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ABSTRACT 

Effective stress exerted on porous rocks can change and alter reservoir permeability 

accordingly during reservoir development. The permeability evolution under different reservoir 

statues will impact oil production and EOR design in the Bakken shale porous media. An 

accurate permeability model can improve capturing the fluid transport mechanism and create a 

reliable long-term dynamic fluid forecast via reservoir simulation. This research is focused on 

studying permeability alteration behavior under different pressure circumstances. The reservoir 

gradually loses its original pore pressure during production, increasing reservoir net effective 

stress. Therefore, a reduction in reservoir properties such as permeability or porosity can occur in 

response to net stress change within the pores due to the withdrawal of the fluids from the 

reservoir. In contrast, a fluid injection can reduce formation pressure drop and maintain pressure 

during the development process in tight rock reservoirs. However, physical parameters (e.g., 

permeability) cannot be fully recovered, and back to its initial value, this nature of rock is 

characterized as stress sensitivity or hysteresis. Stress-dependent properties are hard to model 

accurately in reservoir simulation because of the uncertainty associated with the stress-dependent 

coefficients and correlations. The conventional reservoir simulators use the compressibility 

concept to consider the change of pore volume, where the rock properties are usually assumed to 

be insensitive to the evolution of the stress state. However, reservoir compaction and stress 

changes can significantly impact reservoir management and production performance. In this 

study, a review of different rock characterizations of the Three forks and Bakken core samples to 



xv 

determine stress dependency of permeability and its hysteresis during pressurizing/ 

depressurizing rock samples is conducted. Core samples from the Middle Bakken formation in 

North Dakota for further permeability alteration experiments are utilized. This data will be used 

to evaluate the permeability behavior with respect to critical pressure known as pressure shock. 

Also, the data analytic approach to model permeability on a larger scale based on several inputs 

such as depth, different net confining stress, and porosity is performed. Numerical reservoir 

simulation using Bakken and Three Forks formation is utilized to integrate permeability pressure 

correlation in simulation modeling and compare several injection scenarios with non-sensitive 

permeability models.  

The results indicate that ignoring the effect of slope discontinuity at a critical effective 

stress using the same equation for a whole range of data is inaccurate. Indeed, developing 

permeability-stress correlations cause inapplicable mathematical models and, consequently, 

erroneous permeability damage prediction. Following this concept, modifying the correlation for 

two Bakken cores shows that considering the critical points on each hysteresis path could 

improve the final form of the stress-dependent permeability relationship. Also, machine learning 

modeling using available lab core data can be used as an alternative method to capture Bakken 

and Three Forks permeability changes under different net confining stress while incorporating 

the critical pressure effect. Furthermore, to evaluate the several gas injection scenarios, the 

timely reservoir pressure change is divided into three distinct regions where critical effective 

pressure impact and miscibility of gas injection vary based on current reservoir statutes. The 

results demonstrate that gas injection in these formations is a strong function of fracture/matrix 

permeability damage. Compared to the model without considering stress-dependent 

permeability, the cumulative production could reduce because the permeability decreases along 
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with reservoir pressure decline. As a result, considering permeability modeling in numerical 

simulation can help to understand the role of different injection scenarios and enhance the 

knowledge for controlling and managing reservoir production by proper operation decisions in 

unconventional reservoirs.  
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CHAPTER 1 

INTRODUCTION 

The objective of this research is to investigate the impact of the exerted effective stress 

on porous rocks and respective reservoir permeability alteration in Bakken and Three Forks 

Formation based on the experimental core data. The first question in reservoir characterization of 

the Bakken is raised from the difficulties associated with naturally fractured reservoirs in 

permeability alteration due to the depletion or injection and prediction of permeability under 

reservoir conditions where the lab experiments are limited. The second question is related to the 

significance of the different roles of fracture in the hysteresis path before and after critical 

effective stress. The third question is how permeability evolution under different reservoir 

statues will impact oil production and EOR design in the Bakken shale porous media. 

1.1. Research Objectives  

This work aims to 1) study and measure the Bakken permeability change over a wide 

range of pressure changes and determine the critical effective stress point; 2) propose a novel 

method of curve fitting model to experimental permeability-stress data points with considering 

critical effective stress. 3) Integrate modified correlations with critical point consideration in a 

numerical simulation model where the permeability evolution and cumulative fluid production 

are calculated at each step. The effect of reservoir compaction and permeability damage under 

several lab conditions can be utilized to evaluate different gas injection scenarios for the Bakken 

Formation. An accurate model will allow simulating the permeability change when water/gas 
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injection is performed to maintain reservoir pressure and prevent permeability decline. This work 

aims at improving the numerical simulation model for reliable production forecast and EOR 

performance evaluation, leading to optimal EOR operations in unconventional reservoirs. 

1.2. Methodology  

This study consists of three main approaches: 1) Experimental and digital rock 

characterization 2) Data analysis 3) Numerical reservoir simulation.  

Experimental Rock Characterization: Description of rock structures and characterizing 

rock to understand permeability, geomechanics, storage capacity, and fluids transport. The 

measurement of permeability of Bakken rock samples is very challenging due to their extremely 

low permeability. In this study, the number of Bakken core samples’ permeability were 

determined using steady state, oscillating-pulse, and pulse-decay methods. Also, the elastic 

moduli (i.e. Young’s modulus, Poisson’s ratio) of these core plugs were estimated through the 

measurement of seismic velocities (Vp and Vs); furthermore, permeability is determined under 

different confining pressure and pore pressure for two different pore size Middle Bakken core 

samples using pulse decay method. These experiments were carried out using the Autolab-1500 

in UND-PE Lab equipment by first gradually increasing the confining pressure from 1000 psi to 

6000 psi. Then subsequently reduced back gradually to 1000 psi where permeability was 

measured at each step. Based on laboratory measurements, the influence of stress 

loading/unloading and the effect of pore pressure, and stress range on permeability damage for 

Middle-Bakken core samples were illustrated. This approach can help us to get a better insight 

into the impact of mentioned parameters on permeability hysteresis path and permeability 

evolution under different effective stress conditions. 
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Digital Rock Analysis: While in conventional reservoirs, the concept of Darcy flow is a 

reasonable assumption in simulating fluid flow, this is not applicable in unconventional 

reservoirs. In ultra-small pores of shale formations, fluid flow may not meet one or more 

assumption requirements for Darcy flow. In those nanopores, the turbulent flow can occur and 

causes deviation from the conventional models. The development of more accurate models to 

improve our knowledge of complex flow through nano-/micro-scale pores of shales is necessary 

considering the unique features of unconventional reservoirs. Micro-CT scan of the Bakken shale 

core sample was applied in visualizing the microscopic pores, and rock properties e.g. porosity, 

and pore size distribution, were determined.  

Data analysis: Based on the experimental results, the permeability follows an 

exponential trend with respect to effective stress. However, these correlation coefficients are 

taken from core samples at a certain depth and cannot represent the permeability evolution of the 

entire formation. The permeability-pressure relationship dominant in tight fractured formations 

was examined by utilizing the machine learning (ML) approach. Also, a large volume of data 

related to porosity and permeability at different net confining pressures was collected from the 

NDIC Website. An artificial neural network (ANN) model was trained based on the variation of 

core samples' permeability for a wide range of depths to define a general model and predict 

permeability alteration as a function of the effective stress changes. The developed model can be 

introduced in reservoir modeling to sheds more light on realistic production forecast and EOR 

performance evaluation, leading to optimal EOR operations in unconventional reservoirs. 

Numerical Simulation: Although high oil recovery results have been observed in the lab 

for enhanced oil recovery (EOR) in the Bakken, all previous nine EOR pilots in the field showed 

that oil recovery improvement is minimal. It is clear that there is a gap between laboratory 
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studies and field practices for EOR in the Bakken, and the fundamental fluid flow/EOR 

mechanisms in the tight shaly formations have not been fully understood. Existing simulation 

models are mostly based on flow mechanisms in conventional reservoirs, and these models have 

strong limitations when applied to design EOR plans in the Bakken unconventional reservoir. 

The effect of reservoir compaction and permeability damage presented in this work was used to 

evaluate different gas injection scenarios for the Middle Bakken and Three Forks Formation. A 

comprehensive fracture and reservoir modeling was conducted to evaluate the effects of 

permeability evolution under numerous injection scenarios. The EOR performance of the stress-

dependent model against the non-sensitive permeability model was demonstrated.  

1.3. Highlights 

• Several permeability alteration experiments were carried out to better understand the 

permeability behavior under a condition similar to reservoir statutes and to determine 

hysteresis response. 

• To the best of my knowledge, this is one of the first studies in the Bakken formation 

to use the machine learning approach and estimate permeability under a wide range of 

depth and net confining stress, based on available core data extracted from several 

wells and offers a cost-saving method. The machine learning model covering critical 

effective stress during the permeability modeling will increase the accuracy and 

simplicity of the permeability modeling.  

1.4. Thesis Organization  

This dissertation contains six chapters as below: 
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Chapter 1 provides the background to the project and a brief explanation of the integrated 

workflow. It also contains the objectives of this study, the methodology used, and the 

significance of this research. 

Chapter 2 is a brief review of the literature regarding Bakken rock characterization, a 

summary of past studies related to the lab work, numerical simulations, and analytical models to 

study the permeability evaluation.  

Chapter 3 presents the experimental procedure using the Auto-Lab 1500. Also, a 

summary of digital rock characterization is integrated for calculating effective porosity and pore 

size distribution of core samples, and further evaluation of permeability behavior explanations. 

Permeability damage and different permeability correlation will be discussed. 

Chapter 4 consists of introduces a novel approach for permeability modeling and 

prediction.  Two different ANN models for one and six wells are presented. The proposed 

models were compared to experimental results. The advantages and disadvantages of this 

approach and improving solutions are discussed. 

Chapter 5 is dedicated to a simulation study where a new region of pressure will be 

defined based on the findings of Chapters 3 and 4, a synthetic reservoir model with an integrated 

ANN  permeability pressure model, and a history-matched Bakken/Three Forks reservoir model 

with complex fracture network and permeability change will be used to evaluate gas injection 

scenarios to improve incremental oil production. 

In Chapter 6 a summary of the findings from this study will be presented along with some 

recommendations and future studies that can be carried out. 
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CHAPTER 2 

REVIEW OF LITERATURE: BAKKEN FORMATION 

CHARACTERIZATION 

2.1. Introduction 

The Bakken reservoir of Williston Basin is an unconventional shale formation, composed 

of an upper shale member (UB), a middle member (MB) of dolomitic silt- and sandstone, and a 

lower shale member (LB). Activity in developing the Bakken Formation has increased due to the 

success of horizontal drilling coupled with multi-stage hydraulic fracturing stimulation (Jabbari 

and Zeng, 2011; Jabbari and Benson, 2013). However, maintaining production— which requires 

hydraulic fracturing and well stimulation— is quite challenging for these types of wells. Hence, 

the primary recovery factors in the Bakken Fm remain very low, estimated at less than 10% of 

the original oil in place. Figure 2-1 shows the boundaries of the Williston Basin defined within 

the US portion of the basin.  

Gas injection can be an effective enhanced oil recovery method in naturally fractured or 

hydraulically fractured tight formations. Recent studies showed that CO2-EOR could be a viable 

method to increase recovery in tight shale plays (Yang et al., 2015; Zhang et al., 2018; 

Abuamarah et al., 2019; Tang et al., 2020). The primary recovery mechanism in a tight formation 

is basically depressurization and solution gas drive. There are several EOR methods for 

improving the recovery among which gas injection can be an effective method. 
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Fig. 2-1. Extend the Williston Basin with the major North Dakota structures shown (Courtesy of North Dakota 

Geological Survey) 

This section aims at better understanding the characteristics of the Bakken Fm. and the 

mechanisms of gas-based EOR in the Williston Basin, and assessing the potential for optimal EOR 

projects to add reserves. The results from the literature are presented and compared for validation.   

2.2. Geologic Setting of the Bakken Formation  

The Bakken Formation is an organic rich shale, mudstone, and sandstone that were 

deposited during the late Devonian and early Mississippian periods. This large formation is 

located in the western portion of North Dakota, forming the Williston Basin, the northeastern 

region of Montana, and extends into Saskatchewan and Manitoba. It is divided into three 

members, the Upper, Middle and Lower Bakken. The Middle Bakken serves as the reservoir 

thereby hosting all the mobile oil. The Upper and Lower members have almost the same 

lithofacies comprising of organic rich shales as classified by Smith and Bustin, 1995 and 

LeFever et al., 1991 (see Figure 2-2). 
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Fig. 2-2. Stratigraphic column showing the lithology of the Bakken Formation (Jin et al., 2017) 

Moreover, the depositional sequence of the Bakken Fm. started during the late Devonian 

period in the Upper Kaskaskia sequence. From the stratigraphic studies, the Bakken Fm. is 

recognized as the basal unit of the Upper Kaskaskia, with its black color and a sharp erosional 

contact with the Three Forks Fm. Rapid transgression leads to the deep marine depositional 

environment of the Lower Bakken member (Gerhard at al., 1990).  

This rapid deposition favored an anaerobic environment that preserved organic matter. 

The Middle Bakken was deposited in three different episodes ranging from offshore for sub-unit 

A, fair-weather wave base and the zone of breaking waves for sub-unit B, and between storm and 

fair-weather wave base for sub-unit C (Smith and Bustin, 1995) (Figure 2-3).  

 

Fig. 2-3. Cores from different Bakken units for lithology identification (Jin et al., 2013) 
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2.3. Permeability Measurements for Bakken Samples 

Numerous researchers have shown that nano/micro-scale heterogeneity has a noticeable 

impact on mesoscale properties, physical phenomena, and hydrocarbon recovery assessment 

(Farajzadeh et al., 2011; Alharthy et al., 2013). Therefore, it is essential to determine the 

microstructure of the rock matrix. In specific cases, one of the prevalent methods for enhancing 

oil recovery lies within gas injection and huff and puff processes. These methods have gained the 

attention of researchers and have shown recovery enhancement from both experimental and field 

results. Among the gasses considered, CO2 can be preferable due to its low minimum miscible 

pressure (MMP) with oil, and relatively a smaller molecule (0.33 nm) compared to other 

common injected gases (e.g., 0.39 nm for C1 and C2 and 0.43 nm for C3). Hence, to predict 

hydrocarbon production, we need to obtain the characteristics, such as porosity, specific surface 

area, and pore size distribution to analyze the nano-scale transport within the pores of shale and 

fracture network (Lu et al., 1995; Chen et al., 2013).  

