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ABSTRACT 

Quantum dots (QDs) are a subset of nanoparticles (NPs) that have several unique optical 

and electrical properties that make them viable for fluorescent cell labeling applications. However, 

these QDs in the past were composed of toxic heavy metals such as lead and cadmium, and 

therefore, graphene-based QDs (GQDs) have been examined as an alternative material for these 

cell labeling applications for their increased biocompatibility. Furthermore, GQDs can produced 

singlet oxygen (1O2) for photodynamic therapy (PDT), making them capable of being used as a PS 

agent for cancer treatment. Additionally, hollow mesoporous silica nanoparticles (hMSNs) are 

capable of being an alternative treatment to cancer as hMSNs have displayed exceptional drug 

loading and delivery abilities. The work described in this dissertation will have four primary goals 

that are all essential for fluorescent cell imaging and cancer treatment using QDs and NPs. The 

first goal is to investigate current analytical methods for NPs toxicity determination and detection, 

as well as new protocols for toxicity evaluation. The second goal is to synthesize GQDs using 

biomass-derived material and hMSNs by a modified Stöber method to improve their 

biocompatibility and biodegradation. The third is to characterize the newly synthesized GQDs and 

hMSNs using various analytical methods to better determine their chemical and physical 

properties. The final goal is to apply the GQDs for fluorescent cell imaging and PDT treatment 

applications, and the hMSNs for drug loading and delivery into cancer cells.  

The first project focuses on the investigation of current and advancing analytical methods 

for nanotoxicity determination and nanoparticle detection. The advancing field of nanoscience has 

produced lower mass, smaller size, and expanded chemical composition nanoparticles over recent 

years. These new nanoparticles have challenged traditional analytical methods in terms of 

qualitative and quantitative analysis. Such advancements of nanoparticles and nanomaterials have 
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captured the attention of toxicologists with concerns regarding the environment and human health 

impacts.  

The second project focuses on graphene quantum dots (GQDs), a subset of fluorescent 

nanomaterials, that have piqued recent interest due to their photoluminescence properties, low 

toxicity and biocompatibility features for bioanalysis and bioimaging. However, it is still a 

challenge to prepare highly near-infrared (NIR) fluorescent GQDs using a facile pathway. In this 

project, NIR GQDs were synthesized from the biomass-derived organic molecule, cis-

cyclobutane-1,2-dicarboxylic acid and their applicability for cell-labeling was tested using RAW 

264.7 and MCF-7 cells. 

The third project focuses on red and near infrared emission GQDs, which is a highly 

desirable feature for fluorescent nanoparticles in biological applications. This is mainly due to 

longer wavelengths which may penetrate tissues, organs, skin, and other organic components while 

less autofluorescence interference is produced. Additionally, GQDs that contain unique optical 

and electrical features have been targeted for their use in cell labeling applications as well as 

environmental analysis. However, GQDs are frequently reported to have blue-green emission light 

and not the more advantageous red/NIR emission light. Furthermore, porphyrins are a subgroup 

of heterocyclic macrocycle organic compounds and have been used previously to synthesize 

nanomaterials and for nanoparticle doping in order to incorporate the red/NIR emission light 

property into particles that otherwise do not contain the desired emission light. Meso-tetra(4-

carboxyphenyl)porphine (TCPP) is one type of porphyrin with a large conjugated π-electron 

system and four carboxyl groups on its exterior benzene rings. These two key characteristics of 

TCPP makes it ideal for incorporation into GQDs as it would design and synthesize red-emissive 

material as well as give rise to excellent water solubility. In this work, TCPP is used in tangent 
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with cis-cyclobutane-1,2-dicarboxylic acid (CBDA-2), a biomass derived organic molecule, to 

synthesize “green” porphyrin-based graphene quantum dots (PGQDs) with red-emission. Their 

imaging application was tested using HeLa cells via confocal microscopy. 

In the fourth project, the GQDs used previously were combined with silica-based 

nanoparticles for fluorescent imaging and dual cancer treatment applications. Nano-based cancer 

therapeutics have been researched and developed, with some nanomaterials being shown to 

possess anticancer properties. GQDs are one such class of nanoparticles due to their valuable 

characteristics such as photoluminescence, biocompatibility, and water solubility. When it comes 

to cancer treatment, GQDs contain the ability to generate 1O2, a reactive oxidative species (ROS), 

allowing for the synergistic imaging and photodynamic therapy (PDT) of cancer. However, due to 

their small particle size, GQDs struggle to remain in the target area for long periods of time in 

addition to being poor drug carriers. To combat this, hollow mesoporous silica nanoparticles 

(hMSNs) have been extensively researched for drug delivery applications. hMSNs also contain 

exceptional biocompatibility in addition to high drug-loading capacities and easy surface 

functionalization. This project investigates the utilization and combination of GQDs and hMSNs 

to make GQDs-hMSNs for an enhanced double treatment of cancer; using GQDs for 1O2 

generation and fluorescent imaging in vitro that would have biodegradable hMSNs synthesized 

around them to serve as the drug deliverer into the target cancer cell. RAW 264.7 cells were 

utilized again for the GQDs-hMSNs biological and medical applicational use.
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CHAPTER I 

INTRODUCTION TO GRAPHENE QUANTUM DOTS AND SILICA NANOPARTICLES 

1.1. Background and research importance 

 Nanoparticles (NPs) are a class of engineered particles defined and limited by their size 

definition, being that one dimension must be within 1-100 nm.1 However, this is only a limit of 

size and therefore nanoparticles contain a diverse field of composition from elemental makeup, 

surface modification, shape, and size range (within 1-100 nm). Due to this feature, nanoparticles 

can be found in a broad range of research disciplines as they can be freely modified to fit the needs 

of various target applications.  

 Although nanoscience can be traced back to the early 5th century B.C., it wasn’t until the 

late 1950s that the field of nanotechnology was developed.2 The establishment of this field of study 

allowed for extensive research and utilization of nanoparticles and nanomaterials in order to further 

develop their applicational uses in essential disciplines such as chemistry, physics, biology, and 

medicine.2 Today, nanoparticles have been incorporated into every-day items such as sunscreens3, 

textiles4, food preservatives5, and water filters6 to name a few.  

Cancer is one of the leading causes of death worldwide as of 2017.7 Since its discovery, 

researchers have been trying to find new alternatives to harsh treatment methods such as 

chemotherapy and radiology that are not as taxing on the patient.8 Additionally, scientists have 

been searching for ways to better detect cancer early on to help treat the patient before questionable 

areas become malignant. One problem circling early cancer detection is the current limitation of 

fluorescent cell labeling dyes, such as FITC, AlexaFluor, etc. These traditional dyes suffer from 
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poor photostability and fluorescence quenching, which all contribute to short analysis times of 

potential cancerous cells.9  

Nanotechnology is one such area of research that has been looking at ways to utilize NPs 

for both cancer imaging and detection, in addition to cancer treatment.10 Quantum dots (QDs) are 

a subset of NPs with unique optical and electrical properties that are further defined by their size 

range of 1-10 nm.11 Because NPs and QDs can be drastically altered in terms of their shape, 

elemental composition, surface modification, and size distribution, it is difficult to predict 

successful synthesis methods that result in the desired or designed NPs.12,13 Furthermore, NPs and 

QDs in the past have been composed of heavy metals such as lead and cadmium, which are toxic 

to biological matrices and therefore are not useful in biological and medical settings.14  

1.2. Synthesis of nanoparticles 

Graphene quantum dots (GQDs) will be synthesized from biomass-derived materials via 

bottom-up methods, which will make them synthetically green and environmentally friendly.15 

The use of biomass-derived material for the GQDs will also aid in their biocompatibility and 

decreased cytotoxicity compared to traditional QDs composed of heavy metals.16 Furthermore, 

GQDs possess improved fluorescence properties for prolonged imaging applications as well as 

being natural singlet oxygen (1O2) generators that allow for their use in photodynamic therapy 

(PDT) of cancer cells as a photosensitizer (PS).17  

Additionally, due to GQDs typically containing blue-green emission light, porphyrins (a 

class of natural pigments that are heterocyclic macrocycle organic compounds) will be investigated 

as to whether or not they can successfully be doped onto the GQDs surface. This will result in 

porphyrin graphene quantum dots (PGQDs) that ideally will shift the blue-green fluorescence light 
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to red emission. This will allow for lower background interference signals, better tissue 

penetration, and lower cell and tissue damage when investigating their cell imaging applicability.18  

Furthermore, hollow mesoporous silica nanoparticles (hMSNs) will be synthesized by a 

slightly modified Stöber method to improve their biodegradation that will assist in avoiding 

particle accumulation and induced toxicity for drug delivery into cancer cells19,20. Lastly, although 

their introduction into such products is beneficial to better-life development, there are arising 

concerns of nanotoxicity, particularly around their detection21, environmental and biological 

contamination22,23, and toxicity assessment24. Therefore, current and new analytical methods of 

nanotoxicity and nanoparticle detection will be investigated for challenges surrounding accuracy 

and certainty.  

1.3. Methodologies 

 There are a variety of analytical methods used to characterize and detect nanoparticles. 

Several methods need to be used in tandem in order to determine the exact composition, size, 

lattice, and fluorescence characteristics of the NPs and QDs as many current instruments and 

methods struggle to accurately detect and measure these small particles.  

1.3.1. Morphology and particle size distribution 

 As stated previously, NPs and QDs have a strict size range limitation of 1-100 nm for NPs 

and 1-10 nm for QDs. Particle morphology also plays a significant role in biological applications 

as lattice and surface functional groups impact interactions with cells. To best determine the size 

distribution of these new particles, a combination of transmission electron microscopy (TEM), 

high-resolution TEM (HRTEM), and dynamic light scattering (DLS) will be used. TEM and 

HRTEM allow for the physical observation of the particles for measurement and lattice formation 
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detection, while DLS provides the average hydrodynamic size range of the particles that also 

allows for the analysis of concentration agglomeration effects. Additionally, surface morphology 

analysis will be conducted by zeta potential measurements, which provide information on the 

surface charge by measuring the electrical potential at the slipping plane. Zeta potential of particles 

is also valuable to determine for the particles’ use in biological applications. Surface charge of the 

NPs and QDs impact their interaction with the surface of the cell as well as overall particle stability 

in solution. Therefore, zeta potential data will be collected to determine particle charge and 

solution stability in different pH conditions. 

1.3.2. Elemental composition and lattice formation 

 Due to the GQDs, PGQDs, and hMSNs use in biological applications, elemental 

composition must be determined to ensure they are not comprised of toxic elements. Therefore, 

X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR), and 

X-ray diffraction (XRD) will be used to determine bond formation and elemental composition of 

the particles. XPS provides insight into the overall elemental composition with high-resolution 

scans also providing more in-depth information on the types of bonds present between the 

elements. FT-IR will help confirm the bonds found in XPS and also provide insight into different 

functional groups present that can impact particle interaction with cells and toxicity. Lastly, XRD 

is essential as it provides details on the lattice of the particles. Due to one particle type in this 

proposal being graphene, it is important to confirm the formation of the graphene lattice, otherwise, 

the GQDs must be classified as carbon-based particles rather than graphene based. 

1.3.3. Optical properties 

 Cell labeling is one targeted application for these particles and therefore it is vital to 

characterize the excitation and emission light for fluorescent imaging. To do this, absorption and 
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fluorescence spectroscopy will be examined. Additionally, pH can cause fluorescence quenching 

in particles, therefore, the GQDs and PGQDs will be tested in a wide range of pHs (1.0-11.0) to 

determine any quenching. Lastly, as mentioned previously, traditional fluorescent dyes such as 

FITC, AlexaFluor, etc. all suffer from poor photostability as their fluorescence signal drastically 

decreases in a short amount of analysis time. The particles synthesized in this dissertation will 

ideally provide greater photostability, and thus, this too will be examined.   

1.4. Goals of this dissertation 

The first goal of this dissertation is to investigate the quickly advancing field of 

nanoscience and what current and new analytical methods are being applied to detect and measure 

nanotoxicity. With nanoparticle synthesis and research developing at an expediated rate with more 

nanoparticles and nanomaterials being incorporated into everyday products, it is essential to 

understand their impact on biological and environmental systems before toxicity takes place. 

The second goal is to find new starting compounds for bottom-up synthesis of GQDs that 

are more environmentally friendly. Using biomass-derived material is one way to accomplish this. 

By using compounds that were derived from cornstalks, traditional synthesis conditions and 

methods can be applied to the new compounds and produce environmentally friendly and 

synthetically green GQDs for improved biocompatibility and in vitro fluorescent imaging. 

Additionally, since GQDs commonly contain emission fluorescence in the blue-green 

wavelengths, introducing red-emissive porphyrins, a naturally occurring pigment, into the 

synthesis will ideally change the fluorescence from blue to red and produced PGQDs. Red-

emissive particles contain lower background signals, better tissue penetration, and lower cell 

damage, making them highly desirable. Lastly, a modified Stöber method will be used to produce 
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biodegradable hMSNs, that can break down within simulated biological conditions in a few days, 

avoiding accumulated particles that could induce toxicity.  

The third goal is to characterize the newly synthesized GQDs, PGQDs, and GQDs-hMSNs 

using various analytical methods. It is essential to characterize the new particles in terms of their 

size distribution, surface charge, elemental composition, functional group formation, 

photostability, fluorescence excitation and emission, absorbance, and cytotoxicity. To achieve this, 

instruments such as TEM, HRTEM, DLS, UV-Vis, spectrophotometer, FT-IR, XPS, and XRD will 

be used in addition to changing the pHs conditions, nanoparticle concentration, and excitation 

wavelength to determine any agglomeration effects and radiation dependency. MTT and LDH 

assays will be used for cytotoxicity analysis as the nanoparticles should not induce toxicity within 

cells. 

The fourth goal is to apply the GQDs, PGQDs, and GQDs-hMSNs in different biological 

and medical applications. All nanoparticles investigated for in vitro fluorescent imaging using 

confocal microscopy. Additionally, the GQDs-hMSNs will be applied in drug delivery and PDT 

treatment methods for cancer, utilizing FITC as a mock drug and lysosome kits for PDT 

assessment.     
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CHAPTER II 

ANALYSIS OF NANOMATERIALS IN BIOLOGICAL AND ENVIRONMENTAL 

SYSTEMS AND NEW ANALYTICAL METHODS FOR IMPROVED DETECTION 

2.1. Introduction 

Nanoscience has consistently been a developing and advancing field with a great diversity 

of applications in medicine, energy, electronics, biotechnology, materials, etc.25 Engineered 

nanomaterials (ENMs) and nanoparticles (NPs) are simply defined as materials with at least one 

dimension of 1 - 100 nm in size.26 This definition means that their various chemical and physical 

properties allow them to be altered and changed in order to perform their targeted functions and 

tasks.26-28 Additionally, due to their vast diversity in multiple fields of research, nanoparticles have 

now been incorporated into common everyday products such as food preservatives, cosmetics, 

clothes, etc.28 This constant unseen contact with nanoparticles has promoted the field of 

nanotoxicology in order to study the greater impact these ENMs have on both biological and 

environmental systems (Figure 2.1).29 However, due to limitations in analytical instrumentation 

and analytical test methods directly applicable to measure ENMs in the environmental and 

biological matrices, nanotoxicity remains an underdeveloped field as it struggles to keep up with 

the advancing research and development of nanoparticles and nanoparticle-based materials 

actively being developed.30,31  

 

Figure 2.1: Nanotoxicity exposures for environmental and biological matrices. 
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One differentiating characteristic is the size of the nanoparticles, which can make them 

chemically different from larger particles and bulk materials (e.g., diffusivity across cell 

membranes).26,28-32 Additional unique biological cell interaction comes in the form of ENMs 

surface charge, with anionic and neutral ENMs generally having a lower toxicity than cationic 

materials. ENMs surface charge may also have an additional influence on the particles’ overall 

shape and the shape of ENMs can alter cell membranes as well, thus heavily influencing the 

cellular uptake mechanism.29,32,33 Surface coatings of ENMs can alter their toxicity by providing 

additional electrostatic forces, molecular adhesion, and atomic layer deposition which have 

contributed to cell death.33 Furthermore, the elemental composition of ENMs contributes to their 

overall toxicity to both biological and environmental systems.34 Such elements can range from 

transition metals (gold, silver, copper, iron, etc.) to non-metals (silica, carbon) and can greatly alter 

the previously listed properties of size, morphology, coating, physical, and chemical properties.  

NPs and ENMs are primarily introduced into the environment through consumer 

products.35 This problem has many arising concerns due to detection of low concentrations, usually 

ng/L, and the current limits of detection of analytical instruments36. NPs can be integrated into the 

human body by a multitude of ways, but most commonly through inhalation, ingestion, and skin 

absorption, while environmental exposure is usually through the air, water, and soil integration.28 

For biological matrices, ENMs can impact the mitochondrial function of cells in addition to 

producing reactive oxidative species (ROS). The analytical measurement of mitochondrial 

function, damage, and ROS levels in biological systems remains a primary tool in the assessment 

of toxicity.37 Cell metabolism is greatly impacted by ROS levels as they are natural byproducts in 

cell metabolism and contribute to cell survival, death, signaling, inflammation, and 

differentiation.37 An imbalance of ROS leads to disrupted redox homeostasis in cells, which 
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ultimately interferes with the cell’s overall function in relation to DNA/RNA breakage, membrane 

destruction, protein carbonylation, and other means.38 However, ROS compounds have been 

considered previously as an alternative to chemotherapy for cancer treatment.39 Radical 

compounds such as superoxide (O2
•-), hydroxyl (HO•), hydroperoxyl (HO2

•), peroxyl (RO2
•), 

alkoxyl (RO•), carbon dioxide (CO2
•-), carbonate (CO3

•-) and singlet oxygen (1O2) are involved in 

key cell reactions that revolve around signaling and homeostasis processes.37-39 However, high 

levels of ROS compounds can result in oxidative damage to healthy cells and interfere with cell 

metabolism with accumulation of ROS contributing to normal cells turning into cancer cells.40,41 

NPs introduction into biological systems can interfere with ROS generation in several ways 

depending on the characteristics of the NPs.37  

With the field of nanoscience and nanotoxicity expanding, the purpose of this chapter is to 

investigate what analytical techniques are used in toxicology assessments to effectively measure 

ENMs and NPs toxicity. Furthermore, this chapter will also include advancing analytical 

techniques to better detect and evaluate ENMs and NPs in biological and environmental matrices 

and what future methods could be introduced to better detect ENMs toxicity. There is no current 

federal or state legislation in the United States specifically for the regulation and testing of 

nanomaterials. Regulatorily, there are agencies such as the intergovernmental Organization for 

Economic Co-operation and Development (OECD), the American Industrial Hygiene Association 

(AIHA), and the US Environmental Protection Agency (USEPA) that investigate ENMs and NPs 

and their greater impact on human health and the environment as well as regulate analytical 

methods of testing ENMs. Given the increasing amount of ENMs integrating into consumer and 

industrial products, the OECD has identified a greater need than ever to have accurate testing 

methods since the potential risks and impacts of nanomaterials is not well developed. To date, the 
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OECD has documented over 780 studies on specific physiochemical properties of nanomaterials 

that contribute to plant/animal toxicity as well as ecotoxicity.42 Additionally, with the evolving 

field of ENMs, the OECD has continued to modify current methods and promote new ones as a 

means of keeping up with the advancing technology around ENMs.42 

2.2. Current methods and concerns for in vitro nanotoxicity determination 

 Due to the variety of factors that impact ENMs and NPs toxicity, as previously mentioned, 

there is no single method for accurate detection of ENMs and NPs toxicity. Rather, there are 

several methods that are commonly used in combination to help identify the characteristics of 

ENMs and NPs and their overall toxicity.43 Dynamic light scattering (DLS) is most commonly 

used to determine particle hydrodynamic size and zeta potential (also determined by the DLS 

instrument) determines particle surface charge, while methods such as scanning electron 

microscopy (SEM) and transmission electron microscopy (TEM) allow for the visual detection of 

ENMs and NPs that can then be measured for their size distribution. Although these methods give 

insight on the characteristics of the ENMs and NPs, they do not give toxicity analyses. For this, 

researchers turn to in vitro and in vivo examinations. 

