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DeVito et al.: Radio Number of Hamming Graphs of Diameter 3

Abstract

For G a simple, connected graph, a vertex labeling f : V(G) — Z;. is called a radio
labeling of G if it satisfies | f(u) — f(v)| > diam(G) + 1 — d(u, v) for all distinct vertices
u,v € V(G). The radio number of G is the minimal span over all radio labelings of G.
If a bijective radio labeling onto {1,2,...,|V(G)|} exists, G is called a radio graceful
graph. We determine the radio number of all diameter 3 Hamming graphs and show
that an infinite subset of them is radio graceful.

1 Introduction

In this paper we compute radio numbers of the Hamming graphs K,[1K,,[1K,, where
¢,;m,n > 2 and K,, denotes the complete graph with n vertices. We show that these graphs
are radio graceful unless £ = m = 2 or (¢,m,n) = (2,3,3). This produces an infinite family
of non-trivial radio graceful graphs. The first such families were given in [11], where the
third named author considers the Hamming graphs of the form K, UK,,0---0K,, where
ny = ng = --- = ng and, separately, where ny,no, ..., ng are pairwise relatively prime, and
constructs consecutive radio labelings for these types of graphs in certain cases. We will
use a similar technique to define consecutive radio labelings for all radio graceful Hamming
graphs of diameter 3.

For a simple, connected graph G with vertex set V(G) and a positive integer k, we call
a vertex labeling f : V(G) — Z, a k-radio labeling if it satisfies

|f(u) = f(v)] > k+1—d(u,v)

for all distinct u,v € V(G). This definition, given in 2001 in [2], encompasses some pre-
viously defined labelings, including vertex coloring, which is equivalent to 1-radio label-
ing. Other k-radio labelings that are studied include L(2,1)-labeling (2-radio labeling, [3]),
L(3,2,1)-labeling (3-radio labeling, [12]), and radio labeling (diam(G)-radio labeling, [1]).
These labelings have historical ties to the problem of optimally assigning radio frequencies
to transmitters in order to avoid interference between transmitters. This so-called Chan-
nel Assignment Problem was framed as a graph labeling problem by Hale in 1980 in [4],
by modeling transmitters and their frequency assignments with vertices of a graph and a
labeling of them. The relevance of k-radio labeling to this problem is clear; a pair of vertices
(transmitters) with a relatively small distance must have a relatively large difference in labels
(frequencies). While the original application is not our motivation in this paper, and we do
not limit our scope to only graphs relevant to that model, it remains a helpful illustration
of k-radio labeling.

We will work within the framework of radio labeling, where &k = diam(G). This is
considered the maximum value of k because k has a natural relationship to distance in G.
Namely, vertices of distance k apart or less must have distinct images under f. We therefore
consider k < diam(G).
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Definition 1.1. Let G be a simple, connected graph. A vertex labeling f : V(G) — Z, is a
radio labeling of G if it satisfies

|f(u) = f(v)] = diam(G) + 1 — d(u, v) (1)
for all distinct u,v € V(Q).

Inequality (1) is called the radio condition. The largest element in the range of f is called
the span of f.

Definition 1.2. Let G be a simple, connected graph. The minimal span over all radio
labelings of G is the radio number of G, denoted rn(G).

Remark 1.1. We use the codomain of Z. for radio labeling (and k-radio labeling), while
some authors use a codomain the Z, U{0}. Radio numbers and labelings are converted from
one convention to the other by a shift of 1.

Remark 1.2. If a graph G has diameter 3, the definitions for a radio labeling of G and
an L(3,2,1)-labeling of G are identical; the radio number of G and the analogous L(3,2,1)-
number of G are equal. This is the case for the graphs we consider in this paper, so the
results are relevant to both labelings.

Unlike k-radio labeling with & < diam(G), radio labeling is an injective labeling, and
therefore rn(G) > |V(G)|. We are interested in graphs G for which rm(G) = |V(G)|, which
occurs when there exists a radio labeling f with image {1,2,...,|V(G)|}. We call these
graphs radio graceful, first named in [13].

Definition 1.3. A radio labeling f of a graph G is a consecutive radio labeling of G if
fV(G) =A1,2,...,|[V(G)|}. A graph for which a consecutive radio labeling exists is called
radio graceful.

