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INVESTIGATING COST VARIANCES:
A MARKOVIAN APPROACH

Gerald H. Lander
Alan Reinstein and
Michael L. Gibson

One constant factor in today’s ever-changing business world is the perva-
sive interest in methods of controlling costs. This study analyzes various
methods of evaluating efforts to determine the sources of cost variances and
suggests that a Markovian decision process should be used when the under-
lying probability distributions are obtainable.

Many businesses use variance analysis for both process and model con-
trol. Three items are important here. Process control concentrates on con-
trolling individual operations to reduce performance error costs. Process
control variance analysis focuses on identifying problems signaled by devia-
tions from a ‘‘standard.”” Model control implies that once a decision model
is formulated, changes in the parameters of the model, as the business cli-
mate changes, may cause a new model to be preferred to the one currently
employed. Model control variance analysis attempts to measure the cost of
not revising or replacing the original model. The evaluation of alternative
actions depends on the differences in incremental cost. Incremental cost
represents the difference between actual performance and the performance
suggested by revising the model in order to return to the optimal solution.

Methods of Analyzing the Significance of Cost Variables

Most literature deals with determining whether a process is in control and,
hcnce. whether to investigate it. Kaplan (1975) has suggested that the inves-
tigation of cost variances should be classified along two dimensions. The first
dimc:nsion relates to whether the investigative decision is based on a single
or hllsloricai sequence of observations, including the most recent one, e.g.
distinguishing between single and multi-period models. A standard Shewhart
control chart approach in which a variance is investigated if it falls outside
a pre-specified limit (e.g., 2 or 3 standard deviations from the expected value)
exemplifies a single-period model. A multi-period model occurs if all of the
most recent observations are used to estimate the current mean of the process
to determine whether the process is within the pre-specified control limits.

The second dimension is based on whether the relevant model explicitly
cc_ms:ders the expected costs of investigating itself relative to cost variance.
Figure | identifies the two types of costs associated with model investigation.

Figure 1

Don’t
Investigate Investigate
In Control Type 1 Error O.K.
Out of Control 0.K. Type Il Error
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Some models developed for cost-variance investigation have considered
only Type I errors in their development. Using the two dimensions of Figure
1, the cost variance investigation models developed previously fall into the
classes shown in Table 1. Table | represents an update of Kaplan’s (1969)
taxonomy.

Tahle 1
Variance Investipation Models

Costs and Benefits Costs and Benefits
of Investigation of Investigation
NOT Considered Considered
Single Period Zannetos (1964) Duncan (1956)
Juers (1967) Bierman, Fouraker and Jaedicke
Koehler (1968) (1961)
Luh (1968)

Probst (1971)
Buzby (1974)

Multi Period  Page (1964) Bather (1963)
Barnard (1959) Duvall (1967)
Chernoff and Kaplan (1969)

Zacks (1964) Dyckman (1969)
Magee (1976}
Dittman and Prakash (1978)
Dittman and Prakash (1979)
Magee (1977)
Buckman and Miller (1981)
Waller and Mitchell (1984)
Cheng, Jacobs and Marshall (1984)
Gullege, Wormer and Tarimcilar

(1985)

Note: Appendix A contains a review of the related literature.

Using a Markov process, with known transition matrices, our multi-period
model considers the costs/benelfits of investigation of cost variances. It should
he noted that knowing the propensity to change does not reduce uncertainty
of outcomes. Certainty concerning the transition matrix does not imply cer-
tainty concerning the decision. A good decision can be made in spite of bad
data and a had transition matrix, and vice versa. Thus, Types I and Il errors
may still occur.

The determination of whether to investigate can be controlled by statisti-
cal control limits. Statistical control limits are usually obtainahle if the na-
ture of the distribution of the variance is known. If the distribution is not
known, Chebyshev’s inequality or other non-parametric measures may be
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used to set control limits. Variances falling outside their predetermined con-
trol limits are said to be *‘significant” and require managerial attention.

