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Abstract

A cycle containing a shortest path between two vertices u and v in a graph G is
called a (u, v)-geodesic cycle. A connected graph G is geodesic 2-bipancyclic, if every
pair of vertices u, v of it is contained in a (u, v)-geodesic cycle of length l for each even
integer l satisfying 2d + 2 ≤ l ≤ |V (G)|, where d is the distance between u and v. In
this paper, we prove that the Cartesian product of two geodesic hamiltonian graphs
is a geodesic 2-bipancyclic graph. As a consequence, we show that for n ≥ 2 every
n-dimensional torus is a geodesic 2-bipancyclic graph.

Keywords: Geodesic cycle, geodesic 2-bipancyclic, Cartesian product, torus

2020 Mathematics Subject Classification: 68R10, 05C38, 05C76

1 Introduction

The Cartesian product of two graphs G and H is denoted by G�H. It has vertex set V (G)×
V (H). Two vertices (g, h) and (g′, h′) are adjacent in G�H if g = g′ and h is adjacent to
h′ in H, or h = h′ and g is adjacent to g′ in G. An n-dimensional torus is the Cartesian
product of n cycles. The n-dimensional hypercube is the Cartesian product of n copies of the
complete graph K2. An interconnection network topology is effectively represented by a graph
where nodes and links are represented by vertices and edges of the graph, respectively. The
hypercubes and tori are popular interconnection networks due to their beautiful properties;
see [2, 6, 9, 11].

Cycles in a graph represent the ring structure of the interconnection network given by that
graph. Cycles are suitable for designing simple algorithms with low communication costs.
They appear as data structures in many algorithms for parallel machines whose processors
are interconnected in various topologies. This motivated many researchers to consider the
problem of embedding cycles of various lengths into a given interconnection network. The
bipancyclicity problem studies the existence of cycles of all possible even lengths in a given
graph. Edge bipancyclicity is a natural extension of this problem, and it requires to find
cycles through a prescribed edge. Geodesic bipancyclicity is a further generalization of edge
bipancyclicity. This property is much stronger than bipancyclicity and hamiltonicity as it
requires to take the shortest path between two important processors in a network. We define
these concepts formally.

For an integer l ≥ 3, an l-cycle is a cycle on l vertices and it is usually denoted by Cl.
A graph G is bipancyclic if it has cycles of all even lengths from 4 to |V (G)| and G is edge-
bipancyclic if every edge of G lies on cycles of all even lengths from 4 to |V (G)|. The edge
bipancyclicity property is studied for some interconnection networks like hypercubes, k-ary
n-cubes, tori [2, 6]. Chan et al. [3] extended the concept of edge bipancyclicity to geodesic
bipancyclicity. For given pair of vertices u, v of a connected graph G, a (u, v)-geodesic path
is a shortest path joining u to v in G. Denote by d(u, v) the distance between u and v, that
is, the length of a (u, v)-geodesic path. A graph G is geodesic pancyclic if for any pair of its
vertices u, v, there is an l-cycle containing a (u, v)-geodesic path for every integer l satisfying
max{2d(u, v), 3} ≤ l ≤ |V (G)|. Geodesic bipancyclicity is defined similarly by considering
only even lengths cycles. A graph G is geodesic 2-bipancyclic, if for any pair of vertices u
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and v, there is an l-cycle containing a (u, v)-geodesic path for every even integer l such that
2d(u, v) + 2 ≤ l ≤ |V (G)|. A graph G is geodesic hamiltonian if for any pair of vertices u
and v, there is a hamiltonian cycle containing a (u, v)-geodesic path.

The geodesic pancyclicity and bipancyclicity properties are investigated for various in-
terconnection networks. Lai et al. [9] proved that hypercubes are geodesic 2-bipancyclic.
Hsu et al. [7] showed that augmented cubes are geodesic pancyclic. In fact, Chan et al.
[4] proved that every (u, v)-geodesic path in an augmented cube is contained in cycles of all
possible lengths. Also, the geodesic pancyclicity of twisted cube of odd dimension is studied
by Lai [8]. Lü and Wang [10] established the geodesic-bipancyclicity for the class of balanced
hypercubes, while Fang and Huang [5] proved the geodesic pancyclicity for the generalized
base b-hypercube.

In this paper, we investigate the geodesic 2-bipancyclicity property for the class of the
Cartesian product of graphs. The following theorem is the main result of the paper.

Theorem 1.1. Let G and H be two geodesic hamiltonian graphs. Then G�H is a geodesic
2-bipancyclic graph.

As a consequence, we get the following result for tori.

