of bad 
data and a had transition matrix, and vice versa. Thus, Types I and II errors 
may still occur. 

The determination of whether to investigate can be controlled by statisti-
cal control limits. Statistical control limits are usually obtainable if the na-
ture of the distribution of the variance is known. If the distribution is not 
known, Chebyshev's inequality or other non-parametric measures may be 
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used to set control limits . Variances falling outside their predetermined con-
trol limi1s arc said 10 be "significant" and require managerial at1ention. 

Suggested Model 

Markovian decision processes arc stochastic processes thal describe the evo-
lution of dynamic systems con1rolled by 5equences of decisions or aclion5. 
This paper focuses on the cost-control system which is observed periodical-
ly, and influenced at the time of observation by laking one of several possi-
ble actions. The evolution of the system results from thl' in1erac1ion between 
the "laws of motion" of the syslem and the sequence of ac1iom laken over 
time. The differenl palhs of !he system will ha\ e associated economic conse-
quences. The ultimale aim is 10 de1ermine a policy which establishes criteria 
thal will direcl 1he firm 10 lake tho5e actions that control the system in an 
op1imal manner based on current conditions (states). Op1imality will be de-
fined relative to a slipulated criterion. Our model considers 1be three state~ 
!isled in Figure 2 (Dopuch, et al. 1967). 

Type of Dc\iation 

2a 

2b 

Figure 2 
A ra,onomJ of Variance!> 

Aclion 

S1ochas1ic Naiure of the No Action 
Controlled Process 
Error in the Proce~s 

Permanent Change in the 
Proccs5 

Re\tore to Expected Per-
formance Level 
Management i\lu\t Incor-
porate This Permanent 
Change Into the Dccision-
i\la~ing Proces~ 

A Type I deviation in Figure 2 resulb from 1he stochastic nature of 1he 
controlled process. Statistically insignificant response\ requir.: no manage-
ment actions. Type 2 de\ iatiom re5ult from a temporary or permanent change 
in the process. Type 2a is a controllable deviation \\ here 1he error can bl' 
com:cted and the expected performance level restored. Type 2b results from 
a permanent change in the process. In this situation, the deviation is uncon-
trollable, but management response is required to incorporate this perma-
nent change into the decision-making process. Traditional accounting system~ 
focus on Types I and 2a deviations. Thi~ focus is es~ential for process con-
trol. In contrast, Type 2b deviations are central to the control of decision 
models. 

Control limits are e~tablishcd through sta1istical analysis to distinguish be-
lween Type I and Type 2 deviations. Two prerequisites t:ffectively control 
the decision models. First, the firm's control system, designed around the 
formal decision model, should include the identifiea1ion of the variances for 
the decision variables. Second, the control system must be able to distinguish 
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between Type I and Type 2 deviations. Firms failing to correct significant 
Type 2 deviations will incur increm.::ntal costs, which are tht> differences be-
tween the actual costs and the costs indicated by the optimal solution for 
the revised decision model (or ex-post optimal cost). 

Therefore, the amount of incremental cost depends on the decision model's 
sensitivity to the change signaled by Type 2b deviations. Traditional opera-
tion research sensitivity analysis tet>hniques can then help determine the sig-
nificance of the Type 2b deviations. In this sense, effective sensitivity analysis 
can normally be performed only on well-defined decision models. Zannetos 
( 1964) illustrated these incremental costs, first with an economic order quan-
tity (EOQ) inventory model and then with a resource allocation linear 
programming model. Sensitivity analysis was performed on the coefficients 
of the objective function to study the post-optimal behavior of the model. 

For the general model. we as~ume that a system is ob~erved at discrete 
time t, t E (0, I, 2, ... , T), and classified into one of a finite number of 
states (Si), i E (0, I , ... , M). Let ST, I E (0, I, ... T), denote an ohserved 
state at time I and call the sequence of observed states a~ S1 = so. s1 .... , 
st with St E (S0t, s It .... , SMt ). After each observation, a set of finite possi-
ble decisions, dk, is taken where k E (I. 2, ... , K). In general, the number 
of possible decisions depends upon the state of the system, but overall there 
are still K decisions. Let DT, (DT = do, d1, ... , d1 and dt E (drt, d21 • 
. . . , dKtl) denote the sequence of actual decisions made. 