Suggested Model

Markovian decision processes are stochastic processes that describe the evo-
lution of dynamic systems controlled by sequences of decisions or actions.
This paper focuses on the cost-control system which is observed periodical-
ly, and influenced at the time of observation by taking one of several possi-
ble actions. The evolution of the system results from the interaction between
the “laws of motion’’ of the system and the sequence of actions taken over
time. The different paths of the system will have associated economic conse-
quences. The ultimate aim is to determine a policy which establishes criteria
that will direct the firm (o take those actions that control the system in an
optimal manner based on current conditions (states). Optimality will be de-
fined relative to a stipulated criterion. Qur model considers the three states
listed in Figure 2 (Dopuch, et al. 1967).

Figure 2
A Taxonomy of Variances

Type of Deviation Cause Action
1 Stochastic Nature of the No Action
Controlled Process
2a Error in the Process Restore to Expected Per-
formance Level
b Permanent Change in the Management Must Incor-
Process porate This Permanent

Change Into the Decision-
Making Process

A Type | deviation in Figure 2 results from the stochastic nature of the
controlled process. Statistically insignificant responses require no manage-
ment actions. Type 2 deviations result from a temporary or permanent change
in the process. Type 2a is a controllable deviation where the error can be
corrected and the expected performance level restored. Type 2b results from
4 permanent change in the process. In this situation, the deviation is uncon-
trollable, but management response is required to incorporate this perma-
nent change into the decision-making process. Traditional accounting systems
focus on Types 1 and 2a deviations. This focus is essential for process con-
trol. In contrast, Type 2b deviations are central to the control of decision
models,

Control limits are established through statistical analysis to distinguish be-
tween Type 1 and Type 2 deviations. Two prerequisites effectively control
the decision models. First, the firm’s control system, designed around the
formalldccision model, should include the identification of the variances for
the decision variables. Second, the control system must be able to distinguish
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between Type | and Type 2 deviations. Firms failing to correct significant
Type 2 deviations will incur incremental costs, which are the differences be-
tween the actual costs and the costs indicated by the optimal solution for
the revised decision model (or ex-post optimal cost).

Therefore, the amount of incremental cost depends on the decision model’s
sensitivity to the change signaled by Type 2b deviations. Traditional opera-
tion research sensitivity analysis techniques can then help determine the sig-
nificance of the Type 2b deviations. In this sense, effective sensitivity analysis
can normally be performed only on well-defined decision models. Zannetos
(1964) illustrated these incremental costs, first with an economic order quan-
tity (EOQ) inventory model and then with a resource allocation linear
programming model. Sensitivity analysis was performed on the coefficients
of the objective function to study the post-optimal behavior of the model.

For the general model, we assume that a system is observed at discrete
timet,t € (0, 1, 2, ..., T), and classified into one of a finite number of
states (S)), i €(0,1,.. ., M), LetsT.t € (0, 1, ... T), denote an ohserved
state at time t and call the sequence of observed states as Sy = sg, 81, . . .,
st with sy € (sot, S1t. - - -, SMt)- After each observation, a set of {inite possi-
ble decisions, d, is taken where k € (1, 2, . . ., K). In general, the number
of possible decisions depends upon the state of the system, but overall there
are still K decisions. Let DT, (DT = dg, d], . . ., df and dy € (dyy, dyy,
.« ., dgy)) denote the sequence of actual decisions made.

A policy, denoted by R, is a rule for making decisions at each point in
time. In principle, a policy could use all previously observed information
up to time t, that is, the entire **history’” of the system consisting of s¢, st —1,
dg—2,....and dg, dg—1, dt—2, . . . . However, for most problems en-
countered, it is sufficient to confine consideration to those policies that only
depend upon st (the observed state of the system at time t) and Dy (the pos-
sible decision available at any time) since the adoption of a set of policies
incorporates historical information. Hence a policy R can be viewed as a
rule that prescribes decision dijg when the system is in state i, i £ (0, 1, . . .,
M), and k represents a possible action with k € (0, 1, . . ., K). Thus, R is
completely characterized by the values R(dgk), R(dk), . - .. R(dmk)- A sys-
tem evolves over time according to the joint effect of the probabilistic laws
of motion and the sequence of decisions made with its path dependent on
its initial state, sp. Assuming that when decision R(djk) is made, the system
moves to a new state j, with a known transition probability Pij(k); i, § €
0, 1,....,Myand k €, 2, ..., K). Thus, if policy R is followed, the
resultant stochastic process is a Markov chain with a known transition matrix
{dependent on the policy chosen). The known transition matrix can be der-
ived from the observation of the history of this system.