Corollary 1.2. For n ≥ 2, any n-dimensional torus is a geodesic 2-bipancyclic graph.

The paper is organized as follows. Section 2 deals with a basic result that is used in
subsequent sections. Section 3 proves that the Cartesian product of a geodesic hamiltonian
graph and a path is a geodesic 2-bipancyclic graph. In the last section, we complete the
proof of Theorem 1.1 and obtain its consequences.

2 Cycles through a prescribed edge in a grid

For a positive integer m, let 〈1, 2, . . . ,m〉 denote the path on the vertices 1, 2, . . . ,m where the
vertex i is adjacent to the vertex i+1 for i = 1, 2, . . . ,m−1. If P is a path or a cycle, then |P |
denotes the length of P. A ladder on 2m ≥ 4 vertices is the graph P�K2, where P is a path
on m vertices. For a vertex (g, h) of a graph G�H, the G-layer corresponding to the vertex
h of H, denoted by Gh, is the subgraph G�h of G�H. Thus V (G�h) = {(g, h) : g ∈ V (G)}
and E(G�h) = {〈(g, h), (g′, h)〉 : 〈g, g′〉 ∈ E(G)}. Similarly, the H-layer Hg corresponding
to the vertex g of G is the subgraph g�H of G�H. The shortest path between (g, h) and
(g′, h′) in G�H is the shortest path joining g to g′ in G followed by the shortest path joining
h to h′ in H.

We obtain the following result to prove Theorem 1.1. Note that if P and Q are non-trivial
paths, then the grid P�Q has four vertices of degree two placed at four corners.

Lemma 2.1. For integers m,n ≥ 2, let P and Q be paths on m and n vertices, respectively
and let e be an edge of the graph P�Q incident at a vertex of degree two. Then for every
even integer l with 4 ≤ l ≤ mn, there is an l-cycle in P�Q containing the edge e.

Proof. Let Q = 〈1, 2, . . . , n〉. For i = 1, 2, . . . , n, denote by Pi the P -layer corresponding to
the vertex i and denote by xi the vertex of Pi corresponding to the vertex x of P in the graph
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P�Q. Let 〈x, y〉 be an edge of the path P with x as an end-vertex of P. Then the vertex x1

of the P -layer P1 corresponding to x is a vertex of degree two in P�Q. Due to symmetry,
we may assume that x1 is an end-vertex of the edge e. Hence e is the edge 〈x1, y1〉 of P1 or
〈x1, x2〉 of the Q-layer corresponding to the vertex x of P.

Let l be an even integer such that 4 ≤ l ≤ mn. We construct an l-cycle in P�Q containing
the edge e. Let H be the ladder in P�Q formed by the two Q-layers corresponding to the
vertices x and y of P and the edges between them. Clearly, e is an edge of H. For 2 ≤ i ≤ n,
〈x1, x2, . . . , xi, yi, yi−1, . . . , y1〉 is a cycle of length 2i in H containing e. For i = n, we get a
2n-cycle, say C, as shown in Figure 1(a). Thus we get l-cycles for 4 ≤ l ≤ 2n containing e.
If m = 2, then we are done.

Suppose m ≥ 3 and 2n + 2 ≤ l ≤ mn. For j with 1 ≤ j ≤ n, let Lj be the ladder formed
by the paths Pj − xj, Pj+1 − xj+1 and the edges between them. Then Lj shares the edge
fj = 〈yj, yj+1〉 with the cycle C. For any even integer k with 4 ≤ k ≤ 2(m − 1), there is a
k-cycle Ck in Lj containing fj. We extend the cycle C through the edge fj for j = 1, 3, 5
and so on. For example, if Ck is a k-cycle in L1 containing f1, then (C − f1) ∪ (Ck − f1) is
a cycle of length l = 2n + k − 2 containing e. For k = 2(m− 1), we get a cycle, say Z, that
spans C ∪ L1; see Figure 1(b). We extend Z further through the edge f3 along the ladder
L3 to get even cycles containing e for 2n + 2 ≤ l ≤ 2n + 4(m− 1). We continue this process
of extending the cycles to exhaust the vertices of the next ladder. If n is even, then this
exhausts all the vertices of P�Q; see Figure 1(c).