A policy, denoted by R, is a rule for making decisions at each point in 
time. In principle, a policy could us~ all previously observed information 
up to time t, that is, the entire "history" of the system consisting of st, St - 1, 
dt - 2, .... and dt, dt - J, dt - 2, .... Howe\ er, for most problems en-
countered, it is sufficient to confine consideration to those policies that only 
depend upon St (the observed state of the system at time t) and Dk (the pos-
sible decision a\ailable at any time) since the adoption of a set of policies 
incorporates historical information. Hence a policy R can be viewed as a 
rule that prescribes decision dik when the ~ystem is in \late i, i £ (0. I, ... , 
M), and k represents a possible action with k E (0, I, ... , K). Thus, R is 
completely characterized by the va lue, R(dok), R(dJ k), .. . , R(dmk), A sys-
tem evolves over time according to the joint effect of the probabilistic laws 
of motion and the sequence of decisions made with its path dependent on 
it5 initial state, so. Assuming that \\hen decision R(dik) is made, the system 
moves 10 a ne\\ state j, with a known transition probability Pij(k); i, j E 
(0, I, ... , M) and k E (I, 2, ... , K). Thus, if polky R is followed, the 
resultant stochastic process is a Marko\ chain with a known tran~ition matrix 
(dependent on the policy chosen). The known transition matrix can be der-
ived from the observation of the history of this system. 

A known cost Cik is assumed to have been incurred when decision R(djk) 
is made following policy R. That is, taking action k when the system is in 
state i, net cost Cik is incurred, which equals the net benefits of investiga-
tion. This cost may represent an expected rather than an actual cost; i.e., 
Cik = Known expected cost incurred during the next transition if the sys-
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tern is in state i and decision k is made. Thus, the action to follow is depen-
dent on the R with the lowest Cik-

11 is necessary to settle on an appropriate cost measure to compare poli-
cies. One such measure associated with a policy is the (long-run) expected 

, average cost per unit of time. The expected average cost per unit of time, 
I E(C), for any policy can be calculated from the expression: 

1\1 
E(C) = l CikRj(nj) 

i=0 

where k are the possible decisions made with respect 10 policy R for 
each state i £ (0, I, ... , 1\1) and (rro, 111, ... , TIM) represent~ the steady 
state distribution of the system under policy Rj heing evaluated (long-
term probabilitie~ for each ~late that occurs over time). 

Thus, the objective of this model is to obtain the policy that minimize~ E(C). 
To summarize, given a distribution P(S = i) over the initial ~tate5 of the 

system and a policy R, a system evolve5 0\er time according to the joint ef-
fect of the probabilistic laws of motion (the transition matrix) and the se-
quence of decisions made (actiom taken). In particular, when dccbion R(dil,.) 
is made, the probability that the 5ystem is in state j at the next observed time 
period is given by Pij(k). This re~ult5 in a sequence of decisions made, DT 
= dQ, d 1, ... , d1. This sequence of ob~erved 5tates and the sequence of 
decisions is called a Marko\ ian decision process, bccaw,e of underlying as-
sumptiom made ahout the prohabilistic law~ of motion. and the effect caused 
by the transition matrix. 

E,amplc 

The following example helps illu\trate the 5uggestcd model. A production 
process contains a sequence of operations. Cost reports are ohtained peri-
odically. The cost reporting period may range from I to n days based on 
the convention e~tablished by management. The convention may be hased 
on something as simple as the convenience of compiling and producing this 
report or a quantitative analysis of the optimal cost reporting period, which 
could be prodm:ed exogenow,ly using expected costs and ~teady ~talc proba-
bilities based on information in a current co~t report. The co~t reports art' 
used until the next report period to establish the initial 5tatc of the process. 

The proce~s is classified into one of four possible ~late~ with an assumed 
cost. Figure 3 contain5 the classification of possible states. 

Figure 3 

State C ondition 

0 Process in Control 
I O ut of Control - Minor Problems 
2 Out of Control - Major Problems 
3 Out of Control - Major Process Revision 
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NOTE: In reality, many possible states which lie upon a continuum of states 
could have an expected cost (E(C)]. This continuum of possible states would 
also likely be subdivided into a set of discrete classificatory states whose lines 
of demarcation a re cognizably drawn in order to be practically usable. 