The complete graphs K, are trivially radio graceful; as diam(K,,) < 1, the radio condition
is satisfied for any injective vertex labeling of K,,. Then any vertex labeling that maps V (K,)
onto {1,2,...,n} is automatically a consecutive radio labeling of K,. Radio graceful graphs
with diameter larger than 1 are nontrivial examples. The higher the diameter of a graph, the
more restrictive the requirement to have an image of consecutive integers is (see Proposition
2.1). Examples of radio graceful graphs are sought, and in our study here of Hamming graphs
of diameter 3, an infinite family of examples is found. More precisely, the main results of
this paper state the following.

Theorem 1.1. Suppose 2 < { < m < n. Then the Haomming graph K,OK,,00K, is radio
graceful unless £ =m =2 or ({,m,n) = (2,3,3).

In the exceptional cases, we explicitly compute the radio numbers.
Theorem 1.2. The radio number of KoLK,UK, is 6n — 1 and the radio number of
KQDKgDKg 15 20.
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Remark 1.3. Notes on Hamming graphs of higher diameter: We conjecture that a Hamming
graph of diameter n with all factors of order greater than or equal to n is radio graceful. See
Remark 3.1 for more details about this conjecture in the case of diameter 4.

The problem of classifying diameter 4 (or higher) graphs, as this paper does for diameter
3, is still quite open. Consider, for example, KsOK3OK3OK;s. As established in [11], the t-
fold Cartesian product of K3 with itself is radio graceful fort < 3, and is not radio graceful for
t > 5. However, the t = 4 case, K3LK3[1K3K3, is still unknown. Since it has 81 wvertices,
there are 81! ~ 5 x 10'2° orderings, so a direct exhaustive search is impossible. To complicate
matters, an approach of the form of Section 4 which seeks to bound the largest number of
consecutive vertices satisfying Proposition 2.1 seems out of reach; using a computer, we have
found a list of 70 (out of 81) vertices which satisfy Proposition 2.1.

Hamming graphs and other Cartesian graph products have been fruitful areas of study in
the k-radio labeling context and have been particularly useful for finding examples of radio
graceful graphs. For k-radio labeling results involving Cartesian graph products, see [5]-[11]
and [14].

2 Preliminaries

Graphs are assumed simple and connected. We denote the distance between vertices u and
v in a graph G by dg(u,v), or, if G is clear from context, by d(u,v). We use the convention
that a (mod n) € {1,2,...,n} throughout.

We call an ordered list of the vertices of G an ordering if it is in one-to-one correspondence
with V(G). If f is a consecutive radio labeling of G, then there is an ordering z1, zs, . . ., x,, of
V(@) such that f(x;) =iforalli € {1,2,...,n}. The ordering contains all of the information
about the consecutive radio labeling. In light of this, the next proposition follows easily from
the radio condition (1).

Proposition 2.1. A graph G is radio graceful if and only if there exists an ordering
1, %2, ..., T, of the vertices of G such that

d(zi, xiyn) > diam(G) — A +1 (2)
forall A € {1,2,... diam(G) — 1}, i € {1,2,...,n — A}.

The inequality (2) is called the radio graceful condition. As diameter increases, the radio
graceful condition must be satisfied for more values of A, which underlines the difficulty of
finding examples of radio graceful graphs of higher diameter.

Definition 2.1. The Cartesian product of graphs G and H, denoted GUH, has the vertex
set V(G)xV (H) and has the edges defined by the following property. Vertices (u,v), (u',v") €
V(GOH) are adjacent if

1. u =1 and v is adjacent to v in H, or

2. v="1"and u is adjacent to u' in G.

The distance and diameter are inherited nicely from the factor graphs:

deor ((u,v), (u',v") = dg(u,u') + dg(v,v").
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3 Radio graceful K,L1K,,[1K,

In this section we show that the Hamming graphs K,00K,,00K, with /,m,n > 2 and
(¢,m,n) & {(2,3,3)} U{(2,2,n): n € N} are radio graceful. First, we define a list of
vertices of K,[1K,,[1K,; then we prove that this list is in one-to-one correspondence with
V(K,OK,,0K,), confirming that the list is indeed an ordering of the vertices; next we show
that this ordering satisfies the consecutive radio condition, which proves our desired result.