To examine in vitro toxicity first, one standard technique to measure ENMs and NPs 

toxicity in in vitro studies is by MTT (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium 

bromide) assays, which assess the cells’ mitochondrial function by detecting mitochondrial 

dehydrogenase through an enzymatic reduction. Another standard measurement technique for 

toxicity determination is by examining ROS formation within the cells, which indicates oxidative 

stress and interference in cell function. In order to measure intracellular ROS, a fluorescent ROS 

indicator is typically utilized. This indicator, when in the presence of ROS, will chemically change 
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and thus yield a different fluorescent signal. This signal can be observed through fluorescence 

spectroscopy44,45 or through confocal microscopy46. The most common in vitro assays are 

summarized in Table 2.1.47 

Table 2.1: In vitro assay types used for the analysis of nanotoxicity.  

Assay Type Cell Toxicity Investigation 

Proliferation Cell metabolism 

Apoptosis DNA, protein, and lipid damage 

Necrosis Membrane Integrity 

Oxidative Stress DNA/RNA damage, lipid peroxidation, protein oxidation/nitration, ROS 

generation, antioxidant counterbalance 

 

However, these two methods are not completely accurate means of determining toxicity. 

For example, an interesting study was performed by Dönmez Güngüneş et al. where three different 

kinds of the NPs (Fe3O4, fullerenes (C60), and single walled carbon nanotubes (SWCNT)) were 

tested in two different cell lines (human periodontal ligament fibroblasts (hPDLF) and mouse 

dermal fibroblast (mDF)).48 Although the MTT assay and ROS analyses of the three different kinds 

of NPs showed that the hPDLF cells, compared to the mDF cells, were more susceptible to all 

three NPs (showing higher ROS levels and larger MTT decrease in cell viability), Dönmez 

Güngüneş et al. utilized a relatively newer analytical method known as xCELLigence where a gold 

microelectrode is labeled with an antigen to which the test cells are exposed. The current between 

the gold and reference electrode will increase as the cells neutralize the antigen blocking the signal 

on the gold surface which allows for a real-time kinetic measurement of cell health and behavior. 

Dönmez Güngüneş et al. found that although the human cells were more susceptible to the NPs in 

terms of raw cell viability in the MTT assays and mitochondrial failure due to ROS formation, the 
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internal mechanism of the cells remained unchanged with all three types of NPs tested. The mouse 

cells, however, showed internal failure as most of the cells no longer performed as they should, an 

indication of some toxic effects within the cells. Without this third analysis in xCELLigence, one 

could have concluded that the mouse cells were relatively unaffected by the NPs solely based on 

the MTT and ROS analyses without knowing the true impact on the intercellular mechanisms that 

were impacted to a larger degree compared to the human cells.  

2.3. Current methods and concerns for in vivo nanotoxicity determination 

Furthermore, there are concerns around unintended particle accumulation in organs, and 

thus induced toxicity, for in vivo studies, where the potentially hazardous NPs are directly or 

indirectly introduced into living organisms with measurements of toxicology endpoints. Several 

nanoparticles, such as gold-based and other metal-based NPs, have shown to display toxic effects 

and organ accumulation, however, the toxicity pathways are not fully understood.49,50 The most 

common organs tested for, and impacted by, NPs accumulation are the liver, heart, kidney, spleen, 

lungs, intestine, and stomach with the liver and organs with high blood flow being the most 

unintended accumulation sites.51,52 Which organs are impacted more depends on the elemental 

composition and size of the NPs.53 For instance, carbon-based NPs show the most unintended 

accumulation in the liver54, however, smaller carbon-based particles less than 20 nm, such as 

quantum dots (QDs), showed increased accumulation in the brain parenchyma55. The QDs can 

pass through the BBB pathway and through the trigeminal nerve or olfactory epithelium, which 

can cause additional problems when investigating in vivo toxicity.56,57 However, despite the 

accumulation of carbon-based particles in organs, due to their chemical makeup, carbon-based 
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NPs typically display little to no significant increase in toxicity when examining in vivo58, 

however, some toxic effects have been recorded59.  

Silica-based NPs show similar low toxicity when accumulated in organs compared to 

carbon-based NPs; although some uterine metabolic issues have been discovered in mice.60 Silica 

NPs appear to accumulate the most in the liver, lungs, and spleen61, with some kidney 

accumulation62 also being observed. Histological studies of silica-based NPs showed no ill effects 

in organs when the NPs are cleared from the organs within a few months.63,64 For NPs composed 

of less harmful chemicals such as carbon and silica, their size plays a much greater role in their 

toxicity in addition to their chemical composition. Generally, smaller particles are more toxic due 

to their size allowing them to better interact with cellular components such as proteins, fatty acids, 

and nucleic acids.65 However, larger silica NPs have also been shown to possess greater toxicity 

than smaller silica NPs.64 Polymer- and metal-based NPs with low clearance rates generally 

showed the greatest toxicity and organ accumulation,66,67 sometimes containing greater metabolic 

disturbance68.  

However, there remain several limitations to in vivo analysis of NPs organ accumulation 

and long-term toxicity. For some studies, a lack of macrophage uptake and blood circulation 

suggests the need for better assays.69 Additionally, in vivo studies with animas do not necessarily 

carry over to human studies as many nanoparticles never reach their intended site and are cleared 

from the bloodstream quickly70, adding to the difficulty of detecting in vivo toxicity and attributing 

it to NPs. Furthermore, most in vivo studies examine toxicity on week- or month-long analyses. 

Year-long analyses are rarely examined in research primarily due to time constraints despite being 

informative and essential.71 Nonetheless, these are all considerable parameters when examining in 

vivo nanotoxicity, with several current methods needing improved testing parameters and animal 
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models for more accurate assessments of toxicity, especially when examining the complexity of 

human health.72 The most commonly used in vivo analysis methods are listed in Table 2.2.47 

 Table 2.2: In vivo methods for nanotoxicity determination.  

Methods Toxicity Analysis Examination Types 

Radiolabeling Radioisotope tracking of NPs through biological systems examined for biodistribution 

Clearance Excretion and metabolism of NPs examined after various exposure times 

Serum Chemistry Enzymes, lipids, hormones, and proteins in serum examined for metabolic interferences 

Histopathology 
Cells, tissues, and organs examined for disease manifestation 

Hematology 
Red and white blood cells, platelets, and coagulation system examined for disorders 

 

To specifically measure nanotoxicity in vivo, several factors are taken into consideration. 

Immune system response compounds such as globulin, TNF-alpha, and KC-GRO are typically 

analyzed in order to determine toxicity. However, correlation is not necessarily causation, as 

simply analyzing these markers after the introduction of ENMs is not an accurate means of 

analyzing toxicity. A far more exact means of determining ENMs toxicity in vivo is by utilizing 

ICP-MS and microwave digestion; where tissue and organic samples are prepared via microwave 

digestion before being subjected to ICP-MS. This is a more accurate way of confirming ENMs 

integration and concentration within key organs, as shown in a study by Weaver et al.73. This is 

because there needs to be a way to confirm that the amount of ENMs or NPs injected into the 

animal remained in the organs and did not pass through the bloodstream without interacting. 

Unfortunately, the use of ICP-MS is limited to metal-based NPs and cannot be used for NPs that 

are, for example, polymer-based. For these NPs, it is much more difficult to accurately determine 

their concentration and integration in vivo. Therefore, methods previously mentioned (such as 
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fluorescence, bioluminescence, microscopy, and spectroscopy) are utilized as accurately as 

possible.74,75 Additionally, smaller sized NPs concentrations tend to be more difficult to 

determine76; with the importance of concentration control for in vitro and in vivo, it is vital to 

accurately determine in biological target tissue the concentration for nanotoxicity tests.77 However, 

despite the extensive means to confirm ENMs integration and concentration, in vitro and in vivo 

toxicity tests have been known to be highly inconsistent and sometimes do not agree with each 

other78,79, possibly due to variation between cell culture lines and animal species80 and issues with 

testing method accuracy81. The OECD has made several adjustments to their nanotoxicity testing 

protocols to combat this variation problem; however, to this day, no single method has proven to 

be the golden standard for testing nanotoxicity in ENMs, and methods continue to be tested and 

enhanced/modified to keep up with the accelerating ENMs development field.82  

For example, the OECD has implemented newly revised inhalation toxicity testing 

guidelines, 412 and 413, for 28-day and 90-day inhalation toxicity studies, respectively, for carbon 

based ENMs. These methods focus on inhalation since it is a primary route of ENMs exposure to 

humans83, with employees of carbon-based ENMs manufacturing being the largest group at risk 

of physical contact and, due to an increase in the number of applicational fields, there is a growing 

concern about overall hazardous potential when it comes to inhalation.84  However, according to 

a study performed by Kim et al., there is a significant lack of data for the toxicity regarding multi-

walled carbon nanotubes (MWCNTs).85,86 Nonetheless, following the OECD guideline87, Kim et 

al. investigated the 28-day inhalation toxicity study by exposing rats to MWCNTs at 0, 0.257, 

1.439, and 4.253 mg/m3 for 28 days.85 They generated their MWCNTs aerosols by using an 

acoustic dry aerosol generator and made sure to test the aerosol chamber concentrations using 

OC/EC and field emission-transmission electron microscope (FE-TEM) to confirm MWCNTs 
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exposure. Cytotoxicity markers such as lactate dehydrogenase (LDH), micro-albumin (mALB), 

and micro-total protein (mTP) were examined in bronchoalveolar lavage fluid (BALF) for toxicity 

analysis as proposed by the OECD method. Samples of the rat lungs were taken after 1-day, 7-

day, and 28-day post exposure (PEO-1, PEO-7, and PEO-28). They noticed that the alveolar 

macrophages of the lungs contained MWCNTs material in all the samples. Low concentration 

(0.257 mg/m3) did not show any pneumocyte damage or cell inflammation. Agglomerated 

MWCNTs, however, were seen throughout the lungs including the bronchi, alveolar ducts, and 

alveoli.84 Additionally, the moderate and high concentration samples (1.439 and 4.253 mg/m3) 

showed granulomatous lesions filled with MWCNTs in all PEO sampling days. It is of note that 

Kim et al. did not find any significant organ weight changes after exposure for all time periods, 

demonstrating that solely relying on organ weight as an indication of toxicity is inadequate, which 

was also pointed out in the study by Weaver et al. However, toxicity results varied drastically 

between similar studies and studies that used different types of MWCNTs.85,88,89 Although the new 

OECD method significantly improved their previous 412 method, the lack of data available on 

MWCNTs proved to still be a major setback with general testing methods. 

2.4. New and enhanced methods of nanotoxicity determination and particle detection 

Although the above methods help detect the toxicity of ENMs and NP, there remains an 

issue with the accuracy of the methods.81,90 Part of the reason is due to the lack of technology 

applied to analytical methods. With the ever-advancing field of nanomaterials, analytical methods 

lag behind or suffer due to lack of data, as shown previously with the OECD 412 method. 

Additionally, if there are no measures taken to confirm the successful integration of the ENMs or 

NPs into the cells/organisms being tested for toxicity, then there cannot be an accurate follow-up 

evaluation/conclusion that the concentration of ENMs/NPs injected caused toxicity. Furthermore, 
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research articles do not necessarily expand beyond their target application when it comes to the 

ENM degradation and integration into other matrices and systems, particularly their environmental 

exposure/fate91, leading to many published articles in the nanotoxicity field to be limited and 

questionable92. In fact, most published ENMs test methods for environmental or biological testing 

applications have not been validated following the procedures set by the USEPA or other 

regulatory bodies.81 Although the regulatory guidance for the testing of chemicals set by the 

USEPA, OECD, and AIHA provide extensive guidelines that help protect both humans and the 

environment, there remains limited guidance for analytical test methods or toxicity assessment 

procedures for direct measurements of ENMs, rather than indirect measurements.89 This 

exemplifies the need to further advance analytical instrumentation and test methods in order to 

better directly evaluate ENMs both qualitatively and quantitatively, especially in complex 

biological matrices and environmental matrices (e.g., air, sludge, and water).93 In many cases with 

environmental and biological testing, there is a lack of sufficient standards to compare with real-

time measurement analyses.94,95 Ultimately, analytical methods need to be improved or new 

methods developed in order to counter the detection and accuracy problems seen in nanotoxicity 

assessments.96  

Such advancements in both analytical instrumentation and test methods can be seen across 

several recently published articles. The first being by Mader et al., who applied the USEPA 

analytical test method validation guidance in the development of a new test method for the 

quantitation of engineered NPs in water matrices.90 The validated ENMs analytical test method for 

water is not limited to metal containing NPs and was applied to two OECD ecotoxicity test 

methods for both Daphnia and algae; by direct measurement of nanoparticle size distribution and 

concentration in the ecotoxicity test matrix. Analytical NP measurement was performed on a 
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Liquid Nanoparticle Sizer97, Differential Mobility Analyzer98, and Nano Water-Based 

Condensation Particle Counter99. The role of the Liquid Nanoparticle Sizer was crucial as it 

quantitatively diluted sample solutions using ultrapure water by a 20:1 to 20,000:1 ratio prior to 

nebulization. The nebulizer was adjusted to produce an aqueous aerosol with a droplet size of 300 

nm with the sample dilution ensuring that statistically only one particle was present in each droplet. 

The resulting nebulized aerosol was then dried, classified and counted. This combination of the 

two instruments allowed for the measurement of the number of each size of particles in a volume 

of air. Additionally, by scanning a range of particle mobility in the differential mobility analyzer 

the number-weighted NP size distribution could be determined. The validated Mader et al. method 

quantified both the NP size distribution and dose level verification concentrations in the Daphnia 

and algae ecotoxicity test matrices. The most important factor in accurate quantitative 

measurements for the method was the application of matrix-matched NP standard calibration 

curves to minimize analytical response factor difference between standards and test matrices.60 

The analytical method requires the use of certified NP reference materials for calibration standard 

preparations and, because of the availability of other certified metal and nonmetal NP materials, it 

is possible to adapt their EPS guidance validated test method for other ENMs and in other water 

matrices (e.g., drinking water, wastewater, groundwater).90  

Additionally, Savić-Zdraković et al.100 also utilized an OECD testing guideline, in this case 

guideline 218,101 for the examination of CeO2 NP uptake in relation to oxidative stress parameters, 

in vivo genotoxic effects, larvae, and life-trait toxicity parameters, using ICP-MS analysis. 

Through this study, the importance of establishing a standardized methodology for larvae lethality 

and sub-lethality cutoffs was established as their results indicated that the larvae were not at risk 

of CeO2 NP toxicity; however, accumulation of these particles could impact organisms that 
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consume the larvae. Therefore, much like the Kim et al. study, the value of the OECD guideline is 

greatly impacted by the lack of data surrounding CeO2 NP toxicity testing which also contributes 

to these NPs being listed on the OECD priority list of environmental impact assessment.100 

Another method that advanced the analytical side of NP detection was by Hadioui et al. 

who discussed detecting NPs in the environment by inductively coupled plasma mass spectrometry 

(ICP-MS), due to it being one of the best analytical techniques for detecting ENMs.102,103 In 

addition to ICP-MS being limited to metal-based NPs, it is also limited by particle size detection 

limits, with many NPs and their oxides being out of detection range. Hadioui et al. helped to 

improve this detection limit by adjusting the kind of aerosols introduced into the ICP-MS. They 

examined different nebulization desolvating techniques; distinguished as “dry” and “wet” 

aerosols. Hadioui et al. noted an increased number of counts in the dry mode, and for smaller 

particles (9 nm Ag) more ions were extracted using the desolvator for both wet and dry aerosols. 