A known cost Cjk is assumed to have been incurred when decision R{dik)
is made following policy R. That is, taking action k when the system is in
state i, net cost Cjk is incurred, which equals the net benefits of investiga-
tion. This cost may represent an expected rather than an actual cost; i.€.,
Cik = Known expected cost incurred during the next transition if the sys-
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tem is in state i and decision k is made. Thus, the action to follow is depen-
dent on the R with the lowest Cik.

It is necessary to settle on an appropriate cost measure to compare poli-
cies. One such measure associated with a policy is the (long-run) expected
average cost per unit of time. The expected average cost per unit of time,
E(C), for any policy can be calculated from the expression:

M
E(C) = X CikRj(mi)
i=0
where k are the possible decisions made with respect to policy R for
eachstateig (0,1, . . ., M)and (ngQ, {1, . . ., ™\f) represents the steady
state distribution of the system under policy Rj being evaluated (long-
term probabilities for each state that occurs over time).

Thus, the objective of this model is to obtain the policy that minimizes E(C).

To summarize, given a distribution P(S = i) over the initial states of the
system and a policy R, a system evolves over time according to the joint ef-
fect of the probabilistic laws of motion (the transition matrix) and the se-
quence of decisions made (actions taken). In particular, when decision R{djk)
is made, the probability that the system is in state j at the next observed time
period is given by Pijlk). This results in a sequence of decisions made, DT
= dp, di, . . ., di. This sequence of observed states and the sequence of
decisions is called a Markovian decision process, because of underlying as-
sumptions made about the probabilistic laws of motion, and the effect caused
by the transition matrix.

Example

The following example helps illustrate the suggested model. A production
process contains a sequence of operations. Cost reports are obtained peri-
odically. The cost reporting period may range from 1 to n days based on
the convention established by management. The convention may be based
on something as simple as the convenience of compiling and producing this
report or a quantitative analysis of the optimal cost reporting period, which
ctln_lld be produced exogenously using expected costs and steady state proba-
bilities based on information in a current cost report. The cost reports are
used until the next report period to establish the initial state of the process.

The process is classified into one of four possible states with an assumed
cost. Figure 3 contains the classification of possible states.

Figure 3

State Condition

Process in Control

Out of Control - Minor Problems

Out of Control - Major Problems

Out of Control - Major Process Revision
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NOTE: In reality, many possible states which lie upon a continuum of states
could have an expected cost [E(C)]. This continuum of possible states would
also likely be subdivided into a set of discrete classificatory states whose lines
of demarcation are cognizably drawn in order to be practically usable.

Let sy denote the observed state of the process after inspection at the end
of the tth day. Assuming that the state of the system evolves according to
some probabilistic **laws of motion,” the sequence of states (ST, ST = s,
§1, - . ., Sk) can be viewed as a stochastic process. In addition, assume a finite-
state Markov chain with a known transition probability matrix given by:

State To: 0 1 2 3
From:
0| % % s e
L 0 % Ye Y
2| 0 0 Vs %
3| 0 0 0

A decision must be made at the end of the day based on the current observed
state. Thus, the process will not correct itself without outside action. The
possible decisions are:

Decision Action
1 Do Nothing
2 Minor Adjustment {return to state 1)
3 Investigation (return to state 0)

The costs incurred while this system evolves contain several components.
When the process is in state 0, 1, 2 or 3, assume the following expected costs
per day:

State Expected Cost Per Day
0 $0
1 $2,000 <---> 3,999
2 $4,000 <---> 5,999
3 $6,000 <---> 10,000

NOTE: These expected costs represent average expected costs which may also
influence the analysis of cost variance and ultimate policy decision as they
vary. Changes in average expected costs may require that this analysis be
reapplied as expected costs change to obtain a more current policy statement
for actions to be taken when certain states occur.
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The four policies considered are:

Decisions
* * *
I Policy Verbal Description d, d, d. d,
} Ra [Investigate in state 3 1 1 1 3
Rp Investigate in state 3 1 1 2 3
, Minor adjustment in state 2
Rc Investigate in states 2, 3 1 I 3 3
g R4 [Investigate in states 1, 2, 3 [ 3 3 3

|

d* = f[S;,Rj]