Let St denote the observed state of the process after inspection at the end 
of the 1th day. Assuming that the state of the system evolves according 10 
some probabilistic "laws of motion," the sequence of states (ST, ST = so, 
s1, ... , Sk) can be viewed as a stocha5tic proce~s. In addition, assume a finite-
state Markov chain with a known transition probability matrix given by: 

State To: 0 2 3 
From: 

01 ¼ ¼ 1/,. 1/,, 
I I 0 ¾ ¼ 1/, 
21 0 0 ½ ½ 
3 I 0 0 0 I 

A decision muM be made at the end of the day based on the current observed 
state. Thus, the process will not correct itself without outside action. The 
possible decisions arc: 

Action 

Do Nothing 
2 Minor Adjustment (return to ~talc I) 
3 Investigation (return to ~tate 0) 

The costs incurred while this system evolves contain several components. 
When the process is in sta le 0, I, 2 or 3, aswme the following expected costs 
per day: 

State 

0 
I 
2 
3 

Expcrted Co!i.t Per Day 

$0 
$2,000 <---> 3,999 
$4,000 <---> 5,999 
$6,000 <---> I0,000 

NOTE: These expected costs represent average expected costs which may also 
influence the analysis of cost variance and ultimate policy decision as they 
vary. C hanges in average expected costs may require that this analysis be 
reapplied as expected costs change to obtain a more current policy statement 
for actions to be taken when certain states occur. 
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The four policies considered are: 

Decisions 
* * * * 

Policy Verbal Description d., d, d, d 

Ra Investigate in st ate 3 3 
Rb Investigate in st ate 3 2 3 

Minor adjustment in state 2 
Re Investigate in states 2, 3 I 3 3 
Rd Investigate in states I, 2, 3 3 3 3 

d* =- f[Si,Rj] 

If a given policy R is followed, the resulta nt stochastic process is a Mar-
kov chain with a known transition matrix dependent upon the policy chos-
en. Assume that the following transition matrices arc obtained for the abO\ e 
example: 

Polic~ Ra Polk) Rb 
State 0 I z 3 0 I 2 3 

0 ¼ ¼ 1/,. 1/,. ¼ ¼ 1/,, 1/,, 
I 0 ¼ ¼ ¼ 0 ¼ ¼ ¼ 
2 0 0 ½ ½ 0 I 0 0 
3 0 0 () 0 0 0 

Polic) Re Polic~ Rd 
State 0 I z -' () I 2 3 

0 ¼ ¼ 1/,. 1/,, ¼ ¼ 1/,, 1/,. 
I (} ¼ ¼ ¼ I 0 () 0 
2 0 () 0 0 0 () 
3 0 0 0 () 0 (} 

In addition , a~~ume that costs for the four maintenance! policie~ can be 
obtained from the following information: 

E,pel·ted Cost 
Due to Proce!>!> Maintenance Coi,t Due• To Total 

Decision State Out of Control CoM I 11ve1>tigation Cost ----
0 0 0 0 0 

2,000<---> 3,999 () 0 3.000 
2 4,000<---> 5,999 0 0 5,000 
3 6,000<--> 10,000 0 0 8.000 2 0,1,2,3 o• 3,000 8,000 11,(X)() 

3 0,1,2,3 o• 8,000 8.000 16.000 
*Decision 2 and 3 incur no expected cost due to the process being out of 
control, since the "action" places the system back into control. 
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As a result, the total expected cost/day is ~ummarized as follows: 

Cik (in $1,000) 
Dt'l'ision 

State 2 3 
0 (l I I 16 
I 3 11 16 
2 5 11 16 
3 8 11 16 

The long-run expected average cost/time will be med to compare policies 
(see Appendix B for policy notation~)-

The long-run expected average cost/time will be used to compare policies 
(see Appendix B for policy notation~). 