3.1 Definition of the ordering 1, zs, ..., Trmn

Consider a Hamming graph K,0K,,0K, with ¢,m,n > 2 and V(K;) = {uy,ug, ..., us},
V(Kp) ={v1,v2, ..., 0 }, and V(K,,) = {wy, we, ..., w, }.

We will define a list x1, xa, ..., Zpny of the vertices of K,[1K,,[1K,,, organized as
lem(€, m, n) x 3 matrices, with the &™ matrix denoted A®). We will define a total of lcnf’;—:lm

matrices. The rows of the matrices produce the list of vertices in the natural way, with the
rows of each matrix contributing the next lem (¢, m, n) vertices of the list, in order. Precisely,

if AR = [a(k)}, and if h = lem(¢,m,n) - b + ¢ where ¢ € {1,2,....,lem(¢,m,n)}, then w}, is

,J
b+1)  (b+1) (b+1
<a£,1 )7 ((;,2 )7a£,3 ) .
The first matrix AY is defined as
i Ul (%1 w1 ]
p(u) o(v1) 7(w)
AW = p*(uy) o(v1) 7% (wr) , (3)

plcm(€7m7n)—1 (ul) O.lcm(é,m,n)—l (U1> 7_lcm(f,m,n)—l <w1>

where p € Sy (k,) is the l-cycle (uy ug --- u), 0 € Sy(k,,) is the m-cycle (v vy -+ vy,), and
T € Sy(k,) is the n-cycle (wy wy --- wy). We will find it helpful to think of the matrices in
terms of their columns, so let AN = [ c® 4o e } For 1 < k < —tmn__ et

lem(¢,m,n)’
[e® (A% V) e* b | k=1 (mod A

AR = [ B d® e ] = (4)
[Cu) a0k T(e(k—l))] otherwise

where \ = m—(ﬁlg Notice that the first columns of all k;nfzzl—fnn) matrices are identical.

See Table 1 for an example of the list for K3IK300Kg.

Remark 3.1. As mentioned in Remark 1.3, we believe a similar technique to the one de-
veloped in this paper will prove that a diameter 4 Hamming graph with all factors of order
greater than or equal to 4 is radio graceful. We have a candidate for the definition of the
ordering that will work for diameter 4, analogous to the one given in this section for diameter
3, which we will state here.
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Ty = (U1,th1) Ti9 = (Ul,UQ,UJS) Tgr = (U1,U3,w5)
To = (U2,U2,w2) T2 = (U27U37w4) T3g = (Uz,Ul,we’)
T3 = (U3703,w3) T2 (Us,vl,ws) T39 = (u3,v2,w1)
Ty = (u1,v1,ws) | T2 = (U, V2, We) | Tao = (U1, V3, W2)
Ty = (u2,v2,w5) Ta3 = (U27U3,w1) Ty = (Uz,vl,w:z)
Tg = (U3>U37w6) Loy = (u3,v1,w2) Ty2 = (u3,v2,w4)
Ty = (u17U17w2) To5 = (U1,U2,w4) Ty3 = (U17U3>w6)
Ty = (U2>U27w3) T = (UQ,U3,IU5) Tyq = (u2,v1,w1)
Tg = (Us,U3,w4) To7 = (U37U17w6) Ty5 = (Us,Uz,wz)
Ti0 = (U1,U1,w5) Tog = (uhUQawl) Ty = (U1,U3,w3)
T = (U27U2,w6) To9 = (U2,U3,w2) Tyr = (U27U1,w4)
T2 = (u3,v3,w1) T30 = (u3,v1,w3) Tyg = (u3,v2,w5)
T13 = (U17U1,w3) T31 = (u17U2;w5> Ty9 = (U17U3,w1)
T4 = (U27U2,w4) T3 = (U2;U37w6> Ts0 = (u2,v1,w2)
T15 = (u3,v3,w5) T33 = (U3,th1) Ts1 = (U37U2,w3)
T16 = (U1,1)1,w6) T3qg = (U17U27w2) Tso = (Ul,U3,w4)
Ti7 = (u2,v2,w1) I35 = (Uz,vz,we;) Ts3 = (u2,v1,w5)
T8 = (U37U3,w2) T36 = (U3, U1, w4) T54 = (U37U2,w6)