Accurate estimation of total hydrocarbon storage will lead to reservoir management from 

economic and technical perspectives. Among all input parameters to reservoir simulation, 

absolute permeability is counted as an essential one to forecast hydrocarbon production. This 

becomes more important when dealing with tight, heterogeneous reservoirs where the 

permeability can be in the nano-Darcy magnitude. Due to the complexities that exist in tight 

reservoirs (i.e., mineralogy and extremely tight pores), conventional core analysis methods 

(CCAL) are not reliable to apply and would lead to highly erroneous results. Therefore, based on 

the Darcy (1856) experimental work, numerous analytical and experimental works were 

conducted to improve the accuracy of permeability measurements for tight samples (Dong et al., 
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2010; Ma and Zoback, 2016; Gan et al., 2018; Civan, 2018), which are categorized into two 

general methods: steady-state and unsteady-state methods. 

2.3.1. Permeability Measurements 

The permeability measurement of tight core samples is always challenging due to their 

micro-/nano-pores and extremely low permeability. On the other hand, with the existence of 

micro cracks which usually are not captured during CT scanning, due to insufficient resolution, 

the validity of matrix permeability measurements becomes more challenging (Li et al., 2015). 

These experiments are often time-consuming and expensive where the flow rate is hard to 

control, and the measurements are overly sensitive to the type of fluids employed in the 

experiments. These factors can cause the permeability measurements to be uncertain and some 

representative methods ought to be used to estimate the permeability of such a tight formation as 

the Bakken Fm. (Liu et al., 2010; Cao et al., 2016).  

Due to the laboratory implementation of Darcy’s law, this method is considered a 

standard industry method for decades (Darcy, 1856; Gan et al., 2018). In several studies, such as 

Sinha et al., 2012, and Lasswell et al., 2013, the steady-state method for shale rock samples was 

utilized. These measurements were based on Darcy’s Law, which would require a constant 

pressure gradient across the sample while monitoring the flow rate. This method requires two 

pore pressure intensifiers with automated recycling in order to create identical upstream and 

downstream pressures on opposite ends of the core plug. However, pressure stabilization 

happens over a long time, and this is one of the main disadvantages of steady-state method for 

unconventional samples. Besides, it can hardly measure the permeability of rocks up to 10-5 μm2 

(Trimmer, 1982; Andabily and Rahman, 1995). Although this type of test would take a long time 
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to yield an accurate permeability estimate, it is still the mostly validated way to measure intrinsic 

permeability for liquid-rich reservoir rocks (Li et al., 2015).  

Due to mentioned challenges for steady-state measurement, transient methods are 

considered as an alternative way of measuring permeability in tight rocks. Two common 

transient methods are pulse-decay and oscillating-pulse methods. The transient methods of 

permeability measurement include prescribing a transient pressure disturbance to the differential 

equation of fluid flow (i.e., diffusivity equation). The pore pressure at the top of the sample is 

controlled while the bottom side is attached to a fixed volume containing the pore fluid. The test 

starts by perturbing the pressure at the upstream. This perturbation of pressure (transfer function) 

travels through the core sample and is monitored at the downstream. This transfer function is 

related to a) the length and cross-sectional area of the sample, b) the permeability and specific 

storage of the sample, c) the viscosity and compressibility of the pore fluid, and d) the volume in 

communication with the downstream. 

2.3.2. Pulse-Decay Method  

In this method, at first, a pressure disturbance is applied on one side of the reservoir. 

Next, the propagation of the created pulse towards the opposite side of the reservoir will be 

observed with respect to time. The characteristics of a core sample, such as permeability, core 

size and test fluid, volumes of upstream and downstream reservoirs as well as the pore-fluid 

properties can affect the decaying time observed from the test. Darcy’s law cannot be applied 

directly to this method due to flow rate fluctuations and pressure differences in the experiment. 

Therefore, the mass conservation is adopted to analyze the pressure transient data in this method 

(Gan et al., 2018). In the work by Brace et al., 1968, they conducted permeability measurements 

by using the concept of transient flow method as given by Eqs.2-1 and 2-2.  
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(P1 − Pf) = ∆P [
V2

V1 + V2
] × e−αt (2-1) 

α =
kA

μβL
[
1

V1
+

1

V2
] (2-2) 

Where V1 and V2 are upstream and downstream volumes, P1 and Pf are upstream, downstream 

pressures. Permeability as a function of pressure decay (Eq.2-1) can be calculated after 

determining “α” from Eq.2-2, which is the slope of the line on a semi-log plot of Ln ((P1 - Pf) (V1 

+V2)/ (ΔpV2)) versus time. As Brace et al., 1968, mentioned, applying these equations to 

permeability measurements requires us to use small values of Δp for valid estimations. Dicker 

and Smits (1988) further improved the pulse-decay method by incorporating the compressive 

storage effects into the flow equation as given by: 

∆pD(a, b, tD) = 2 ∑ exp(−tDθm
2 ) .

a(b2 + θm
2 ) − (−1)m b√(a2 + θm

2 )(b2 + θm
2 )

θm
4 + θm

2 (a + a2 + b + b2) + ab(a + ab + b)

∞

m=1

 (2-3) 

Where “a” and “b” are the ratio of core sample pore volume to up-/down-stream volumes and “θm” 

is referred to the roots of this term: 

tan θ =
(a + b)θ

θ2 − ab
 (2-4) 

To conduct a pressure measurement from these methods, the pressure between upstream and 

downstream containers needs to reach equilibrium. This process can take a long time, especially 

for tight core samples. To resolve this problem, Jones (1997) introduced a methodology that 

required applying smaller upstream and downstream pressures with smooth pressure gradients. 

He introduced a factor “f” given by f=θm/(a+b) to simplify the analytical solution where turned 

the pulse decay equation into: 
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α =
fkA

μβL
[
1

V1
+

1

V2
] (2-5) 

Later, Cui et al., 2019, presented a method to use gas adsorption during the measurement, 

where gas transport in low permeability reservoir would result in more reliable and accurate 

permeability estimation. Also, Metwally, 2011, presented another pulse-decay method by 

considering a large upstream volume in order to make the ratio of up- to down-stream volumes 

(a/b) tend to infinity. This leads to a simplified solution for the pulse-decay calculations. Figure 

2-4 describes the configuration of the experimental setup based on the work by Ling et al., 2013, 

and Assady et al. (2019). The equipment utilized is a servo-hydraulic operated system for triaxial 

measurements with software controlled arbitrary stress paths on rock specimens up to 50.8 mm 

(2.0 in) in diameter at in-situ stress conditions, pore pressures, and temperature.  

  

Fig. 2-4. Schematic (courtesy of NER) and Configuration of the permeability measurement apparatus (UND-PE lab) 

It can measure permeability under steady-state and different transient methods, consisting 

of three main components: a) pressure vessels and four associated pressure intensifiers, b) 

electronics and control panel, and c) a computer system to analyze data. The core samples are 

cleaned through a vacuum process before running the tests. It is an essential task since the 

permeability is sensitive to core cleaning. After applying the pressure pulse and observing the 
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response at the downstream reservoir, permeability can be estimated by fitting the response trend 

to the analytical solutions (Figure 2-5).  

 

 

Fig. 2-5. An example from Ling et al., 2013 shows pulse decay analysis for a Middle Bakken core sample. 

Changes in upstream and downstream pressures during the experiment. Point ‘B’ marks the time that the pressure 

disturbance arrives at the downstream end of the core. Point ‘A’ marks the time that the upstream and 

downstream pressures reach equilibrium. Point ‘C’ represents the end of oscillating pulse. 

 

Also, the absolute permeability can be estimated from the oscillating-pulse method which 

is faster and non-destructive as described below. Normally, permeabilities measured from 

different methods are not in good agreement (Bertoncello, 2013), however, among other faster 

methods the pulse-decay has shown closer results to the steady-state method (Wang and 

Hart,1993; Ling and He, 2013; Li et al., 2015). 

2.3.3. Oscillating-Pulse Method  

In this method, the first step is to stabilize the upstream and downstream pressures before 

running the experiment. Next, a sinusoidal pressure wave generated at the upstream propagates 

through the core sample. Then, permeability is measured by recording the amplitude attenuation 

and the phase shift of this pressure wave at the downstream (Ling et al., 2013). The relationship 

between the upstream and downstream propagation can vary based on the length, cross-sectional 

area, permeability, specific storage of the sample, the viscosity of the fluid, and the 
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compressibility of the fluid. The measurable amplitude ratios “R” and phase difference are 

expressed in term of α and γ (Krantz et al., 1990): 

R2 =
4α2

(2α2 + 1) cosh 2γ + (2α2 − 1) cos 2γ + 2α(sinh2γ − sin 2γ)
 (2-6) 

δ = tan−1(
 tanh(2α tan γ + 1) + tan γ

tan γ + 2α − tanhγ
) (2-7) 

Once “R” and “δ” are measured from laboratory experiments, “α” and “γ” can be calculated 

from Eqs.2-6 and 2-7 that yields permeability as follows: 

K =
μcV2

A
(
αωL

γ
) (2-8) 

A significant advantage of this method as compared to the pulse-decay is a shorter run 

time it takes for the measurements to complete. However, one of the main drawbacks of 

oscillating-pulse permeability measurement would be determining an optimum frequency of 

oscillation, which may vary from one sample to another (Krantz et al., 1990). Therefore, the 

estimated permeability cannot be valid under the condition of low signal-to-noise ratio 

measurements. Moreover, different analysis techniques may result in different values of 

permeability from the same experiment. For instance, using this method for Middle Bakken 

samples did not lead to consistent results (He and Ling, 2016 and Assady et al., 2019) owing to 

the above reasons. Also, He and Ling, 2016 inferred that the shape of a sine wave needs to be 

selected so that it matches the range of permeability understudy which, in turn, adds to the 

uncertainty of the oscillating-pulse method. All in all, the oscillating pulse method may not be 

the best option for measuring permeability in tight formations. 
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2.3.4. Stress-dependent Permeability 

Permeability dependence on effective stress change (σeff) is well understood in the 

geomechanics area (Civan, 2017; An et al., 2019). The results of most experiments for Bakken 

core samples have documented the significant effect of confining stress change and pore pressure 

on permeability (Li et al., 2015; Karimi and Kazemi, 2017). This is due to the high sensitivity of 

permeability to effective stress in rock samples containing tight pores (Dong et al., 2010; Teklu 

et al., 2016). Ewy et al., 2012, presented the relationship between permeability and the change in 

pore pressure and effective stress in the form of: 

k = f(Pc − αPp) (2-9) 

Where Pp is pore pressure, Pc is confining stress and α is Biot’s coefficient. In most 

experiments conducted on Bakken core samples Biot’s coefficient is considered unity which 

leads to the effective stress as the difference between applied confining pressure and the internal 

pore pressure (i.e., σeff=Pc-Pp) (Terzaghi, 1943). Based on the laboratory experiments conducted 

on core samples, the permeability relationship with effective stress can vary between exponential 

and power-law models, depending upon rock sample characteristics. The following is the 

exponential relationship (David et al., 1994): 

k = k0exp (−γ(Pc − Pp)) (2-10) 

Where “k0” is the ambient permeability (i.e., under atmospheric pressure) and “γ” 

denotes a material constant varying between 10-3 to 10-2 and is dependent on the rock type. Also, 

the following relationship can demonstrate the stress dependency of permeability, given by (Shi 

and Wang, 1986):  

k = k0(
Pc

Pp
)−p (2-11) 
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Where “p” is representing a material constant varying between 0.1 and 2 for different 

core samples and under various effective-stress conditions. Therefore, different core samples 

may show different behavior under variable effective stress that requires us to plot permeability 

change under various cases of pore pressure and confining stress vs. effective stress (Ma and 

Zoback, 2016). In addition, Teklu et al., 2016, studied the impact of different parameters on 

permeability variations in tight reservoirs, such as temperature, net stress, pore pressure, and 

cyclic matrix and fractures. They showed that permeability decreases with elevating net stresses, 

in addition to a direct relation with temperature. They also illustrated that the major role of the 

stress dependency of permeability occur in nano-pore sizes rather than mirco-pore-size rock 

samples. This rock behavior is depicted in Figure 2-6, where Li et al., 2015, characterized 

Middle Bakken core samples and found the inverse relationship between permeability and 

effective stress. 

 

(a) (b) 

Fig. 2-6. (a) permeability reduction for a MB sample under higher effective stress (i.e., net confining 

pressure); (b) stress-dependent permeability on logarithmic scale for matrix and fractured rock samples (Li et al., 

2015). 
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These plots display an exponential-decline behavior for the permeability trends of Middle 

Bakken core samples. In these measurements the confining stress ranged from 2000 to 6000 psi 

meaning the variation of net confining stress being between 800 and 6000 psi which caused a 

permeability reduction by a factor of 2. applied confining stress range in this work is covering a 

typical stress cycle during the life of a Bakken well.   

It is important to measure the permeability under conditions of realistic confining stress 

and quantify the change in permeability due to the pore pressure reduction during production. 

Basically, the production decline is dependent on the compaction behavior of hydraulic fractures 

(propped and unpropped), natural fractures, and matrix (Jones & Owens 1980). As the reservoir 

pressure decreases, the effective stress (Pc − αPp) increases which, in turn, the formation 

permeability reduces due to the stress dependency as shown in the work by Chu et al., 2012, and 

Li et al., 2015.  