~I 
E:.(C) 2 Cikni 

i=O 

v.here ni Pij 

Poliq 
Ra (Investigate in State 3) 
Rb (Investigate in State 3; adjust in Stat.: 2) 
Re (Investigate in States 2 and 3) 
Rd (Investigate in State~ 1, 2 and 3) 

E(Cl 
$-t,286 
$4,364 
$4,167 
$5,333 

Thus, Re is the optimal policy (i.e., the minimum expected cost) based 
solely on the transition matrix for each policy. The optimal policy calls for 
doing nothing if the proces~ is in ~tates O or I and investigating \\hen the 
process is in ~tates 2 or 3. 

Influence!> or the Deci,ion l\1alwr~ Learning Cune 

The propo~ed procedures can also be dynamically adjusted based on the 
influence of the decision maker•~ learning process. Individual learning is im-
provement that results from a person repeating a process and gaining skill 
or efficiency from his or her experience (Moriarity and Allen, 1987). As a 
decision maker performs particular actions, data would likely be more validly 
ascertained and interpreted. Thus, the experience of the decision ma!..cr y,ould 
influence the decision making process. 

The learning curve would cause a modification of the transition matrix 
and may also affect E(C). As a result, a different R may become optimal. 
To illustrate, assume that the decision maker's learning curve is represented 
by the following matrix: 
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.25 .75 0 0 

.25 .75 0 0 
0 .75 .25 0 
0 0 0 

New transition matrices (and subsequently new steady-state equations) would 
be obtained by multiplying the original transition matrix of each R by the 
learning curve matrix as indicated in Figure 4. 

Figure 4 
New Transition Matrh: 

R· Rj J 
Learning Curve Current Transition Matrix New Transition Matrix 

.25 .75 0 0 .5 .375 .0625 .0625 .375 .46875 .078125 .078125 

.25 .75 0 0 0 .75 . 125 .125 0 .1875 .40625 .-10625 
0 .75 .25 0 0 0 .5 .5 0 .5625 .21875 .21875 
0 0 0 I 0 0 0 1 0 0 0 

.25 .75 0 0 .5 .375 .0625 .0625 .375 .4687 5 .078125 .078125 

.25 .75 0 0 0 .75 .125 .125 0 .9375 .03125 .03125 
0 .75 .25 0 0 0 0 0 .8125 .09375 .09375 
0 0 0 I 1 0 0 0 0 0 0 

.25 .75 0 0 .5 .375 .0625 .0625 .25 .5625 .09375 .09375 

.25 .75 0 0 0 .75 .m .125 .125 .65625 .109375 .109375 
0 .75 .25 0 0 0 0 .25 .5625 .09375 .09375 
0 0 0 I 1 0 0 0 I 0 0 0 

.25 .75 0 0 .5 .375 .0625 .0625 .625 .28 125 .046875 .0-16875 

.25 .75 0 0 0 0 0 I 0 0 0 
0 .75 .25 0 0 0 0 I 0 0 0 
0 0 0 0 0 0 0 0 0 

The long-run expected average co~t/time for each poli~y with the learning 
curve adjusted transition matrix are as follow~ (see Appendix C for policy 
notations). 

Policy 

Ra (Investigate in State 3) 

M 
E(C) = I Cikni 

i=O 

Rb (Investigate in State 3; adjust in State 2) 
Re (Investigate in States 2 and 3) 
Rct (Investigate in States I , 2, and 3) 
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Thus, Rd is now the optimal policy (i.e., the minimum expected cost) based 
on adjusting the transition matrix for the decision maker's learning curve. 

l imitations and Implications 

Similar to other Markov models. the developed model contains three Poten-
tially unrealistic assumptions: (I) a MarJ-ovian process. (2) known transi-
tional probabilities. and (3) steady-state conditions. All Markov chains have 
a "lack of memory" assumption which assumes that the state of the process 
is independent of its past history. Meawring transitional probabilities is al-
ways difficult and the steady-state assumption may not always be ~atisfied 
given such changing conditions as personnel turnover. equipment efficiency 
changes, raw material quality variations and weather changes. However, the 
model's consideration of the cost of investigation and incorporation of the 
decision maker's learning respond somewhat to these assumptions. 