Both desolvating systems lead to an increased signal intensity of the 9 nm Ag and 25 nm TiO2 

NPs. Thus, dry aerosols had a better detection and resolved peak intensities for small NPs.102 

Additionally, an increase in sensitivity was also noted for the 5 nm Ag NPs. Injecting 2.3 ng/L, 

the dry aerosol compared to the wet aerosol showed a drastic increase in the particles that were 

detected; and no particles were detected when using the ICP-Q-MS (the quadrupole ICP-MS used 

to evaluate instrument sensitivity).101 The size detection limit for ICP-Q-MS was 17 nm while 

single particle sector field ICP-MS (ICP-SF-MS) was 5 nm, which could further be reduced to 3 

nm using the desolvating nebulizer.  Thus, by using dry aerosols for ICP-MS, Hadioui et al. 

successfully improved sensitivity and enhanced ion extraction.102
 

Cui et al., in their study, helped examine the fate and improved detection of TiO2 NPs in 

the environment using ICP-MS by changing synthesis parameters, utilizing Ho as a chemical 
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marker in their NPs and thus designing NaHoF4@TiO2 NPs. By using an Al(OH)3 layer around 

Ho in NaHoF4, the added colloidal stability and hydrophilic surface helped TiO2 deposition and 

coating when synthesizing the NPs.104 The goal of the Cui et al. study was to be able to detect 

engineered TiO2 NPs in the environment without Ti background interference. Using their unique 

synthesis, the addition of Ho as a tracer significantly helped detect the engineering TiO2 NPs in 

the environment, despite being in low concentrations (100 million-fold dilutions or 5000-200,000 

particles/mL).104 

 As for biological fates of nanoparticles, studies such as Turco et al.105 and López-Serrano 

Oliver et al.106 provide valuable insights into biological nanotoxicity testing. Turco et al. utilized 

a sputtering-enabled intracellular X-ray photoelectron spectroscopy (SEI-XPS) method in which 

metallic NPs were cultured in media and cells before being directly measured for their 

internalization, stability, and oxidation state. Utilizing this technique, Turco et al. provided a 

possible method to help assess NP integration, accumulation, and longevity and thus provide 

valuable insight into nanotoxicity. López-Serrano Oliver et al. also investigated metal-based 

nanoparticles, in the form of silver, and focused on developing a new method of mass cytometry 

that can quantify NP numbers per single cell.106 Although they were able to make some interesting 

and important discoveries for new nanotoxicity analyses of NPs, there remains an issue with NP 

monitoring and intracellular uptake of NPs out of the mass range of mass cytometers.  

 Lastly, a fairly recent method to determine nanotoxicity is through in silico analyses. These 

methods have proven advantageous as they bypass the costs of extensive in vitro and in vivo 

experiments and removed the need for animal experiments.107 These in silico studies helped 

provide insight into potential alternative testing methods for nanotoxicity as existing experimental 

data surrounding the tested NPs and ENMs confirmed the results of the computational data 
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obtained.108,109 However, the main issue with in silico analyses is similar to the in vitro and in vivo 

experiments, which is the inconsistency and lack of data. In silico methods are dependent on 

existing nanotoxicity data to confirm the model’s accuracy.110 Therefore, the accuracy of future in 

silico analysis is also dependent on advancing current analytical methods to better analyze 

nanotoxicity experimentally.  

 Through all of these studies it is seen that analytical methods and the increased availability 

of certified analytical NP standards are vital in the measurement of ENMs and NPs  in toxicity 

assessments, as these materials need to be accurately identified and quantified in both biological 

and environmental matrices.111 Although progress has been made in developing toxicity 

assessments and testing methods, the accuracy of these methods have been called into question on 

more than one occasion.112 Agencies like OECD and AIHA help provide guidelines for 

nanotoxicity testing, however, a repeated problem across studies is the lack of data and certified 

analytical standards surrounding the NPs and ENMs, particularly the newer ones that are being 

produced at a rate that is not matched by development of the analytical instrumentation, even with 

enhanced methods and new analytical techniques113. There is also the problem with long-term 

ENMs and NPs exposure/integration, with toxic degradation particles potentially never being 

assessed as NPs and ENMs production continues. Generational and long-term biological and 

environmental impacts of ENMs and NPs nanotoxicity is an underdeveloped field, but one that 

should be considered for exploration.114 

2.5. Summary and Conclusions  

When it comes to the world of nanoscience, its vast diversity in engineered materials makes 

this area of research rich in possibility but ultimately leads to uncertainty in the health of humans 
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and the environment they come into contact with. Truly, there is an abundance of nanotoxicity 

data among research articles, but small groups of ENMs and NPs tend to be studied and their long-

term environmental fate or chemical/physical changes over time are not analyzed.115 Even with 

several agencies and organizations across multiple countries pooling their information together on 

the topic of nanotoxicity safety policies116 the problem still remains. As the field of nanoscience 

advances, analytical instrumentation and methods struggle to find applicability when it comes to 

accurately measuring ENMs’ and NPs’ harmful effects and possible integration into alternate 

media. Although traditional biological testing such as in vitro and in vivo help glimpse the impact 

NPs might have on chosen cells and living organisms, the methods tend to be indirect 

measurements of ENMs, by analyzing organ weight, mitochondrial function, and ROS levels. 

Indirect methods tend to only analyze the cell’s or organism’s response to the ENMs without 

confirming the exact amounts of ENMs that were involved in the negative or positive response to 

the ENMs. As a result, there has been a movement to develop direct methods of measuring ENMs 

in the environment and in biological systems as it remains a challenge to multiple national and 

international agencies to accurately assess the toxicity of ENMs. As new nanoparticles and 

nanomaterials are synthesized, many existing protocols and methods for their detection have been 

amended by researchers outside of the agencies that designed them, still with no single method 

being suitable for all ENMs. A significant limitation with the development of nanomaterials is that 

traditional regulatory and scientific methods used to assess the biological and environmental 

toxicity of chemicals do not generally apply to the assessment of nanomaterials. This limitation is 

directly related to the need for advancements and further developments of analytical 

instrumentation, analytical test methods, and analytical standards for the direct measurement of 

ENMs and NPs in biological and environmental matrices. 
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There is no doubt that NPs and ENMs pose potential risks environmentally and 

biologically.117 Without addressing the issues of accurate and consistent nanotoxicity 

determination, unknown degradation products, accumulation, and induced toxicity are of 

increasing concern. Given that ENMs and NPs are continually being advanced and incorporated 

into commercial products and medical treatments, the potential risk of undetected toxicity in the 

short- or long-term is also increasing. Particularly for the use of NPs in medicine, it is of utmost 

importance that treatment NPs are precisely characterized, detected and traceable, that their 

degradation products are not harmful, and that short- and long-term toxicity is not induced in the 

treated patient, especially for human trials. Similarly, the environmental fate of NPs and ENMs 

needs to be heavily considered as they can accumulate in the soil, water, plates, and animals. If not 

properly detected, quantified, and removed as contaminants, NPs and ENMs, both whole or 

degraded, can pose increasing environmental risk and potentially cause irreversible harm to the 

ecosystem. With 9806 products118 currently having incorporated nanomaterials, it is vital to 

address the problem of detection limits and improve analytical testing methods.  
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CHAPTER III 

SYNTHESIS OF HIGHLY NEAR-INFRARED FLUORESCENT GRAPHENE QUANTUM 

DOTS (GQDS) USING BIOMASS-DERIVED MATERIALS FOR IN VITRO CELL 

IMAGING AND METAL ION DETECTION  

3.1. Introduction 

 A wide range of fluorescent nanomaterials have been implemented into vast areas of 

research since the development of nanotechnology. These nanomaterials include quantum dots, 

metal nanoparticles, rare-earth metal doped nanoparticles, inorganic dye-doped silica 

nanoparticles, polymer-encapsulated organic nanoparticles, and carbon nanomaterials.117-122 

Previously, semiconducting quantum dots (QDs) were ideal fluorescent probes, but due to the fact 

that most of these QDs are composed of heavy metals such as cadmium, which can cause both 

biological and environmental hazards in large enough quantities, alternative materials such has 

graphene and carbon have been considered.123,123 The derivative material of graphene has several 

important properties from mechanical to thermal with recent developments that have shown an 

increase in research interest for graphene quantum dots (GQDs). The most favorable 

characteristics include low toxicity, chemical inertness, stability, and biocompatibility compared 

to traditional QDs.123-136 GQDs also present fluorescence properties, which allows GQDs to be 

used in the detection of both inorganic and organic materials such as metal ions, organic polymer 

molecules, and anions.133 In particular, fluorescence itself has been a vital tool for the development 

of imaging techniques to visualize key details in living cells and animals without involving 

potentially harmful radioactivity or electron burning.128   

The combination of these factors has made GQDs a considerable candidate in applications 

that involve bioimaging and metal sensing, among other applications.129,131 Additionally GQDs 
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have potential advancements for in vivo and in vitro fluorescence imaging due to functionalized 

GQDs having the capability of interacting with biological systems.127,137-139 However, the field of 

GQDs is still relatively new with a need of more extensive research in order to broaden the use for 

in vitro and in vivo bioimaging techniques, especially when the GQDs can detect key 

biomarkers.126,140,141  Furthermore, GQDs with near infrared (NIR) fluorescence are extremely rare 

and scarcely reported despite being highly desirable for biomedical imaging applications.142 

Although there have been recent reports of NIR containing GQDs143 and carbon dots144, there 

remain several undesirable traits during synthesis procedures such as the use of strong acids145, 

element doping146,147, lengthy reactions148, and forms of graphene oxide149. Additionally, may 

synthesized GQDs with NIR fluorescence usually contain their peak in the lower NIR 

region142,150,151 (650-810 nm) or are dependent on larger GQD particle size152. NIR fluorescent 

materials for bioimaging are sought after due to their deep tissue penetration, weak emission light 

scattering, and lower background, which helps improve signal-to-noise ratios.142,153,154 Having a 

carbon-based nanomaterial that emits fluorescence in the NIR region would provide not only the 

above listed imaging benefits but also reduced toxicity and easier cellular uptake and integration 

because of their chemical make-up and small particle size.  

 GQDs have two primary means of synthesis; top-down or bottom-up.126,140,141,155,156 The 

top-down method breaks down carbon source material by several different methods to synthesize 

GQDs; including lithography, oxidation, microfluidization, electrochemical, solvothermal, and 

microwave-assisted hydrothermal.139,156 The bottom-up method combines smaller groups of 

benzene derivatives and carbonization from organic polymers to form larger quantities of GQDs 

using stepwise solution chemistry, oxidation, hydrothermal heating, and pyrolysis.126,139,156 The 

top-down method tends to be more extensive than the bottom-up approach, although the latter is 
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more precise yet complicated with many synthesis steps.157 Typically, molecules containing 

polycyclic aromatic rings are used as reliable precursors to form high-quality GQDs via the 

bottom-up approach.156-159 These precursors are traditionally produced from non-renewable 

sources such as coal and petroleum coke. The rapidly increasing world population and irreversible 

consumption of limited fossil resources have been motivating researchers to develop new materials 

using sustainable sources. Several reports have recently suggested that renewable, inexpensive, 

and readily available biomass waste, such as rice husk,160 dead leaves161, waste peels162, or food 

waste163, have the potential to emerge as an alternative feedstock to produce GQDs. Meanwhile, 

efforts have been made to utilize biomass-derived chemicals as precursors, including citric acid164 

and L-glutamic acid.165 However, there are still few examples of high-quality GQDs derived from 

biomass when compared to the non-renewable petrochemicals.166 Therefore, developing reliable 

biomass-derived precursors for creating high-quality GQDs instead of petrochemical-based 

precursors for suitable applications remains highly desirable. 

Furfural, one of the most valued biobased chemicals, is derived from an array of agro-

residues such as wheat bran, corncobs, sugar cane bagasse, and sawdust.167,168 Furfural has been 

serving as a vital starting material to produce a wide range of specialty chemicals and renewable 

building blocks for designing new materials.169,170 One such furfural derived building block is cis-

3,4-di(furan-2-yl)cyclobutane-1,2-dicarboxylic acid (CBDA-2).171  This furfural derived building 

block has shown potential applications in developing 100% bio-based cyclobutane-containing 

polymers (CBPs) exhibiting desirable chemical and thermal properties, which are potentially 

important in industry. In this work, GQDs were synthesized by the bottom-up process using 

biomass-derived diacid CBDA-2 in a NH4OH/water solution. The obtained GQDs were analyzed 

for fluorescence characteristics and chemically characterized by various analytical methods for in 
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vitro imaging and metal ion detection applications. These analytical techniques include UV-Vis 

absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering (DLS) for size 

distribution and zeta potential analysis, Fourier transform infrared spectroscopy, high resolution 

transmission electron spectroscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and 

confocal microscopy. Lastly, the GQDs were subjected to several concentrations of multiple metal 

ions to determine their capability of detecting these ions. 

3.2. Experimental 

 3.2.1. Materials  

2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES buffer, 99.5%), 3-

(cyclhexylamino)-1-propanesulfonic acid (CAPS buffer, >99%), 2-

(cyclohexylamino)ethanesulfonic acid (CHES buffer, >99%), maleic acid (>99%), citric acid 

(>99.5%), FeCl3, Pb(Ac)2·3H2O, and CuSO4 were purchased from Sigma-Aldrich (St. Louis, MO, 

USA). Ammonium hydroxide (99%) and fluorescein dye were both purchased from Fisher 

Scientific (Hampton, NH, USA).  HgCl2 was purchased from ACROS Organics (Fair Lawn, NJ, 

USA) and FeSO4·7H2O was purchased from Sargent-Welch VWR Scientific (Buffalo Grove, IL, 

USA). Dulbecco’s Modified Eagle Medium was purchased from Life Technologies/Thermo Fisher 

Scientific (Waltham, MA, USA). Fetal bovine serum was purchased from Peak Serum 

(Wellington, CO, USA). Penicillin-strep was purchased from Sigma Aldrich/Millipore (St. Louis, 

MO).8-well Chambered Coverglass with non-removable wells and TO-PRO®-3 Stain were 

purchased from Thermo Fisher(Waltham, MA,USA). Fluoromount-G® mounting medium was 

purchased from SouthernBiotech (Birmingham, AL). CytoTox 96® Non-Radioactive Cytotoxicity 

Assay kit was purchased from Promega (Madison, WI, USA).  
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3.2.2. Sample solution preparation  

 The 20 mM HEPES buffer solutions of pH 1.0, 3.0, 5.0, 7.0, 9.0, and 11.0 were prepared 

with the pH being adjusted by the addition of NaOH and HCl. For investigating photostability, all 

the samples were sonicated for 30 min before analysis. For the detection of metal ions, 100, 10, 

and 1.0 µM solutions of CuSO4, FeCl3, FeSO4, Pb(Ac)2, and HgCl2 were prepared in water. Based 

on the GQDs response to mercury ions, an optimization experiment was designed to test four 

changing factors of pH, temperature, concentration of Hg2+ and concentration of GQDs. These 

four parameters were used to design a 24 screening factorial design in order to identify important 

factors impacting fluorescence intensity and to better analyze optimal analysis conditions.  

3.2.3. Instrumentation for the characterization of GQDs 

 A Perkin Elmer Lambda 1050 UV-250 UV/Vis/NIR spectrophotometer was used for the 

UV/Vis absorption measurements of the GQDs. The fluorescence spectra and photostability 

measurements were acquired by a Shimadzu RF-6000 spectrophotometer. NIR fluorescence was 

measured by a Jobin-Yvon-Horiba Fluorometer 3 Model (FL 3-11 spectrofluorometer). A 

Marlwen model of Nano-ZS Zetasizer was used to measure the zeta potential and size distribution 

of GQDs in HEPES buffer with different pH values. A JEOL Jem 2100 Electron Microscope was 

used to obtain high resolution transmission electron microscopy (HRTEM) images of the GQDs. 

A Thermo Fisher Scientific Nicolet iS5 Fourier transform infrared spectrometer (FT-IR) was 

utilized to obtain the IR spectra of CBDA-2 and the GQDs. X-ray diffraction (XRD) measurements 

were analyzed on a Rigaku SmartLab and X-ray photoelectron spectroscopy (XPS) analysis was 

conducted on a Perkin Elmer model PHI 40-700. An Olympus FV3000 Laser Scanning Confocal 

Microscope was used for the in vitro cell imaging of the GQDs. Two channels were used for the 

imaging; those being red (Fura-Red (Ca-free)) and green (Alexa 488). MCF-7 cells were cultured 
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over night with 100 µL of 0.8 mg/mL GQDs and TOPRO-3 labeled nuclei. Bright-field images 

were also collected at the same time for clarification of cell growth and location on the coverslips. 

A ELX800 plate reader was used for the cell viability experiments. GQDs with gradient 

concentrations were incubated overnight and the cell viability assay was followed using the 

protocol of CytoTox 96® Non-Radioactive Cytotoxicity Assay kit. 

3.2.4. Synthesis of GQDs 

CBDA-2 was synthesized from furfural in two steps.162 In the first step, a key intermediate 

- trans-3-(2-furyl)acrylic acid was constructed by Knoevenagel condensation between furfural and 

malonic acid and the subsequent decarboxylation. In the second step, 2.0 g crystalline trans-3-(2-

furyl)acrylic acid was ground into a fine powder and suspended in 100 mL of hexane in an 

Erlenmeyer flask equipped with magnetic stirring. The continuously stirred suspension was 

subjected to UV radiation of eight 13-watts residential blacklight (Feit Electric BPESL15T/BLB 

compact fluorescent twist bulb) for 12 h. After completion of reaction, the slurry was filtered to 

give CBDA-2 as a white solid (1.9 g, 95%).  

To prepare GQDs, CBDA-2 was dissolved in DI-water with a final concentration of 4.0 

mg/mL before the pH was brought to 10.0 using NH4OH. The solution was then autoclaved for 12 

h at 200 ˚C. Furthermore, a Spectra/Por Dialysis Membrane BioTech CE Tubing of MWCO 100-

500 Da was used for the dialysis of the GQDs for 12 h before being centrifuged for 30 min. The 

final concentration of the GQDs was calculated to be 2.0 mg/mL, which was stored in a fridge for 

future usage. 

3.2.5. Quantum yield measurement 

The quantum yield was calculated for the visible GQDs peak (440 nm) using Equation 3-

1 below with quinine sulfate in 0.1 M H2SO4 as the standard reference.172 Quinine sulfate in 0.1 
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M H2SO4 was previously determined to have a Φ𝑠𝑡 of 0.54 with 𝜂𝑠𝑡
2  being equal to 1 in the case of 

0.1 M H2SO4.
172 Similarly, the GQDs would also have 𝜂𝑥

2 equal to 1 when prepared in a pH 7.0 

HEPES buffer. The quantum yield was calculated to be 45%.  

Φ𝑥 = Φ𝑠𝑡 (
𝐺𝑟𝑎𝑑𝑥

𝐺𝑟𝑎𝑑𝑠𝑡
) (

𝜂𝑥
2

𝜂𝑠𝑡
2 )                                                                                                                (3 − 1) 

3.3. Results and Discussions 

3.3.1. Design of the synthesis of GQDs using biomass 

The goal of this work was to develop a simple yet effect method for the synthesis of 

fluorescent graphene quantum dots that could be used in bioimaging applications as well as metal 

ion detection. Traditional bottom-up methods for GQDs synthesis utilize organic precursors, such 

as amino acids, citric acid, histidine, L-glutamic acid, and glucose.156 Inspired by those starting 

materials and the low-cost properties of biomass materials, we developed a method for 

synthesizing GQDs using a biomass derived molecule from furfural, CBDA-2. CBDA-2 was 

obtained from biomass that was also non-toxic. After dissolving CBDA-2 in NH4OH/water and 

heating at 200 ˚C for 12 h, the fluorescent GQDs were synthesized. Under the irradiation of UV 

light, the prepared GQDs showed bright blue fluorescence (Scheme 3.1).  