If a given policy R is followed, the resultant stochastic process is a Mar-
kov chain with a known transition matrix dependent upon the policy chos-
en. Assume that the following transition matrices are abtained for the above

example:
Policy Ry Policy Ry
( State 0 1 2 3 0 1 2 3
0 % % s e % % Yo N
1 0 % % % 0 % % %
2 0 0 % % 0 l 0 0
3 1 0 0 0 | 0 0 0
Policy R Policy Ry
State 0 | 2 3 0 1 2 3
0 % % Ae Yis % % e e
1 0 % % % | 0 0 0
2 1 0 0 0 1 0 0 0
3 | 0 0 0 | 0 0 0

In addition, assume that costs for the four maintenance policies can be
obtained from the following information:

Expected Cost
Due to Process Maintenance  Cost Due To  Total

D_ﬂgisi_on State  Out of Control Cost Investigation  Cost
1 0 0 0 0 0

1 2,000<---> 3,999 0 0 3,000

2 4,000<---> 5,999 0 0 5,000

3 6,000<-—-->10,000 0 Q0 8,000

2 0,1,2,3 0* 3,000 8,000 11,000

3 1R B 0* 8,000 8,000 16,000

Dacie: .
.Deusmn-z and 3 incur no expected cost due to the process being out of
control, sinee the *‘action’’ places the system back into control.
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As a result, the total expected cost/day is summarized as follows:

Cik (in $1,000)

Decision
State | 2 3
0 0 11 16
1 3 11 16
2 5 11 16
3 8 11 16

The long-run expected average cost/time will be used 1o compare policies
(see Appendix B for policy notations).

The long-run expected average cost/time will be used to compare policies
(see Appendix B for policy notations).

M
E(C) = % Cjknuj
i=0
where nj = Pj;

Policy EQ)
Ry (Investigate in State 3) $4,286
Rp (Investigate in State 3; adjust in State 2) $4,364
R¢ (Investigate in States 2 and 3) $4,167
R (Investigate in States 1, 2 and 3) $5,333

Thus, R¢ is the optimal policy (i.e., the minimum expected cost) based
solely on the transition matrix for each policy. The optimal policy calls for
doing nothing if the process is in states 0 or 1 and investigating when the
process is in states 2 or 3.

Influences of the Decision Makers Learning Curve

The proposed procedures can also be dynamically adjusted based on the
influence of the decision maker’s learning process. Individual learning is im-
provement that results from a person repeating a process and gaining skill
or efficiency from his or her experience (Moriarity and Allen, 1987). Asa
decision maker performs particular actions, data would likely be more validly
ascertained and interpreted. Thus, the experience of the decision maker would
influence the decision making process.

The learning curve would cause a modification of the transition matrix
and may also affect E(C). As a result, a different R may become optimal.
To illustrate, assume that the decision maker’s learning curve is represented
by the following matrix:
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.25 75 0 0
25 5 0 0
0 ] .25 0
0 0 0 l

New transition matrices (and subsequently new steady-state equations) would
be obtained by multiplying the original transition matrix of each R by the
learning curve matrix as indicated in Figure 4,

Figure 4
New Transition Matrix

Rj R;
Learning Curve  Current Tran;ilion Matrix  New Transitjiun Matrix
255 00 0 5 375 .0625 .0625 375 46875 078125 .078125
w10 0 0 A L2 IR = 0 JABTS .40625 .40625
60 7525 0 i} 0 o5 RS 0 5625 21875 21875
0 6 =00 ) | 1} 0 0 1 0 0 0
Al S5 375 .0625 .0625 375 46875 .078125 078125
25y 0 0 0 25 2% 2N = 0 0375 03125 .03125
0 25 .25 0 0 | 0 0 0 R125 09375 .09375
v | 1 0 0 0 1 (v st 0
2375 0 0 5 375 .0625 0625 25 5625 09375 .09375
A LR R ) 0 g GIENRIRS = JA25 63625 109375 (109375
0: 7525 0O | 0 0 0 25 5625 09375 09375
O 1 0 0 0 1 0 0 0
250 0 5 375 .0625 0625 625 28125 046875 046873
25005 50 0 1 0o 0 0 = 1 0 0 0
4075 225 0 | 0 0 0 | 0 0 ]
0 0 0 1 1 0 0 0 | 0 0 0

The long-run expected average cost/time for each policy with the learning
curve adjusted transition matrix are as follows (see Appendix C for policy
notations).