The use of the decision maf..er•~ learning curve in our model has implica-
tions concerning a po!>sible method for obtaining the transition matrix . 
Propensity to change, as proposed by the transition matrix. is intlucnced by 
an individual's experience regarding conditions faced by the indi,,.idual. The 
authors suspect that as the model is employed, the continuou!> application 
of the learning curve of the decision maker 1o1.ill force a given transition matrix 
to converge o n a true transition matrix just as the application of a transition 
matrix forces the problem into a steady state transition matrix. Discerning 
the learning curve of a decision maker may prove to be more trackable. Thus, 
the derivation of the transition matrix may be more simplified. An implica-
tion which may respond to the main criticism of using a Markov process 
in the invest igation of problems facing corporate decision makers. It is sug-
gested that further research be conducted to \ubsta111iate these implications. 

A second major contribution of the model is that the model further de-
velops the advantage of the l\1arkovian process. This advantage includes a 
less laborious determination of computational costs than other more tradi-
tional methods (e.g., Bayesian updating for each period). 

Summar) 

The model use\ a Marf..ovian decision proce,s approach to investigate cost 
va riances where the underlying probability distributions are obtainable. This 
approach assist~ accountants in the investigation of cost variance!>. The de-
cision maf..er can develop and use a predetermined model, which can then 
be updated and reapplied to reflect environmental t·hange~ in the problem 
situation (e.g., changes in expected cost for possible ~tales, changes in the 
number of identifiable states or decisions or changes in the transition matrix). 
Since a tran,ition matrix may be difficult to devdop in practice a~ the num-
ber of states and policies increase, the authors \Uggest that a more efficient 
method (e.g., linear programming technique) be used to arrive at an optimal 
policy as the number of states and policies increase. Miller (1956) recom-
mends that decision makers have the capacity to process information up to 
a reasonable upper limit of states (Si) and policies (R j). i, j = 7 ± 2. However, 
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further research is necessary to determine a more speci fie upper limit for both 
states and policies. 

A further area of future study concerns the construction of the transition 
matrix. This matrix represents the decision maker's propensity for change. 
We hypothesize that as decision makers continue to learn, a true transition 
matrix may be obtained by the continuous application of the innuence of 
the learning curve of the decision maker on a selected transition matrix. Thus, 
the structure of the elusive transition matrix could be derived more scientifi-
cally by determining the decision maker's learning curve. 

Recommendations 

An example of the application of the model indicates its value in deter-
mining optimal policies. We recommend that further research be performed 
to determine a reasonable limit of states and policies and of the , alue of us-
ing learning curves to obtain transition matrices. We also suggest that fur-
ther research determine if implications concerning the derivation of a true 
transit ion matrix prove to be useful. 
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A Re,·iew of the Related Literature 
Appendix A 

Zannetos ( 1964) was among the first to apply the statistical control con-
cept to cost variance analysis, the deviation of actual cost from a standard 
cost. He asserted that systematic control of a formal decision model requires 
changes in both the type and method of assessing the significance of these 
variances. A process is said to be in a state of statistical control if it falls 
within pre-specified statistical control limits. These limits are set to minimize 
the total costs of two types of error- adjusting an "in-control" process (a 
Type I error) and failing to adjust an "out-of-control" process (a Type 11 
error). 

Bierman, ct al. ( 1961) introduced the use of costs and benefits of an inves-
tigation into the decision concerning whether to investigate. They point out 
that knowing when to investigate is an important part of the control process. 
Specifically, when deciding whether to investigate a variance, the investiga-
tor should consider the following three factors: 
I. the probability that this variance results from the random aspect of the 

process (e.g., a sampling error). 
2. the expected reward of investigation. and 
3. the expected cost of investigation. 
These three factors coupled with the size of the variance determine whether 
to investigate the process. 

Dopuch, et al. ( 1967) extended standard cost analysis to monitor both per-
formance and the decision process by starting from a taxonomy of variances, 
as illustrated in Figure 2. 

Kaplan (1969) adopted the Girshick and Rubin ( 1952) procedure for the 
\ariance investigation decision. Rather than deriving a cost from operating 
out of control, Kaplan used the actual costs when operating in or out of con-
trol to derive optimal policies. Therefore, a decision to delay investigation 
for one period incurred the risk of operating one more period out of con-
trol; that is, the decision led to obtaining a cost realization from the higher 
cost, out-of-control distribution, rather than from lower cost, in-control dis-
tribution. Balanced against this risk was the certain t·ost of an investigation 
which might find that the system was still in control. or that the gain from 
controlling is less than the cost of investigation. The loss function in the ac-
counting variance setting arises directly from the nature of the problem. 