Table 1: The list of T1,X2,...,T54 for KgDKgDK6

Consider a Hamming graph K,OK,,00K,00K, with {,m,n,o0 > 2 and
V(Ky) = {uy,ug,...;us}, V(Kp) = {v1,v9, ..., vm }, V(K,) = {w, we, ..., w,}, and
V(K,) = {x1, 79, ...,1,}. The first matriz AY is then defined as

[ U1 V1 (] xy |
p(ur) o(v1) 7(w1) (1)
A= | ) ) Pw) @) | 5)
i prHw) o o) FHwn) (@) ]
where L = lem(¢,m,n,0), p € Sy, is the l-cycle (uy us --- wg), 0 € Syk,,) is the
m-cycle (v vy -+ V), T € Sy(k,) is the n-cycle (w1 wy -+ wy), and p € Sy(x,) s the

o-cycle (xy o -+ x,). We will again find it helpful to think of the matrices in terms of their
columns, so let AV = [ c® dV e® fU) ] Forl<k< o e

lem(4,m,n,0)
AW = [ c® q® e §0) |

/o

c® o (dtD) e® fED | k=1 (mod M)

I (e (e=D) £k _ ifk#£1 (mod \) and k=1 (mod \,)

QD k) g (FF=1) | otherwise

\ L

no-lem(€,m) and Ny — o-lem(¢,m,n)
nocmit,m) g = m—anTnl

where )\1 = lem(£,m,n,0) lem(4,m,n,o0)
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The main obstacle in proving that this list is an ordering in the diameter 4 case is that
the structure of the seed sy given in (7) no longer applies to this definition for diameter /.

3.2 The list is an ordering of V(K,0K,,00K,)

In this section we will prove that our list 1, za, ..., Zsmy is an ordering for V (K,O0K,,0K,)

by proving that it is in one-to-one correspondence with V (K,0K,,0K,,). Since K,0K,,0K,

has ¢mn vertices, we need only to prove that z; # x; for all distinct 4,5 € {1,2,...,¢mn}.
Each matrix A®) inherits a cyclical structure from A®. That is,

o(ur) o) ()
AR = p*(ur) o?(v;) T (w;) (6)

I plcm(&m,n)fl<u1) Olcm(f,m,n)fl(vi) Tlcm(f,m,n)fl(wj) |
for some ¢ € {1,2,...,m}, j € {1,2,...,n}. This structure gives us our first two steps in
showing our list has no repetition.

? lem(£,m,n)

Proposition 3.1. For any k € {1, 2,... Z’"—”}, the rows of A®) are distinct.

Proof. Consider the representation of A®) given in (6). In search of contradiction, sup-
pose two rows in this matrix are identical. Then there exist distinct «, 5 belonging to
{0,1,...,lem(¢, m,n) — 1} such that p*(u1) = p?(uy), o%(v;) = ¢°(v;), and 7%(w;) = 77 (w;).
These respectively imply that o =, 8, a =,, 8, and a =, [, which in turn implies that
O Ziem(e;mn) B However, as a and f are distinct elements of {0, 1,...,lem(¢,m,n) —1}, this
is not possible. Therefore, no pair of identical rows exist. ]

Because of the structure shown in (6), any row of A%*) determines the entire matrix. And,
because there are lem(f,m,n) rows, if two matrices A*) and A*2) share a common row,
then they must share all rows (possibly cyclically permuted). This gives us the following
proposition.

Proposition 3.2. Let ki, ks € {1, 2,00, lcml&n—gln)} If there exists a row of A% that is also
a row of A% then each row of A®) is also a row of A¥2).

We can think of the first row as producing the rest of the matrix; in view of this, we make
the following definition.