 

Schematic 3.1: CBDA-2 conversion to GQDs by pyrolysis under basic conditions. Exposure to 

UV light shows that the newly synthesized material contains fluorescent properties. 
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3.3.2. Characterization of the synthesized GQDs 

To characterize the newly synthesized GQDs, a number of experiments were conducted. 

First, the morphology and size of the GQDs were characterized. To clearly observe the crystal 

structure of the GQDs, a high-resolution transmission electron microscope (HRTEM) was 

employed. The results are shown in Figure 3.1. Both larger clusters (Figure 1A) and enlarged 

single particle GQDs (Figure 1B) were observed.  

 

Figure 3.1: HRTEM images of the GQDs, 2.0 mg/mL. (A) individual particle that are ~ 4-7 nm in 

diameter; (B) image of particle dispersion that show no agglomeration.  

 

The size distribution of the GQDs was statistically measured using DLS (Figure 3.2). To 

better observe the individual particles, the GQDs were sonicated for 30 min prior to analysis. The 

resulting table shows that the GQDs range from approximately 3-10 nm with an average size of 

6.5 + 3.5 nm. This is conclusive with the HRTEM images, which show individual particles around 

4-7 nm, with a decent dispersion of the particles.  
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Figure 3.2: Size distribution of sonicated GQDs in water by DLS, 20 µg/mL. Individual GQDs 

are approximately 3-10 nm.  

 

The zeta potential of the GQDs in different pHs was also analyzed (Figure 3.3). The results 

showed that in the range of pH 7.0-11.0, GQDs had high zeta potentials of -35.6, -26.2, and -22.5 

mV, respectively. Comparatively, pH 5.0 showed a moderate decrease of zeta potential at -9.7 mV. 

The remaining solutions of pH 3.0 and 1.0 showed the lowest zeta potentials of approximately -

2.2 and +7.3 mV, and therefore contain the highest agglomerates. Based on these results, the GQDs 

were more stable in basic pH solutions of 7.0-11.0 and stable moderately at pH 5.0. 

 

Figure 3.3: Zeta potential measurements of the GQDs in the maelate (pH 1.0), citrate (pH 3.0 and 

5.0), HEPES (pH 7.0), CHES (pH 9.0) and CAPS (pH 11.0) buffers. All GQD solutions were in 

concentrations of 0.2 mg/mL. 
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Furthermore, the functional groups of the GQDs were investigated using FT-IR spectra 

(Figure 3.4). First, the starting material of CBDA-2 was measured (Figure 3.4, red). The spectrum 

of CBDA-2 showed two clear peaks at 3103 and 1697 cm-1 that are attributed to -OH and C=O 

functional groups, respectively.173,174 The GQDs contained four characteristic peaks of -OH at 

3207 cm-1, sp3C-H at 2923 cm-1, C=O at 1684 cm-1, and C=C at 1559 cm-1 (Figure 3.4, blue).175-

179 In comparison, CBDA-2 shared some similar functionality in the forms of the alcohol and 

carbonyl groups. However, the GQDs show additional peaks of the olefin type and additional sp3 

hybridized C-H bonds. This strongly indicating a reaction that charged the chemical structure of 

the GQDs from CBDA-2, with the additionally π-bonds in the GQDs contributing to their 

fluorescent properties.  

 

Figure 3.4: FT-IR spectra of CBDA-2 (red) and the GQDs (blue). The two compounds share 

similar peaks in the alcohol and carbonyl regions but differs with the GQDs having additional 

olefin and sp3 C-H peaks. 

 

The composition of the GQDs was further analyzed using XRD and XPS techniques. As 

shown in Figure 3.5, the XPS analysis results suggested that the prepared GQDs are composed 
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mainly of carbon and oxygen with two main peaks: oxygen (531 eV) and carbon (284 eV) (Figure 

3.5A), which is in agreement with the literature.180 Also, two smaller peaks were seen in the range 

of 1020-970 eV, which is consistent with carbon as graphite.180 Additionally, it is of note that the 

oxygen peak has a left-field shift; typical oxygen peaks have a range of 528-534 eV while this 

oxygen peak has a range of approximately 529-538 eV. This is also consistent in the mica (blank) 

spectrum; thus, it was deduced that the functionality ranges within the oxygen peak were also 

shifted to the left. The carbon peak was not shifted for either the mica or the GQDs, and remains 

in the functionality ranges of the peak. Therefore, the shifted oxygen peak could have been a 

calibration issue with the instrument. High-resolution XPS of C 1s demonstrated three peaks at 

286.7, 285.67, and 288.11 eV, which were attributed to C-O-C, C-C, and C=O, respectively 

(Figure 3.5B). The O 1s spectrum showed two major peaks at 531.14 and 533.05 eV for C=O and 

C-O, respectively (Figure 3.5C). 
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Figure 3.5: (A) Entire XPS spectrum of the GQDs shows the left-field shift of the oxygen peak at 

around 531 eV and the carbon peak at 284 eV. Graphite peaks are visible in the 1020-970 eV 

range. XPS graphs of the carbon (B) and oxygen (C) peaks of the GQDs (2 mg/mL). The carbon 

peak shows clear distribution of the functional groups within. The oxygen peak has regions of 

unknown groups, most likely due to the peak shift of the instrument. 

 

Additionally, the XRD pattern (Figure 3.6) of the GQDs showed a broad peak centered at 

20° (d spacing = 0.44 nm) that could be attributed to the π-π stacking of GQDs. Neither a 

characteristic (002) peak of graphene oxide at around 10° nor a sharp 0020 peak of graphene at 
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26.5° were observed, which implies the two-dimensional nature of the GQDs which lack a long 

distance order (i.e. a small thickness) along (002) direction (c-axis). These results were strongly 

consistent with the results of previous reports.181-183 

 

Figure 3.6: XRD analysis of the GQDs shows a distinctive peak at 20°, an indication of graphene 

within the sample. 

 

3.3.3. Optical properties of the GQDs 

The most important designed feature of the GQDs is their fluorescence properties. This 

property was investigated using both spectroscopy and microscopy. The UV-Vis absorption and 

fluorescence emission spectra of the GQDs were recorded in a 0.2 mg/mL aqueous solution. As 

shown in Figure 3.7A, the GQDs showed two UV-Vis adsorption peaks at about 230 and 300 nm, 

which were attributed to π – π* transition of the C-C bond and the n- π* transition of the oxygen-

containing groups. When the GQDs were excited with 310 nm radiation, the GQDs emitted a 

strong fluorescence peak at 440 nm (Figure 3.7B).  
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Figure 3.7: (A) GQDs absorption profile in water at concentration of 0.1 mg/mL. Clear absorption 

can be observed at ~ 300 nm. (B) Fluorescence profile of the GQDs (0.2 mg/mL in water) that 

showed the 310 nm excitation and 440 nm emission peaks. 

 

Then, the 3D fluorescence map was collected by changing the excitation wavelength from 

280 to 500 nm for both the GQDs in pH 7.0 and the pH 7.0 blank. This observation was witnessed 

again in the 2D fluorescence spectra (Figure 3.8A) which showed two fluorescence peaks in the 

GQDs, centering at 440 and 850 nm. In order to prove that the fluorescence was coming from the 

GQDs and not from the precursor, solvent, or second order excitation, spectra of CBDA-2, DI-

water, and 20 mM HEPES pH 7.0 buffer were also collected. The GQDs showed the strong 

fluorescence emission at 440 and 850 nm, indicating that the prepared GQDs could be used as a 

strong fluorescent tag in the visible and NIR range. To further confirm that the NIR peak was 

indeed coming from the GQDs, several concentrations of the material were prepared and analyzed. 

Figure 3.8B shows that the fluorescence intensity of the GQDs in the NIR region was proportional 

to concentration (25 - 3.125 µg/mL). Similar with the other reported GQDs, the prepared GQDs 

showed excitation-dependent fluorescence emission. As shown in Figure 3.8C, the visible 

emission peak of the GQDs shifted from 440 nm to 520 nm when the excitation wavelength was 

changed from 280 nm to 500 nm. The highest fluorescence emission was obtained when the 
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excitation wavelength was 300 nm, with an emission peak at 440 nm. Comparatively, the NIR 

emission peak (Figure 3.8D) also showed an excitation light dependency, shifting from 850 to 900 

nm. The highest fluorescence emission peak was recorded at a 340 nm excitation light. 
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Figure 3.8: (A) Emission profile of the GQDs under 310 nm excitation light that yields two peaks. 

CBDA-2, pH 7.0, and water (solvent) were tested for interference effects. CBDA-2 and pH 7.0 

showed slight emission at 440 nm but no peak was observed at 850 nm. (B) Changing 

concentration of GQDs NIR peak, indicating fluorescence is being emitted from the material. (C) 

Excitation light dependent behavior for the visible peak at 440 nm emission. (D) Excitation light 

dependent behavior for the NIR peak at 850 nm emission. 
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To be utilized as a fluorescent tag in bioanalysis and bioimaging, the stability of the GQDs 

is critical. Therefore, the fluorescence intensity of the GQDs were studied in different pH 

conditions from 1.0 to 11.0 using the HEPES buffer. The results depicted that the GQDs contained 

the highest fluorescence intensity in the range of pH 5.0-9.0 (Figure 3.9), which is ideal for 

biological samples. Under pH 5.0 or higher than pH 9.0, the fluorescence intensity of the GQDs 

decreased. Especially, the GQDs were unstable in pH 1.0 (maleate) where the largest quenching 

was observed, which might be caused by the fact that the zeta potential of the GQDs at pH 1.0 

became almost zero, resulting in the aggregation-induced quenching of the GQDs.  

 

Figure 3.9: Fluorescence intensity measurements of the GQDs shows quenching effects in maelate 

pH 1.0 while pHs 3.0 – 11.0 (citrate, HEPES, CHES, and CAPS) depict relatively no significant 

difference in decrease or increase of intensity. All solutions were 0.2 mg/mL GQDs. 

 

The photostability of the GQDs was analyzed with a sample of FITC being used as the 

standard comparison dye. The resulting data can be found in Figure 3.10 below. Both FITC (20 

µM) and the GQDs (80 µg) were cultured in MCF-7 cells. Cells were incubated with GQDs for 3 

h before being fixed. After 30 min of imaging, the GQDs bleached to only 60% of their original 

intensity while FITC bleached to 20% in the first 300-400 seconds. This experiment provided 
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helpful insight into the GQDs photostability and potential to be used for prolonged analyses in 

other applications that require it. 

 

Figure 3.10: Photostability of the GQDs compared to FITC dye.  

 

3.3.4. In vitro cell imaging with MCF-7 cells doped with GQDs 

Based on the promising fluorescence properties, we tested the feasibility of the GQDs to 

be used as a fluorescent agent for cell labeling. Before the imaging application, the cytotoxicity of 

the GQDS was evaluated by MTT assay in RAW 264.7 cells due to the pinocytosis property. The 

results showed that negligible toxicity was observed even when the concentration of the GQDs 

was as high as 200 µg/mL (Figure 3.11), indicating the superior biocompatibility of GQDs 

obtained from the biomass. However, GQDs have been reported to show toxic effects and a 

decrease in cell viability at 500 μg/mL exposures.184,185 
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Figure 3.11: Cultured RAW cells with various concentrations of GQDs. The highest cell death 

occurs at 12.5 µg/mL, while no culture exceeded 20% total cell death compared to the control. 

 

MCF-7 cells were used for the GQDs confocal imaging because of the epithelial-like 

morphology and the formed monolayer. GQDs were incubated with the MCF-7 cells for 3 hours, 

the cells were fixed and imaged using a fluorescence confocal microscope. As shown in Figure 

3.12, the MCF-7 cells incubated with the GQDs showed strong green fluorescence (Alex 488 

channel) upon excitation at 405 nm, indicating that the GQDs entered the cells through 

endocytosis.186,187 In contrast, no apparent fluorescence was observed in the green channel when 

the MCF-7 cells were incubated with TO-PRO-3 labeled nuclei (Figure 3.12A). The fluorescence 

intensity of the cells were quantified using ImageJ software, and the results demonstrated that that 

of the fluorescence intensity of the MCF-7 cells incubated with the GQDs was three-fold higher 

than the pure cells, indicating that GQDs could be used as strong fluorescent tags to label both cell 

membranes and the cytoplasm. Incubating the GQDs with MCF-7 cells resulted in the GQDs 

entering the cells through endocytosis and imaged using confocal microscopy. The two colored 

channels and the bright-field images are depicted below (Figure 3.12B). It is clearly observed that 

when the GQDs were added, the intensity across the channels also increased, mostly in the green 

channel but a slight increase was also observed for the red channel. 
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Figure 3.12: In vitro images of MCF-7 cells cultured with GQDs: (A) TOPRO-3 labeled nuclei 

of MCF-7 cells; (B) 100 µL of 0.8 mg/mL GQDs and MCF-7 cells. Columns are two excitation 

channels used as well as the microscope images: (i) Alexa 488, (ii) Fura-Red (Ca-free), (iii) Bright-

field and (iv) Overlaid. 

 

3.3.5. Metal ion detection using the GQDs 

The fluorescence bioimaging is the main application of the developed GQDs. Additionally, 

the GQDs were found to be capable of metal ion detection. Thus, five common metal ions in 

solution: Cu2+, Fe3+, Fe2+, Hg2+, and Pb2+ were tested using the GQDs (Figure 3.13). As a result, 

Hg2+ showed the greatest quenching at the highest concentration of 100 µM. Pb2+ showed little to 

no quenching across the concentrations and the remaining ions of Cu2+, Fe3+, and Fe2+ showed 

quenching at the highest concentration (100 µM) but no significant decrease in fluorescence was 

observed for the 10 and 1.0 µM solutions. Therefore, the detection of Hg2+ was further studied 

using the GQDs by optimization of experimental conditions temperature and pH. 
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Figure 3.13: Metal ion detection using 0.1 mg/mL GQDs in HEPES buffer pH 7.0: Cu2+, Pb2+, 

Fe2+, Fe3+, and Hg2+ were added in 100, 10, and 1 µM final concentrations. 

 

For optimization, 24 factorial screening was first used to identify estimated parameters for 

optimal conditions, those being pH, temperature, concentration of Hg2+, and concentration of 

GQDs. The high and low conditions can be found in Table 3.1 as well as the center point 

conditions. After screening, a regression model was fitted to the data to estimate the relationships 

between the dependent variables. A normality test of the residuals helped to verify the model’s 

accuracy, yielding a p-value greater than the α-value of 0.05, which indicates that the residuals are 

normally distributed. Due to this, the model interference can be confirmed as validated and thus 

an optimization analysis on the data was performed as well. 
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Table 3.1: 24 factorial screening DOE method applied to the optimization analysis of the GQDs, 

Hg2+, temperature, and pH conditions.  

Factor Low (-1) High (+1) Center Point (CtPt) 

pH 3.0 9.0 6.0 

Temperature 2 °C 50 °C 26 °C 

Concentration of Hg2+ 1.0 µM 100 µM 50.5 µM 

Concentration of GQDs 0.02 mg/mL 0.50 mg/mL 0.26 mg/mL 

 

After analyzing the results, the Pareto chart of all factors and interactions (Figure 3.14A) 

shows that out of the four factors, only concentration of Hg2+ and concentration of GQDs were 

significant. Temperature had no effect as a main factor, nor did its interaction have any impact on 

the overall fluorescence intensity. Additionally, pH as a main factor had no direct effect, however, 

its interaction with both the mercury ion and GQD concentrations were significant. Therefore, all 

insignificant factors and interactions were removed from the terms and the Pareto chart was plotted 

again (Figure 3.14B).  

 

Figure 3.14: (A) Pareto chart of the full factorial analysis of fluorescence intensity with all 

interactions included. (B) Pareto chart of refined terms of the full factorial analysis after removing 

temperature as well as other insignificant interactions.  
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As previously stated, the optimization analysis was also conducted to help verify the 24 

design above. To confirm this, the model was set to predict the conditions that would yield the 

highest fluorescence intensity. The model predicted that pH 9.0, 0.50 mg/mL GQDs, and 1.0 µM 

Hg2+ were the most optimal conditions for the highest intensity. For convenience, the triplicate 

runs of the optimal conditions were conducted at room temperature (26 °C) given that the model 

predicted temperature to be an insignificant factor.  Figure 3.15 depicts all sixteen factorial samples 

and the four center points in comparison to the optimal condition samples in gray. The triplicate 

runs confirmed the DOE experiment by having an equal average fluorescence intensity as sample 

10 (pH 9.0, 2 °C, 1.0 µM Hg2+, 0.50 mg/mL GQDs), which had the highest fluorescence out of the 

twenty screening samples and sample 12 (pH 9.0, 50 °C, 1.0 µM Hg2+, 0.50 mg/mL GQDs) was 

second. Additionally, the optimization predictor showed that for higher concentrations of Hg2+, a 

more acidic environment yielded a higher fluorescence intensity and for lower concentrations, 

basic conditions had higher fluorescence intensities. Furthermore, decreasing the concentration of 

the GQDs decreased the quenching sensitivity, as the 0.02 mg/mL samples yielded nearly the same 

intensity for the 100 and 1.0 µM Hg2+ additives, regardless of temperature and pH. However, 

increasing the concentration of GQDs to 0.5 mg/mL also did not drastically increase the sensitivity, 

with similar complications arose from the 1.0 µM detection, as observed in Figure 3.13 with 0.2 

mg/mL of GQDs. 
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Figure 3.15: All sixteen samples and four center points in comparison to the optimal condition 

samples (gray). The optimized samples were run in triplicate and their average result contained the 

highest fluorescence intensity.  

 

Additional concentrations of Hg2+ ions were then tested for a better detection limit analysis, 

ranging from 1 to 100 µM (Figure 3.16). At lower concentrations, 1 and 5 µM, not only did the 

standard deviation increase but the difference compared to the control was negligible. 

Concentrations greater than 10 µM where better detected, with a limit of detection (LOD) of 2.5 

µM and limit of quantitation (LOQ) of 8.3 µM. 
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Figure 3.16: Mercury ion detection using the (0.2 mg/mL) GQDs at room temperature in 20 mM 

pH 7.0 HEPES buffer. LOD: 2.5 µM. LOQ: 8.3 µM. 