In tight reservoirs, such as the Bakken Fm., the main path of fluid flow would be micro-

cracks which can be closed from elevated stresses during the depletion.  On the other hand, 

during stress unloading (e.g., injection) a portion of those collapsed cracks might not open thus 

giving rise to the concept of permeability hysteresis. This means that for minimizing 

permeability reduction, it might be necessary to inject at the early stage of production prior to the 

onset of formation damage from increased effective stress. Also, for better designing of multi-

stage fracking and re-fracturing operations, a thorough understanding of the permeability 

hysteresis of the formation is of paramount importance.  This work and previous research by 

Civan, 2005, and Teklu et al., 2016, present case studies for stress-dependent permeability during 

stress loading/unloading that can help us in reservoir management and optimal timing of 

workover/EOR operations. 
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Table 2-1 lists the measured permeabilities from an integrated characterization of Bakken 

core samples under low effective-stress and lab conditions as reported by several authors. Note 

that various approaches were employed to measure the permeability, including air permeability, 

Klinkenberg method, steady-state and unsteady-state liquid permeability as well as MICP 

methods (Li et al., 2015; He and Ling, 2016; Kurtoglu, 2013; Teklu et al., 2016; Karimi and 

Kazemi, 2017; Assady et al., 2019). This table shows that by combining and comparing the 

results from different measurement methods, one can better estimate matrix permeability in a 

tight shale play. 

Table 2-1. Summary of permeability measurements for MB samples based on different methodologies 

References K0(md) Depth (ft) Methods 

Kurtoglu (2013) 10-5 to 10-4 10,600 to 10,850.45 Steady-State 

Ling and He (2015) 

0.00007 to 

0.0052731 

0.00004 to 0.002 

- 

Pulse-Decay 

Pulse-Oscillation 

He and Ling (2016) 0.0002 to 0.002 - 

Pulse-Decay, 

MICP 

Teklu et al. (2016) 0.01414 to 0.00563 10,400 Pulse-Decay 

Karimi and Kazemi 

(2017) 

10-3 to 10-2 9,800-10,300  

Assady et al. (2019) 

0.0006 to 0.0011 

0.0005 to 0.0007 

10,645.5 to 10,680 

ft. 

Steady-State 

Pulse-Decay 

 

2.4. Digital Rock Physics for Rock Characterization 

A recent modeling-based study shows that multiphase fluid behavior and flow in liquid-

rich shales are significantly different in nanoscale pores compared to microscale pores as it 

highly depends on pore throat size, fluid viscosity, and density (Sorensen et al., 2016; Alharthy 



20 

et al., 2013).  As it is discussed in previous sections, obtaining internal parameters such as 

porosity, specific surface area, and pore size distribution is crucial to understand the nano-scale 

transport processes between pores in shale and fracture systems. Fluid flow knowledge within 

tight reservoirs would lead to design effective CO2 injection and EOR schemes and predict 

reliable hydrocarbon production within tight reservoirs (Chen et al., 2013). Consequently, 

accurate estimation of total hydrocarbon storage will improve reservoir management, 

economically and financially.  

Several researchers have been studied on characterizing rock structures, specifically 

micro/nanostructure of rock with different resolution of 2D and 3D images (e.g., Doyen, 1988; 

Yoshino et al., 2005). Lindquist et al., 2000, used synthetic and low-resolution tomographic 

images to characterize pore network geometry, but their study did not contain physical properties 

for pore sizes less than 5 microns. Lock (2001) proposed a method for predicting sandstone 

permeability. He could obtain almost an exact procedure for predicting sandstone permeability in 

range of 10 to 100 md. In 2004, Okabe and Blunt determined permeability for reconstructed pore 

network by using Lattice-Boltzmann method (LBM).  

With the development of advanced imaging technique and computation ability, Digital 

Rock Analysis (DRA) has been applied to various types of rocks such as carbonates and shales to 

study rock properties, e.g., elastic properties, relative permeability (Madadi et al., 2009; Kalam, 

2012; Wang et al., 2016). Chen et al., 2013, showed most of the intra-kerogen pores are isolated 

and having relatively spherical morphology, by using image segmentation and separation. Their 

statistical results illustrated 92.7% of the total pore number is due to nano-pore with diameter 

less than 100 nm, while they make up only 4.5% of the total pore volume. Thomson et al., 2018, 

provided a detailed recipe for image processing, characterizing pore network geometry, and 
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determining the permeability through connected pore space for Fontainebleau and Berea 

Sandstones. In general, pore scale characterization using digital rock analysis can facilitate 

capturing heterogeneity. It can illustrate the complex microstructure of the tight medium using 

imaging techniques such as FIB/SEM and Micro-CT (Cudjoe et al., 2019; Saif et al., 2017; 

Sondergeld et al., 2010). The digital rock approach (DRA) can provide a great amount of data in 

a short time specifically in ultra-low permeability reservoirs (Bautista. et al., 2018). It is accepted 

that DRA is a necessary complement of lab experiments, and it may be referred as virtual 

laboratory/experiments (Dvorkin et al., 2008; and Liu et al., 2018). Due to the heterogeneity and 

clastic layered rocks of shale plays, it is challenging to acquire core samples from the Bakken 

Fm. Thus, Digital rock analysis (DRA) can be substantially helpful to replace the use of 

conventional cores as it can readily capture pore geometries and fluid flow behavior. 

In this section, the characterization of micro-CT/FIB-SEM Bakken core samples is 

presented, using Digital Rock Analysis. The goal of this effort is to employ an integrated DRA 

workflow to Bakken samples, resulting in accurate capturing heterogeneity and characterization 

of nanopore space within tight core samples.  The integrated workflow contains the basic digital 

rock physic procedure to determine substantial nano-scale properties (Figure 2-7). To analysis 

reconstructed 3D volume of core samples, few pre-processing on images, such as removing 

noises and artifacts are applied. Then grains and pores are separated using one of the common 

methods of segmenting different phases, namely marker-based watershed algorithm. After 

completing pre-processing and processing steps (i.e., various filtering, de-noising and 

segmenting pore/grains) connected pores and calculated total and effective porosity, and absolute 

permeability are identified.  The characterized micro-CT/FIB-SEM results with MICP for 

porosity, and pulse decay method with absolute permeability are validated. 
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2.4.1 Processing 

Segmentation (i.e., binarization) of sample images is crucial step in characterizing pores 

to extract the geometrical information of all individual pores inside the 3-D domain. Accurate 

segmentation can be defined as extracting isolated individual phases with same brightness and 

color (Thomson et al., 2018). There are no exact and same procedures for all images and each 

image has its own specific method to determine adequate output. However, numerous 

approaches are introduced for image segmentation. Improper discretization of pores and grains 

can generate imprecise or wrong results during pore characterization. Therefore, High image 

resolution, valid pre-processing and exact pore/grain segmentation are the key to the success 

DRA. Accurate visualization and measurement of connected pores are necessary for obtaining 

gas and oil storage, optimizing hydraulic fracturing, and CO2-EOR. 

 

 

Fig. 2-7. An integrated digital rock workflow used in this study. 
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We utilized thresholding visually, manually, and automatically based on the image gray 

scale values and tried to get the closest match by checking the results. For doing so we used 

different algorithms based on computational analysis and different common methods for image 

analyzing. For some type of stacks like FIB-SEM which have similar density for pores and 

organic matters, simple thresholding can cause error for adequate pore/grain separation. To 

reduce this error, it recommended by many authors to use marker-based water-shed segmentation 

to enhance labeling the image (Cudjoe et al., 2019). The major idea of water-shed segmentation 

is based on the concept of topographic representation of image intensity (Gonzales and Woods, 

2002; Seanger et al., 2011). The concept behind this algorithm is to simulate the flooding from a 

set of labeled regions in 3D images. Figure 2-7 shows marker-based watershed segmented pores 

carried out for FIB-SEM Bakken sample. 

2.4.2 Porosity Determination 

There are plenty of methods (e.g., experimental and well logging) for determining some 

physical properties such as porosity. However, these methods can give users the total porosity 

without considering the degree of pore connectivity (Ellis and Singer, 2007; Thomson et al., 

2018). Therefore, we utilized DRA to calculate and obtain effective porosity which can help us 

to evaluate its impact on fluid flow within tight oil reservoir such as Bakken samples. For 

determining connected pore spaces, we applied axis connectivity modulus to the labeled images 

(or segmented images). This tool within the commercial DRA software extracts a binary image 

that includes all connected pores in two planes inside the 3D domain (i.e., each two parallel 

planes). In this case, all floating pores will be removed. Then, porosity for total and connected 

pores based on volume fraction were calculated. The results indicate that pores are dispersed and 

isolated within the Middle Bakken core samples, causing remarkable difference in total/effective 
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porosities. This can be accounted as one of the major reasons of low oil recovery in 

unconventional reservoirs (Assady and Jabbari 2020). The procedure of obtaining connected 

pore space is shown in Figure 2-8. The results for calculated total porosity and connected 

porosity are shown in Table 2-2.  

 

(a)                                                         (b) 

Fig. 2-8. Calculating connected pore algorithm; (a) Input data (b) Result of Axis connectivity with z-axis orientation 

(courtesy of Thermo-Fisher Scientific) 

 

2.4.3 Absolute Permeability Measurement 

Absolute permeability as an intrinsic property indicates the capability of rock to transfer a 

fluid. To determine absolute permeability, a commercial simulator was used for modeling single 

phase fluid flow through the 3D images of the connected pore space discussed above. To 

calculate effective permeability for infinite medium, the applied software uses average volume 

form of the Stoke equations. A change of scale is necessary to get equations valid on the entire 

volume. Volume averaging is a technique that applies when there is a change of scale. It can 

smooth equations (Whitaker, 2013) and leads to develop a closure problem which transforms the 

Stokes equations into a tonsorial problem. It remains similar to the stokes equations, despite the 

fact it is a higher order problem (Eqs. 2-12 and 2-13): 
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∇⃗⃗ . D⃗⃗ ⃗⃗ =0⃗ ⃗  
(2-12) 

∇2. D⃗⃗ ⃗⃗ − ∇⃗⃗  d⃗ =I   
(2-13) 

Where: 

D⃗⃗ ⃗⃗  
Tensor as the source of the spatial deviation of the velocity (velocity perturbation field) 

d⃗  A vector as the source of the spatial deviation of the pressure (pressure perturbation field) 

I 
 
 

The unit tensor 

By solving Eqs. 2-12 and 2-13, the mean value of D⃗⃗ ⃗⃗  over the system volume is calculated, and 

the permeability tensor is given by: 

k⃗ ⃗
 
=

1

v
∫ D⃗⃗ ⃗⃗ 

 

v
dv 

(2-14) 

For tensor calculation no slip condition is applied at the fluid-solid interfaces. The sample 

represents a macroscopic, infinite material (Figure 2-9). This method can give permeability value 

along any direction of space.  

 

Fig. 2-9. Velocity streamlines in the calculation of intrinsic permeability tensor 

As mentioned by Chen et al., 2013, in order to match the simulation model with 

production data, matrix/fracture permeability were adjusted to higher values, which seemed not 
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representing the properties of the real reservoir. This uncertainty in reservoir properties led to the 

difference between numerical simulation and real-field data.  In recent decade, scholars have put 

efforts on using modern characterization methods on the nano/micro scale to better understand 

the fluid flow in tight shale plays. This can help to understand the nan-scale fluid properties and 

dominant fluid flow mechanisms in tight formations (Sorensen et al., 2017; Chen et al., 2013). 

The deviation of digital rock analysis (DRA) is reported to be significant for some sample from 

experimental works. This is attributed to the voxel resolution of images (Saenger et al., 2011) 

where it may not be possible to distinguish the pores smaller than the resolution of images, or it 

can be due to inaccurate pore/grain segmentation from noise and manual errors (Jouini et al., 

2015; Soulaine et al., 2016; Devarapalli et al., 2017). On the other hand, a major limitation of 

DRA method is the small zone of investigation (a few millimeters) compared to the size of a core 

plug or the real reservoir. This shortcoming can be addressed either by running several 

simulations on different images of rock samples (Baustista et al., 2018) or by applying a proper 

upscaling method in order to estimate flow properties at the macro/reservoir scale. Reliable 

properties lead to more accurate well/reservoir modeling and thus optimizing well spacing, 

completion strategies, and wiser development planning.   

2.5. Summary  

This work briefly explains the main methods of reservoir characterization and how/where 

we can collect and acquire proper data for unconventional reservoir properties estimation. the 

purpose of this integrated characterization workflow is to provide the necessary data for building 

geologic models and/or analyzing well/reservoir performance in natural depletion and EOR 

operations. Indeed, a thorough reservoir characterization can help companies to compare 
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different EOR scenarios and to choose best ones from a list of scenarios to execute. Below are a 

few key points from this review: 

• Pulse decay would be the most common method for permeability measurements due 

to its reliability and close match with the results from steady-state method. 

• The exponential decline of permeability vs. effective stress is due to existing of ultra-

small pore sizes in tight Bakken core samples. Permeability continuously declines 

upon loading the sample and does not fully retrieve during unloading; therefore, 

permeability hysteresis can occur.  

• Acquiring core samples can be costly and time consuming. In case of unconventional 

reservoirs, such as the Bakken Fm., it is even more challenging due to the 

heterogeneity and clastic layered rocks of these shale plays. To tackle this hurdle, one 

would use DRA (digital rock analysis), a powerful tool, which may replace the use of 

conventional core samples, and can readily capture the heterogeneity, pore geometries 

and fluid flow behavior within the formations.  
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CHAPTER 3 

ASSESSMENT OF PERMEABILITY HYSTERESIS DURING 

LOADING/UNLOADING IN BAKKEN FORMATION 

 

3.1. Introduction and Review 

Effective stress exerted on porous rocks can increase during reservoir developing due to 

formation pressure decreasing. Consequently, an increase in elastoplastic deformation, 

permeability/porosity reduction and less production can occur (Sang et al., 2017). Fluid injection 

(i.e., water or gas) can mitigate formation pressure reduction and maintain formation pressure 

during development process in tight rock reservoirs. However physical parameters, such as 

permeability or porosity cannot be fully recovered, this nature of rock is characterized as stress 

sensitivity or hysteresis (Li 2008, Nai and Gang 2018), and this characteristic is more significant 

in unconventional tight plays, due to very low porosity and connectivity, compared to that in 

conventional reservoirs (Lui et al., 2011). Permanente permeability change which known as 

formation damage has an outmost impact on recovery in tight oil reservoirs (Chen et al., 1999). 