u1 un

x1 x2

P1 P2 Pn−1Pn

yn

xn

y1 y2

He

(a): 4 ≤ l ≤ 2n

u1 un

x1 x2

L1

y1
f1 y2

He
yn

xn

(b): 4 ≤ l ≤ 2n + 2(m− 1)

u1 un

x1 x2

L1 Ln−1

y1 y2
f1

He
yn

xn

(c): 4 ≤ l ≤ mn and n even

x1

u1 un

x2

L1 Ln−2

fn−2y1
f1 y2

He
yn

xn

(d): 4 ≤ l ≤ mn− 1 and m,n odd

Figure 1: Cycles in P�Q containing the edge e

Suppose n is odd. Then the above process gives an l-cycle containing e in C ∪L1∪L3∪· · ·∪
Ln−1 for 2n ≤ l ≤ m(n− 1) + 2. Denote the largest such cycle by D. Then D excludes m− 2
vertices of the path Pn other than xn and yn. To cover these vertices, we use 4-cycles that
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are formed by maximal matching between the paths Pn−1, Pn and the edges between them.
Let M be the maximal matching in Pn−1 containing the edge 〈xn−1, yn−1〉 and let N be the
corresponding matching of Pn. We extend the cycle D by replacing the edges of M different
from 〈xn−1, yn−1〉, one by one, with the paths of length three containing the corresponding
edges of N. Thus we obtain cycles containing e of even lengths from 4 up to mn. Note that
if both m and n are odd, then the largest even cycle obtained in the construction excludes
the end-vertex un of Pn which is different from xn; see Figure 1(d).

Remark 2.2. If both m and n are odd, then the cycle of length mn − 1 obtained in the
above construction, excludes the vertex un of the P -layer Pn. By modifying the construction
slightly, we can exclude the vertex u1 of the layer P1 instead of un. We use this fact in the
proof of Theorem 4.1 in Section 4.

3 Geodesic bipancyclicity

This section studies the geodesic bipancyclicity of the Cartesian product of a geodesic hamil-
tonian graph G and a path H. The following two lemmas handle the cases when the vertices
lie in the G-layers corresponding to end-vertices of H. The order of a graph is its the number
of vertices.

Lemma 3.1. Let G be a geodesic hamiltonian graph of order m and let H = 〈1, 2, . . . , n〉
be a path with n ≥ 2. Given two vertices x1 = (x, 1) and yn = (y, n) of G�H, there is
an l-cycle containing a (x1, yn)-geodesic path in G�H for every even integer l satisfying
2d(x1, yn) + 2 ≤ l ≤ mn.

Proof. For i = 1, 2, . . . , n, let Gi denote the G-layer corresponding to the vertex i of the
path H. For any vertex u of G, we denote by ui the vertex (u, i) of G�H. Obviously, ui

is also a vertex of Gi. Note that the H-layer Hu corresponding to the vertex u is the path
〈u1, u2, . . . , un〉.

Let x1 = (x, 1) and yn = (y, n) be any two vertices of G�H. As G is a geodesic hamilto-
nian graph, there exists a hamiltonian cycle Z containing a (x, y)-geodesic path Pxy in G. Let
Pi be the corresponding (xi, yi)-geodesic path and let Zi be the corresponding hamiltonian
cycle containing Pi in the G-layer Gi for i = 1, 2, . . . , n. Then Hy = 〈y1, y2, . . . , yn〉 and so
P1 ∪ Hy is a path in the graph G�H from x1 to yn. Let P = P1 ∪ Hy. It follows from the
definition of the Cartesian product of graphs that P is a (x1, yn)-geodesic path in G�H. Let
d = d(x1, yn). Therefore the length of P is d. We prove that there exists an l-cycle containing
the path P for every even integer l with 2d + 2 ≤ l ≤ mn. Note that if both m and n are
odd, then the largest value of l will be mn − 1 and thus, the largest even length cycle in
G�H will exclude one vertex.

We make the following two cases depending upon the positions of x1 and yn.

Case 1: x 6= y in G.

Let z be the neighbour of y in the path Pxy in G. Then 〈zi, yi〉 is an edge on the path Pi in
Gi for i = 1, 2, . . . , n. Let

C = P ∪ 〈yn, zn, zn−1, . . . , z2〉 ∪ (P2 − y2) ∪ 〈x2, x1〉.
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Then C is a cycle of length 2d containing the path P, see Figure 2. We extend the cycle C
to get even cycles of larger lengths containing P.

G1

x1

Py1

z1P1

G2

Hy

x2

y2

z2

Gn

zn

yn

Figure 2: 2d-cycle containing P

Subcase 1: m = 3.