3.4. Conclusion 

Graphene quantum dots (GQDs) were successfully synthesized from biomass-derived 

CBDA-2 under basic conditions. The optical properties were thoroughly investigated and the 

GQDs yielded two distinct emission peaks (440 and 850 nm) with one excitation wavelength (310 

nm). The GQDs were also stable across a wide pH range, only showing quenching at pH 1.0 and 

prolonged photostability up to 30 min. When exposed to various metal ions, the GQDs were only 

quenched by mercury ions down to 10 µM concentrations, LOQ of 8.3 µM. The in vitro imaging 

of MCF-7 depicted strong fluorescent images of the GQDs in the Alexa 488 channel in and RAW 

264.7 cells showed excellent biocompatibility. Overall, we developed strong fluorescent GQDs 

from biomass, providing a novel method for generating fluorescent GQDs for bioanalysis and 

bioimaging. 
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CHAPTER IV 

SYNTHESIS OF RED-EMISSIVE PORPHYRIN-BASED GRAPHENE QUANTUM DOTS 

(PGQDS) USING BIOMASS-DERIVED MATERIAL FOR IN VITRO CELL IMAGING  

4.1. Introduction 

 Graphene quantum dots (GQDs) are a subset of semiconductor carbon-based nanoparticles 

that are defined by their size limitation, being 2-10 nm in diameter.188,189 GQDs contain unique 

optical and electrical features that are attributed to the sp2-hybridized carbon atoms within the 

lattice of the GQDs which allows them to have a π-conjugated system.190 This property allows 

GQDs to be utilized primarily in biological, biomedical, and biosensing fields of study. More 

specifically, their unique quenching properties enable them to be used for environmental analysis 

as well as biological, typically in the form of trace molecules, metal ions, cation, and anion 

detection.191-194 Additionally, their carbon-based makeup of graphene gives GQDs a low 

cytotoxicity, further enhancing their use in biological matrices and cell imaging applications. 

However, GQDs have been reported to typically have blue or green emission light194-196, which is 

not optimal for cellular imaging, as shorter wavelength emission light cannot as effectively 

penetrate tissues, organs, skin, etc. in a biological setting due to light scattering.197 Red or near 

infrared (NIR) emission light is a more suitable option for biological imaging, especially for in 

vitro and in vivo confocal microscopy.197,198 However, as previously stated, GQDs and carbon-

based nanomaterials are scarcely reported to be synthesized to have a red or NIR emission light.199 

Therefore, researchers have investigated alternative synthesis methods to address this issue and 

give new GQDs a longer wavelength emission. One such method involves doping GQDs with 

other elements (nitrogen200, metals201,202, etc.) or other nanoparticles203.  
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Subsequently, a subgroup of organic molecules that have recently become of interest are 

porphyrins which, much like GQDs, have unique optical, electrical, and biological properties. 

Porphyrins are a class of heterocyclic macrocycle organic compounds that are commonly found in 

nature such as in redox active enzymes like hemoglobin and cytochromes as well as in plant 

photosynthetic apparatuses.204 In recent history, porphyrin-based materials have primarily been 

used for chemical and ion sensing205, photocatalysis206, light harvesting207, and photothermal 

therapy208,209. Porphyrins naturally contain red-emissive fluorescence making them useful for 

biological imaging applications, however, like other fluorescent dyes, porphyrins lack 

photostability for prolonged imaging analysis as well as contain self-quenching problems.210  

To overcome the poor photostability of porphyrins, in combination with an additional 

photostable carbon molecule may be useful. Cis-3,4-di(furan-2-yl)cyclobutane-1,2-dicarboxylic 

acid (CBDA-2) was used previously and successfully synthesized GQDs with exceptional 

photostability and cytotoxicity, however, it contained the common emission peak of 440 nm and 

therefore did not contain the desired red emission.211 Considering the above mentioned properties 

of porphyrins and CBDA-2, the goal of this research is to develop porphyrin-based graphene 

quantum dots (PGQDs) for enhanced red-emission nanomaterial for bioimaging and metal ion 

detection applications. Meso-tetra(4-carboxyphenyl)porphine (TCPP) is one type of porphyrin 

with a large conjugated π-electron system and four carboxyl groups on its exterior benzene rings. 

Given that TCPP has successfully been used previously to nanomaterial synthesis210 and biological 

imaging212 and sensing213 applications, here, TCPP has also been selected for the porphyrin of 

choice, while the main carbon contribution will be supplied from biomass-derived CBDA-2 to 

form PGQDs. Additionally, utilizing CBDA-2, a biomass-derived molecule due to it being derived 
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from furfural214, makes this process a synthetically green reaction and the resulting 

environmentally friendly PGQDs.  

4.2. Experimental 

4.2.1. Materials 

3-(Cyclohexylamino)-1-propanesulfonic acid (CAPS buffer, >99%), 2-

(cyclohexylamino)ethanesulfonic acid (CHES buffer, >99%), 2-[4-(2-hydroxyethyl)piperazin-1-

yl]ethanesulfonic acid (HEPES buffer, 99.5%), citric acid (>99.5%), maleic acid (>99%), meso-

tetra(4-carboxyphenyl)porphine (TCPP). FeCl3, Pb(Ac)2·3H2O, and CuSO4 were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). HgCl2 was purchased from ACROS Organics (Fair Lawn, 

NJ, USA). Micro cover glass and FeSO4·7H2O was purchased from Sargent-Welch VWR 

Scientific (Buffalo Grove, IL, USA).   Fluorescein dye along with ammonium hydroxide (99%) 

and 96-well plate were purchased from Fisher Scientific (Hampton, NG, USA). CytoTox 96® 

Non-Radioactive Cytotoxicity Assay kit (showed as LDH assay in following sections) was 

purchased from Promega (Madison, WI, USA). Deionized (DI) water was produced by a Millipore 

water purification system (18.3 Ω · cm). HeLa cell line was purchased from ATCC (Manassas, 

VA, USA). Cell culture media, penicillin-streptomycin and trypsin were purchased from Gibco 

(Waltham, MA, USA). 4% paraformaldehyde (PFA) was purchased from Electron Microscopy 

Sciences (Hatfield, PA, USA). Fetal bovine serum (FBS) was purchased from Peak Serum, Inc 

(Wellington, CO, USA). Fluoromount-G mounting media was purchased from Southern Biotech 

(Birmingham, AL, USA). 96-well plate was purchased from Thermo Fisher Scientific (Waltham, 

MA, USA). Cell culture plates were purchased from Greiner Bio One (Kremsmunster, Austrian). 

Lab-Tek II Chamber Slide system was purchased from Nalge Nunc International Corp (Naperville, 

IL, USA). 
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4.2.2. Sample solution preparation 

The buffer solutions of CAPS, CHES, HEPES, citric acid, and maleic acid were prepared 

in concentrations of 20 mM and the pHs of 1.0, 3.0, 5.0, 7.0, 9.0, and 11.0 were adjusted by the 

addition of NaOH or HCl. For experiments of investigating photostability, dynamic light 

scattering, and zeta potential measurements, samples were sonicated for 10 – 30 min before 

analysis. For the detection of metal ions, 1.0 mM solutions of CuSO4, FeCl3, FeSO4, Pb(Ac)2, and 

HgCl2 were prepared in DI-water for further dilutions as needed. 

4.2.3. Instrumentation for the characterization of porphyrin-based GQDs 

A Perkin Elmer Lambda 1050 UV-250 UV/Vis/NIR spectrophotometer was used for the 

UV-Vis absorption measurements of the PGQDs. The fluorescence spectra and photostability 

measurements were acquired by a Shimadzu RF-6000 spectrophotometer. A Marlvern model of 

Nano-ZS Zetasizer was used to measure size distribution of the PGQDs as well as the zeta potential 

at various pHs. A Thermo Fisher Scientific Nicolet iS5 Fourier transform infrared spectrometer 

(FT-IR) was utilized to obtain the IR spectra of PGQDs, TCPP, CBDA-2 and the GQDs. A Hitachi 

7500 Transmission Electron Microscope (TEM) and a JEOL JEM-F200 High-resolution 

Transmission Electron Microscope (HRTEM) were used for particle imaging. Powder X-ray 

diffraction (XRD) measurement was conducted on a Rigaku SmartLab X-ray diffractometer at a 

scan rate of 4 °/min with Cu Kα irradiation (λ = 0.15418) at an accelerating voltage of 40 kV and 

a tube current of 44 mA. The fine powder sample was loaded on a zero-background silicon wafer 

sample holder. An Olympus FV1000 MPE Basic Multiphoton Microscope was used for in vitro 

confocal imaging. HeLa cells were cultured over night with gradient concentrations of the PGQDs 

for in vitro imaging and cytotoxicity analysis. A ELX800 plate reader was used for the cell viability 

experiments using the protocol of CytoTox 96® Non-Radioactive Cytotoxicity Assay kit. 
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4.2.4. Synthesis of PGQDs 

16.0 mg of CBDA-2 and 12.5 mg of TCPP were dissolved in 15.0 mL of DI-water and 100 

µL of ethylenediamine before sonication for 30 min. The resulting solution was then autoclaved 

for 12 h at 200 °C. After those 12 h the solution was removed and allowed to cool to room 

temperature before filtration using a 0.22 μm syringe filter and then dialyzed for 3 days using a 

500-1000 Da membrane against DI-water. When exposed to UV light, the PGQDs solution visibly 

showed red-emission light compared to GQDs blue-emission. 

4.2.5. Quantum yield 

The quantum yield of the PGQDs (650 nm) peak in HEPES buffer pH 7.0 was calculated 

against quinine sulfate in 0.1 M H2SO4 (Φ𝑠𝑡  of 0.54) and FITC in 0.1 M NaOH (Φ𝑠𝑡 of 0.79) as 

both were used as the standard reference.172 Calibration curves of fluorescence intensity vs 

absorbance for the PGQDs and standard references were generated and, utilizing Equation 4-1 

below, the quantum yield of PGQDs was calculated to be 46.6% against both standards; where Φ𝑥 

is the fluorescence quantum yield of the PGQDs, Φ𝑠𝑡 is the quantum yield of the standard, 𝐺𝑟𝑎𝑑𝑥 

and 𝐺𝑟𝑎𝑑𝑠𝑡 are the gradients of the calibration curve fluorescence intensity vs absorbance for the 

PGQDs and standards, respectively. 𝜂𝑥 and 𝜂𝑠𝑡 are the refractive index of the solvents for the 

PGQDs and standards. This is an exceptional quantum yield for graphene-based quantum dots, 

and additionally acceptable for PGQDs as well. 

Φ𝑥 = Φ𝑠𝑡 (
𝐺𝑟𝑎𝑑𝑥

𝐺𝑟𝑎𝑑𝑠𝑡
) (

𝜂𝑥
2

𝜂𝑠𝑡
2 )                                                                                                                                       (4 − 1) 

4.2.6. Cell experiments and cell imaging 

The viability of cells exposed to PGQDs was tested with a CytoTox 96® Non-Radioactive 

Cytotoxicity Assay kit. Briefly, the cells were incubated with PGQDs in a 96-well plate overnight. 
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A gradient concentration of PGQDs (0, 1, 5, 10, 20, 50, 100, and 200 µg/mL) was added into the 

wells. After 24 h, 50 μL aliquots of media from all groups were transferred to a new 96-well plate 

and mixed with 50 μL of the CytoTox 96® Reagent solution. After a 30 min incubation in the 

dark, 50 μL of the Stop Solution were added to the wells and viability was assessed by reading 

absorbance at 490 nm.  

HeLa cells were plated into an 8-well chamber slide overnight for in vitro imaging. 20 

mg/mL PGQDs were added into different wells for 3 h while a control was prepared for each 

sample. Then the slide was washed with PBS and the cells were fixed with 4% paraformaldehyde 

(PFA). The chamber wells were removed, and the slide was coverslipped for imaging 

4.3. Results 

4.3.1. Design of the PGQDs synthesis  

 A key component of this synthesis is using a biomass-derived molecule, making the 

product synthetically “green” and environmentally friendly. CBDA-2 was successfully derived 

from hemicellulose taken from agriculture corn waste products through a serious of chemical 

reactions including Knoevenagel condensation and blacklight radiation.214 There are several means 

of which to incorporate the red emission into GQDs as discussed previously. Keeping true to the 

use of natural material in order to reduce waste and the use of harmful chemicals, porphyrins were 

examined as an alternative. Given the status of porphyrins being pigments found throughout nature 

in several different forms, these unique molecules already contain the highly desirable red-

emission. However, like other fluorescent dyes and pigments, porphyrins suffer from poor 

photostability and photobleaching. The design of this experiment is to utilize the strengths of both 

porphyrins and CBDA-2 such that they counter each other’s weaknesses. In this work, the 
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porphyrin TCPP was chosen to be incorporated with CBDA-2 due to its successful use in 

nanoparticle synthesis in other studies215. Given that the use of porphyrins to synthesize 

nanoparticles is limited, and to minimize potential unforeseen issues in the synthesis procedure, it 

was vital to use a porphyrin that was successfully used previously when used in this work because 

the two components of CBDA-2 and TCPP have never been used in tandem. The synthesis route 

was shown in Schematic 4.1.  

 To synthesize the PGQDs, 20.0 mg CBDA-2 and 16.0 mg TCPP were dissolved in 20 mL 

of DI-water. To aid the compounds dissolving, the solution pH needs to be adjusted to a basic pH 

of 10.0 for CBDA-2. NH4OH was used for this pH adjustment before autoclaving the sample at 

200 °C for 12 h. The resulting solution was allowed to cool to room temperature before it was 

filtered with a 0.22 µm syringe filter and subjected to dialysis for 3 days against a 500-1000 Da 

membrane. Although GQDs contain an absorption at approximately 300 nm, the PGQDs showed 

a strong absorption peak at 420 nm which is consistent with TCPP absorption (416 nm), just 

slightly shifted. However, despite filtration and dialysis, residual TCPP was still accumulated in 

the solution as Q-bands were observed in the range of 475 – 655 nm, which are not typically 

retained after synthesis into forms of nanoparticles (Figure 4.1).  
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Figure 4.1: Synthesis of PGQDs utilizing NH4OH (75 µg/mL) and ethylenediamine (40 µg/mL) 

compared to GQDs (20 µg/mL) previously synthesized and TCPP (50 µg/mL). 

 

To resolve this issue of residual TCPP and Q-bands, the synthesis was adjusted and instead 

of using NH4OH to dissolve CBDA-2 and TCPP, 100 µL ethylenediamine was used due to its 

greater nucleophilic tendencies toward oxygen functional groups on the formed GQDs.216 The rest 

of the reaction synthesis remained the same (Schematic 4.1) and after dialysis, the PGQDs were 

dried at 60 °C in an autoclave oven which also helped remove any residual TCPP while still 

containing the red-emissive particles, as discussed later.   
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Schematic 4.1: Combination of CBDA-2 and TCPP to synthesize PGQDs. Experimental 

conditions: 200 °C for 12 h before 0.2 µm syringe filtration and dialysis for 3 d in 500-1000 Da 

membrane against DI-water. 

 

4.3.2. Characterization of PGQDs 

 4.3.2.1. Morphology and size of PGQDs 

QDs have a strict size definition of 2 – 10 nm and therefore it is essential to determine the 

size distribution of the newly synthesized particles to ensure their characterization as QDs. To do 

this, the morphology of the PGQDs was characterized using both regular TEM and high-resolution 

TEM (HRTEM). TEM images were first acquired (Figure 4.2A), which depicted large particles 

clusters; the largest being 24.7 nm and smaller particles ranging from 2.7 – 4.7 nm. The smaller 

particles were more abundant than the larger particles, however, the lower resolution of the TEM 

images made it difficult to distinguish clusters from large individual particles. Therefore, HRTEM 

images were also examined in order to better differentiate particles from each other. HRTEM 

images (Figure 4.2B) depicted particles with an average diameter of 7.5 nm. Furthermore, the 
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internal graphene lattice was visible in the image. However, additional complications arose with 

HRTEM imaging as the carbon-based PGQDs were set against a carbon mesh, resulting in the 

smaller particles fading into the background and becoming difficult to accurately measure the 

lattice size. To confirm the graphene lattice, XRD of the PGQDs was analyzed, which will be 

discussed later. 

 

Figure 4.2: TEM images of 750 μg/mL PGQDs; (A) TEM image of cluster with particles 2.7 – 

4.7 nm in size. (B) HRTEM image of single 7.51 nm particle with graphene lattice. 

 

With the HRTEM carbon-mesh imaging complications, and after seeing some 

agglomeration of the PGQDs in the TEM images, the particles were analyzed by DLS at various 

concentrations with various sonication times in order to optimize conditions for minimal 

agglomeration and more accurate determine particle size distribution. Ultimately, it was found that 
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the sonication time was proportional to the concentration of PGQDs. Lower concentrations 

required less sonication time. If the sonication was prolonged, the PGQDs would agglomerate. 

Concentrations of 5.0 µg/mL only required 5 min of sonication to limit agglomeration, however, 

exceeding 10 min of sonication showed a drastic increase in agglomeration. The same was true of 

higher concentrations, such as 30 µg/mL, which required a minimum sonication time of 30 min, 

but could not exceed 60 min without showing the same drastic increase in agglomeration. The 

optimal conditions for PGQDs to limit agglomeration was 5.0 – 30.0 µg/mL with proportional 

sonication times, not exceeding 60 min for the highest concentration (Figure 4.3). The average 

particle size utilizing DLS was 7.9 ± 4.1 nm which is consistent with the observable particles in 

both the TEM and HRTEM images. 

 

Figure 4.3: DLS analysis of 5.0 μg/mL PGQDs in DI-water (sonicated for 5-10 min). Average 

particle size was found to be 7.93 ± 4.1 nm. 

 

4.3.2.2. Surface functional groups and elemental characterization of PGQDs 

With the morphology and size characterization of the PGQDs showing encouraging results, 

further analysis was required to better understand the composition of the PGQDs. Therefore, the 

elemental makeup and functional group formation needed to be determined. The initial particle 
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surface characterization was found through zeta potential, an electrical potential found at the 

slipping plane, of particles in suspension that is used to help predict surface interactions and long-

term stability. Zeta potential of particles is also valuable to determine whether the particles could 

be used in biological applications, as the surface charge of the particles impacts their interaction 

with the surface of the cell. However, there are many factors that affect zeta potential and one of 

the more important factors is pH. More basic conditions will result in a buildup of negative charge 

while acidic conditions will build up a positive charge. Depending on the charge of the particles, 

switching the charge to positive or negative can result in the particles’ surface charge being 

neutralized, resulting in a zero zeta potential that causes the particles to agglomerate and fall out 

of suspension. Due to these particles being targeted for biological applications, it is vital to 

determine that the PGQDs are stable in neutral pHs and do not agglomerate. 