Therefore, increasing the knowledge of permeability hysteresis during loading/unloading 

pressure, can help to understand the role of the different stresses, pore structures and fractures on 

rock hydrocarbon production (Elhaj et al., 2018). Many studies focused on the hysteresis 

phenomenon during loading and unloading to analyze permeability stress sensitivity, 

mathematically and empirically (Kranzz et al., 1979; Bernabe 1987; Selvadurai, 2015). However, 

obtaining empirical or deriving consistent formulas for permeability calculation under different 
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stress condition is not fully achieved yet. This is due to the complex nature of such phenomenon. 

Therefore, most published results and equations are not in agreement with each other and there 

are shortcomings with using such models (Civan, 2017). 

In 1985, Wissler and Simmons, analyzed the degree of reversibility of stress-dependent 

permeability. Bernabe (1987), investigated the stress-sensitivity hysteresis effect on rock 

properties through laboratory experiments. He observed that the rock stress sensitivity hysteresis 

effect would be insignificant or minimized after aging treatment and its impact would be 

diminished after multiple aging treatment, because rock would no longer follow the original 

stress path. Also, Warpinski and Teufel (1992), proposed that the stress-sensitivity hysteresis 

would disappear after multiple aging cycles of rock samples. Morris et al., 2003, applied 

theoretical models to analyze the porosity and permeability evolution of Berea sandstone during 

effective stress changes. They used simple material model in which the original pores and 

induced pores were considered separately. Maiti et al., 2008, illustrated hysteresis path for 

different particle porosity in trickle-bed reactors (TBRs). This study could show the importance 

knowledge of hysteresis behavior in particle porosities.  

As several authors mentioned in their work, an exerted stress to core samples can lead to 

the permeability reduction by various mechanisms such as closing microcracks, rearrangement of 

grains and crushing of existing pores (Morris et al., 2003; Civan, 2017). In opposite, it might 

improve permeability by creating new cracks and opening conduit paths in core samples (Zoback 

and Byerlee, 1975; Paterson, 1978; Morris et al., 2003; Civan, 2017). Ghabezloo et al. (2009) 

applied a conceptual pore-shell model, to represent the influence of the effective stress on 

permeability. In 2010, Dong et al., concluded that compaction in both sandstone and shale 

formations was not reversible during permeability hysteresis. Also, he showed that rock type is 
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one of the significant parameters that can affect this phenomenon. However, they did not see any 

rock type impact on porosity hysteresis. Later, (Teklu et al., 2016), studied on different 

parameters, such as temperature, net stress, pore pressure, cyclic matrix, and fracture in tight 

reservoirs. They showed that as net stress increases permeability decreases, while permeability 

has direct relation with temperature changes. Also, they investigated on cyclic hysteresis for both 

matrix and fracture and concluded that new micro cracks can be created at each time of injection, 

which can improve hydraulic fracturing technique. In the same year (Ma and Zoback 2016), 

presented the effect of pressure loading/unloading on ultra-sonic velocities and geo-mechanics 

properties and considered their dependency on confining and pore pressure. They disproved the 

accuracy of applying simple effective stress law in high Pc and Pp. In 2017, Civan theoretically 

illustrated the effect of pore elasticity on hysteresis of permeability and porosity, which is more 

accurate than common empirical correlations. Besides, he indicated using the kinetics-based 

phenomenological models would help to analyze porosity and permeability stress dependency, 

precisely (Civan 2017). He made an attempt to investigate and develop theoretically consistent 

approaches in describing the rock properties as a function of the effective stress in a manner to 

honor the shock effect and slope discontinuity that occur at a critical effective stress. As Civan 

2017 mentioned in his paper, at critical effective stress, a sharp alteration in contribution of 

matrix and fracture permeability happens, in which fractures/micro-fracks seized or open leading 

to a slope discontinuity at the critical effective stress. He considered the effect of slope 

discontinuity at a critical effective stress in his calculation and indicated that correlating 

pressurizing/de-pressurizing data using same equation for a whole range of data is not accurate. 

He noted to correlate data separately over the regions below and above the critical effective 
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stress. This is due to the different role of fracture in the hysteresis path before and after critical 

effective stress (Civan, 2017). 

In this work, permeability hysteresis and damage over the tight formation, Bakken, 

Williston Basin, ND are investigated. Confining pressure and pore pressure are applied to two 

different pore size Middle Bakken core samples and measured permeability using the pulse 

decay method. Digital rock physics (DRP) was used to extract information on the rock structure 

and pore-size distribution (PSD) of the Bakken samples. Porosity and absolute permeability in 

non-confined reservoir condition were determined. Then, pulse decay method for permeability 

and Mercury injection capillary injection (MICP) data for PSD was used to validate our 

procedure and the obtained properties. Based on laboratory measurements, it is illustrated the 

influence of stress loading/unloading and effect of pore pressure, stress range and pore size 

distribution on permeability damage for Middle-Bakken core samples. Permeability damage and 

average permeability damage for whole data sets, before and after critical point are calculated. 

Mathematical models such as exponential and power law models are used to fit to the 

experimental results and facilitate permeability damage calculation. This approach can help to 

get a better insight into the impact of mentioned parameters on permeability hysteresis path and 

permeability evolution under different effective stress by considering critical points. 

3.2. Description of Rock Sample 

Three Middle Bakken core samples were drilled from Mountrail County, Williston Basin, 

ND. Raw samples were selected from well#24779, Sanish filed, provided by University of North 

Dakota core library (Figures 3-1 (a) and (b)), for the current study. In most area of Bakken 

Formation, Middle Bakken formation is bounded above by shale member of Bakken, Upper 

Bakken and below by Lower Bakken. The fine-grained clastics and carbonates of the Middle 
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Bakken core samples are representative of a tight, fractured rocks that count as main path of fluid 

transmitting in reservoirs. The Middle Bakken Member typically comprises between three and 

seven distinctly different lithofacies that range from silty carbonates to calcite/dolomite-

cemented siltstones and light to medium gray in color (Sorensen et al., 2017). 

The rock samples for this study were taken from depths between 3120 to 3123.5 m. 

Selected samples were cut cylindrically by a laboratory coring machine using 20- and 25-mm 

drill bit (cooling with water), with smooth ends by polishing machine (Figure 3-1 (c)). Based on 

North Dakota Industrial Commission core data, conventional plug analysis within selected depth 

shows porosity varies from 2.77 to 8.31%, and air permeability ranges from 10-3 to 10−2 md 

(measured under 5 MPa net confining pressure) and average grain density of 2.7 g/cm3. To 

ensure we are measuring intact core samples, plug sampling was performed carefully with 

minimum micro-crack creation. This is important because if core sample contains fractures in 

which two ends of sample connect to each other, measured permeability would not represent 

matrix permeability (Gan et al., 2018). Before starting experiments, samples were cleaned, and 

oven dried at 60 ºC for more than a week. The core plug samples are shown in Figure 3-1 (c). 

Also, two samples with sample lengths less than 3 mm were selected for Micro-CT/SEM 

observation after permeability experiments. 
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(a) 

 

(b) 

Mountrail County 

Well#24779 

 



34 

 

(c) 

Fig. 3-1. Middle Bakken core samples used in this study (a) Sampling well location, Mountrail County (b) Raw core 

samples (c) Prepared core samples 

 

3.3. Permeability Measurement 

The equipment used for the measurements in this study is a servo-hydraulic operated 

system for triaxial measurements with software controlled arbitrary stress paths on rock 

specimens up to 50.8 mm (2.0 in.) in diameter at in situ reservoir-stress conditions, pore 

pressure, and temperature. It can measure permeability under steady state and different transient 

methods, consisting of three main components: (i) Pressure vessels and four associated pressure 

intensifiers (ii) Electronics and control panel (iii) Computer system to analyze data. The core 

samples are cleaned through a vacuum process before running the tests. It is an essential task 

since the permeability is sensitive to core cleaning. Figure 3-2 illustrates the configuration of 

permeability measurement apparatus. To obtain more accurate data points, the experiments for 

each core sample were repeated at least 3 times (Assady et al., 2019). 
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(a)                                      (b) 

Fig. 3-2 (a) Configuration of permeability measurement apparatus (b) Permeability measurement assembly (Assady 

et al., 2019) 

The sample in the core holder communicates with both upstream and downstream 

reservoirs and the system is initially at equilibrium with uniform pressure. When a pressure pulse 

(disturbance) is applied at the upstream reservoir, it propagates through the core, travels towards 

the downstream reservoir while it decays over time. The decay profile depends on the 

characteristics of the core sample; on parameters, such as permeability, size of the sample, 

volumes of upstream and downstream reservoirs, and pore-fluid properties. The decay 

characteristics of the pressure are used to determine the reservoir permeability by analyzing the 

pressure behavior through the core sample given by the mathematical model of permeability in 

Figure 3-3:  
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  Upstream system                                        Sample                               Downstream system 

Fig. 3-3. Boundary condition applied in pulse-decay configuration (from left to right Eq. (3-1), (3-2) and (3-3)) 

Where “P” is the pressure (MPa), “x” is the distance along the length of the measured rock sample 

(in.), k is the permeability of the measured rock sample (μm2), “μ” is the dynamic viscosity of the 

fluid (10-3 Pa.s), “φ” is the porosity, “Ct” is the total compression coefficient (MPa-1).  With 

boundary condition: 

𝑑𝑝

𝜕𝑡
=

𝑄

𝛽𝑉2
 

(3-4) 

Also, “β” is fluid compressibility (MPa-1), based on Figure 3-3. Since the medium in this 

experiment is tight, Jones’ method is applied by Auto-Lab software to reduce the permeability 

measurement time (Jones, 1997). Jones’ method is a simplification of a mathematical model for 

the transient pulse method. The analytical solution of the permeability turned to Eq. (3-5): 

𝛼 =
𝑓𝑘𝐴

𝜇𝛽𝐿
[
1

𝑉1
+

1

𝑉2
] 

(3-5) 

Where “f” is a factor as f=θm/(a+b); “a” and “b” are the ratio of core sample pore volume to up 

stream (Vs/V1) and down stream volume (Vs/V2), respectively. “θm” is refered to the root of 

following Eq. (3-6): 

tan 𝜃 =
(𝑎 + 𝑏)𝜃

𝜃2 − 𝑎𝑏
 

(3-6) 
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After reaching the desired confining and pore pressure, a pressure pulse (i.e., increase 

upstream pore pressure) would apply to core sample. By observing the response at downstream 

reservoirs, the permeability can be computed by fitting the response to the analytical solutions 

(Figure 3-4) (Van Oort, 1994; Zhou et al., 2016). In this work, each permeability experiment at 

specified effective stress, ran at injection rate of 0.1 cm3 /min. The test will be proceed to next 

data point after observing pressure stabilization in the core samples. 

  

Fig. 3-4. An example of pulse decay analysis for Middle Bakken core sample (a) Changes of the upstream and 

downstream pressure during experiment (b) ln (∆𝑃t / ∆𝑃0) vs. time plot 

 

3.3.1. Permeability Measurement Validation 

To validate the permeability measurement using pulse decay method, a steady state 

experiment for a Middle Bakken core sample was ran and compared the measured permeabilities 

(Assady et al., 2019). This method requires two pore pressure intensifiers with automated 

recycling in order to create identical upstream and downstream pressures on both opposite ends 

of the core plug. The two pumps in the experimental setup use distilled water as the pore fluid. 

Each test was performed by applying different confining pressures under a low pore pressure. 

This is because the higher the pore pressure, the longer it takes for pore pressure to reach 
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equilibration. The major issue with steady-state method is the long time that it takes for pressure 

stabilization. For the samples used in this work, it took almost 7 days for the stabilization period. 

Then, the permeability was measured based on Darcy’s Law vs. time as shown in Figure 3-5. 

The permeability is normally estimated as the average during the plateau when the permeability 

trend flattens and stops fluctuating. 

 

Fig. 3-5. Steady-state permeability measurement (Assady et al., 2019)  

Although the steady-state permeability measurement is the most accurate, it seems not to 

be a method of choice for tight core samples (Li et al., 2015). Aside from being an expensive 

test, running steady state experiment is time consuming and requires days and a month to achieve 

few data points. Moreover, long time downstream and upstream pressure equalization become 

harder with increasing confining and pore pressure (Morrow et al., 2014; Assady et al., 2019). 

That being said, only five permeability values under limited effective stress ranges were 

determined (e.g., 6.8, 7, 7.5, 17.2 and 25 MPa) due to time consuming procedure (Assady et al., 

2019). This helped us to validate and crosscheck the results obtained from pulse-decay method 

under same condition, which as Figure 3-6, it confirms that the pulse decay method results under 

this range is consistent with steady state permeability values.  
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Fig. 3-6. Measured permeability using steady-state and pulse-decay methods 

Therefore, the employed pulse-decay method is preferable— especially for our tight core 

samples— as it is quick, affordable, and economic if compared with steady-state method. To 

facilitate the experiments regarding to required time, this work will be continued using pulse 

decay permeability measurement.  

3.4. Digital Rock Analysis 

As Civan (2000) and other researchers mentioned in their studies, among different types 

of pores (i.e., interconnected pores, dead-end pores, and isolated pores), fluid transport occurs 

only in interconnected pores. Consequently, measuring the interconnecting pores or effective 

porosity, and its impact on permeability, is an essential task. In addition, permeability depends 

on the capability of fluid transport of both the interconnected pores and micro-cracks. Therefore, 

the permeability variation trends versus effective stress for interconnected pores and micro-

cracks are not equal (Sigal 2002). Obtaining petro-physical properties for reservoirs with small 

pore sizes, is important for analyzing the porous medium behavior and future oil pattern design 

(Assady and Jabbari 2020). 
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In this study, micro-CT Bakken core samples were characterized using digital rock 

physics to extract pore size distribution and effective porosity. The digital rock approach (DRA) 

can provide a great amount of data in a short time specifically in ultra-low permeability 

reservoirs (Bautista. et al., 2018). Digital rock analysis is a powerful tool which cannot only 

reduce the necessity of the use of conventional core samples, but also can readily capture pore 

geometries, fluid flow behavior and helps to have better internal vision of rock structure. First, 

rock properties (e.g., porosity, and pore size distribution) were calculated. Then, absolute 

permeability was obtained and compared with the available experimental data (e.g., pulse decay, 

steady state). Since the Bakken samples contain nano to meso size pores, image analysis requires 

high accuracy and iteration to get the exact binary images. Thomson et al., 2018, provided a 

detailed recipe for image processing, characterizing pore network geometry, and determining the 

permeability through connected pore space for Fontainebleau and Berea Sandstones.  