Definition 3.1. A vertex of K,(K,,11K,, is called a seed if it corresponds to the first row
of A®) for some k € {1,2, e em—"}

? lem(£,m,n)
In pursuit of proving that the list defined in 3.1 has no repeated vertices, we will make
several observations about seeds. From the definition of the list, given in (3) and (4),
the first row of AW is (u1,vy,w), and the first entry of the first row of A®) is u; for

all k € {1,2, - m—”} According to definition (4), a matrix A®) differs from its

? lem(L,m,n)
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predecessor A%*~1 by an application of 7 in the third column of A*~Y unless k = 1 (mod \).
In this case, o instead is applied to the second column of A®~Y to produce A®. This gives
the pattern of the first rows, or seeds, given in Table 2. A new row of the table starts
each time £ = 1 (mod A); hence, the table has A columns. Recall that the total number of
matrices is mxrf(T—,Zw) and A = %; then mf(;”—glm . % = ged(¢,m). Table 2, therefore,
represents a total of ged(¢, m) rows. Rows in the table are indexed by i, and we use - in the
table to mean ged (¢, m).

k=1 k=2 k=X
(ug,v1,w1) (ur, vy, 7(wy)) (ul,vl,Tk_l(wl))
k=X+1 k=A+2 k =2\
(ul,a(vl),T’\_l(wl)) (u17 U(vl),T(’\_l)+1(w1)) e (ul,a(vl), 7'2(’\_1)(101))
E=2\+1 k=2\+2 k =3\
(u17 02(01)772(’\_1)(1111)) (ul, 02(01),72(’\_1)“(101)) e (ul, 02(1)1),7'3()‘_1)(11)1))
k=(i—DA+1 k=(i—1r+2 k= i\
(Ul, Ui_l(vl), 7.(i—l)(A—l)(wl)) (u17 O’i_1<v1), 7_(1‘—1)()\—1)+1(w1)) . (Uh Oi_l(vl), Ti(A—l)(wl))
E=(y—1DA+1 E=(y—1A+2 k=9
(Ul, o7 Yvy), 7(7—1)(/\—1)(101)) (Uh o7 (vy), 7—(7—1)(A—1)+1(w1)) e (Ul, o7 Y vy), T“’(’\_l)(wl))

Table 2: First rows of {A(k)}, corresponding to the seeds of K,00K,,00K,,, with v = ged(¢, m)

The seed in the i*® row and ;' column of Table 2 is given by
(Uh O'iil(vﬁ, T(ifl)()\fl)Jrjfl(wl))

where i € {1,2,...,ged(¢,m)} and j € {1,2,...,A}. Because i — 1 < ged(¢, m) < m, we can
simplify the second component, so the seed in the i** row and ;' column of Table 2 is equal
to

(u17 v, T(i—l)()\—l)—f—j—l(wl)) )

Each k € {1, 2,... m—”} is associated with a seed, as shown in Table 2. If we write

? lem(£,m,n)

k= (b—1)A+c, with c € {1,2,..., A}, then the first row of A%®) is the entry of Table 2 in
row b, column ¢, and we call this seed s;:

Sp = (ub ,Ubﬂ_(bfl)(/\fl)Jrcfl(wl)) ) (7)

Recall that our goal is to show that there is no repetition in our list of vertices. These
next facts we prove about seeds will allow us to do that.

Proposition 3.3. If ki, ky € {1,2, L lnfg;—;m} and sy, = sy, then ky = k.
Proof. Let ki, ks € {1,2, el lcm?;—:rlzn)} We can write k; = (by — 1)\ + ¢; and

ky = (by — 1)N\ + ¢ with ¢1,c0 € {1,2,..., A} and by, by € {1,2,...,gcd(¢,m)}. Suppose
Sk, = Sk,- 1t follows immediately from (7) that by = by. Also, it follows from
1= DO=Drer=1 () = glbz=DA-DFee=1 () that ¢; =, co. We know ¢, ¢ € {1,2,...,A}.

Since A\ = % < n, we can get ¢; = c;. We have shown k; = ko. O
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7 lem(4,m,n)

Proposition 3.4. Let k, € {1,2, . m—"}, with k. = (b— DA +¢, c € {1,2,...,A}.
If (u1, vy, w,) is a row of A¥) other than the first row, then (uy, vy, w,) # sy, for any k.

Proof. Let k, € {1,2,... fm—n} with &, = (b— DA+ ¢, c € {1,2,...,\}; then, by (7),

? lem(4,m,n)
the first row of A%+ ig
o (uh U, T(b_l)(A_l)—i_c_l(’wl)).