Therefore, the zeta potentail of PGQDs was tested in a pH range of 1.0 - 11.0, and the 

PGQDs depict an interesting trend. Despite the pH range of 1.0 - 11.0, the PGQDs showed 

relatively stable zeta potentials throughout compared to regular GQDs211 with no clear linear trend 

(Figure 4.4). This is most likely due to the nitrogen in TCPP that can maintain a positive charge in 

solution with decreasing pH as traditional GQDs do not contain nitrogen groups for positive charge 

stability. The most stable zeta potential was observed at pH 11.0 (-35.0 mV), which then decreases 

in pH 9.0 (-23.6 mV) and 7.0 (-22.2 mV) before slightly increasing in pH 6.5 (-24.8 mV) and pH 

5.0 (-27.8 mV). This slight increase in the more neutral-acidic region could be due to equilibrium 

forming between the negative charge on oxygen groups and the positive charge on nitrogen groups. 

After pH 5.0, the zeta potential flips positive for pH 3.0 (+22.7 mV) and pH 1.0 (+23.8 mV), 

however, the potential is still showing mild stability indicating that the particles are not 
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agglomerating due to the nitrogen groups on TCPP withstanding the pH change and increase 

positive charge in solution. 

 

 

Figure 4.4: Zeta potential measurements of 38 μg/mL PGQDs in pH 1.0-11.0 buffer solutions 

after 30 min sonication. 

 

The surface functional groups were characterized using FT-IR. The FT-IR spectra of 

GQDs, PGQDs, CBDA-2 and TCPP (Figure 4.5) were analyzed to determine functional groups 

and any chemical changes that occurred during the synthesis process. For the PGQDs, it was 

observed that the streching vibration frequency (black dashed line) of carbonyl attached to 

porphyrin macrocycles was missing compared to TCPP. Additionally, PGQDs contain C=C (1647 

cm-1, green (a)) and C=N (1541 cm-1, blue (b))  double bonds that are broadened, suggesting a 

chemical change and the formation of QDs. PGQDs also contain the same C=N peak (1378 cm-1, 

yellow (c) green dashed line) that is also observed in TCPP, suggesting that the porphyrin ring was 

maintained throughout the synthesis that was contributing to the PGQDs fluorescence 

characteristics.217  
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Figure 4.5: FT-IR spectra of GQDs, PGQDs, TCPP, and CBDA-2, all dried to a powder. 

 

The presence of these functional groups was confirmed with the use of XPS, a form of 

elemental analysis. The XPS spectrum (Figure 4.6A) shows three distinct element peaks of carbon 

(285 eV), nitrogen (400 eV), and oxygen (533 eV). This is consistent with the elements observed 

in both starting compounds and the bonds observed in FT-IR. Both TCPP and CBDA-2 contribute 

to the oxygen and carbon peaks while only TCPP will contain nitrogen, further confirming the 

presence of the porphyrin ring being maintained through the synthesis process. This also explains 

the abundance of carbon and oxygen compared to nitrogen.  
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Additionally, the graphene lattice is essential in this work as its formation aids in the 

structural stabilization of the particles compared to carbon quantum dots without the internal lattice 

due to different hybridization. To confirm the graphene lattice, XRD of the PGQDs was analyzed.  

A shallow peak at 20° in the XRD spectrum of the PGQDs (Figure 4.6B) points to carbon in a 

graphene lattice218 while no other peaks were observed in the spectrum. 

 

Figure 4.6: (A) XPS spectrum of the PGQDs shows carbon, nitrogen, and oxygen peaks. (B) XRD 

spectrum of dried powder PGQDs shows graphene lattice at 20°.  

 

4.3.3. Optical properties of PGQDs 

With the aim of this work being targeted for cell fluorescence imaging, it is important to 

acquire information on the PGQDs optical properties. This includes absorption and fluorescence 

as well as solution condition impacts such as pH, concentration, and excitation. The absorption 

spectrum of PGQDs after synthesis and drying (Figure 4.7A) showed a decrease in Q-bands from 

residual TCPP. Furthermore, drying the PGQDs to remove residual TCPP did not impact the 

fluorescence spectrum which shows a peak excitation of 420 nm that yields an emission peak at 

650 nm (Figure 4.7B); again, slightly shifted from previously noted TCPP fluorescence of 416 nm 
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excitation and 640 nm emission. This strongly indicates that the red emission is coming from the 

PGQDs and not residual TCPP in solution. Additionally, changing the excitation light for the 

PGQDs (Figure 4.7C) shows no radiation dependent behavior as there is no noted red-shifting with 

increasing excitation light was seen with GQDs, previously. The PGQDs do, however, show 

concentration dependency (Figure 4.7D) as increasing concentrations of PGQDs increases the 

fluorescence intensity. This is vital due to porphyrins known self-quenching tendencies219,220 with 

increasing concentration and thus the attachment of TCPP to the GQDs has aided in removing this 

self-quenching characteristic. 

 

Figure 4.7: Optical properties of PGQDs. (A) Absorption profile of PGQDs. (B) Excitation (420 

nm) and emission (650 nm) fluorescence spectrum of PGQDs (37.5 μg/mL) in 20 mM HEPES pH 

7.0 buffer. (C) Changing excitation light for PGQDs depicts excitation-dependent properties. (D) 

Changing concentration of PGQDs. 
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 Additionally, for the use of these PGQDs in bioanalysis and bioimaging, the stability and 

potential quenching of these particles in different pHs is critical to determine. Negatively surface 

charged GQDs are well known to experience quenching in acidic conditions, such as pH 1.0, due 

to full protonation of oxygen and carboxy functional groups221,222 leading to agglomeration. 

Therefore, the PGQDs fluorescence were tested in the same pH range of 1.0 - 11.0 where the 

fluorescence decreases linearly until pH 6.5, where it drastically drops to near zero fluorescence 

intensity at pH 5.0, 3.0, and 1.0. Fluorescence quenching at pH 3.0 - 5.0 is attributed to the 

agglomeration of carbon-based particles in acidic conditions and the degradation of the π-bonds in 

the porphyrin ring223 of the PGQDs rather than agglomeration due to the zeta potential analysis 

previously discussed (section 4.3.2.1) showing particle stability and little to no agglomeration of 

the PGQDs in pH 1.0 - 5.0 (Figure 4.8).  

 

Figure 4.8: Fluorescence intensity measurements of the PGQDs shows quenching effects in 

maelate pH 1.0 and citrate pH 3.0 – 5.0 while neutral and basic pHs of 6.5 – 11.0 (HEPES 6.5 – 

7.0, CHES 9.0, and CAPS 11.0) depict an increasing fluorescence signal with the more alkaline 

the solution becomes. All solutions were 190 μg/mL PGQDs. 
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However, the stability and maintenance of fluorescence in the neutral pHs is encouraging 

for the biological application of cell imaging these PGQDs are targeted for. However, TCPP and 

other porphyrins are well known for their poor photostability224,225 and therefore vital for the 

application of cell labeling to improve the photostability for prolonged analyses and cell imaging 

without the fluorescence signal being lost. Therefore, the photostability of the PGQDs was 

examined in comparison to previously made GQDs from CBDA-2226 and FITC dye as a standard 

(Figure 4.9). After 30 min of excitation light exposure, the PGQDs (excitation 420 nm, emission 

650 nm) decreased to 63.7% of their original intensity compared to 67.1% of the GQDs (excitation 

310 nm, emission 440 nm). FITC (excitation 495 nm, emission 519 nm) decreased to 8.7% after 

the 30 min trial, losing 80% of its original intensity in the first 700 sec. Therefore, it can be 

concluded that the PGQDs exhibit exceptional photostability for prolonged analysis applications.  

 

Figure 4.9: Photostability of FITC, GQDs, and PGQDs. FITC was prepared in 20 mM CHES pH 

9.0 while both GQDs and PGQDs were in 20 mM HEPES pH 7.0. 
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4.3.4. In vitro cell imaging 

The feasibility of the particles to be used as fluorescent agents in cell labeling was 

examined as well to determine particle-cell compatibility. For this purpose, the cytotoxicity was 

evaluated, utilizing the LDH assay with HeLa cells for 24 h incubation. The results (Figure 4.10) 

show negligible toxicity in comparison to the control group with PGQDs up to 200 μg/mL, strongly 

indicating superior biocompatibility of the PGQDs, although there is some evidence of graphene-

based particle toxicity at concentrations higher than 500 µg/mL226,227. 

 

Figure 4.10: LDH assay results of PGQDs incubated with HeLa cells 24 h at various 

concentrations.  

  

The negligible cytotoxicity results indicated that the PGQDs might be used as fluorescent 

cell staining agents. To test this idea, HeLa cells were incubated with PGQDs for 3 h before the 

cells were fixed and imaged via fluorescence confocal microscopy using the Alexa 488 channel. 

Control HeLa cells with no PGQDs were imaged (Figure 4.11A) along with the brightfield image 

of the cells demonstrating minimal basal autofluorescence (Figure 4.11B). However, the HeLa 

cells with PGQDs (Figure 4.11C) demonstrated robust staining verifying cellular uptake of the 
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PGQDs. Brightfield imaging verified an intact morphologic phenotype of the PGQDs treated cells 

consistent with no toxicity at this concentration (Figure 4.11D).   

 

Figure 4.11: (A) HeLa cells with no PGQDs. (B) Brightfield of blank HeLa cells. (C) 20 μg 

PGQDs incubated with HeLa cells. (D) Brightfield of PGQDs with HeLa cells.  

 

Lastly, with porphyrins being known to be sensitive to metal ions228-232, various metal ions 

were tested to ensure that the natural concentration of metals in biological systems would not 

interfere with the fluorescence intensity of the PGQDs. Metal ions of Fe3+, Fe2+, Cu2+, Pb2+, and 

Hg2+ were analyzed at concentrations of 1, 5, 10, and 50 µM (Figure 4.12). Fe3+ and Fe2+ showed 

the least quenching up to 50 µM. Pb2+ showed the most linear decrease in fluorescence intensity 

with increasing concentrations. Cu2+ showed the greatest quenching, dropping to less than 50% of 

the original fluorescence intensity at 5.0 µM, and was completely quenched at 50 µM. Hg2+ only 

slightly decreased up to 10 µM but then quenched to 40% fluorescence intensity with 50 µM. 

However, with no significant quenching with the lowest concentration of metal ions (1.0 µM), it 

is safe to confirm that the natural concentrations of metal ions in biological systems would not 

significantly impact the fluorescence intensity of the PGQDs negatively. 
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Figure 4.12: Metal ion analysis at various concentrations with 20 µg/mL PGQDs in 20 mM 

HEPES buffer pH 7.0. 

4.4. Conclusions 

Slight modification to the GQDs synthesis by using ethylenediamine instead of NH4OH 

and introducing TCPP yielded red-emissive particles with similar quantum yield (46.6%). After 

drying the PGQDs at 60 °C, residual TCPP was successfully removed from the material. TEM and 

HRTEM images showed particles of 7.51 nm with an internal graphene lattice and some larger 

particle clusters, which resulted in the PGQDs being sonicated to help alleviate the agglomeration. 

DLS showed that the PGQDs agglomeration was proportional to concentration and sonication 

time. Lower concentrations of PGQDs required less sonication time, otherwise agglomeration 

would spike. Similarly, higher concentrations of PGQDs required longer sonication times yet had 

a time cut-off before agglomeration would worsen drastically. XPS, XRD, and FT-IR confirmed 

the presence of carbon-nitrogen bonds in the PGQDs as well as a graphene lattice. Zeta potential 

also indicated the presence of nitrogen as the particles were stable in acidic and basic pHs. 
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However, fluorescence quenching was observed for pHs > 6.5, most likely due to degradation of 

TCPP π-bonds in the porphyrin ring.  

The various fluorescence spectra of the PGQDs shows a slightly shifted excitation and 

emission peak compared to TCPP, as well as a concentration dependency. However, no radiation 

dependency was noted, which was present in the GQDs also synthesized from CBDA-2. 

Cytotoxicity results showed negligible difference between the various concentration of PGQDs 

compared to the blank control, up to 200 μg/mL. In vitro confocal microscopy images of PGQDs 

incubated with HeLa cells showed exceptional particle integration into the cells that resulted in 

clear images for cell staining applications.  
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CHAPTER V 

DEVELOPMENT OF BIODEGRADABLE GQDS-HMSNS FOR FLUORESCENCE 

IMAGING AND DUAL CANCER TREATMENT 

5.1. Introduction 

Cancer is one of the leading causes of death around the world233 and since its discovery 

researchers have tried multiple means of treatment to find a cure for the deadly disease. Current 

methods of cancer treatment such as chemotherapy and radiology, although common and effective, 

are aggressive and as a result cause damage and stress to the patient under treatment. Physical 

symptoms of fatigue, hair loss, neutropenia, lymphedema, deep vein thrombosis, and 

psychological symptoms such as depression and memory loss are a short list of side effects brought 

on by traditional cancer treatment methods.234-237 Therefore, several disciplines such as medicine, 

biology, and chemistry have begun to research alternative means of cancer treatment with less 

severe side effects for a better quality of life.238-240 Nanoscience is one such discipline that has 

extensively researched the use of nanoparticles for cancer treatment.241 Nanoparticles contain 

several unique properties that are being exploited, in the hope of finding new treatment methods 

that are not as taxing on the patient.  

GQDs are a subset of nanoparticles defined by their size range of 2 – 10 nm. These particles 

contain several key characteristics including biocompatibility, low toxicity, resistance to 

photobleaching, high photostability, and photoluminescence that make them applicable in 

biological applications.242,243 One vital feature of GQDs is their fluorescence capabilities, which 

allows them to be extensively used for bioimaging applications.244-246 Over recent years, GQDs 

have been studied for their use in photodynamic therapy (PDT) for cancer treatment.247 GQDs 

contain the natural ability to generate reactive oxidative species (ROS) due to the carbonyl 
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functional groups found on their surface, which create a cytotoxic mechanism in the target cancer 

cell, though the exact pathway is still unknown.248 Under physiological conditions, cells 

continuously generate and eliminate ROS compounds and naturally control these fluctuating ROS 

levels.249 However, disturbance in these pathways, such as excessive ROS levels, leads to DNA, 

protein, lipid damage, and other interrupted cellular pathways.249,250 For effective PDT treatment 

there are three base requirements: a photosensitizer (PS), light, and oxygen.251 Ideally for PDT, 

the cancer cells absorb the PS, in this case the GQDs, which are activated by light to form ROS 

compounds that terminate the harmful cells through either apoptosis, necrosis, or autophagy.252 

GQDs have proven to be viable candidates in previous experiments for PDT treatment as they 

generate 1O2 and contain fluorescence characteristics.253-255 However, due to their small particle 

size, GQDs struggle to remain in the target area for long periods of time in addition to being poor 

drug carriers. 

Additionally, hollow mesoporous silica nanoparticles (hMSNs) have many unique 

properties for drug encapsulating capacity, drug release behavior, and enhancing antitumor 

immunity.256 hMSNs are known to be highly biocompatible and biodegradable due to pH 

sensitivity257, allowing for the avoidance of accumulation in the human body and making them 

viable for drug delivery applications.257-260 Features such as surface modifications261, pore size262, 

and pore volume263 allow hMSNs to be tailored for the drug type which they are intended to deliver 

into the targeted cancer cell.264,265 Due to the intrinsic properties of GQDs and hMSNs, they are 

two kinds  of many nanoparticles that have been extensively researched for their cancer treatment 

abilities.  

Recently, research has been conducted utilizing GQD and hMSN nanoparticles in tandem 

for dual cancer treatment of PDT and drug delivery in addition to cell imaging.266-269 For the goals 
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of this study, biomass-derived GQDs and biodegradable hMSNs will be synthesized together to 

make degradable GQDs-hMSNs that are also uniquely efficient at drug delivery, ROS formation, 

and fluorescence imaging. GQDs are synthesized in one of two ways: top-down or bottom-up.270 

The top-down method starts by breaking down carbon material using methods such as lithography 

and oxidation and bottom-up combines smaller carbon-containing compounds using methods such 

as pyrolysis and hydrothermal heating. For this project, GQDs will be synthesized from biomass-

derived material271 by dissolving the organic compound and subjecting the solution to heat for an 

extended time. For hMSNs synthesis, due to the vast number of synthesis methods that all impact 

the MSNs’ ability to treat cancer effectively, it remains an important and innovative field of 

research. This study will use the Stöber method272 which has successfully synthesized MSNs in 

the past and use Na2CO3 to hollow out the MSNs270 into hMSNs.  

A variety of analytical instrumentation were used to characterize the new GQDs-hMSNs. 

Firstly, their size distribution was examined using transmission electron microscopy (TEM) and 

dynamic light scattering (DLS) due to nanoparticles being defined by their size range of one 

dimension being 1-100 nm273 and previous studies showing that nanoparticle size range greatly 

impacts their cell interactions274,275. Elemental composition analysis was determined using XPS to 

confirm the presence of silicon, oxygen, and carbon along with FT-IR to confirm bond formations. 

Zeta potential was determined due to solution stability and surface charge playing vital roles in 

cellular interactions, as charged particles typically are better ingested by cells than noncharged 

particles.276,277 Then, their UV-Vis absorption and fluorescence features were collected to facilitate 

fluorescence imaging. Their biodegradability was also be tested using various pH solutions278 to 

mimic biological environments. Lastly, utility was assessed for in vitro fluorescence cell imaging 

using confocal microscopy, ROS formation using cell viability tests for type II PDT treatment due 
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to 1O2 formation via GQDs278,279, and drug delivery by examining loading and releasing 

capabilities into the targeted cancer cells using FITC dye as a mock drug280.  