In this case, G is a triangle. Hence x = z and so, xi = zi for i = 1, 2, . . . , n. Suppose u
is the vertex of G different from x and y. Let M be the maximal matching in the subpath
〈z1, z2, . . . , zn〉 of the above cycle C containing the edge 〈z1, z2〉 and let N be the correspond-
ing matching in the path 〈u1, u2, . . . , un〉. Replace an edge of M by the path of length 3
consisting of the corresponding edge of N and two edges between their end-vertices to get a
cycle of length |C|+ 2 containing P. Similarly, replace other edges of M by paths of length
three to get cycles of even length l satisfying 2n + 2 ≤ l ≤ 3n. The largest such cycle spans
the graph G�H if n is even, otherwise it contains 3n− 1 vertices; see Figures 3(a) and 3(b).

P

z1

y1

u1
z2

u2

y2 yn

zn
un

(a): n even

P

z1

y1

u1
z2

u2

y2 yn

zn
un

(b): n odd

Figure 3: Cycles containing P when m = 3

Subcase 2: m ≥ 4.

We extend the cycle C to larger cycles using the vertical ladder between the G-layers G1 and
G2. For i = 1, 2, let P ′i be the subpath of the spanning cycle Zi of Gi obtained by deleting all
vertices of the path Pi except the vertex xi. Let L1 be the ladder formed by the paths P ′1 and
P ′2 and the perfect matching between them. Let k be an even integer with 4 ≤ k ≤ |V (L1)|.
Then L1 shares the edge e1 = 〈x1, x2〉 with the cycle C. By Lemma 2.1, there is a k-cycle
Ck in L1 containing e1. Hence (C − e1) ∪ (Ck − e1) is a cycle in G�H of length 2d + k − 2
containing the geodesic path P. In particular, k = |V (L1)| gives a cycle D containing P that
spans the G-layers G1, G2 and also contains the vertices zi and yi of Gi for i = 3, 4, . . . , n;
see Figure 4. Note that D contains the path Z2 − y2. We now extend the cycle D to larger
even length cycles to accommodate the remaining vertices of G�H.
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G1

x1 e1

y1

G2

x2

z2

y2 P

G3

z3

y3

Gn

yn

zn

Figure 4: The cycle D containing P

Subcase 2.1. n = 3.

Let M be the maximal matching in Z2 containing the edge 〈z2, y2〉 and let N be the corre-
sponding matching in G3. Any edge f 6= 〈z2, y2〉 of M lies on a 4-cycle C4 containing the
corresponding edge of N. Then (D − f) ∪ (C4 − f) is a cycle on |D|+ 2 vertices containing
the geodesic path P. Replacing all the edges of M one by one except the edge 〈z2, y2〉 by the
paths of length 3 containing the edges of N, we obtain the cycles of even length l satisfying
2m + 2 ≤ l ≤ 3m containing P. The largest such cycle spans G�H if m is even, otherwise,
this cycle excludes one vertex; see Figures 5(a) and 5(b). Thus, we are done in this case.

G1

x1

y1

L1

G2

z2

x2

y2

G3

z3

e1

P y3

(a): m even
G1

x1

y1

L1

G2

z2

x2e1

P y2

G3

z3

y3

(b): m odd

Figure 5: Cycles containing P when n = 3

Subcase 2.2: m ≥ 4 and n ≥ 4.

Let Q be the path in G obtained from the hamiltonian cycle Z by deleting the vertices
y and z. Then Q has at least two vertices. Let Qi be the corresponding path in Gi for
i = 2, 3, . . . , n. The graph formed by paths Q3, Q4, . . . , Qn along with the perfect matchings
between them forms a grid Q�〈3, 4, . . . , n〉. Denote this graph by W. Note that n − 2 ≥ 2.
Let wi 6= yi be the vertex of Qi adjacent to zi for i = 3, 4. Then f = 〈w3, w4〉 is an edge in
the grid W which is incident to a vertex of degree two. Note that f ′ = 〈z3, z4〉 is the edge
of D corresponding to f. Then (D − f ′) ∪

{
〈z3, w3〉, 〈z4, w4〉, f

}
is a cycle of length |D| + 2

containing the (x1, yn)-geodesic path P. We extend this cycle through the edge f. Let k be
an even integer with 4 ≤ k ≤ |V (W )|. By Lemma 2.1, the graph W contains a k-cycle Ck

passing through the edge f. Then (D−f ′)∪ (Ck−f)∪{〈z3, w3〉, 〈z4, w4〉} is a cycle of length
|D|+k containing the geodesic path P ; see Figure 6. If |V (W )| is odd, then the largest such
cycle is of length mn− 1 and excludes the end-vertex of Qn that is adjacent to y in G.
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G1

x1 e1

y1

G2

x2

z2

y2 P

G3

z3

w3

z4

w4

y3

Gn

yn

zn
wn

W

Figure 6: Cycles containing P when m ≥ 4 and n ≥ 4

Case 2: x = y in G.