If (uy,vp, w,) is any row of A% other than the first row, then
(ur, v, w2) = (p7(ur), 07 (vy), 7OTDATDFT ()

where v € {1,2,...,lem(¢,m,n) — 1} and = is an integer multiple of lem(¢,m).
In search of contradiction, suppose (u1, vy, w,) is a seed. Since its second component is
vy, we can see from Table 2 that

w, = T(bfl)(”l)*c*””(wl) € {T(bfl)(’\*l)”(wl) |de{0,1,...,\— 1}} :
Then, for such d, ¢+ v =, d + 1, or in other words, there exists an integer e such that
ne—~y=c—(d+1). (8)

Recalling that « is an integer multiple of lem(¢,m) and A = nlem®m) 56 ig the case that A

lem(£,m,n)’
divides the lefthand side of (8), and therefore A divides ¢—(d+1). Observing the constraints
of constants ¢ and d, we see that ¢ — (d+1) € {—=A+1,—A+2,..., A —1}. It follows that

c—(d+1)=0.

Then equation (8) shows that 7 is not only an integer multiple of lem(¢,m), but an
integer multiple of lem (¢, m,n). However, as v € {1,2,...,lem(¢,m,n)—1}, we have reached
a contradiction. Therefore, (uy, vy, w,) # s for any k. O

Lemma 3.1. If (uy,v;, w;) is s, and (uy, vy, w,) is any row in A then y =qcd(tm) U

Proof. Let (uy,v;,w;) be the first row of A®. Then each row of A®) takes the form
(7 (1), 07 (vi), 77 (w2)). 1

(ub Uy, wZ) = (p’y(ul)> U’Y(Ui)’ Tﬂy(wZ)) )

then v is a multiple of ¢, say v = bf. And y = i + bl (mod m). Then, for some integer c,
y =i+ bl + cm, and therefore y =i (mod ged(¢, m)). O
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7 lem(£,m,n)

Proposition 3.5. Let k, € {1,2, o m—”} If (ug, vy, w,) is any row of A®) other
than the first row, then (uy, vy, w,) # si for any k.

Proof. In search of contradiction, let (u,, vy, w,) be a row of A% other than the first row, and
suppose (U, vy, w,) = sj for some k. Then necessarily (u,, vy, w,) = (ug, vy, w,). Take s;, =
(u1, vy, wy). From Table 2, v,y € {1,2,...,gcd(¢,m)}. By Proposition 3.4, y # ¢y'. And
Lemma 3.1 states that y =,cq,m) ¥'- But these three statements cannot be simultaneously

true. Therefore, (uy, vy, w,) # s for any k. ]
Proposition 3.6. The list of vertices x1,xa,...,Tpm defined in Section 3.1 is pairwise
distinct.

Proof. In search of contradiction, suppose z; = z; = (uy, vy, w,) for distinct 4, j belong-
ing to {1,2,...,¢mn}. By Proposition 3.1, this means the vertex (u,,v,,w,) must appear
as a row in two different matrices, call them A®) and A%*2) for some distinct ky, ke €

{1, 2,... m—"} Then, by Proposition 3.2, any row of A%*1) is also a row of A%*2). So

? lem(4,m,n)
the first row of A®1) the seed sy, is also a row of A*2). However, s;, cannot be the first
row of A%*2) as first rows of the matrices are distinct by Proposition 3.3. Then s, must
be some row other than the first row of A%*2). But this contradicts Proposition 3.5. Hence,

Proposition 3.6 shows that our list xy, xs, ..., Ty, is in one-to-one correspondence with
V(K,OK,,0K,), achieving the goal of this section.

Theorem 3.2. The list of vertices x1,xs, ..., Tpn, defined in Section 3.1 is an ordering of
the vertices of K,OK,,[JK,.

3.3 K,OUK,UK, is radio graceful

In this section, we will show our ordering of K,[1K,,[ 1K, induces a consecutive radio labeling.

Theorem 3.3. Let {,m,n € Zy, £ < m < n, {>2 mn >3 (excluding K;OK30Ks3).
Then K,OK,,00K,, is radio graceful.

Proof. Let £ < m <mn, {>2, mn >3 with either £ > 3 or n > 4. Also, let x1,x2, ..., Trn
be the ordering of V(K,0K,,0K,) from Section 3.2. Write z; = (u;, v;, w;) and assume
z; € A®) . We will prove that our ordering satisfies the inequality (2) with A € {1,2}, which
will finish the proof.