5.2. Experimental 

5.2.1. Materials and sample preparations 

A Millipore water purification system (18.3 Ω · cm) was used to produce deionized (DI) 

water. 3-(cyclohexylamine)-1-propanesulfonic acid (CAPS buffer, >99%), 2-

(cyclohexylamino)ethanesulfonic acid (CHES buffer, >99%),  2-[4-(2-hydroxyethyl)piperazin-1-

yl]ethanesulfonic acid (HEPES buffer, 99.5%), citric acid (>99.5%), maleic acid (>99%), 

phosphate-buffered saline (PBS buffer, tablet), dimethyl sulfoxide (DMSO, >99.7%), 

triethanolamine (TEA,  >99%), tetraethyl orthosilicate (TEOS, 98%), cetyltrimethylammonium 

chloride (CTAC, 25 wt. % in H2O), (3-aminopropyl)triethoxysilane (APTES, 99%),  and 

cyclohexane (anhydrous, 99.5%) were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

RAW 264.7 cells cell line was purchased from ATCC (Manassas, VA, USA). Cell culture media, 

penicillin-Streptomycin and trypsin were purchased from Gibco (Waltham, MA, USA).4% 

paraformaldehyde (PFA) was purchased from Electron Microscopy Sciences (Hatfield, PA, USA). 

Fetal bovine serum (FBS) was purchased from Peak Serum, Inc (Wellington, CO, USA). 

Fluoromount-G mounting media was purchased from Southern Biotech (Birmingham, AL, USA). 

96-well plate, CyQUANTTM LDH Cytotoxicity Assay kit, Invitrogen LysoTracker TM Red DND-

99, and TO-PRO-3 were purchased from Thermo Fisher (Waltham, MA, USA). Cell culture plates 

were purchased from Greiner Bio one (Kremsmunster, Austrian). Lab-Tek II Chamber Slide 

system was purchased from Nalge Nunc International Corp. (Nalerville, IL, USA). The Micro 

cover glass was purchased from Sargent-Welch VWR Scientific (Buffalo Grove, IL, USA). 
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Olympus FV3000 Laser Scanning Confocal Microscope was purchased from Olympus 

Corporation (Shinjuku City, Tokyo, Japan). EXL800 microplate reader was purchased from Bio 

Tek (Winooski, VT, USA). 

Buffers of maleic acid, citric acid, HEPES, CHES, and CAPS were prepared in 20 mM 

concentrations, and additional 10 mM PBS and citrate, in DI-water with the pH being adjusted by 

the addition of HCl or NaOH. Zeta potential and DLS samples were subjected to sonication for 5-

10 minutes before analysis. For the drug delivery application of the GQDs-hMSNs, FITC was 

utilized as the mock drug. A 5.3 µM solution in DMSO was prepared for drug delivery 

applications. Degradation analysis was conducted in 10 mM PBS buffer, pH 6.5 and 7.0, to mimic 

a biological environment. The GQDs-hMSNs were added to both buffers, vortexed at 1000 rpm 

for 3 h at 37 °C for 6 days, and sampled on the first, third, and sixth day. Solutions were analyzed 

by DLS and TEM to confirm particle degradation over time.  

5.2.2. Instrumentation used for characterization and analysis of GQDs-hMSNs 

A Hitachi 7500 transmission electron microscope (TEM) was used to image the GQDs-

hMSNs. A Malvern model of Nano-ZS Zetasizer was used to measure size distribution and the 

zeta potential. UV-Vis absorption was analyzed by a Perkin Elmer Lambda 1050 UV-250 

UV/Vis/NIR spectrophotometer and the fluorescence spectra was acquired by a Shimadzu RF-

6000 spectrophotometer. IR spectra of hMSNs, GQDs, and GQDs-hMSNs were collected on a 

Thermo Fisher Scientific Nicolet iS5 Fourier transform infrared spectrometer (FT-IR). A 

Benchmark MultiThermal (Cool – Heat – Shake) H5000-H vortex system was used to integrate of 

GQDs into the hMSNs. A PHI Model 10-360 electron spectrometer with non-monochromatized 

Al Kα (1486.3 eV) X-rays was used for X-ray photoelectron spectroscopy (XPS). An Olympus 

FV3000 Laser Scanning Confocal Microscope was used for the in vitro cell imaging of the GQDs-
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hMSNs with two channels being used for imaging: red (Fura-Red (Ca-free)) and green (Alexa 

488). 

5.2.3. Synthesis of GQDs-hMSNs 

GQDs were synthesized as they were in previous experiments.211 To summarize, 20 mg 

CBDA-2170 was dissolved in 20 mL DI-water with the pH adjusted to 10.0 using NH4OH to help 

CBDA-2 dissolve before autoclaving for 12 h at 200 °C. The resulting solution was then dialyzed 

for 12 h using a 100-500 Da membrane against DI-water.  

hMSNs were synthesized first by mixing 24 mL of CTAC and 0.16 mL TEA into 40 mL 

of DI-water. CTAC and TEA were dissolved before 2.5 mL of solid silica suspension (prepared 

by the Stöber method) was added and transferred to a round bottom flask. Next, 20 mL of a 10 

v/v% solution of TEOS in cyclohexane was added to the round bottom flask in an oil bath on reflux 

at 60 °C. After 12 h, 2.0 mL of 10 v/v% APTES in cyclohexane was added and the solution was 

stirred for another 3 h at 60 °C. Then, the heat was lowered to 50 °C and 120 mL of 0.2 M Na2CO3 

was added and allowed to stir for 3 h. The flask was removed from the oil bath and the solution 

was centrifuged for 30 min at 12,000 rpm at 20 °C. The supernatant was discarded and the 

remaining solid was washed with 20 mL HCl/EtOH (1:10) solution three times. EtOH was added 

after the last washing step and placed back into a round bottom flask and heated in an oil bath until 

the EtOH reached a boil for 2-3 h. The final product of hMSNs was then dried completely to a 

solid for further use. 

 10 mg of hMSNs were added to 10 mL of DI-water and sonicated for 5 min to completely 

dissolve (1.0 mg/mL) and then filtered through a 0.1 µm syringe. Then, 1.0 mL of the filtered 

hMSNs was added to 1.0 mL of GQDs (0.2 mg/mL) and 3.0 mL of 20 mM HEPES buffer (pH 

7.0) and mixed at 1000 rpm at 37 °C for 3 h before being dried at 60 °C to a solid.  
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5.2.4. Cell toxicity  

1.0 mL of 5.3 µM FITC (2.06 µg) was added to 1.0 mg GQDs-hMSNs in 4.0 mL of 20 

mM HEPES buffer (pH 7.0) and vortexed at 1000 rpm for 3 h at 37 °C. The solution was then 

centrifuged at 10,000 rpm to separate any FITC not absorbed by the GQDs-hMSNs. Then, the 

particles were resuspended in 20 mM HEPES buffer pH 7.0 for absorption spectroscopy to 

quantify how much FITC was absorbed. Compared to the control, on average, 75% of FITC added 

was absorbed by the GQDs-hMSNs (FITC labeled GQDs-hMSNs).  

  Cell viability of GQDs-hMSNs was tested with CyQUANTTM LDH Cytotoxicity Assay 

kit. Briefly, the cells were plated into a 96-well plate overnight. A gradient concentration of GQDs-

hMSNs (0, 1, 2, 5, 10, 20, 50, 100, and 200 µg/mL) was added into the wells. After 24 h incubation 

in a CO2 incubator at 37 ºC, 10 µL of 10X Lysis buffer was added into 3 wells of 0 µg/mL group 

to serve as the maximum LDH controls. After 45 mins, 50 μL aliquots of all groups were 

transferred to a new 96-well plate, mixed with 50 μL of the Reaction Mixture solution. After 30 

minutes incubation at room temperature protected from light, 50 µL of Stop Solution was added 

to the wells, and the absorbance read using an EXL800 microplate reader to quantify cell viability. 

5.2.5. Cell imaging, PDT, and drug delivery  

Cell imaging of GQDs-hMSNs or GQDs-hMSNs was investigated by adding 0, 100, and 

200 µg/mL GQDs-hMSNs in to an 8-well slide chamber with cells inside. After a 4 h of incubation, 

the wells were rinsed with 1X PBS for 15 min 3 times, then fixed with 4% PFA for 15 min. After 

additional washes with PBS, TO-PRO-3 was added to stain the nuclei for 15 min. After washing 

with PBS, the chamber was removed and the slide was covered with a cover slide by mounting 

medium. When dry, the slides were imaged using an Olympus FV3000 Laser Scanning Confocal 

Microscope.  
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PDT analysis of GQDs-hMSNs was conducted using a LysoTracker Red lysosome kit and 

LDH assay. For cell viability assays, cells were seeded into a 96-well plate and incubated 

overnight. GQDs-hMSNs were then added in concentrations of 0, 1, 2, 5, 10, 20, 50, 100, and 200 

μg/mL and incubated for 4 h before being washed with 1×PBS buffer. The cells were then 

subjected to 785 nm laser irradiation for 30 min at 11.81 mW/cm2 and then incubated for another 

24 h before analysis of the LDH assay kits. For confocal imaging, RAW 264.7 cells were seeded 

in an 8-well slide chamber and incubated overnight. After incubation with 200 µg/mL GQDs-

hMSNs for 4 h, the cells were washed with 1×PBS buffer and after a 30 min incubation, fresh 

medium was added before for confocal imaging. 

5.3. Results 

5.3.1. Design of GQDs-hMSNs 

The primary focus of this study is to derive nanoparticles from biomass that help support 

their biocompatibility and biodegradation. Using CBDA-2, a biomass-derived molecule, for 

synthesizing the GQDs yields synthetically green and environmentally friendly graphene-based 

particles. Additionally, with CBDA-2 being synthesized from agricultural waste provides the 

means to recycle waste products into potentially vital nanoparticles for cancer imaging and 

treatment. Furthermore, the nanoparticles need to be biodegradable as to avoid accumulation in 

the patient body that could eventually lead to toxicity. Stöber method-based silica nanoparticles 

have previously been shown to possess excellent biocompatibility281-283 and, with their pH 

sensitivity, are prone to biodegradation283-285 in a matter of days or weeks. These key features make 

them valuable to avoid host accumulation and toxicity over time as the human body will naturally 

break down the silica for use in biological pathways. Thus, GQDs were synthesized using CBDA-

2. 
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 To start, CTAC and TEA were mixed together before a Stöber silica suspension was spiked 

in. The solution was allowed to react before TEOS was added. After heating for 12 h on reflux at 

60 °C, APTES was added to introduce amine functional groups to the particle surface to help in 

biocompatibility, low pH stability, and agglomeration, and the solution was allowed to react for 

another 3 h while stirring at 60 °C. This resulted in mesoporous silica nanoparticles (MSNs). 

Na2CO3 was added, and the solution was stirred for another 3 h at 50 °C before being washed with 

HCl/EtOH three times. EtOH was added to resuspend particles and allowed to boil for 2-3 h at 80 

°C. These steps etched out the silica core of the MSNs to make hMSNs. Once the EtOH evaporated, 

the hMSNs were dried to a solid. 1.0 mg was dissolved in 1.0 mL of DI-water and 0.2 mg GQDs 

were added before the solution was diluted to 5.0 mL total volume with 20 mM HEPES pH 7.0 

buffer. The solution was vortexed for 3 h at 1,000 rpm before being centrifuged and dried to purify 

the final product of GQDs-hMSNs (Schematic 5.1). 

 

Schematic 5.1: CTAC, TEA, and Stöber silica suspension were mixed together, and the solution 

was heated in an oil bath on reflux for 12 h. APTES was then added and the solution was stirred 

for another 3 h before the particles were etched with Na2CO3 to make hMSNs. The particles were 

then washed with HCl/EtOH, suspended in EtOH and dried to a solid. GQDs were added later after 

the hMSNs were filtered and allowed to react for 3 h at 1000 rpm. 
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5.3.2. Characterization of GQDs-hMSNs 

 5.3.2.1. Size distribution and surface morphology 

Particle size is essential to determine for nanoparticles as it is the determining factor as to 

whether or not they can be classified as nanoparticles. It is also important to determine particle 

size for biological applications as larger nanoparticles can struggle to diffuse across the cell 

membrane for imaging or drug delivery. Smaller particles tend to diffuse quicker and easier across 

the cell membrane; however, they are more common to cause cell toxicity.286 Therefore, two 

different analyses were conducted to determine the size distribution of the GQDs-hMSNs. TEM 

images showed particles ranging from 20 – 50 nm (Figure 5.1A). The larger particles were more 

difficult to differentiate between single particles and smaller clusters. Thus, DLS was also used to 

determine particle size, averaging 47.0 ± 19.0 nm (Figure 5.1B). 

 

Figure 5.1: (A) TEM image of 80 µg/mL GQDs-hMSNs. (B) DLS of 32 µg/mL GQDs-hMSNs 

in DI-water after 5 min sonication. 
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Surface charge is also essential for nanoparticle determination as the charge will impact 

cellular uptake. Since uncharged particles are more difficult for cells to ingest, it is important to 

ensure and analyze the surface charge of the GQDs-hMSNs. Therefore, zeta potential 

measurements were taken at various pHs (1.0-11.0) and depict a decreasing potential from +5.71 

to -21.8 mV (Figure 5.2). The most agglomeration and solution instability occurred in the more 

acidic pHs (1.0-5.0) but increased in stability from pH 7.0-11.0, indicating an overall negative 

surface charge. Lower agglomeration and greater solution stability in neutral pHs benefit 

biological applications. Additionally, higher agglomeration was observed for prolonged sonication 

times, greater than 30 min, and at concentrations higher than 50 μg/mL. 

 

Figure 5.2: Zeta potential of GQDs-hMSNs (32 µg/mL) in various pHs (maleate 1.0, citrate 3.0-

5.0, HEPES 7.0, CHES 9.0, and CAPS 11.0). 

 

5.3.2.2. Functional group formation and elemental composition  

Functional groups are essential for biological applications and additionally provide insight 

into the surface composition of the newly synthesized GQDs-hMSNs. FT-IR spectra were 

collected for hMSNs, GQDs, and GQDs-hMSNs to compare the differences of functional groups 

and additional bond formation after the synthesis of the nanoparticles and quantum dots together 
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(Figure 5.3). For hMSNs without additional GQDs, functional groups were determined to be Si-

O-H stretching (3222 cm-1, Figure 5.3A(a)), Si-O-Si bending (1058 cm-1, Figure 5.3A(b)), Si-OH 

vibration (944 cm-1, Figure 5.3A(c)), and Si-O vibration (796 cm-1, Figure 5.3A(d)).287-289 GQDs 

functional groups have been identified as -OH (3114 cm-1, Figure 5.3B(e)), C=O (1668 cm-1, 

Figure 5.3B(f)), and C-O/C-N (1384 cm-1, Figure 5.3B (g)). The spectrum of GQDs-hMSNs 

contained both bonds found in hMSNs and GQDs, indicating the compilation of the two 

nanoparticle species, along with an additional C-H bond formation (2821 cm-1, Figure 5.3C(h)). 

Furthermore, the -OH and C-O peaks are more distinct than what is observed in the GQDs 

spectrum, along with a decrease in C=O. This indicates the breaking of C=O bonds and the 

formation of Si-O-C bonds and potential C-Si bonds between the GQDs and hMSNs which 

signifies that the GQDs are chemically bonding to the surface of the hMSNs rather than being 

absorbed into the pores.290,291 This is beneficial as the GQDs are less likely to escape the hMSNs 

before being delivered into the cancer cells for imaging and PDT treatment in addition to not 

interfering or interacting with the mock loading drug for delivery.   
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Figure 5.3: FT-IR spectra of hMSNs (A), GQDs (B), and GQDs-hMSNs (C). Peaks are attributed 

to (a, blue) Si-O-H stretching, (b, green) Si-O-Si bending, (c, yellow) Si-OH vibration, (d, red) Si-

O vibration, (e, pink) -OH, (f, purple) C=O, (g, orange) C-O/C-N, and (h, gray) C-H.  

 

XPS analysis was also conducted to confirm the elemental composition and bond formation 

of the GQDs-hMSNs seen in the FT-IR spectra and ensure that silicon, oxygen, and carbon were 

all present in the new synthesized particles. These three primary elements were identified in 

addition to the presence of nitrogen. This nitrogen content was attributed to APTES bonded to the 

hMSNs surface.292 The elements of silicon and oxygen were attributed to be from the hMSNs, 

carbon and oxygen from the GQDs, and nitrogen from APTES. High-resolution scans of the 



 

84 
 

carbon, nitrogen, and silicon peaks of the GQDs-hMSNs showed C-O/C-N and C-C/C-Si bonds 

within the carbon peak (Figure 5.4A), NSi2O and NSi2Ox in the nitrogen peak (Figure 5.4B), and 

the silicon showed SiO and SiOx bonds (Figure 5.4C). The presence of the C-Si bond supported 

the spectrum seen in FT-IR and confirmed the chemical binding of GQDs to the hMSNs surface, 

and further explained the slight peak shift in the excitation wavelength. 

 

Figure 5.4: XPS high-resolution scans of (A) carbon, (B) nitrogen, and (C) silicon peaks in GQDs-

hMSNs. The carbon peak shows C-O, C-Si, C-C, and C-N bonds. The nitrogen peak is primarily 

NSi2Ox. Lastly, the silicon peak shows SiOx bonds. 
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5.3.2.3. Optical properties and pH effects 

Cell labeling for confocal microscopy imaging require fluorescent characteristics of 

nanoparticles in order to be applicable. Thus, the absorption, excitation and emission spectra were 

collected of the GQDs-hMSNs. The absorbance of 300 nm, excitation of 310 nm, and emission of 

440 nm for the GQDs were previously analyzed in another study.211 However, after conversion 

with hMSNs, the new GQDs-hMSNs spectral features slightly shifted, with an absorbance at 310 

nm (Figure 5.5A) and an excitation peak at 330 nm (Figure 5.5B) due to chemical binding on the 

silica surface. The emission peak at 440 nm remained the same (Figure 5B). Additionally, the 

GQDs-hMSNs showed concentration dependence (Figure 5.5C) as the GQDs have shown 

previously. However, the radiation dependency and red-shifting of the emission peak with 

increasing excitation (270 – 370 nm) did not occur as analyzed before (Figure 5.5D), and thus the 

GQDs now displayed rapid internal conversion from higher initial excited states to lower states 

that prevented the red-shift since being attached to hMSNs.  
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Figure 5.5: (A) Absorption spectra of GQDs (100 µg/mL), hMSNs (10 µg/mL), and GQDs-

hMSNs (10.8 µg/mL). (B) Excitation and emission spectrum of GQDs-hMSNs (10.8 µg/mL). (C) 

Concentration dependency pattern of GQDs-hMSNs. (D) Changing excitation light showing no 

red-shift of the emission peak (18 µg/mL).   