To get the validated pore size distribution from reconstructed 3D volume of core samples, 

pre-processed the images, by removing noises and artifacts was performed. Then grains and 

pores are separated using commercial DRA software. Segmentation (i.e., binarization) of sample 

images are crucial step in characterizing pores to extract the geometrical information of all 

individual pores inside the 3-D domain. Accurate segmentation can be defined as extracting 

isolated individual phases with same brightness and color (Thomson et al., 2018). Thresholding 

visually, manually, and automatically based on the image gray scale values was utilized and 

tuned to get the closest match by checking the results. For doing so different algorithms based on 

computational analysis and different common methods for image analyzing were used. For some 

type of stacks with similar density for pores and organic matters, simple thresholding can cause 

error for adequate pore/grain separation. To reduce this error, it recommended by many authors 
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to use marker-based water-shed segmentation to enhance labeling the image (Cudjoe et al., 

2019). The major idea of water-shed segmentation is based on the concept of topographic 

representation of image intensity (Gonzales and Woods 2002; Seanger et al., 2011). The concept 

behind this algorithm is to simulate the flooding from a set of labeled regions in 3D images. 

After completing pre-processing and processing steps (i.e., various filtering, de-noising, and 

segmenting pore/grains) connected pores were identified to extract pore network models for 

obtaining total and effective porosity, absolute permeability, and pore size distribution. 

 

Fig. 3-7 Digital rock analysis procedure; extracting a sub-volume, segmentation, pores, extracting pore network 

model; core sample#1 

The procedure with available data such as MICP and pulse decay results were validated. 

It is shown that porosity and pore size distribution are consistent with lab results. It implies the 

segmentation process is reliable. However, permeability is overestimated and does not fully 
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satisfy the lab results. This can be because of the limited region of interest and finite investigated 

medium, or not capturing all pores during imaging due to improper image scale. Hence, there 

should be some modification and further investigation for permeability calculation. But in this 

section, the focus is on obtaining different PSD types. The results are reliable enough to analyze 

our data. That being said, two different core samples from the Middle Bakken Fm. were 

considered. After acquiring micro-CT for each core sample, pre-processing and segmenting steps 

were completed in order to extract required data. Total, connected and isolated pores, for core 

sample#2 is shown in Figure 3-8. Also, porosity and effective porosity value for each sample are 

brought in Table 3-1.  

Table 3-1 Calculated total and effective porosity 

Sample 
Pore Volume 

Fraction 
Porosity 

Effective 

Porosity 

Experimental 

Porosity 

Case 1 0.063 6.3% 2.4% 

5.55%-6.25% 
Case 2 0.079017 7.9% 6.5% 

 

As it can be seen in Figure 3-9, two different types of PSD are dominant, one sample is 

more homogenous and unimodal, meaning pore sizes are almost in the same range, while the 

second sample has wide pore size distribution. Also, as the results indicate effective porosity 

varies from sample 1 to 2. Sample#1 possesses lower effective porosity which implies that fluid 

transport occurs harder than sample#2. Therefore, it is expected to have lower permeability for 

sample#1 (Assady and Jabbari 2020).  
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Fig. 3-8. Example of one sub-volume segmentation, total porosity, effective and isolated pores, 3D pore-network; 

core sample#2 

 

Fig. 3-9. Pore size distribution determined from 3-D pore networks of sample 1 and 2 

 

3.5. Stress-Dependent Permeability 

To describe and analyze pressure dependency of permeability, it is important to derive 

the relationship between permeability and effective stress which would represent reservoir depth. 
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This is important to analyze and understand essential phenomena such the permeability 

hysteresis due to its remarked impact on petroleum production (Wang and Civan, 2005). 

However, due to experimental limitations such as time-consuming tests, cost and limited lab 

conditions, mathematical models can help to describe and predict the hysteresis phenomenon and 

rock behavior under reservoir circumstances. This is important to relate rock characteristic in the 

manner of pressure dependency of reservoir permeability. Although, several complicated 

processes play a role on permeability hysteresis, such as elastic and plastic deformation, 

contraction, shearing, compaction and the like, during pressure loading/unloading (Civan, 2017), 

the most attempts to determine permeability pressure dependency relationship were focused on 

confining pressure. This is due to large impact of confining pressure on permeability alteration in 

noticeably short time. Permeability dependence on effective stress change (σeff) is well known in 

the geomechanics area. Specifically, most of the permeability experiments for Bakken core 

samples showed this significant effect on the reservoir permeability by changing confining and 

pore pressures. Existing ultra-small pore sizes in tight core samples such as Bakken cores can 

cause high effective stress sensitivity of permeability (Dong et al., 2010; Teklu et al., 2016). 

Therefore, modeling permeability by relating to effective stress was the main focus on numerous 

studies. Ewy et al., 2012, presented the relationship between permeability and change in pore 

pressure and effective stress in the form of Eq. (3-7): 

𝑘 = 𝑓(𝑃𝑐 − 𝑋𝑃𝑝) (3-7) 

Where, “Pp” is pore pressure (i.e., internal stress), “Pc” is confining stress (i.e., external stress) 

and “X” is effective stress coefficient (i.e., Biot’s coefficient) that relates stress and pore 

pressure. If X is close to 1, then stress alteration will change permeability by the equal and 

opposite change in pore pressure. Some researchers estimated X to be less than one (David and 
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Darot, 1989) and others consider it as not to be constant (Warpinski and Teufel, 1992). 

Generally, X can be greater than one for high pore pressure and lower than one for higher 

confining pressure. The actual behavior of permeability can be modeled more accurately if 

measure it under various cases of pore pressure and confining stress (Ma and Zoback, 2016), and 

then plot it vs. effective stress. For the sake of simplicity and similar to existing experiments on 

Bakken core samples (Warpinski and Teufel, 1992), Biot’s coefficient is considered unity in our 

calculations. This leads to effective stress as the difference between applied confining pressure 

and the internal pore pressure (i.e., σeff=Pc-Pp) which is known as Terzaghi’s effective stress 

(Terzaghi, 1943).  

In general, regardless of the flow direction or type of fluid, a nonlinear reduction in 

permeability with increasing effective pressure occurs during loading the samples. However, the 

rate of reduction can vary from sample to sample. This reduction in permeability with increasing 

effective pressure or the reverse, i.e., increasing permeability with decreasing effective stress (or 

unloading) can be explained by the flow through microcracks model (Walsh, 1981; Kwon et al., 

2004; Metwally and Sondergeld, 2011). Based on the experimental results permeability 

relationship can be varied to exponential or power-law, depending on the rock sample 

characteristic. The exponential relationship for the stress dependent permeability based on David 

et al., 1994, and Evans et al., 1992, is as follows: 

𝑘 = 𝑘0exp [−𝛾(𝑃𝑐 − 𝑃𝑝)] (3-8) 

Where “k0” is permeability under atmospheric pressure and “γ” denotes material constant which 

can vary between 10-3 to 10-2 MPa-1 depending on the rock type. Eq. (3-8) has the advantage of 

being mathematically simple, however it is a phenomenological relation without any 

micromechanical basis (David et al., 1994). On the other hand, a power-law relationship to 
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demonstrate stress dependency of the permeability based on Shi and Wang (1997) can be 

considered as:  

𝑘 = 𝑘0(
𝑃𝑐

𝑃𝑝
)−𝜆 

(3-9) 

In this equation “𝜆” is representing material constant which can be obtained empirically. Based 

on Shi and Wang, 1997, and Dong et al., 2010, the 𝜆 can change from 0.1 to 2 for different core 

samples under various effective stress conditions. Therefore, each core sample can show 

different behavior under variable effective stress, hence modeling the actual behavior of 

permeability requires plotting permeability under various cases of pore pressure and confining 

stress vs. effective stress (Ma and Zoback, 2016). Numerous studies used these presented 

relationships to express permeability-pressure correlation. For instance, Jones & Owens,1980, 

presented the relationship between the permeability and the effective stress as:  

(
𝑘

𝑘0
)
1

3⁄ = 𝑙𝑜𝑔(𝜎 − 𝛼𝑃) (3-10) 

Also, Teklu et al., 2016, suggested the relationship between effective stress and permeability of 

fractured cores should follow a power-law, based on the laboratory permeability measurements. 

They presented, a mathematical model to define the hysteresis phenomenon in permeability and 

employed it in most of their calculations: 

𝑘 =
𝜇𝑔(𝑃𝑎𝑣𝑔)𝑐𝑔(𝑃𝑎𝑣𝑔)𝑉𝑑𝐿

𝐴

Δ ln(
𝑝𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚

2 − 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙
2

𝑝𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚
2 − 𝑝(𝑙,𝑡)

2 )

Δ𝑡
 

(3-11) 

Where “L” and “A” are core length and cross-section area, “ 𝜇𝑔” and “ 𝑐𝑔” are gas viscosity and 

compressibility at average pore pressure “Pavg” during a time interval Δt. In more recent studies 
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based on Civan’s (2011) work, compressibility of matrix, solid and fracture were incorporated in 

the model he presented. He introduced a novel mathematical formula as Eq. (3-12): 

𝑘 = 𝑘∞ + (𝑘0 − 𝑘∞)(
𝜎𝑒𝑓𝑓 − 𝜎𝑐𝑟

𝜎𝑒𝑓𝑓,0 − 𝜎𝑐𝑟
)𝐴2(𝑐0−𝑐∞) 

(3-12) 

Where “A2
” is an empirical parameter, “k0” and “k∞” are the permeability at lowest and highest 

critical effective stresses. The enormously important concept of Civan’s work, is critical effective 

stress which mostly appears in the hysteresis permeability path as a discontinuity. As stated earlier, 

a slope discontinuity at a critical effective stress during loading/unloading can be attributed to:  

(i) opening and closing of micro cracks, 

(ii) matrix porosity change beginning to contribute and dominate the fracture porosity 

change, 

(iii) crushing and reorganization of the grains of rocks (Civan, 2017).  

Civan, 2017, indicated that ignoring breaking points in developing mathematical relationship 

between permeability and pressure would cause substantial errors and inapplicable mathematical 

models for whole data sets. As he mentioned, in different effective stress regions with different 

deformation mechanism, petrophysical properties need to be modeled, separately (Civan, 2017 

and 2018). 

Thus, the loading/unloading experimental data are conducted to calculate permeability 

damage over the whole data, and the two sets of data points. One set of data point lower than the 

critical effective stress and one higher, to indicate the errors caused by ignoring the discontinuity 

at a critical effective stress. Also, this can help to provide physical insights into the nature of 

stress dependency of rock and changing rock deformation mode. In next section the employed 

approach and average permeability damage concept will be explained. 
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3.6. Permeability Damage Calculation 

To calculate formation damage (i.e., permeability alteration) due to stress changes, we 

integrated both loading and unloading permeability vs effective stress plots. The difference of the 

integrated values would give the space gap between two plots representing as permeability 

evolution. The region above the loading curve would be considered negative since permeability 

increases. A schematic of damage calculation is shown in Figure 3-10, the shaded area presents 

the overall permeability damage during a loading/unloading cycle.  

 

Fig. 3-10. Shaded area between loading and loading path represents permeability evolution 

The shaded area for three different regions (Figure 3-11) are measured. First, 

loading/unloading path with no discontinuity (σ1 to σ2) is considered. Second, the curves are 

separated into two parts including a region before reaching to critical point (σ1 to σcr) and after 

the critical point (σcr to σ2) region. Then average damages for each region are compared to check 

the results with and without considering the breaking points on loading/unloading paths. Also, 

this will help to shed light on the pressure dependency permeability before and after approaching 
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the critical effective stress, where it is expected that majority of microcracks and pore alterations 

happen (Civan, 2017).  

 

Fig. 3-11 Dividing permeability hysteresis path to two separated regions; before and after critical effective stress 

Furthermore, two common curve fitting methods in permeability hysteresis calculation, 

power law and exponential (Dong et al., 2010), are employed. Thereby, formation damage 

calculation using each proposed matched curve and results validation with real damage measured 

during the loading/unloading path are performed. The real damage value is defined as area under 

a plotted curve with trapezoidal rule. The better fitted model will help us to analyze different 

experiment cases (e.g., hysteresis length, pore pressure and pore size distribution) and be able to 

predict the damage under higher effective stress ranges. To compare the results, average 

permeability damage concept based on Fan and Liu, 2019, was used to illustrate permeability 

evolution under investigated experimental cases. They introduced an average permeability 

damage concept to show the effects of maximum stress, loading path, holding time, and gas type 

on coal permeability alteration. Average permeability damage represents the average effect of 
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unit stress on permeability within loading/unloading stress range. This can be calculated based 

on the Eq. (3-13) to determine the area of shaded region shown in Figure 3-10 (Fan and Lui, 

2019). 

𝑘𝑑 =
∫ 𝑘𝑙  𝑑𝜎

𝜎2

𝜎1
− ∫ 𝑘𝑢𝑙  𝑑𝜎

𝜎2

𝜎1

𝜎2 − 𝜎1
 (3-13) 

Where “kd” is average permeability damage during the cyclic loading range from σ1 to σ2; σ1 is 

initial applied stress which in this study has different values depend on the experimental cases (5 

MPa, 12 MPa), σ2 is maximum stress at each period, “kl” is permeability during loading process; 

and “kul” is permeability during the unloading process. 