We begin with the case A = 1. Note that z;11 = (p(w;), o (v;), 7(wy)) (if 2541 € AW)
and 21 € {(p(w;), o (vs), 7(wy)), (p(wi), o (vy), 72(w;))} (f 2341 € A®FD) Since ¢ > 2,
p(u;) # u; and since m,n > 3, v;, o(v;), and o%(v;) are distinct, and similarly for w;. Thus,
x; and x;,1 always differ in all three coordinates, so d(x;,z;41)) = 3, satisfying the radio
graceful condition of Proposition 2.1.

We henceforth assume A = 2. Then ;0 = (p*(u;), 02(v;), 72(wy)) (if zi2 € A®) or
Tivo € {(P*(w), 3 (vi), T2 (wy)), (p%(wi), o2 (v;), 73 (wy)) } (if 2440 € A®FD). We now break into
cases depending on whether or not ¢ > 3.
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Assume initially that ¢ > 3. Then the assumption that ¢ < m < n implies m,n > 3.
Then, p(u;) # w;, 0%(v;) # v;, and 72(w;) # w;. Thus, z; and z;, differ in at least two
coordinates, so d(z;, x;12) > 2, satisfying the radio graceful condition of Proposition 2.1.

Finally, assume ¢ = 2, so n > 4. This implies that w;, 7%(w;), and 73(w;) are distinct. If
m > 4 as well, then v;, 0%(v;), and o (v;) are distinct. It follows in this case that d(x;, ;1) >
2.

The remaining case is when A =2, £ =2, m = 3, and n > 4. If ;.5 lies in A®*D recall
that 1 < k+1< kml&’?nm) = lcmG(T(li,n) and \ = ZZ:ZI&(fn”ZL)) = lcm6(1(15,n) > k + 1. Thus, we never
satisfy that congruence k +1 = 1 (mod \). It follows that z;, o # (p*(u;), 0% (v;), 72(w;)).
For the remaining two possibilities for z;,o, we clearly have d(x;, x;12) = 2, satisfying the
radio graceful condition of Proposition 2.1. O

4 Radio numbers in the exceptional cases

In this section, we compute the radio numbers of Ky[IK3[1K5 and Ky[OK,L1K,, beginning
with KoOK300K5.

To start, we note the ordering in Table 3 of the vertices of K,[1K3[1K3 has a span of 20.
Thus, rn(K;0K30K3) < 20. We will later see that this ordering achieves the radio number

of KQDKgDKg.
Vertex Label Vertex Label Vertex Label
(u, vy, wr) 1 (ug, vg, wo) 2 (u1, v3, w3) 3
(ug, vy, w1) 4 (uy, vg, wo) 5 (ug, v3, w3) 6
(Ul,Ul,UJQ) 8 (UQ,’UQ,U)g) 9 (Ul,Ug,wl) ]_0
(ug, vy, ws) 11 (uy, va, w3) 12 (ug, v3, W) 13
(uy, vy, ws) 15 (ug, va, w1) 16 (w1, v3, ws) 17
(Ug,Ul,w:;) 18 (U,l,Ug,wl) 19 (u2,v3,w2) 20

Table 3: A radio labeling of Ks[OK3[1Kj5

Proposition 4.1. The radio number of KoLK3[1K3 s 20.

Proof. As we have already showed the radio number is at most 20, we must now show
rn(Ko0K30K3) > 20. To do this, consider the following claim:

(%): There is no consecutive radio labeling on any 7 vertices of KoOK30Kj.

Believing (x), for any vertex labeling z1, ..., 213 of Ky[OK300K3, there must be a jump in
the labels among the vertices 1, ..., z7 as well as among x11, ..., x15. But if there are at least
two jumps in the labels of the 18 vertices, then the span must be at least 20.

We now prove (x). Let y1,...,y7 be 7 vertices in Ks[K3[0K3 and assume for a contra-
diction that they can be consecutively radio labeled. This implies that d(y;, y;+1) = 3 and

d(Yi, Yiv2) > 2.
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Say y; = (a,b,c) € KoOK3OK3. Then yo = (o', b, ') where a’ # a, b’ # b, and ¢ # c.
Because K5 only has two elements, y3 = (a,b”,¢”). Note that d(ys,y2) = 3 implies " # ¥/
and ¢’ # . Similarly, because the first coordinate of 1; and y; match, the condition
d(y1,ys3) > 2 implies that b” # b and ¢ # ¢. Because K3 only has three vertices in it, this
means that y; and y, completely determine y3. Now, y, is determined in the same manner:
ys = (a/,0","). But the condition b # b # b forces b"” = b, and similarly for c¢. So
ys = (d’,b,c). Continuing, we find y5 = (a,b’,), ys = (a’,b","), and y; = (a,b,¢c) = y;.
Since y; # yr, this is a contradiction.