 

The human body contains a range of pHs, so the GQDs-hMSNs are required to show 

fluorescence stability across different pHs and avoid quenching to optimize in vitro cell imaging. 

Therefore, the GQDs-hMSNs fluorescence was analyzed at pHs 1.0 – 11.0 for any quenching 

tendencies. For pHs 5.0 – 9.0, the GQDs-hMSNs retained their fluorescence, and were only 

slightly quenched at pH 11.0. Furthermore, pHs 1.0 and 3.0 showed greater quenching, with pH 

1.0 nearly losing fluorescence altogether (Figure 5.6). However, this is typical of GQDs as 
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extremely acidic conditions lead to agglomeration and solution instability, as seen in the zeta 

potential analysis (section 5.3.2.1). Nonetheless, the highest fluorescence observed in the neutral 

pHs was encouraging for cell labeling applications as the fluorescence will be maintained in the 

biological pHs.   

 

Figure 5.6: GQDs-hMSNs with changing pH (maleate pH 1.0, citrate 3.0-5.0, HEPES 7.0, CHES 

9.0, CAPS 11.0) of the GQDs-hMSNs (36 µg/mL). The same trend was observed for GQDs, where 

quantum dots quench in pH 1.0 but remain steady in the neutral pHs. 

 

5.3.3. GQDs-hMSNs biodegredation 

A goal of this project is to lessen immune system taxation via traditional cancer treatments 

and therefore it is important to ensure that the GQDs-hMSNs are not retained long-term in the 

patient body and are broken down after a couple of weeks or at least after they have fulfilled their 

purpose for drug delivery and PS agent for PDT treatment. Solutions of 10 mM PBS buffer, pH 

7.0 and 6.5, and 10 mM citrate buffer pH 5.0 and 4.0, were used to analyze the biodegradation of 

the GQDs-hMSNs to mimic biological systems. The GQDs-hMSNs were added to the buffer pHs 

(0.2 mg/mL) and vortexed for 6 days at 37 °C, 1000 rpm. Samples were taken every 24 h and 

analyzed via DLS and TEM to observe particle degradation over time.  
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DLS of pH 4.0 revealed particle agglomeration after the first 24 h in the buffer (Figure 

5.7A). The TEM image of day 1 depicts large, swollen particles with some already rupturing under 

the acidic conditions (Figure 5.7B). For day 3, the particles were approximately the same size as 

on day 1, as observed in the DLS. However more debris particles emerged in lower quantities 

(Figure 5.7C). Lastly, day 6 TEM depicted a large increase in debris particles along with breakage 

and misshaped larger particles as they continued to degrade (Figure 5.7D). For pH 5.0, a similar 

trend was observed for the first day, with increased particle agglomeration observed in the DLS 

(Figure 5.7E). Under TEM, day 1 GQDs-hMSNs at pH 5.0 depicted the same enlarged particles. 

However, they appeared to aggregate together instead of swelling like at pH 4.0 (Figure 5.7F). By 

day 3, the particles at pH 5.0 TEM (Figure 5.7G) were similar to day 3 particles at pH 4.0 while 

the DLS also confirmed the slight degradation of the particles although they were degrading more 

slowly. Day 6 TEM (Figure 5.7H) showed rupturing particles that clumped together to yield larger 

size distributions observed in DLS.    

PBS buffers showed slightly different particle formations. For pH 6.5, the particles 

immediately aggregated and swelled after one day, as observed in DLS and TEM (Figure 5.7I and 

5.7J). However, the swelling was more severe than in the more acidic buffers. Day 3 TEM images 

showed a small decrease in particle size (Figure 5.7K), with less swollen particles and the 

appearance of smaller degradation debris particles. Day 6 TEM (Figure 5.7L) showed even more 

debris particles, as seen in the DLS.  

In comparison, pH 7.0 showed a similar trend as the 6.5 pH. After day 1, the DLS results 

(Figure 5.7M) showed the same particle size distribution as observed previously (section 5.3.2.1). 

However, the TEM images for day 1 (Figure 5.7N) showed burst or rippled particles, indicating 

that even after a short period of time, the particles started to degrade and lose their surface integrity. 



 

89 
 

Day 3 for pH 7.0 (Figure 5.7O) showed increased particle agglomeration and swelling with smaller 

debris particles, much like pH 6.5 on day 6. Lastly, for day 6 at pH 7.0, there was an increase in 

debris particles with some swollen and agglomerated particles (Figure 5.7P).  

Therefore, the GQDs-hMSNs have a prolonged degradation at pH 7.0 compared to 4.0. 

Thus, they will function longer at a natural, healthy pH, allowing the particles more time to 

accumulate in cancerous cells without releasing the chemotherapy drug or GQDs. Furthermore, as 

observed in the zeta potential measurements (section 5.3.2.1) the GQDs-hMSNs show 

agglomeration and solution instability in acidic pHs. This will contribute to the increased 

agglomeration seen at pH 5.0 and 4.0 after one day of exposure. From there, the particles degraded 

faster at pH 4.0 based on the particle size in TEM. However, retained agglomeration at pH 5.0 for 

day 6 yielded a larger particle size in DLS than what was observed in TEM. Furthermore, pH 7.0 

and 6.5 showed less severe particle agglomeration after one day, as expected due to the zeta 

potential measurements previously discussed. Nonetheless, the slightly more acidic pH of 6.5 

showed larger particle size and agglomeration, initially, compared to pH 7.0 and showed a faster 

rate of degradation. Therefore, the GQDs-hMSNs will most likely degrade faster in cancerous 

environments that are more acidic, releasing the chemotherapy drug and GQDs into the cancer 

cells for treatment and imaging.  
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Figure 5.7: (A) DLS of 32 µg/mL GQDs-hMSNs particle degradation in pH 4.0 for 6 days. TEM 

images of particles in pH 4.0 after (B) day 1, (C) day 3, and (D) day 6. (E) DLS of 32 µg/mL 

GQDs-hMSNs particle degradation in pH 5.0 for 6 days. TEM images of particles in pH 5.0 after 

(F) day 1, (G) day 3, and (H) day 6. (I) DLS of 32 µg/mL GQDs-hMSNs particle degradation in 

pH 6.5 for 6 days. TEM images of particles in pH 6.5 after (J) day 1, (K) day 3, and (L) day 6. (M) 

DLS of 32 µg/mL GQDs-hMSNs particle degradation in pH 7.0 for 6 days. TEM images of 

particles in pH 7.0 after (N) day 1, (O) day 3, and (P) day 6. 
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5.3.4. Cell viability, in vitro cell imaging, PDT treatment, and mock drug delivery of GQDs-

hMSNs 

In order to determine the biocompatibility of the GQDs-hMSNs, cytotoxicity tests were 

also analyzed using LDH assays. Effects of GQDs-hMSNs on cell viability were tested using RAW 

264.7 cells, incubating the cells for 24 h with different concentrations of GQDs-hMSNs. Thermos 

Fisher CyQUANT™ LDH Cytotoxicity Assay Kit was performed to measure cell viability. The 

cells showed no signs of toxicity up to 100 μg/mL. However, at 200 μg/mL the cell counts 

decreased to 70 - 60% of the original amount (Figure 5.8). This is attributed to the hMSNs as the 

GQDs showed no cytotoxicity up to 200 μg/mL in previous studies.211 

 

Figure 5.8: LDH assay cytotoxicity analysis of GQDs-hMSNs up to 200 μg/mL in RAW 264.7 

cells.   

  

Furthermore, to determine GQDs-hMSNs applicability in cell imaging, in vitro confocal 

microscopy images were collected using RAW 264.7 cells.  The cells were incubated for 4 h with 

100 and 200 μg/mL GQDs-hMSNs (Figure 5.9A). Additionally, TO-PRO-3 dye was used to label 

the cell nucleus. Upon imaging, weak fluorescence signal was found using the 488 nm laser for 

the GQDs-hMSNs (Figure 5.9B). This is due to the 488 nm laser being just outside the GQDs 
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optimal excitation wavelength. However, the concentration of GQDs added in the synthesis can 

be increased to bind more GQDs to the surface of the hMSNs to provide a stronger fluorescent 

signal in the cells. 

 

Figure 5.9: In vitro images of RAW 264.7 cells with GQDs-hMSNs. (A) 0, 100, and 200 μg/mL 

cell cultures with TO-PRO-3 labeled nucleus. (B) 200 μg/mL GQDs-hMSNs using the 488 nm 

laser showed a weak fluorescence signal. Transmitted (T) and merged images depict the cell 

integration of GQDs-hMSNs in the cytoplasm. 

 

The GQDs-hMSNs were also examined for their use in PDT treatment of RAW 264.7 cells 

using LysoTracker Red in confocal microscopy and LDH assay for cytotoxicity analysis. A 

concentration range of 0 - 200 μg/mL GQDs-hMSNs was tested and after 30 min of laser 

irradiation at 11.81 mW/cm2, the cells were incubated for another 24 h. The cytotoxicity showed 

a linear decrease in cell viability with increasing concentrations of GQDs-hMSNs until 20 μg/mL, 
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signifying that the GQDs-hMSNs were generating 1O2 and induced toxicity in the RAW 264.7 

cells (Figure 5.10A). Concentrations higher than 20 μg/mL decreased cell viability compared to 

the control, however, the decrease was similar to the 20 μg/mL concentration. This decrease in 1O2 

generation is attributed to the induced toxicity of the hMSNs observed in the cytotoxicity analysis 

previously discussed. The cells are subjected to a greater toxicity due to the presence of hMSNs 

before the GQDs could generate 1O2. Thus, fewer viable cells would be available for PDT 

treatment and display a decrease in effective PDT treatment, but not necessarily due to a lack of 

1O2 generation. Additionally, LysoTracker Red was used to track the ROS generation within the 

RAW 264.7 cells. Confocal microscope images were taken using the 488 nm laser (Figure 5.10B) 

for GQDs-hMSNs and the 561 nm laser (Figure 5.10C) for LysoTracker Red. The TD (Figure 

5.10D) and merged (Figure 5.10E) images showed that the GQDs-hMSNs and LysoTracker Red 

are in the RAW 264.7 cells’ cytoplasm. This signifies that the ROS generation comes from the 

incubated GQDs-hMSNs, which are the main contributor to the cells’ decrease in viability.  
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Figure 5.10: PDT treatment of RAW 264.7 cells with GQDs-hMSNs. (A) LDH assay cytotoxicity 

analysis after 24 h treatment at different concentrations (0 - 200 μg/mL); (+), 785 nm laser 

irradiation; (-), no laser irradiation. Confocal microscope images of LysoTracker Red with 200 

μg/mL GQDs-hMSNs (B) 488 nm laser, (C) 561 nm laser, (D) TD, and (E) merged. 

 

Drug delivery via GQDs-hMSNs using FITC dye as a mock drug was also analyzed by 

confocal microscopy. Concentrations of 0, 50, 100, and 200 μg/mL FITC labeled GQDs-hMSNs 

were cultured with RAW 264.7 cells for 4 h. The results showed an increasing fluorescence signal 
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with increasing concentration of FITC labeled GQDs-hMSNs (Figure 5.11A), confirming that 

FITC is being delivered by the GQDs-hMSNs. Lower concentrations, such as 100 μg/mL of the 

FITC labeled GQDs-hMSNs still adequately delivered the mock drug and yielded exceptional cell 

images (Figure 5.11B).   

 

Figure 5.11: In vitro images of RAW 264.7 cells with GQDs-hMSNs doped with FITC dye as the 

mock drug. (A) 0, 50, 100, and 200 μg/mL cell cultures with TO-PRO-3 labeled nucleus. (B) 100 

μg/mL GQDs-hMSNs with FITC. 

5.4. Conclusions  

hMSNs were successfully synthesized using the Stöber method that allowed GQDs to be 

incorporated onto their surface to form GQDs-hMSNs for cell imaging and dual cancer treatment.  

DLS and TEM confirmed the presence of particles in the size range of 47.0 ± 19 nm. DLS and 

TEM were also used to confirm particle degradation in pH 7.0 and 6.5 after being vortexed for 6 

days at 1000 rpm, 37 °C. Samples were taken on the days 1, 3, and 6 and examined by DLS and 
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TEM. After 6 days, it was observed that the GQDs-hMSNs in pH 7.0 degrade at a slower rate 

compared to pH 6.5, indicating that the particles would degrade faster in cancer cells and would 

not linger in the patient to induce toxic effects. Additionally, the fluorescence characteristics of 

the GQDs was maintained with only a slight shift observed in the excitation spectrum compared 

to GQDs without hMSNs. The fluorescence patterns of the GQDs-hMSNs were comparable to 

GQDs, showing pH sensitivity in acidic conditions, zeta potential measurements showed particle 

agglomeration in pH 3.0-1.0, and concentration dependency. However, red-shifting on the GQDs 

was not observed in the GQDs-hMSNs, a strong indication of chemical binding on the silica 

particle surface to prolong stability of the GQDs. Furthermore, FT-IR confirmed the functional 

group difference between GQDs, hMSNs, and GQDs-hMSNs. An increase in the C-O band and a 

decrease in the -OH band found in GQDs-hMSNs compared to GQDs indicates the GQDs binding 

to the hMSNs through oxygen bands, as the hMSNs containing both Si-OH and Si-O showed a 

decrease in Si-OH in GQDs-hMSNs but a preservation of Si-O. XPS also yield an elemental 

spectrum of GQDs-hMSNs that shows bond formation between GQDs and hMSNs, along with the 

elements of C, O, and Si being present, in addition to N from APTES.   

 The GQDs-hMSNs showed slight cytotoxic effects at 200 μg/mL, attributed to the hMSNs. 

However, the GQDs-hMSNs were successful absorbed by RAW 264.7 cells after 4 h of incubation 

to yield fluorescent in vitro images via confocal microscopy. Furthermore, RAW 264.7 cells were 

successfully imaged using the GQDs-hMSNs via confocal microscopy. However, higher 

concentrations were needed as the 488 nm laser was out of range for optimal excitation of the 

GQDs-hMSNs. Nonetheless, the hMSNs have shown great adaptability to the GQDs, and thus a 

higher concentration of GQDs can be added during the synthesis to increase their concentration 

for cell imaging without increasing the concentration of hMSNs to reduce toxicity. PDT treatment 
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was also successful using the GQDs-hMSNs, showing induced toxicity with increasing 

concentration as more 1O2 was generated. Additionally, the hMSNs also displayed excellent drug 

loading and releasing characteristics, utilizing FITC dye as the mock drug. RAW cells were 

incubated with the GQDs-hMSNs doped with FITC, and the resulting confocal images displayed 

excellent delivery of FITC into the cells.  
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CHAPTER VI 

CONCLUSIONS 

 

Using the bottom-up approach allows the particles to be synthesized to be quite small. 

Using DLS, TEM, and HRTEM, the GQDs and PGQDs were both confirmed to be within the QD 

size range with an average size of 6.50 ± 3.5 nm and 7.95 ± 7.1 nm, respectively. Furthermore, the 

Stöber for hMSNs typically produces particles that are on average 50 nm in size. The hMSNs 

synthesized in this dissertation were close to that size, being 47 ± 19 nm. Zeta potential 

measurements were predicted to show particle stability in neutral and basic pHs for the GQDs as 

the oxygen groups will provide stability in basic conditions. This was observed for the GQDs, the 

oxygen groups were not able to withstand increasing positive charge in acid pHs, thus resulted in 

particle agglomeration and a decrease in potential. In comparison, the PGQDs were showed to 

have a greater stability in acidic pHs due to the presence of nitrogen in the porphyrin ring. hMSNs 

showed similar trends to the GQDs as they also formed negative charges due to oxygen presence 

in SiO2.  

 Given the use of biomass-derived material to synthesize the GQDs, the main elemental 

composition primarily was carbon with some oxygen due to its presence in biomass material, 

CBDA-2. For PGQDs, TCPP contains additional nitrogen in the central ring and therefore it was 

still be present after synthesis. This elemental makeup was confirmed using XPS. Further chemical 

bonds were analyzed using FT-IR. Bonds of C-O, C=O, and -OH were confirmed in the spectra of 

GQDs and PGQDs, with added C=N in PGQDs. Additionally, silica bonds were identified in 

hMSNs, primarily in the form Si-O-Si and Si-OH. The element of silicon was also observed in 

XPS. Lastly, the graphene lattice appeared at 20° in XRD spectra for the GQDs and PGQDs, 
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confirming that the particles are comprised of a lattice that yields increased particle stability for 

fluorescence imaging and prolonged light exposure for photostability. 

 For the optical properties of GQDs and PGQDs, the GQDs contained the common blue-

green emission light at 440 nm with an excitation light of 310 nm. However, the GQDs also 

contained a rare NIR peak at 850 nm. The PGQDs were red-emissive with a peak at 650 nm at an 

excitation of 420 nm. Some quenching effects were observed in pHs lower than 3.0 for the GQDs 

while the PGQDs showed less severe quenching in the acidic environments due to the presence of 

nitrogen. hMSNs were not expected to have any fluorescence characteristics and when examined 

they indeed did not display any fluorescence properties.  

Using MTT and LDH assays, the GQDs and PGQDs showed little to no toxic effects on 

RAW 264.7 and MCF-7 cells up to 200 µg/mL. This low toxicity was attributed to their chemical 

composition being that of biomass-derived material and natural pigments allowing for improved 

symbiosis interactions. Additionally, their smaller particle size allowed them to pass through the 

cell membranes and be incorporated into the cell cytoplasm for confocal imaging. MCF-7 cells 

were used for the GQDs and HeLa cells were used for the PGQDs for the in vitro confocal 

microscopy imaging. Both cell lines were successful in incorporating the particles into the 

cytoplasm and were clearly imaged without any leaching out of the cells.  

For GQDs-hMSNs, a slight increase in toxicity was observed in the 200 µg/mL 

concentration in RAW 264.7 cells. This is attributed to the hMSNs rather than the GQDs due to 

the low toxicity GQDs previously observed. They were also successfully imaged in RAW 264.7 

cells using confocal microscopy, although there was a decrease in fluorescence compared to 

GQDs. However, utilizing FITC dye, the GQDs-hMSNs were successfully loaded with the mock 

drug and delivered it into the RAW 264.7 cells. Additionally, using the lysosome kits, ROS 
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compounds were successfully tracked within the cells for PDT treatment and imaged using 

confocal microscopy. LDH assays also indicated induced toxicity of the GQDs-hMSNs after laser 

irradiation produced 1O2 which induced toxicity in the cells. 
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