To calculate permeability alteration using fitted curves, core sample#2 from 5 to 55 MPa 

with 0.1 MPa pore pressure was pressurized/de-pressurized and plotted measured permeability 

on semi-log plot as shown in Figure 3-11. The curve discontinuity found on this graph is almost 

25 MPa, which this pressure was picked as critical effective stress point (σcr) for this core sample 

with no pore pressure. As showed in Figure 3-11 the curve divided into two regions and four 

curves:1) Loading before critical point; 2) Loading after critical point; 3) Un-loading before 

critical point and; 4) Un-loading after critical point. Therefore, permeability damage based on 

Figure 3-11 can be split to two regions: a) Shaded area between σ1=5 MPa to σcr=25 MPa 

loading/unloading path and; b) Shaded area between σ2=55 MPa to σcr=25 MPa 

loading/unloading path. First, permeability damage based on Figure 3-10 and trapezoidal rule for 

whole continuous loading/unloading curve, before and after critical point regions calculated to 

validate mathematical models presented in next step. Determined permeability damages for three 

mentioned regions are 0.0041 md, 0.0032 md and 0.00085 md, respectively. Next, the best match 
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to the data points were found by applying exponential and power-law method as shown in Figure 

3-12 and Table 3-2. 

 

Fig. 3-12. Exponential and power-law models fitted to first experiment data points for core-sample#2 with no pore 

pressure effect. Each model is fitted to the loading and unloading curves divided into two regions: before and after 

critical point (25MPa) 

Table 3-2 Summary of fitted curves for whole data sets, before and after critical point 

 

Exponential Method 

Whole Before critical After critical 

Loading Unloading Loading Unloading Loading Unloading 

K0 0.0008 0.0005 0.0009 0.0005 0.0004 0.0002 

ɣ -0.04 -0.032 -0.04 -0.029 -0.024 -0.011 

R2 R² = 0.9324 R² = 0.8897 R² = 0.9756 R² = 0.8594 R² = 0.843 R² = 0.8488 

 

 

Power-law Method 

Whole Before critical After critical 

Loading Unloading Loading Unloading Loading Unloading 

Ko 0.0035 0.0014 0.0012 0.0007 0.0038 0.0006 

𝜆 -0.841 -0.663 -0.337 -0.294 -0.896 -0.457 

R2 R² = 0.8812 R² = 0.8573 R² = 0.8993 R² = 0.7532 R² = 0.8459 R² = 0.9048 

 

5.0E-05

5.0E-04

0 10 20 30 40 50 60

P
er

m
ea

b
il

it
y
 (

m
d

)

Effective Stress (MPa)

Loading-Whole Data
Unloading-Whole Data
Loading-Before Critical Point
Unloading-Before Critical point
Loading-After Critical Point
Unloading-After Critical Point
Power (Loading-Before Critical Point)
Expon. (Loading-Before Critical Point)
Power (Unloading-Before Critical point)
Expon. (Unloading-Before Critical point)
Power (Loading-After Critical Point)
Expon. (Loading-After Critical Point)
Power (Unloading-After Critical Point)
Expon. (Unloading-After Critical Point)



52 

Integrating matched curve models with Eq. (3-13), we compared final average permeability 

damage within experiment effective stress range for whole data sets, before and after critical point 

using exponential, power law and real permeability damage. Figure 3-13 illustrates calculated 

average permeability damage for each proposed method. 

 

Fig. 3-13. Average permeability damage: power-law match, exponential match, experiment graph, based on the 

loading/unloading curve (5 to 55 MPa) for core sample#2 

Based on Figure 3-13, although power-law shows acceptable average damage for whole 

data sets compared to real value, it gives wrong trend and high error in both, before and after 

breaking points damage. However exponential relationship gives reasonably close value to the 

calculated experimental average damage in all three investigated regions during 

loading/unloading. Therefore, based on our laboratory work, for our core samples, exponential 

relationship is superior to power-law method for describing the stress dependency of 

permeability of the rock samples and further average permeability calculations. That being said, 

the rest of the experiment data analysis will be based on exponential curve matching. 
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3.7. Experiments and Results 

3.7.1 Stress Range 

In the first set of experiments on core sample#2, the sample was pressurized up to 20 

MPa and depressurized to 5 MPa with zero pore pressure (0.1 MPa). Based on Figure 3-14, it can 

be seen that during loading the confining pressure, permeability decreased around 50%, and after 

unloading 33% of permeability remained irreversible. Then loading pressure was increased up to 

55 MPa, which is close to the in-situ reservoir condition. Figure 3-14 indicates permeability 

reduction to 82%, and around 38% of permeability remained irreversible. This experiment 

suggests that the length of pressurizing has a slight effect on hysteresis path. It can be concluded 

that as the effective stress goes higher, the probability of closing cracks and fractures increase, 

and this phenomenon makes fractures opening harder. In other words, formation damage directly 

increases with effective stress, and consequently permeability hysteresis becomes larger. Also, 

after loading to 55MPa, the critical effective stress point (or discontinuity in data points) is 

observed to be appeared in this experiment. Based on Figure 3-14, at the beginning of pressure 

loading there is a sharp permeability decrease, but this reduction will be smooth after a certain 

increasing value. After reaching critical point (which in our case is around 25 MPa) there will be 

less closing micro cracks, and permeability reduction lowers to around 20%, while this value 

before the critical point is around 78%. So, most changes for permeability occur before reaching 

the critical point. Besides, after approaching this point, the hysteresis path will not change 

significantly. This implies that significant stress dependency for core sample#2 should occur 

below 25 MPa. As explained earlier, and based on David et al., 1994, basically there are two 

important dominant mechanisms during loading/unloading the cores:  
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(i) Compaction process and its opposite impact on permeability alteration with 

increasing the effective stress. Grain re-arrangement, pore space collapsing, clogged 

pore throat with debris or closed induced microcracks during the operation are the 

main ones (Zhang et al., 1990a; David et al., 1994; Dong et al., 2010; Civan, 2017). 

After fracture pore or micro-crack deformation occurs, a dramatic decrease in 

permeability would appear as a discontinuity in data points. The only physical 

process which cause permeability reduction above the critical point, is matrix 

deformation which can be controlled by the pore shape and size (Teklu et al., 2016).  

(ii) Permeability enhancement due to existent micro cracks expansion or creating new 

ones under applied stress.  

The net effect of these two mechanisms would appear during the experiment. That being said, 

the observed permeability reduction in our tests, suggests the first mechanism is the dominant in 

our core samples. 

To show this rock behavior in more details, permeability damage based on the Eq. (3-13) 

and exponential fitted model to data points were calculated (Figures 3-15 and 3-16). As it was 

mentioned, in the first set of experiments, hysteresis length performed in short and long stress 

range. In the shorter stress range, the employed effective stress range (5 to 20 MPa) did not 

exceed the critical point. As it is expected permeability damage would increase with increasing 

effective stress range, however, after reaching the critical point of the core sample, the damage 

increment will lessen.  In the experiment with the shorter pressure cycle without reaching the 

critical point, the average permeability damage was determined to be 0.000109 md. For long 

hysteresis cycle, as it is illustrated in Figure 3-17, permeability damage before critical stress is 

slightly higher than the short one (0.00017 md), while damage decreases noticeably to 2.7×10-5 
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md after reaching the critical point. In other words, high portion of the permeability damage (i.e., 

irreversible permeability) belongs to permeability changes before approaching the breaking point 

where the majority of rock closure happens. 

 

Fig. 3-14. Comparing long and short loading/unloading pressure 

  

Fig. 3-15. Short length stress loading/unloading and exponential fitted model 
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Fig. 3-16. Dividing the data points into two regions and fitting exponential model on semi-log plot; core sample#2 

Another important point arises when continuous whole data set in permeability 

relationship was used to calculate average damage within the applied stress range. Based on 

Figure 3-17, at first glance it appears the average damage for shorter loading/unloading path is 

higher compared to longer stress range. However, since in short length hysteresis, the rock does 

not approach its critical effective stress, it should be compared with permeability damage at 

maximum critical point (i.e., 25 MPa for our test).  

Furthermore, in Figure 3-17 the calculated average damage for the whole data sets within 

the long pressure cycle case appear to be lower than the short one. The result is not consistent 

with our experiment permeability curves in which the damage within the short stress range is 

lower than the long case. This invalid calculated damage can happen when data sets are not 

separated based on the plot discontinuity. Hence it shows the wrong application of curve fitting 
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with not involving critical point in permeability-pressure models. Consequently, less accurate 

fitted model with no reliable results leads to high errors in rock behavior calculation and 

hysteresis effect on permeability evolution. 

 

Fig. 3-17. Calculated average permeability damage for short and long hysteresis path; core sample#2 

Also, this can be explained by comparing the γ values for both loading/unloading paths, 

illustrated in Figure 3-18. Based on Dong et al., 2010, and Eq. (3-8) the slope of the straight-line 

in the semi-log plot is proportional to the pressure sensitivity coefficient (γ). In our experiment, γ 

halved after reaching the critical point where it possesses steeper length and shorter intercept in 

Figure 3-16. This implies that permeability pressure dependency is not significant after 

approaching this point and the small amount of damage can only be due to primary deformation 

(i.e., compacting due to grain movement) and not mechanical deformation or microcrack 

closures (David et al., 1994; Walsh et al., 1965; Nai and Gang, 2018). Therefore, γ differences 

for each defined region, are related to the dominant compaction mechanisms. 
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(a)  

 

(b) 

Fig. 3-18 Material constants for short and long hysteresis paths; (a) Loading (b) Unloading 

Another noteworthy point based on sensitivity coefficient (Figures 3-16 and 3-18) is 

comparing loading and unloading path. Before reaching the critical point, unloading coefficient 

decreases slightly from loading, which is observable in our data set as permeability hysteresis. 

Whereas stress sensitivity coefficient, γ, after critical point unloading, decreased sharply to 

almost half value (from 0.029 to 0.011 MPa-1). Comparing to Dong et al (2010)’s introduced 
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range for silty shale, it can be considered as notable low value (i.e., 16.78 to 43.47 ×10-3 MPa-1). 

This implies decreasing effective stress until certain value cannot retrieve any amount of 

permeability loss, therefore majority of permeability recovery method by changing pressure 

(e.g., injection) should be done before reaching the critical point due to the existence of high 

stress sensitivity before this point.  

By comparing pressure dependency for the short hysteresis plot with long one, it implies 

that, different stress ranges can change the obtained pressure sensitivity coefficient for the same 

core sample. The impact becomes paramount after reaching the observed discontinuity on plots 

or effective critical stress. Dong et al., 2010, mentioned if the exponential relationship is used to 

fit the data points for a lower stress range, γ, will be greater than that obtained from the data 

points for a higher stress range. Consequently, the experimental stress range plays an important 

role in determining the parameters of permeability-pressure models. This is due to the existence 

of critical point where the stress sensitivity can change significantly based on dominant 

mechanism. 

That being said, predicting permeability change using mathematical models requires to 

run the test under sufficient stress range and achieve the critical point before developing any 

permeability relationship formula. To show the effect of stress range, predicted permeability 

damage and hysteresis using short and long cycle equations under 120 MPa effective stress are 

plotted in Figure 3-19. The predicted model using short stress range relationship, overestimates 

permeability reduction after reaching to core sample critical point (25 MPa). Also, it does not 

contain any sharp changes or discontinuity in critical effective stress. This is because high and 

same pressure dependency coefficient is employed after reaching to core sample critical point. In 

other words, it does not involve particle crushing and pore collapsing in the compaction 
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mechanisms after critical point which leads to significant error in both predicted permeability 

and average damage values. Therefore, except an overestimated unloading value between 25 to 

60 MPa, permeability reduction become constant in exceptionally low value under higher 

effective stress than obtained experimental data. Based on predicted permeability hysteresis path 

for two models, it can be seen from Figure 3-19 that choosing wrong stress range would suggest 

false high permeability reduction and pressure dependency (𝛾), after reaching the real critical 

point. However, employing discrete model after the critical point would predict a significantly 

slow permeability reduction, which is close to real experimental data.  

 

Fig. 3-19. Comparing prediction hysteresis path using short and long length stress exponential relationship 

Therefore, it is important to determine exact permeability alteration during 

loading/unloading under high effective stress, as lab conditions can limit experimental ranges. In 

case of wrong prediction, due to inaccurate models or insufficient experimental data, it can cause 

wrong decision for early injection to retrieve the permeability.  
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Comparing pressure sensitivity coefficients in both exponential and power law method in 

our experiment stress range shows, power law coefficient predicts the pressure dependency 

incorrectly and opposite of real behavior of the rock. As it is shown in Figure 3-20 material 

constants, 𝜆, which represent rock pressure sensitivity (David et al., 1994), increased after 

critical point for both loading and unloading path. However, as it was illustrated permeability 

changes after this point is small and insensitive to pressure changes. Therefore, as stated earlier, 

power-law model for our experiment data cannot represent permeability pressure dependency 

model.  

 

Fig. 3-20. Material constant using power law model 

In general, before approaching the critical effective stress on experimental data, high 

pressure sensitivity and permeability reduction were observed. Based on many researchers work 

microcrack closure, particle rearrangement, grain crushing, existing pore channels and pore 

shape are the dominant mechanisms controlling the evolution of rock permeability with the 

effective confining pressure (Walsh, 1965; David et al., 1994; Kwon et al., 2001). However, rock 

deformation will become smooth after certain point and mentioned phenomena will not be 
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effective anymore. Therefore, permeability approaches a low and stable value with small 

changes under elevated effective stress.  

Furthermore, pressure dependency can vary depending on the stress range of the 

experiment. Thus, it is important to find the proper material constant, γ, before developing 

pressure dependent models. Based on average permeability damage, pressure sensitivity and 

permeability hysteresis, it is shown that separating the experimental data with respect to critical 

points are essential for predicting and calculating permeability evolution. Therefore, detecting 

the critical effective stress for any formation is a necessary task before proceeding with 

permeability calculation. Indeed, each breaking point differs from one formation to another; 

hence, it is important to obtain the range of possibility critical stress and ensure reaching the 

point during permeability hysteresis measurement. In the next experiments we checked the effect 

of pore pressure and porosity in case of damage, sensitivity and changing critical points.  

3.7.2. Pore Pressure  

In the second experiment different pore pressures (i.e., zero, low, high) were investigated 

to check its impact on permeability measurement results during loading/unloading the core 

sample. It is shown in Figure 3-21, during loading in low effective stress, as pore pressure 

increases, initial permeability values rise, and pore pressure shows a direct relationship with 

permeability measurement. However, increasing the effective stress (i.e., higher confining 

pressure) causes two noticeable changes on the permeability trend: 

(i) As it can be seen in Figure 3-21, critical effective stress for same core sample with 

different pore pressure is almost in the same range (25 to 30 MPa). However, 

increasing the effective stress with higher pore pressure, would increase permeability 
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reduction rate. Therefore, approaching critical stress point would occur with faster 

slope and lower permeability value. 