A key feature of the two-state Markov model used by Girshick and Rubin 
and by Kaplan is that all relevant historical information may be summarized 
by a single state variable-the probability that the system is currently oper-
ating in control. This probability is revised after each observation via Bayes' 
theorem, to incorporate information from the most recent observation. 

Dyckman (1969) dealt with a model similar to Kaplan's except that the 
multi-period cost structure was suppressed. Using a Markov process with 
Bayesian updating to describe transitions between in-control and out-of• 
control states, Dyckman assumes a constant saving, "L", from invcstigat-
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ingan out-of-control situation, which also is the "L" conslant saving origi-
nated by Bierman, et al. (1961 ). Dyckman offers little guidance for 
interpreting or estimating "L". He calls it the "present value oft he savings 
obtainable from an investigation when the activity is out of control." He 
then notes that "where a corrective action is not forever binding, the calcu-
lation of "L" should be adjusted to reflect the possibility of future out-of-
control periods." and then concludes that "the precise determination of the 
savings for each future period is not an easy matter." 

Ozan and Dyckman ( 1971) expand on Dyckman's model by defining differ-
ent types of controllable and noncontrollable variance~. They suggest how 
to estimate some of the different probabilities required and eventually der-
ive a reward function similar to that used by Duvall (1967). 

Duvall (1967) assumes that in-control cosls are normally distributed with 
a meanµ. equal to standard costs, and variance equal to 0 1w. An observed 
deviation from standard cost consists of a noncontrollable component, \\ 
(with w::: N(0, o'w)) and a controllable component, y. The controllable com-
ponent, y, is also assumed IO be normally distributed and statistically indepen-
dent of the noncontrollablc component, w. Duvall ( 1967) then developed 
procedures which allow the parameters of the distribution of y to be esti-
mated from the observed deviation. 

After describing the estimation procedure, an inference is performed only 
on the most recent observation. Thi~ assists in determining whether to inves-
tigate. Duvall's assumption of stationarity i1, possibly unrealistic, because 
he uses only the most recent observation. If the process is stationary, then 
the investigation decision should be based on all observations, not just on 
the latest one. If, however. the most recent observation is deemed to be more 
informative than prior observatiom, there is a stron g presumption of non-
stationarity which implic~ that the procedure to estimate the parameters of 
the process is incorrect. 

Bather ( 1963) presents a model which ovcrcomc1> the previously described 
difficulties in Duvall\ procedure. Bather, like Duvall, ha~ a slate described 
by a single continuous variahle which represents the performance level of 
thi~ continuou\ variahle. Y t is the unknown performance level of the ~ystem 
at time t and Xt is the observation of time t. As before, Xt::: N(Yt, o'). Bar her. 
however, postulates a process by which the performance level changes from 
period to period. Yt = Y t- I + Zt, where Zt rv N(O. o'). 

Dittman anJ Praka~h ( 1978) developed a two-stage Markovian proccs~ 
transition matrix to test the cost-benefits of the system being either in or out 
of control. Dittman and Prakash ( 1979) later compared the effectivcnes5 of 
their model with the "best" Bayesian policy. However, their model consi-
dered only two Slates and contained no provisions for the process correcting 
itself or suffering an irrc\ersible shift, or for the transition probabilities chang-
ing with time (i.e., accounting for the decision maker'1, learning curve). 

Buckman and Miller ( 198 I) present a model whereby each statistically in-
dependent cost process is assumed to satisfy Kaplan ·s assumptions ( 1969). 
The cost processes are related by the as~umption that corrective action takes 
place for all n processes at once, and the decision problem is to determine 
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when investigation and correction should take place given the vector of prob-
abilities that each cost process is "in control." They propose a myopic proce-
dure which is optimal for certain problems (parameters) and heuristic 
otherwise. They solve optimally a model with twenty cost processes. In order 
to see how well their method performs when it is not optimal, they solved 
the same examples that Dittman and Praka~h (I 979) used to investigate the 
nonoptimality of their procedure. Buckman and Miller conclude that the Ditt-
man and Prakash algorithm is faster, while theirs has the advantage that it 
can be generalized to n cost processes. 