In this case, yi = xi for i = 1, 2, . . . , n and the (x1, yn)-geodesic path P is simply the
path 〈x1, x2, . . . , xn〉 in the H-layer Hx. Choose a vertex z adjacent to x in G. Then the
corresponding vertex z1 is adjacent to x1 in G1. Observe that P ′ = 〈z1, x1, x2, . . . , xn〉 is a
(z1, xn)-geodesic path in G�H containing P and it is of length |P | + 1 = d + 1. Note that
〈z1, x1, x2, . . . , xn, zn, zn−1, . . . , z1〉 is a cycle of length 2|P |+ 2 = 2d + 2 in G�H containing
P ; see Figure 7(a). As z1 6= x1, applying Case 1 to the path P ′, we get an l-cycle containing
P ′ and so containing P for every even integer l with 2(d + 1) + 2 = 2d + 4 ≤ l ≤ mn; see
Figure 7(b). This completes the proof.

G1

z1

P
x1

Gn

zn
xn

(a): Containing P

G1

z1

P ′
x1

Gn

zn
xn

(b): Containing P ′

Figure 7: Geodesic (2d + 2)-cycle

The following lemma handles the case when the vertices x1 and yn lie in the same G-layer.

Lemma 3.2. Let G be a geodesic hamiltonian graph of order m and H = 〈1, 2, . . . , n〉
be a path with n ≥ 2. Given two vertices x1 = (x, 1) and y1 = (y, 1) of G�H, there is
an l-cycle containing a (x1, y1)-geodesic path in G�H for every even integer l satisfying
2d(x1, y1) + 2 ≤ l ≤ mn.

Proof. Let Gi be the G-layer corresponding to the vertex i of the path H for i = 1, 2, . . . , n.
Denote any vertex (u, i) of G�H simply by ui. Clearly, the given vertices x1 = (x, 1) and
y1 = (y, 1) belong to the graph G1. As G is a geodesic hamiltonian graph, there exists a
hamiltonian cycle Z containing a (x, y)-geodesic path Pxy in G. Let Zi be the corresponding
hamiltonian cycle and Pi be the (xi, yi)-geodesic path corresponding to Pxy in the graph Gi.
Let Q be the path in G obtained from the hamiltonian cycle Z by deleting the edge 〈y, u〉
where u /∈ V (Pxy). Let Qi be the corresponding path in Gi from yi to ui.

We need to construct cycles of various lengths containing the path P1. Note that P =
P1∪〈y1, y2〉 is a (x1, y2)-geodesic path in G�H of length |P1|+1 = d+1, where d = d(x1, y1).
A cycle of length 2d + 2 containing the path P is shown in Figures 8(a) and 8(b). Applying
Case 1 of Lemma 3.1 to the path P, we get an l-cycle containing P and so containing P1 for
every even integer l satisfying 2(d+1) = 2d+2 ≤ l ≤ 2m. In particular, l = 2m gives a cycle,
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say D, that spans G1 and G2 and also contains the hamiltonian path Q2 of G2. Note that
D contains the path P. We extend the cycle D to larger even length cycles to accommodate
the remaining vertices of G�H. Let zi be the neighbour of yi on the path Pi in Gi. Then
〈y2, z2〉 is an edge of D.

G1

P1

x1

y1

G2

y2

(a): Containing P1

P

G1

x1

y1

P1

G2

y2

(b): Containing P

Figure 8: Geodesic (2d + 2)-cycle

Case 1: n = 3.

Let M be the maximal matching in Z2 containing the edge 〈y2, z2〉 and let N be the corre-
sponding matching in G3. Any edge f of M lies on a 4-cycle C4 containing the corresponding
edge of N. Then (D − f) ∪ (C4 − f) is a cycle on |D| + 2 vertices containing the geodesic
path P. By replacing all the edges of M one by one in this manner with the edges of N, we
obtain the cycles of even length l satisfying 2m+2 ≤ l ≤ 3m containing the (x1, y1)-geodesic
path P1. The largest such cycle spans G�H if m is even, otherwise, this cycle excludes one
vertex.

Case 2: n ≥ 4.