(ii) At the beginning of loading, where effective stress is low, higher permeability was 

measured in elevated pore pressure. However, the effect of pore pressure will be 

diminished by continued loading. Thus, permeability goes down and the direct 

relation between pore pressure and permeability switches to opposite. This indicates 

the significant effect of confining pressure on formation behavior and low impact of 

pore pressure under high exerted confining pressure. 

 

Fig. 3-21. Effect of pore pressure during loading the sample 

Continuing the test with unloading the sample for various pore pressure amounts, low 

permeability retrieves for high pore pressure comparing to two other cases (i.e., zero and 5 MPa 

pore pressure) was observed (Figure 3-22). In other words, pore pressure effect appears in 

extremely low confining pressure (here is 5 MPa) similar to the loading path, thus average 

permeability damage expects to be high in presence of pore pressure. Moreover, the results for 
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high pore pressure loading/unloading path suggest that there is a delay in reaching the rock 

critical effective stress during unloading (Figure 3-24). This behavior is not observed in the 

presence of low or zero pore pressure.  

In Figure 3-23 the results from Pp=30 MPa can be found in more detail. In low effective 

stress (Pc=35 MPa) permeability ratio during loading/unloading is around 8%, which shows high 

pore pressure can barely mitigate formation damage, even in low effective stress. The situation 

exacerbates in higher confining pressure in which pore pressure cannot overcome confining 

pressure after minor increasing and permeability ratio halved (3.5%). 

 

Fig. 3-22. Effect of pore pressure during unloading the sample 

As it is appeared in Figure 3-23 there is a noticeable reduction in permeability after 

unloading the sample in the presence of pore pressure. In this case, the formation damage and 

permeability hysteresis remarkably increased. 
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Fig. 3-23. Comparing permeability values for different pore pressure and constant effective stress 

To analyze the exact value of permeability damage same as employed approach for stress 

range section, average permeability concept after fitting data with exponential models was used 

for both cases with 5 and 30 MPa pore pressure. Thereby, the effect of increasing pore pressure 

on permeability evolution and pressure sensitivity coefficient can be seen. The average 

permeability damage for three cases with zero, 5 and 30 MPa on Figure 3-25 are compared. It 

can be seen that as pore pressure increases, permeability damage before reaching the critical 

point, increases to significantly higher value. Average permeability damage for pore pressure 

with 30 MPa is almost 0.002 md, comparing to 0.00074 and 0.00017 md for Pp=5MPa and zero, 

respectively, is one order higher. This high negative effect of pore pressure can be related to the 

observed delay in reaching critical point after unloading the sample as shown in Figure 3-24. 

This can be possibly explained by creep unloading behavior of rock, which becomes noticeable 

in presence of significant water. Considering the permeability measured using distilled water, 

one possible explanation for the lower permeability is the swelling of clay in the presence of 
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water which leads to gradually permeability recovery or creep unloading (De Jong et al., 2014; 

Noort and Yarushina, 2018).  

 

(a) 

 

(b) 

Fig.3-24. Dividing the loading/unloading path for experiment data points with non-zero pore pressure. (a) Pp=30 

MPa, as it is appeared critical effective stress for unloading data point is delayed up to 10 MPa and shown with 

black array (b) Pp=5 MPa 
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Fig. 3-25. Comparing average permeability results for second experiment (pore pressure effect) 

We did not conduct XRD for our core samples in this work. However, XRD results based 

on Lui et al., (016 and 2019, for several Middle Bakken core samples shows clay percentage can 

vary from 13.6% to 63%. Therefore, existence of clay is feasible in the samples which can be the 

reason of low permeability recovery during unloading, especially for core samples with low 

effective porosity and tight pore throats. On the other hands if the clay amount is not significant, 

this cannot be attributed lower permeability in high pore pressure to clay swelling. Another 

explanation based on Noort and Yarushina, 2018, is that attractive forces between mineral 

surfaces increase in the presence of water. Under the high confining pressure, these forces can be 

brought close together, therefore, fluid flows harder and causes a further permanent decrease in 

permeability. If the attractive forces between the surfaces are large enough to hinder fluid flow 

and to keep the pores closed, the reduction cannot be retrieved by decreasing the confining (Vigil 

et al., 1994; Noort and Yarushina, 2018). 

As David,1994, noted, the permeability of porous media mainly depends on the rock 

characteristics, such as porosity, pore throat geometry, tortuosity, pore connectivity, and more. If 

the fluid is reactive to the rock, other factors, such as wettability of the fluid, swelling of clays 
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and other minerals, and the chemical interaction between the rock and the fluid, also affect the 

permeability. Based on the data available, it is not possible to discriminate whether surface 

tension and rock wettability or fluid-dependent pore shape caused the lower measured 

permeability in the samples (Noort and Yarushina, 2018). 

Considering the stress sensitivity coefficient based on exponential fitted models to data 

points (Figure 3-26), it can be seen the average value for loading/unloading curves shows 

straight relationship with increasing pore pressure for both before and after critical point. 

However, the slope of stress sensitivity increment, decreases to more than half of the before 

critical point slope. In other words, it can imply that in term of increasing or decreasing pore 

pressure (e.g., fluid injection), permeability value should not change significantly after passing 

critical point. That being said, pore pressure would not cause permeability change or retrieving 

the permeability loss until a certain point. Figure 3-27 is comparing the average permeability 

change with stress sensitivity coefficient for three pore pressure cases (i.e., Pp=0 ,5 and 30 MPa). 

 

Fig. 3-26. Loading/Unloading average stress sensitivity coefficient based on pore pressure change, after and before 

critical point 
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Fig. 3-27. Comparing average permeabilities with stress sensitivity coefficients before and after critical point for 

three different pore pressure values 

Before reaching the critical point for each case, average permeability damage shows 

direct relation with effective stress dependency, however there is no clear correlation between 

permeability pressure dependency and the final average permeability after the critical pressure. 

This can be explained as effective stress is not the only parameter controlling the permeability 

damage after this point. Based on Noort and Yarushina, 2018, it might be related to the possible 

available mechanisms in presence of water during permeability measurement. Stronger decrease 

in permeability is expected during loading if water could mechanically weaken the rock sample. 

Therefore, based on the results, water did not increase pressure dependency, directly. However, 

as discussed earlier, the low permeability at high confining pressure with increasing the pore 

pressure can be due to hard fluid movement in blocked pore throats and narrow fractures. This 

could cause a delay in retrieving the permeability damage. That being said, average permeability 

damage, which represent the permeability change over stress unit, would be almost zero after 

critical point.  
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3.7.3. Pore Size Distribution  

In the last experiment, two core samples with different PSDs (Figure 3-28) were 

compared. It is illustrated that for relatively homogenous PSD (core sample#1), the hysteresis 

gap decreases (31%), and the formation damage (i.e., irreversible permeability) improves. Core 

sample#2 with relatively heterogeneous PSD indicates higher difference in the loading/unloading 

path (38%) and this value can rise with increasing pore pressure as it is showed in second 

experiment. However, permeability reduction in the homogenous sample is slightly higher than 

the heterogeneous one, which can be related to pore sorting and pore sizes. As several authors 

mentioned in many cases interconnected pores (i.e., effective porosity) play critical role on 

controlling the fluid flow path. Consequently, distribution of large pores, cracks and pore shape 

distribution can control the permeability variation with pressure in core samples. (Walsh, 1965; 

David,1993; Civan, 2007). 

Based on obtained PSDs (Figure 3-9), the percentage of large pores in sample#2 is higher 

than in sample#1. Critical point for sample#1 is almost same as other core sample, since they are 

obtained from same formation within certain depth (~3120 m). However due to high 

heterogeneity, pore size distribution was not same for the core samples. As it is well known, 

smaller pores and pore throats are sensitive to stress. The reason is that smaller pore throats can 

easily lose their connectivity during an increase of stress, while the probability of closing larger 

pore throats is low. In other words, large pore sizes can reduce but not close completely, 

therefore, displaying less sensitivity to stress (Dong et al., 2010; Teklu. et al., 2018).  
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Fig. 3-28. Comparing measured permeabilities for two different PSDs 

Calculated average permeability damage and stress sensitivity coefficient, γ, are in 

consistent with explained core sample behavior as well (Figures 3-29 to 3-31). Although 

permeability recovery in low confining pressure for two cases is slightly different (7%), average 

permeability before critical point is noticeably higher for core sample#2. This can be related to 

heterogenous pore size distribution for core sample# 2. However, permeability damage after 

reaching the critical point for core sample#1 is close to core sample#2. This shows the effect of 

matrix pore contribution for smaller pores, which cannot open easily comparing to larger pores 

and would not retrieve fully, as it was expected and explained.  
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Fig. 3-29. Dividing the data point into two regions and fitting exponential model on semi-log plot; core sample#1 

Also, it can be seen in Figure 3-31 for core with lower pore size (core sample#1), γ 

increases in both before and after critical point which correspond to a sharper decrease in 

permeability with pressure. As it is mentioned smaller pores show more permeability stress 

sensitivity which leads to the deformation of interconnected pore spaces and consequently, lower 

permeability (Xu et al., 2017).  

In contrast with pore pressure experiment results, the data show an opposite correlation 

between 𝛾 and average permeability damage for small effective porosity core sample (Figures 3-

30 and 3-31). While average sensitivity coefficient is higher for core sample#1, average damage 

before and after critical point is smaller than core sample#2. 
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Fig. 3-30. Average permeability damage for both core samples 

Thus, it implies that, stress sensitivity is not the only parameter controlling the 

permeability evolution. However, it is difficult to interpret the data further in the absence of 

information on the porosity sensitivity and it requires more investigation of pore size distribution 

and heterogeneity contribution on permeability damage during loading/unloading process. 

 

Fig. 3-31. Average stress sensitivity coefficient for both core samples 
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Therefore, in such tight unconventional reservoir it is recommended to calculate several 

core samples critical point, and permeability damage to get wide range of rock pressure 

dependent property alteration. For the core samples, critical points are between 15 to 30 MPa, γ 

changes from 0.158 to 0.012 MPa-1 which is in consistent with David et al., 1994, results for 

tight rock sample with γ>0.002 MPa-1 and permeability varies from 10-3 to 10-4 md based on 

different test conditions and core sample pore size distributions. 

3.8. Summary and Conclusions 

In this study, the permeability of some Bakken core samples was measured under various 

cases of loading/unloading effective-stress conditions. The permeability-stress sensitivity, critical 

effective stress and average permeability damage were evaluated under short- and long-stress 

ranges, different pore pressures and effective porosities. Below is the summary and conclusions 

drawn from this work: 

• The effective porosity of core samples was determined through digital rock physics 

(DRP) and the permeability was measured by means of pulse-decay method.  

• The exponential permeability model was able to well describe the permeability 

measurement data of Bakken core samples through straight lines on the semi-log plot 

of permeability vs. effective stress.  

• Phenomenological mechanism of permeability sensitivity and permeability damage 

according to the exponential permeability-stress relationship is discussed. 

• From such plots, observations were made to identify the impact of critical effective 

stress on the permeability sensitivity and average formation damage. 

• Permeability continuously declines upon loading the sample and does not fully 

retrieve during unloading. The rate of permeability reduction changes beyond a 
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certain point referred to as critical effective stress. Moreover, the experiments 

revealed that the span of loading/unloading stress has a direct impact on the hysteresis 

distance and average permeability damage. However, after the critical effective stress 

there would be no significant change in the permeability and hysteresis and 

permeability recovery is almost zero. In other words, injection of fluids at any high 

pressure would not help the collapsed cracks and crushed grains to re-open, thus 

leading to lower production. Therefore, it is recommended that the critical effective-

stress be determined in the lab which helps us better design, optimize, and execute 

successful and timely-planned pressure maintenance and EOR treatments. 

• The effect of pore pressure on the permeability hysteresis was also investigated in this 

research. The results showed that at early stages of production in unconventional 

reservoirs where pore pressure is higher (i.e., lower confining stress), the relapse of 

permeability has a better chance than that during late time after the depletion has 

started. In higher effective stress increasing pore pressure showed negative impact on 

improving formation damage. This observation again highlights the significance of 

early-time injection for better EOR outcomes. 

• From the experiments a 50% reduction of stress-sensitivity coefficient was observed, 

during both loading and unloading, when the applied stress approached the critical 

effective stress. Comparing stress sensitivity during loading with unloading results, 

show reduction permeability stress dependency during un-loading. Also, higher pore 

pressures before reaching the critical effective stress may cause greater sensitivity of 

permeability to effective-stress change.  
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• Before approaching the critical points, direct relationship between stress dependency 

and permeability damage was observed, for same core sample with varying pore 

pressure. However, this relationship would flip for core sample with different 

porosities. This implies that stress sensitivity is not the only parameter controlling the 

permeability evolution. 

• With regards to the pore-size distribution, permeability hysteresis becomes more 

notable as the heterogeneity of samples is more significant. Comparing two different 

cores with various PSDs, proved that heterogonous sample has slightly larger 

hysteresis. However, low effective porosity and pore sizes in homogenous sample 

caused lower measured permeability and higher permeability reduction rate. 

Therefore, the permeability stress-sensitive behavior in Middle Bakken core samples 

is mainly controlled by the pore size distribution, heterogeneity, and micro cracks. 