M
B(C] = X0 Cikr

i=0
Policy E(C)
Ra (Investigate in State 3) $4,020
Rp (Investigate in State 3; adjust in State 2) $4,448
Re (Investigate in States 2 and 3) $4.861
Rd (Investigate in States 1, 2, and 3) $1,939
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Thus, R is now the optimal policy (i.e., the minimum expected cost) based
on adjusting the transition matrix for the decision maker’s learning curve,

Limitations and Implications

Similar to other Markov models, the developed model contains three poten-
tially unrealistic assumptions: (1) a Markovian process, (2) known transi-
tional probabilities, and (3) steady-state conditions. All Markov chains have
a “‘lack of memory”’ assumption which assumes that the state of the process
is independent of its past history. Measuring transitional probabilities is al-
ways difficult and the steady-state assumption may not always be satisfied
given such changing conditions as personnel turnover, equipment efficiency
changes, raw material quality variations and weather changes. However, the
model’s consideration of the cost of investigation and incorporation of the
decision maker’s learning respond somewhat to these assumptions.

The use of the decision maker’s learning curve in our model has implica-
tions concerning a possible method for obtaining the transition matrix.
Propensity to change, as proposed by the transition matrix, is influenced by
an individual’s experience regarding conditions faced by the individual. The
authors suspect that as the model is employed, the continuous application
of the learning curve of the decision maker will force a given transition matrix
to converge on a true transition matrix just as the application of a transition
matrix forces the problem into a steady state transition matrix. Discerning
the learning curve of a decision maker may prove to be more trackable. Thus,
the derivation of the transition matrix may be more simplified. An implica-
tion which may respond to the main criticism of using a Markov process
in the investigation of problems facing corporate decision makers, It is sug-
gested that further research be conducted to substantiate these implications.

A second major contribution of the model is that the model further de-
velops the advantage of the Markovian process. This advantage includes a
less laborious determination of computational costs than other more tradi-
tional methods (e.g., Bayesian updating for each period).

Summary

The model uses a Markavian decision process approach to investigate cost
variances where the underlying probability distributions are obtainable. This
approach assists accountants in the investigation of cost variances. The de-
cision maker can develop and use a predetermined model, which can then
be updated and reapplied to reflect environmental changes in the problem
situation (e.g., changes in expected cost for possible states, changes in the
number of identifiable states or decisions or changes in the transition matrix).
Since a transition matrix may be difficult to develop in practice as the num-
ber of states and policies increase, the authors suggest that a more efficient
method (e.g., linear programming technique) be used to arrive at an optimal
policy as the number of states and policies increase. Miller (1956) recom-
mends that decision makers have the capacity to process information up to
a reasonable upper limit of states (Sj) and policies (Rj), i, j = 7 £ 2. However,
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further research is necessary to determine a more specific upper limit for both
states and policies.

A further area of future study concerns the construction of the transition
matrix. This matrix represents the decision maker’s propensity for change.
We hypothesize that as decision makers continue to learn, a true transition
matrix may be obtained by the continuous application of the influence of
the learning curve of the decision maker on a selected transition matrix. Thus,
the structure of the elusive transition matrix could be derived more scientifi-
cally by determining the decision maker’s learning curve.

Recommendations

An example of the application of the model indicates its value in deter-
mining optimal policies. We recommend that further research be performed
to determine a reasonable limit of states and policies and of the value of us-
ing learning curves to obtain transition matrices. We also suggest that fur-
ther research determine if implications concerning the derivation of a true
transition matrix prove to be useful,
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A Review of the Related Literature
Appendix A

Zannetos (1964) was among the first to apply the statistical control con-
cept to cost variance analysis, the deviation ol actual cost from a standard
cost. He asserted that systematic control of a formal decision model requires
changes in both the type and method of assessing the significance of these
variances. A process is said to be in a state of statistical control if it falls
within pre-specified statistical control limits. These limits are set to minimize
the total costs of two types of error—adjusting an “‘in-control” process (a
Type I error) and failing to adjust an **out-of-control’ process (a Type II
error).

Bierman, et al. (1961) introduced the use of costs and benefits of an inves-
tigation into the decision concerning whether to investigate. They point out
that knowing when to investigate is an important part of the control process.
Specifically, when deciding whether to investigate a variance, the investiga-
tor should consider the following three factors:

l. the probability that this variance results from the random aspect of the
process (e.g., a sampling error).