To cover the vertices of the graphs G3, G4, . . . , Gn we consider the graph W formed by
the paths Q3, Q4, . . . , Qn along with the perfect matchings between them. Then W =
Q�〈3, 4, . . . , n〉. The edge f = 〈y3, z3〉 is in Q3 and so it is an edge in W incident to
a vertex of degree two. The corresponding edge f ′ = 〈y2, z2〉 lies on the cycle D. Then
(D− f ′)∪

{
〈z2, z3〉, 〈y2, y3〉, f

}
is a cycle of length |D|+ 2 = 2m + 2 containing the (x1, y1)-

geodesic path P1. We extend this cycle through the edge f. Let k be an even integer with
4 ≤ k ≤ |V (W )| = m(n − 2). By Lemma 2.1, the graph W contains a k-cycle Ck passing
through the edge f. Then (D− f ′)∪ (Ck− f)∪

{
〈z2, z3〉, 〈y2, y3〉

}
is a cycle of length |D|+ k

containing P. If |V (W )| is odd, then the largest such cycle is of length mn − 1 and this
cycle excludes the vertex un which is an end-vertex of Qn. Thus for every even integer l with
2d + 2 ≤ l ≤ mn, we get an l-cycle in G�H containing the (x1, y1)-geodesic path P1. This
completes the proof.

4 Main theorems

In this section, we prove Theorem 1.1. First, we investigate the geodesic bipancyclicity of
the Cartesian product of a geodesic hamiltonian graph and a cycle.

Proposition 4.1. The Cartesian product of a geodesic hamiltonian graph and a cycle is a
geodesic 2-bipancyclic graph.
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Proof. Let G be a geodesic hamiltonian graph with m ≥ 3 vertices and let H be an n-
cycle 〈1, 2, . . . , n, 1〉 for n ≥ 3. Let xi = (x, i) and yj = (y, j) be any two distinct vertices
of G�H with x, y in V (G) and i, j in V (H). By symmetry in a cycle, we may assume
that i = 1 and j ≤ bn

2
c. The vertex xi = x1 lies in the G-layer G1. We prove that there

exists an l-cycle containing a (x1, yj)-geodesic path in G�H for every even integer l with
2d(x1, yj) + 2 ≤ l ≤ mn.

If j = i = 1 in H, then the vertex yj = y1 of G�H also lie in the graph G1. The path
〈1, 2, . . . , n〉 is a spanning path of H. By Lemma 3.2, there exists an l-cycle in G�〈1, 2, . . . , n〉
and so in G�H containing a (x1, y1)-geodesic path for every even integer l satisfying 2d(x1, y1)+
2 ≤ l ≤ mn. Similarly, we are done by Lemma 3.1 if j = n.

Next, suppose 1 < j < n in H. The vertices x1 = (x, 1) and yj = (y, j) lie in two different
G-layers G1 and Gj, respectively. As G is a geodesic hamiltonian graph, there exists a
hamiltonian cycle Z containing a (x, y)-geodesic path Pxy in G. Let Pi be the corresponding
path in Gi for i = 1, 2, . . . , n. Also, there is a shortest path joining the vertex 1 to the vertex
j in the cycle H. Denote this path by 〈1, 2, . . . , j〉. Then 〈y1, y2, . . . , yj〉 is a (y1, yj)-geodesic
path in G�H. From the definition of the Cartesian product that P1 ∪ 〈y1, y2, . . . , yj〉 is a
(x1, yn)-geodesic path in G�H. Denote this path by P. Applying Lemma 3.1 on P, there
exists an l-cycle containing P in the graph G�〈1, 2, . . . , j〉 for every even integer l satisfying
2d(x1, yj)+2 ≤ l ≤ mj. Let D denote the largest such cycle. If m or j is even, then |D| = mj
and so, it spans the graph G�〈1, 2, . . . , j〉, otherwise D excludes one vertex of this graph.

We extend the cycle D to larger even length cycles to cover the vertices of the G-layers
Gj+1, Gj+2, . . . , Gn. Let R = 〈j + 1, j + 2, . . . , n〉 be the subpath in H from the vertex j + 1
to the vertex n. If |R| = 1, then as in Case 1 of Lemma 3.2, we get cycles containing the
path P of all even lengths.

Suppose |R| ≥ 2. Let z be the neighbour of y on the path Pxy in G. Let Q be the
hamiltonian path obtained from Z by deleting the edge 〈y, u〉, incident at y different from
the edge 〈y, z〉. Then Q has end-vertices u and y, and further, it contains the path Pxy. Let Qi

and zi be the corresponding path and vertex, respectively, in Gi for i = 1, 2, . . . , n. From the
construction, it is clear that D contains the edge e = 〈yj, zj〉 of the path Pj of Gj. Then Q�R
is a spanning subgraph of G�R containing the edge f = 〈yj+1, zj+1〉 of Gj+1. We extend
the cycle D through the end-vertices of e and f. Clearly, (D − e) ∪