Cheng, Jacobs and Marshall ( 1984) present a variance investigation model 
based on a two-action muhiperiod model developed by Kaplan (1969). Kaplan 
used Bayesian updating of the manager's probability a,,e,,ment that the 
process is in control, and an investigation is signalled whenever this proba-
bility assessment is less than or equal to a certain critical value, a value de-
termined by mean\ of dynamic programming. The Cheng, Jacobs and 
l\larshall (1984) model determines this critical \alue using linear program-
ming in conjunction with rounded Bayt:,ian updating of the manager's in-
control probability a,ses~ments. 

Gulledge, Wormer and Tarimcilar ( 1985) present a dynamic programming 
solution for the model to help solve the order production problem. The model 
is intended for use a, a planning tool to asse~, the cost impact of extensions 
and compressions of the contracted production time horiLOn. The model was 
subjected to extensive sensitivity analysis. The behavior of the ~olution points 
after parametric changes indicate that the model is capable of providing data 
on variable~ that arc important in planning for made-to-order programs. 

Appendi, 8 

Pij(R) for all i and j for ni~tin~ transition matrh. . 
Stead~-~tale equation~ ha,l•d ,olrl} on the tran!lition matrix can be 11r11trn as: 

no 4/Sn,, + n , 
n, 3/8n0 + 3/4n, 

Ra n, l / l6n., + I/ Sn, + 112n, 
n, l/J6n., + l /8n, + l/2n, 

I = no + n , + n, + n, 
Solution: no .2857142, IT, = .4285713, n, = . 1428571. n, = .42854 

no 4/Sno + n , 
n , 318n0 + 3/4n, + n, 
7T l 
n, 

l / l6n0 + I/Sn, 
1/167T0 + I/Sn, 

1 !To + n , + n, + n, 
Solution: !To = .181818, n , = .636363, n, 
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Re 

110 = 4/8110 + 11, + rr , 

Tl 1 3/81!0 + 3/ 41! 1 

rr, = 1/16110 + l/811, 
11, = 1/16110 + l/811, 

I = 110 + n, + rt, + 11, 
Solution: rro .3333333, n, = .5, n, = .0833333. n, = .0833333 

no = 4/8110 + 11, + n, + 1 

n, 3/8110 

rt , = 1/ 1611. 
111 = l/1611. 

I = llo + 11, + Tl: + n, 
Solution: rt0 = .6666667, 11, = .25, n, = .0416667, rr , .0416667 

Appendh C 

Pij(RI for all i and j using the nc\\ lram,ition malri,. 
Steady-stale equation~ ha.,ed upon transition matri, adjusted b} the learning 
cun e can be "rill en a~: 

Tio .l25rto + .!25rt, + n, 
n, .6562511,, + .65625n, + .562511, 

Ra rr, .I0937n, + .1093711, + .2187511, 
11, .10937511, + .109375n, + .218711, 

I = llu + Tl, + Tl, + Tl, 

Solution: no= .2070313, 11, = .5742186, 11, = .1093749, n, 
1111 = . 125110 + .125n, + n, 
n , .65625n,, + .65625111 + .8125n, 

Rb n, = .10937511, + . 10937511, + .0937511, 
1! 1 = . 10937511,. + .10937511 + .0937511, 

I = llo + 11, + 11, + rt , 
Solution: n. = .1979167, 11 1 = .6076389, n, = .0972222, rt, 

llo = .125110 + . l25n, + .2511, +11, 
n, .65625110 + .6562511, + .562511, 

Re 11, = .10937 5110 + .109375n, + .0937511, 
Tl, = .109)75110 + .10937511, + .0937511, 

I = llo + Tl, + 11, = Tl, 

.1093749 

.0972222 

Solution llo .2222222, 111 - .5833333, rr , = .097:!222, n, .0972222 
llo .875n, + .87511 1 + ll: + n, 
rt , = .09375110 + .09375rt, 

Rd rr, .015625110 + .0l5625rt , 
n, .015625no + .01562511 1 

I = Tio + 11 1 + n, + n, 
Solution: rto = .878788, 11 , = .090909, 11, = .0151514, n, .0151514 
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