2. the expected reward of investigation, and

3. the expected cost ofl investigation.

These three factors coupled with the size of the variance determine whether

to investigate the process.

Dopuch, et al. (1967) extended standard cost analysis to monitor both per-
formance and the decision process by starting from a taxonomy of variances,
as illustrated in Figure 2.

Kaplan (1969) adopted the Girshick and Rubin (1952) procedure for the
variance investigation decision. Rather than deriving a cost from operating
out of control, Kaplan used the actual costs when operating in or out of con-
trol to derive optimal policies. Therefore, a decision to delay investigation
for one period incurred the risk of operating one more period out of con-
trol; that is, the decision led to obtaining a cost realization from the higher
cost, out-of-control distribution, rather than from lower cost, in-control dis-
tribution. Balanced against this risk was the certain cost of an investigation
which might find that the system was still in control, or that the gain from
controlling is less than the cost of investigation. The loss function in the ac-
counting variance setting arises directly from the nature of the problem.

A key feature of the two-state Markov model used by Girshick and Rubin
and by Kaplan is that all relevant historical information may be summarized
by a single state variable—the probability that the system is currently oper-
ating in control. This probability is revised after each observation via Bayes'
theorem, to incorporate information from the most recent observation.

Dyckman (1969) dealt with a model similar to Kaplan’s except that the
multi-period cost structure was suppressed. Using a Markov process with
Bayesian updating to describe transitions between in-control and out-of-
control states, Dyckman assumes a constant saving, ‘L, from investigat-
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ing an out-of-control situation, which also is the ‘L'’ constant saving origi-
nated by Bierman, et al. (1961). Dyckman offers little guidance for
interpreting or estimating “‘L’". He calls it the “‘present value of the savings
obtainable from an investigation when the activity is out of control.”” He
then notes that ‘‘where a corrective action is not forever binding, the calcu-
lation of *‘L”’ should be adjusted to reflect the possibility of future out-of-
control periods,’* and then concludes that *‘the precise determination of the
savings for each future period is not an easy matter.”’

Ozan and Dyckman (1971) expand on Dyckman’s model by defining differ-
ent types of controllable and noncontrollable variances. They suggest how
to estimate some of the different probabilities required and eventually der-
ive a reward function similar to that used by Duvall (1967).

Duvall (1967) assumes that in-control costs are normally distributed with
a mean y, equal to standard costs, and variance equal to o'w. An observed
deviation from standard cost consists of a noncontrollable component, w
{with w = N(0, o°w)) and a controllable component, y. The controllable com-
ponent, y, is also assumed to be normally distributed and statistically indepen-
dent of the noncontrollable component, w. Duvall (1967) then developed
procedures which allow the parameters of the distribution of y to be esti-
mated from the observed deviation.

After describing the estimation procedure, an inference is performed only
on the most recent observation. This assists in determining whether to inves-
tigate. Duvall’s assumption of stationarity is possibly unrealistic, because
he uses only the most recent observation. If the process is stationary, then
the investigation decision should be based on all observations, not just on
the latest one. If, however, the most recent observation is deemed to be more
informative than prior observations, there is a strong presumption of non-
stationarity which implies that the procedure to estimate the parameters of
the process is incorrect.

Bather (1963) presents a model which overcomes the previously described
difficulties in Duvall's procedure. Bather, like Duvall, has a state described
by a single continuous variable which represents the performance level of
this continuous variable. Yt is the unknown performance level of the system
at time t and X; is the observation of time t. As before, X{ = N(Yy, ¢%). Bather,
however, postulates a process by which the performance level changes from
period to period. Yy = Y{—] + Z;, where Z; ~ N(0, o%).

Dittman and Prakash (1978) developed a two-stage Markovian process
transition matrix Lo test the cost-benefits of the system being either in or out
of control. Dittman and Prakash (1979) later compared the effectiveness of
their model with the ““best” Bayesian policy. However, their model consi-
dered only two states and contained no provisions for the process correcting
ilsclf or suffering an irreversible shift, or for the transition probabilities chang-
Ing with time (i.e., accounting for the decision maker’s learning curve).