{
f, 〈zj, zj+1〉, 〈yj, yj+1〉

}
is a cycle on |D| + 2 vertices containing the (x1, yj)-geodesic path P. Note that the edge
f is incident at the vertex yj+1 which has degree two in Q�R. Hence, by Lemma 2.1, for
every even integer k with 4 ≤ k ≤ |V (Q)||V (R)| = m(n − j), there is a k-cycle Ck in
Q�R containing f. Denote by C such k-cycle with k = m(n− j). Then C spans the graph
Q�R if m or n − j is even, otherwise it excludes one vertex. By Remark 2.2, we may
assume that the excluded vertex of C is uj+1 from the path Qj+1. Now, (D− e)∪ (Ck− f)∪{
〈zj, zj+1〉, 〈yj, yj+1〉

}
is a cycle in G�H on |D|+ k vertices containing the (x1, yj)-geodesic

path P. Let D′ denote the largest such cycle. Then |D′| = |D| + |C|. If m is even, or both
j and n − j, then |D′| = mj + m(n − j) = mn and so, D′ spans the graph G�H. Suppose
m is odd, and exactly one of j or n − j is even. Then n is odd and |D′| = mn − 1. In this
case, mn is odd and the cycle D′ excludes one vertex of G�H as desired.

Suppose m, j and n − j are odd. Then the cycle C excludes the vertex uj+1. From the
construction of the cycle D, it excludes the vertex uj of the graph G�〈1, 2, . . . , j〉. Hence D′

also avoids these two vertices. To cover these two vertices we construct a new cycle from C
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and D as follows. Since m ≥ 3 and Q is a spanning path in G with u as an end-vertex, there
is a subpath 〈u, v, w〉 in Q. Consider the corresponding subpaths in Qj and Qj+1. From the
constructions of C and D, the edge 〈vj, wj〉 of Qj belongs to D while the edge 〈vj+1, wj+1〉
of Qj+1 belongs to C. Then(

D − 〈vj, wj〉
)
∪
(
C − 〈vj+1, wj+1〉

)
∪
{
〈vj, uj, uj+1, vj+1〉, 〈wj, wj+1〉

}
is a cycle of length mn containing (x1, yn)-geodesic path P in G�H; see Figure 9.

x1

yj

uj

vj
wj

uj+1

vj+1

wj+1
CD

G�〈j + 1, j + 2, . . . , n〉G�〈1, 2, . . . , j〉

Figure 9: Geodesic hamiltonian cycle when m, j and n− j are odd

We now prove our main result Theorem 1.1 which is restated here for convenience.

Theorem 4.2. The Cartesian product of two geodesic hamiltonian graphs is a geodesic 2-
bipancyclic graph.

Proof. Let G and H be geodesic hamiltonian graphs and let u = (x, y) and v = (x′, y′) be
any two distinct vertices of G�H. Then x 6= x′ or y 6= y′. Without loss of generality, we
may assume that y 6= y′. Since H is a geodesic hamiltonian graph, it has a hamiltonian
cycle C containing an (y, y′)-geodesic path, say P. Let Px′ be the path in the H-layer Hx′

corresponding to the path P. Then it is a shortest path in Hx′ from (x′, y) to (x′, y′). Similarly,
let Q be the (x, x′)-geodesic path in G when x 6= x′, otherwise let Q be the trivial path
consisting of the vertex x only. Then the corresponding path Qy in the G-layer Gy is a
shortest path from (x, y) to (x′, y).

Let R = Qy ∪ Px′ . Then R is a path in G�H from u to v. In fact, it follows from
the definition of the Cartesian product of graphs that R is a (u,v)-geodesic path in the
graph G�H. Hence, R is also a (u,v)-geodesic path in the subgraph G�C as the cycle C
contains P. This implies that any (u,v)-geodesic path in G�C or in G�H has length |R|,
that is, the length of R. Now, by Proposition 4.1, there exists an l-cycle in G�C containing
a (u,v)-geodesic path for every even integer l satisfying 2|R| + 2 ≤ l ≤ |V (G�C)|. These
cycles are also contained in the graph G�H. Thus we get an l-cycle in G�H containing
a (u,v)-geodesic path for every even l with 2d(u,v) + 2 ≤ l ≤ |V (G�H)| as G�C spans
G�H. Thus G�H is a geodesic 2-bipancyclic graph.

The following proposition is useful to generalize the above theorem.