]

We now turn our attention toward computing the radio number of G,, := KoOK,K,.
Proposition 4.2. The radio number of G,, satisfies rn(G,,) > 6n — 1.

Proof. We first claim that no three vertices 1, 92, y3 can have a consecutive labeling. If 3,
is labeled (a, b, ¢) and y, is labeled (o', V', ), then a # @', b # V', and ¢ # ¢ because d(y1, y2)
must be equal to 3 to have a consecutive labeling. Likewise, y; is labeled (a”,b”,¢”) with
a” # a V" # b (which implies ¢’ = a and b” = b since K, has two vertices). But then
d(y1,y3) = 1, so the labeling can not be consecutive.

Now, let f : Vi, — Z be a radio labeling, which is induced from an ordering vy, ..., Y45, of
the vertices of G,,. Since f(yry2) — f(yx) > 3 for any k, and because f(y2) > 2, we see

fWan) = (f(Yan) — F(Yan—2)) + (f WYan—2) = f(Yan-a)) + . + ([ (ya) — f(y2)) + [(v2)
>3(2n —1) + f(y2)
>6n—1.

Thus, rn(G,) > 6n — 1.
[l

Having established a lower bound for rn(G,), we now find an ordering whose span
achieves this lower bound.

Theorem 4.1. Let G,, = K;OK,OK,,. Then rn(G) = 6n — 1.

Proof. By the previous proposition, we know rn(G) > 6n — 1, so we need only find an
ordering which has a span of 6n — 1. First note that if n = 1, KolK,1K; =2 K5[K5 has
radio number 5 = 6(1) — 1 coming from the vertex ordering (uy,v1), (ug, v2), (ug, v1), (u1, ve),
which has labels 1, 2,4, 5.

For G4, we use the ordering

(ul) (%0 wl)a (U’17 V2, w2)7 <u27 U1, w1)7 (ula V2, w2)7

(U/Q, U1, w2)7 (ula Vg, w1)7 (ula U1, ’U}Q), (u27 Vg, wl)-

This has labeling
1,2,4,5,7,8,10,11 = 6(2) — 1.
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Notice that the last two vertices have the form (u, vy, w,), (ug, v2, w,_1) with labels
6n — 2,6n — 1.
For G3, we use the ordering

(Ul, V1, wl); (u27 Vo, w2)7 (u27 U1, w1)7 (vla Vg, UJQ), (UQ, U2, wl)) (uh U1, 'lU3>,

(u17 V2, wl)a (u2a (%0 ’U)g), (ula V1, w2)7 (u27 Vg, w3)7 (u27 (%0 w2)7 (Ul, V2, w3)

which induces the labeling
1,2,4,5,7,8,10,11,13,14,16,17 = 6(3) — 1.

Notice that the last vertex has the form (uq, v, w,), with label 6n — 1.

We find labelings for the remaining G,, using induction, using both the G5 and G35 label-
ings as base cases. For the induction hypothesis, we assume that when n is even, we have
found an ordering of the vertices of G,, which ends with (uy, vy, w,), (us, vo, w,_1) and with
labels 6n — 2 and 6n — 1. When n is odd, we assume that we have found an ordering for the
vertices of G,, which ends with (uy, vy, w,) and label 6n — 1.

Then we order GG,,1o by copying the order on G,, C G, 2 and then appending the re-
maining vertices in the order

(u17 U1, wn+1)7 (Ug, V2, wn+2)7 <u27 V1, wn+1)7 (u17 V2, wn+2)7

(ug, V1, Wnya), (U1, Vo, Wot1), (U1, U1, Whaa), (U2, Vo, Wytq).

The corresponding labels are then

6n 4+ 1,6n 4+ 2,6n+4,6n+5,6n+ 7,6n + 8,6n + 10,6n + 11 = 6(n + 2) — 1.
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