Buckman and Miller (1981) present a model whereby each statistically in-
dependent cost process is assumed to satisfy Kaplan's assumptions (1969).
The cost processes are related by the assumption that corrective action takes
place for all n processes at once, and the decision problem is to determine
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when investigation and correction should take place given the vector of prob-
abilities that each cost process is “‘in control.”” They propose a Inyopic proge-
dure which is optimal for certain problems (parameters) and heuristic
otherwise. They solve optimally a model with twenty cost processes. In order
to see how well their method performs when it is not optimal, they solved
the same examples that Dittman and Prakash (1979) used to investigate the
nonoptimality of their procedure. Buckman and Miller conclude that the Ditt-
man and Prakash algorithm is faster, while theirs has the advantage that it
can be generalized to n cost processes.

Cheng, Jacobs and Marshall (1984) present a variance investigation mode|
based on a two-action multiperiod model developed by Kaplan (1969). Kaplan
used Bayesian updating of the manager’s probability assessment that the
process is in control, and an investigation is signalled whenever this proba-
bility assessment is less than or equal to a certain critical value, a value de-
termined by means of dynamic programming. The Cheng, Jacobs and
Marshall (1984) model determines this critical value using linear program-
ming in conjunction with rounded Bayesian updating of the manager’s in-
control probability assessments.

Gulledge, Wormer and Tarimcilar (1985) present a dynamic programming
solution for the model to help solve the order production problem. The model
is intended for use as a planning tool 1o assess the cost impact of extensions
and compressions of the contracted production time horizon. The model was
subjected to extensive sensitivity analysis. The behavior of the solution points
after parametric changes indicate that the model is capable of providing data
on variables that are important in planning for made-to-order programs.

Appendix B

Pij(m for all i and j for existing transition matrix.
Steady-state equations hased solely on the transition matrix can be written as:

m = 4/8n, + M
n, = 3/8n, + 3/4m,
Ra = 1/16m + 1/8n, + 1/2n.
n, = 1/16m, + 1/8n, + 1/2n;
] =@ +m +m+m;
Solution: n, = .2857142, n, = .4285713, n, = .1428571, n, = .42854
iy = 4/81’[:) -+ e
mn = 3/8n, + 3/4n, + n.
Rp m, = 1/16m, + 1/8n,
n, = 1/16m, + 1/8n,
l=m +n + 1, + m
Solution: m, = .181818, n, = .636363, m, = .09090, m, = .090909
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e = 4/8ng + m; + M

m = 3/8n, + 3/4n,
Rc n, = 1/16m, + 1/8m,
n, = 1/16m, + 1/8nm,

I =m ot i

Solution: me = .3333333, m, = .5, n, = .0833333, n, = .0833333
m = 4/8nm, + n, + M t,
m = 3/8my
R4 m = 1/16m,
n, = 1/16m,

l=m+mn +nmn +m
Solution: m, = .6666667, n, = .25, n. = .0416667, n,. = .0416667

Appendix C

Pij(R) for all i and j using the new fransition matrix.
Steady-state equations based upon transition matrix adjusted by the learning
curve can be written as:

e = 125, + .125n + n,
n, = .65625n, + .65625n, + .5625n.
Ry m, = ,10937r, + .10937n, + .21875n;
m, = .109375r, + .109375n, + .2187n:
l=m+m +n + m
2070313, n, = .5742186, n: = .1093749, n,
m = 1251, + 1257, + nm;
n, = .65625n, + .65625n, + .8125n;
Rp n, = .109375n, + .109375n, + .09375n,
m = 1093757, + .109375n, + .09375n.
l=mn +n + n + m

Solution: n, 1093749

il

Solution: m, = .1979167, n, = .6076389, n. = .0972222, n, = .0972222
o= .125m; + .125m + 25m; +my
m = .85625n, + .65625m, + .5625m,
Re m, = .109375n, + .109375n, + .09375n,
m = .109375n, + .109375n, + .09375m,

l=n..+m+n;=ﬂ-
Solution n, = 2222222 n, = 5833333, n, = 0972222, n, = 0972222
o = .875n, + B75n;, + m + m
m, = .09375n, + .09375nm,
Ry m, = .015625m, + .015625n,
m, = 015625, + .015625m,
l=n+nmn +m+n
Solution: n, = 878788, n, = .090909, 7, = .0151514, n, = .0151514
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