Proposition 4.3. If G and H are geodesic hamiltonian graphs, then G�H is a geodesic
hamiltonian graph.
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Proof. Let u = (x, y) and v = (x′, y′) be any two distinct vertices of G�H, where x, x′ ∈
V (G) and y, y′ ∈ V (H). Without loss of generality, we assume that y 6= y′ in H. As H is a
geodesic hamiltonian graph, there exists a (y, y′)-geodesic hamiltonian cycle, say Z. Label the
vertices of H by 1, 2, . . . , n so that Z = 〈1, 2, . . . , t, . . . , n, 1〉, where n = |V (H)|, y = 1, y′ = t
for some t with 1 < t < n and the path 〈1, 2, . . . , t〉 is a (y, y′)-geodesic path in H. For
i = 1, 2, . . . , n, let Gi be the G-layer corresponding to the vertex i of H and let vi = (x′, i).
Then vi is a vertex of Gi and a vertex of the H-layer corresponding to x′. Note that, u = (x, 1)
and v = (x′, t) = vt.

Let C be a hamiltonian cycle in G containing a (x, x′)-geodesic path P. Let Ci and Pi

be the cycle and the path in Gi corresponding to C and P, respectively. Then P1 is a
(u,v1)-geodesic path in G1 and so in G�H. Then

Q = P1 ∪ 〈v1,v2, . . . ,vt〉

is a (u,vt)-geodesic path in G�H. Denote by R the spanning subpath 〈1, 2, . . . , t, . . . , n〉 of
the cycle Z in H. Therefore G�R is a spanning subgraph of G�H and also it contains the
path Q. We now construct a hamiltonian cycle in G�R containing Q.

Let ei = 〈wi,vi〉 and e′i = 〈w′i,vi〉 be the edges in Ci such that wi belongs to the path
Pi. Also, let hi = 〈wi,wi+1〉 and h′i = 〈w′i,w′i+1〉 for i = 1, 2, . . . , n− 1. We denote the set of
alternating edges h′1, h2, h

′
3, h4, . . . by F. More precisely, F = {h′1, h2, h

′
3, h4, . . . , hn−1} if n is

odd and F = {h′1, h2, h
′
3, h4, . . . , h

′
n−1} if n is even. Let

D = (C1 − e′1) ∪ (Cn − fn) ∪
(
∪n−1

i=2 (Ci − {ei, e′i})
)
∪ 〈v1,v2, . . . ,vn〉 ∪ F,

where fn = en if n is odd and fn = e′n if n is even; see Figure 10. Then D is a spanning cycle
in G�R containing the (u,v)-geodesic path Q. As G�R is a spanning subgraph of G�H,
D is a hamiltonian cycle in G�H. Thus G�H is a geodesic hamiltonian graph.

G1

u

v1
e′1

P1

h′1

C1

G2

v2

e2

e′2

h2

Q

C2

G3

v3

e3

e′3

C3

Gt

vt

et
e′t

Ct

vn

hn−1
fn

Cn

Gn

Figure 10: The hamiltonian cycle D

Using the above proposition and induction, we prove Theorem 4.2 for the Cartesian product
of more than two graphs.

Corollary 4.4. The Cartesian product of n ≥ 2 geodesic hamiltonian graphs is a geodesic
2-bipancyclic as well as geodesic hamiltonian graph.

Proof. We proceed by induction on n. By Theorem 4.2 and Proposition 4.3, the result follows
for n = 2. Suppose n ≥ 3. Assume that the result is true for n−1 ≥ 2. Let G1, G2, . . . , Gn be
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geodesic hamiltonian graphs and let G = G1�G2� · · ·�Gn−1. By induction, G is a geodesic
2-bipancyclic and geodesic hamiltonian graph. By Theorem 4.2, the graph G�Gn is geodesic
2-bipancyclic and by Proposition 4.3, it is geodesic hamiltonian.

Recall that an n-dimensional torus is the Cartesian product of n cycles. Note that a cycle
graph is a geodesic hamiltonian graph. Hence the following result, which is a restatement of
Corollary 1.2, follows immediately from the above result.

Corollary 4.5. For n ≥ 2, the n-dimensional torus is a geodesic 2-bipancyclic graph.

Since an edge 〈x, y〉 in a graph is a (x, y)-geodesic path of length one, the following result of
Chen [2] follows immediately.

Corollary 4.6 ([2]). For n ≥ 2, an n-dimensional torus is edge-bipancyclic.

5 Conclusion

We proved that the Cartesian product of n ≥ 2 geodesic hamiltonian graphs is a geodesic
2-bipancyclic graph and also a geodesic hamiltonian graph. As a consequence, every n-
dimensional torus is a geodesic 2-bipancyclic graph. One can try to extend these results for
geodesic pancyclicity of the Cartesian product of graphs.
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