• Due to limited laboratory conditions, stress sensitivity evaluation is not fully 

reflecting the reservoir conditions where stress relief or drilling induced fractures can 

happen. Besides, the hysteresis phenomenon occurs based on several complicated 

processes, such as elastic and plastic deformation, contraction, shearing, compaction, 

and the like.  Therefore, for a more accurate investigation, actual reservoir conditions 

need to be simulated as much as possible. Knowing the hysteresis phenomenon 

process and the caused permeability damage can improve controlling and managing 

reservoir production by proper operation decisions. 
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CHAPTER 4 

PERMEABILITY MODELING USING MACHINE LEARNING 

4.1. Introduction 

Currently, the most challenging issues involve the collection and processing of a large set 

of data for multiple investigations related to addressing industrial problems. Applying 

conventional analyses may not be suitable for extracting useful information due to the increased 

complexity of the process. For this reason, a significant amount of research was devoted to 

addressing these issues through the incorporation of data mining as a key idea for the more 

precise treatment and interpretation of a variety of results (Sharma and Sharma, 2018; Angra and 

Ahuja, 2017; Dey et al., 2015). The practice of removing particular information from a database 

that was concealed and not explicitly available to the user using machine learning (ML), is 

known as data mining. While employing someone to identify the finest basketball centers is data 

mining, teaching someone how to play basketball is ML (Raschka, 2017). ML algorithms 

employ data mining to discover connections between diverse nonlinear relationships. ML is 

described as the application of various algorithms to train computers to detect patterns in data, 

which may then be utilized for future prediction and forecasting or as a quality check for 

performance improvement. ML enables computers to learn without being explicitly programmed. 

In summary, data mining is concerned with finding specific information, whereas ML is 

concerned with executing a specific task. Consequently, machine learning has received a 

growing amount of attention, particularly in the field of petroleum engineering. This technique 
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entails identifying the correlations and rules that best characterize the behavior of outputs in 

response to the anticipated change in input attributes. However, many algorithms were developed 

for general objectives and subsequently applied to specific oil production enhancement and 

petroleum engineering domain research (Khan, Alnuaim, et al., 2019; Hegde and Gray, 2017). In 

this work, machine learning (ML) methods was employed, more specifically, an artificial neural 

network (ANN) algorithm, to the permeability-stress data to determine the general model that 

can describe the variation in permeability as a function of net confining stress for several core 

samples. Thereby, permeability evolution using the proposed matched curve was calculated and 

the results were validated with experimental permeability measured during the loading path. 

Using linear regression approaches (e.g., power-law and exponential correlations), the generated 

model covers a narrow range of study and cannot predict the change in permeability as a function 

of stress with introducing density, porosity, and grain volume. Hence, the implantation of ML to 

forecast the change in permeability versus stress for new data points can lead to major 

improvements, including the reduction in time effort and the cost of sampling. In the ML 

approach, the entire area of study can be covered by training a general model through few runs 

on a narrower range of variation. The developed ML algorithms were used in this work to find 

the general relation between permeability and the effective net stress accounting for different 

rock properties as inputs. Assuming a general model that can be parameterized under the most 

typical change in attributes of neighboring wells in a specific region is highly recommended as 

an alternate strategy that can limit the implementation of real core analysis in the non-exploitable 

area. To do this, it is vital to use valid algorithms to make these predictions. From the concept of 

decision tree regressor, it can be revealed that it is a high-level generalization algorithm because 

it is based on single-point decision making.  
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4.2. Machine Learning Workflow  

It is critical to grasp standard ML workflows before discussing ML techniques and types. 

A typical ML workflow includes the following steps: (1) data gathering and integration, (2) data 

preprocessing, which includes (a) data visualization, (b) outlier detection, and (c) 

normalization/standardization, (4) model development, (5) optimization, and (6) finally, 

implementing the trained model (Book: Machine Learning Guide for Oil and Gas Using Python). 

Figure 4-1 summarizes the machine learning roadmap.  

 

Fig. 4-1. Machine learning roadmap (Raschka, 2017) 

4.3. Data Gathering and Integration 

The available core data, such as permeability and porosity, was compiled under a wide 

range of net confining stresses from 90 core samples of the "Debrecen 1-3H" well in the Bell 

field. We picked this well since its core analysis input and output data are available in a way that 

enables us to execute the machine learning job (Boualam, 2019).  Based on the reported results 

by Boualam et al., 2020, power-law and exponential models (Figure 4-2) for several data points 
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at different depths were investigated under a small range of variation. Also, recovered 

permeability by unloading is lower than that of the initial permeability due to the hysteresis 

effect. The proposed range can vary based on sampling depth for each core sample under limited 

applied stress in the lab. 

 

Fig. 4-2. Permeability versus net confining stress of rock samples from Middle Three Forks formation, well 

Debrecen 1-3H (Courtesy from NDIC data) 

 

Therefore, each core sample can show different behavior under variable effective 

stresses. Hence, modeling the actual behavior of permeability requires plotting permeability 

under various cases of pore pressure and confining stress versus effective stress (Ma and Zoback, 

2016). 

4.4. Data Pre-processing 

The selected inputs for the model are net confining stress, porosity, rock density, and 

grain volume, and the output is rock permeability. The input dataset must be treated and 

preprocessed before any machine learning algorithm can be executed. Raw data rarely comes in 

the form and shape that is necessary for the optimal performance of a learning algorithm. This 

includes imputing outliers which can cause overfitting of the model and therefore a reduction in 
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accuracy. In some circumstances, it is vital to examine the contribution of outliers to the 

formulation of the final conclusion. Numerous functions were performed so as to not erase the 

influence of the outlier, since it may provide important information. By default, an outlier is a 

value that is more than three scaled median absolute deviations (MAD) from the median. 

However, if the data is not normally distributed and the imputation of outliers must not be 

restricted to a small deviation from the median, the quartiles method with clip function can be 

more effective in detecting local outliers and preserving the general effect by reducing the 

variation between the outlier and the median. In this study, the quartiles method was used to 

detect and fill outliers with the upper threshold. According to Figure 4-3, 404 outliers’ 

permeability data points were deemed to be outliers. 

 
Fig. 4-3. Graphical detection of permeability outliers based on the quartiles method  
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As the success of machine learning models is dependent on the input data, it is essential to 

visually inspect the correlations of the input to prevent highly correlated inputs and a biased impact 

that is disproportionately large. Figure 4-4 pictures the relationship between the inputs.  

 
Fig. 4-4. Correlation matrix for regression inputs 

 

These plots can provide a close look at the features that are redundant and must be 

removed from the input data. In fact, a coefficient close to one is a sign of the presence of a 

strong correlation between features and this can result in discarding one of them or using some 

analytical methods such as principal components analysis to reduce the dimensionality of 

features. Depth was considered a feature only in case that are generalizing the prediction model 

on a larger dataset that includes different wells. If the single well is used for model development, 

then depth is not carrying any information to the output and should be assigned as an index. No 

relationship between inputs is observed upon analysis of the plot. 

In addition, the inputs must be rescaled to lessen the dominance of certain characteristics 

on the overall contribution to the prediction of outputs. This step will limit the variance range for 
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each data set. Scaling with normalization was done on all features in this study using the 

following formula: 

𝑥𝑁 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                                                                                                                 (4-1) 

where xN is the normalized observation, xmin is the minimum observation, xmax is the maximum 

observation. 

 

Fig. 4-5. Log transform of the output (permeability)   

Log transform (Figure 4-5) is used to reduce the skewness of the output data. This can 

prevent the model from being trained on a certain range of data more than the rest of the data. 

Hence, this creates a high uncertainty in the prediction performances. The preprocessing of the 

data is one of the most crucial steps in any machine learning application. In practice, it is 

essential to compare at least a handful of different algorithms to train and select the best-

performing one. But before doing that, a decision needs to be made upon a metric to measure 
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performance. After selecting the model that has been fitted to the training dataset, the test dataset 

can be used to estimate how well it performs on this unseen data to estimate the generalization 

error. If the performance is satisfying, the model can be used to predict new (future) data. To 

assess if the machine learning algorithm not only performs well on the training dataset but also 

generalizes well to new data, R2 is measured for both datasets. A model that seems to perform 

well during training but badly during testing is overfitted to the training dataset since it does not 

generalize effectively.  

4.5. Machine Learning Model Description and Setup 

Model development requires the construction of a representative subset of data after data 

pretreatment. Data points are partitioned into a training set, a validation set, and a test set. The 

training set consists of the assortment of observations used by the algorithm to identify the 

interplay between the inputs. The validation set is used to update the trained model's 

hyperparameters. The purpose of the test set is to assess the validated model by predicting fresh 

data blindly. At this stage, while dividing the data, additional considerations must be taken into 

account, including a rigorous assessment of the model's performance under a given ratio of the 

test set. The model must be well trained utilizing a substantial amount of data. Twenty percent of 

the observations were chosen for algorithm testing, while the remaining eighty-five percent were 

split 85:15 for model training and validation, respectively. After dividing the preprocessed data, 

two algorithms with distinct architectures were constructed. In this work, ANN is the first 

technique utilized to calculate the permeability regression because to its broad applicability. This 

algorithm's design was influenced by the structure of the nervous system. Therefore, the ANN 

was constructed by implanting several artificial neurons inside various sorts of layers. Here, the 

assumption is that the initial and final sets of neurons correspond to the input and output layers, 
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respectively, and that the neurons formed between these two sets may be grouped into several 

hidden layers. The number of hidden layers may be adjusted based on the number of neurons 

necessary. In this work, the number of neurons has been optimized, and a single hidden layer has 

been used (Figure 4-6). In addition, the Levenberg-Marquardt training function is performed in 

order to maximize the weight and bias values. In order to evaluate the performance of ANN, the 

mean square error is computed using the following formula:  

  𝑀𝑆𝐸 = ∑
1

𝑁
(𝑦𝑃 − 𝑦𝑅)2𝑛

𝑖=1                                                                                                    (4-2) 

Where yP is the predicted output and yR is the real output for n data points. The error was performed 

using the MSE function on MATLAB. 

 

Fig. 4-6. Artificial neural network structure 

The decision tree regressor is another algorithm that was used on the more generalized 

dataset. ANN can be applied to only a single well while a decision tree regressor can be used on 

multi-well permeability prediction. The concept of the DT algorithm is based on branches that 

constitute plausible decisions, which can be taken concerning a specific relation between inputs. 

The regression using this algorithm can provide a clear explanation of the reasons behind a 

regression of certain values by setting conditions at each lower range separative node. 
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4.6. Results and Discussions 

Using the ANN method, the following regressions of permeability was determined. Using 

various metrics and a graphical representation, the derived findings were compared to the actual 

data. Each inquiry has been supplemented with an optimization section that identifies the optimal 

available parameters for enhancing algorithm performance. 

4.6.1. Low-level Generalization (Single Well) 

Successful training relies on a complicated combination of numerous accessible factors. 

First, the model's variance and bias are impacted by the model's complexity and input features 

selection. The input characteristics for each variable have been chosen based on the formulas 

provided. Secondly, the dimensionality of the inputs dictates the number of neurons in the hidden 

layer. Due to the algorithm's operating concept, there are no correlations or recommendations 

that can be used to estimate the optimal number of hidden neurons. If attempting to execute the 

algorithm numerous times under certain beginning circumstances yields varying outcomes for 

each execution, the answer is to do a post-optimization based on the resulting mistakes. Figure 4-

7 depicts the variation MSE in relation to the hidden neurons. The findings reveal that 3, 5, and 8 

hidden neurons are the best amount for developing a high-performance algorithm. 
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Fig. 4-7. Evolution of mean squared error as a function of the applied number of neurons for the training set, the 

validation set and the testing set 

MSE is only a point estimate taken from the distribution of feasible MSEs, and the 

precise data included in the training set versus the test set impacts this point estimate. It is 

recommended to determine the shape of the underlying distribution in order to be able to judge 

which of the three optimization points can be trusted when the model is used for different data 

sets. An uncertain model is defined by the training MSE being considerably greater than the test 

MSE. This is done by taking the training set and randomly selecting 80% of it for a new sub-

training set and the remaining data points represent the new sub-test set. MSE was recorded for 

both of these sub-training and sub-test sets. Then the process was repeated many times to plot the 

distribution. As seen in Figure 4-8, ANN with 8 hidden neurons increasing the number of 

neurons may lead to overfitting. This may be attributed to the significant number of errors that 

were anticipated during the testing phase. 
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Fig. 4-8. MSE distribution along the data subset for validation and training, 8 hidden neurons (right), 5 hidden 

neurons (center), and 3 hidden neurons (left)  

It can be seen that the predicted permeability using the ANN model shows a reasonable 

match with the 90 real permeability data at different depths (Figure 4-9). The use of this model in 

constructing the compaction table should present a better trend than the exponential model to 

predict the stress-induced permeability.   

 

Fig. 4-9. Linear fit of predicted permeability with the real permeability data (ANN model – Single Well) 

It was reported (Boualam et al., 2020 and Assady et al.,2020) that the change in 

permeability beyond a certain stress level (~25 to 30 MPa) becomes barely remarkable. This 



89 

behavior could be observed only in the ANN model. An exponential model shows a continuous 

decrease in permeability at high effective stress where it should remain constant or show a slight 

decrease. This inconsistency in exponential model results makes the ANN model a better choice 

for predicting the permeability trend in the Bakken/Three Forks Formations (Figure 4-10). The 

experimental core data collected from well Debrecen 1-3H (Boualam et al., 2020) was used to 

verify the validity of the ANN model. The permeability model for the Bakken formation was 

also developed using an ANN (Figure 4-11). Most of the data points fit better to the ANN model. 

Based on Figures 4-10 and 4-11, the exponential model does not show the critical stress point 

(i.e., where permeability change approaches a plateau), and it is not representative of 

permeability change at higher effective stresses. This erroneous prediction can be explained by 

the correlation coefficients, which are taken from one depth only. In contrast, the ANN model 

was trained on core samples taken from different depths and covered a wide range of 

investigations. 

 

Fig. 4-10. Comparing permeability-stress models matching with the experimental core data (Boualam et al., 2020) 

for Three Forks formation 
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Fig. 4-11. Comparing permeability-stress models matching with the experimental core data for Bakken formation 

4.6.2.  High-level Generalization (Multiple Wells) 

Although the ANN algorithm over one set of well data showed promising results and 

accurate permeability prediction, the error between predictions and actual permeability data 

obtained from including several wells for the training is not good. This could be explained by the 

fact that we have a lot of fluctuation in the permeability data which makes it hard for the model 

to catch a trend between inputs and outputs. Trying manually to remove these fluctuations and 

splitting the data into smaller ranges did not solve the problem of getting good R2 but a large 

normal difference between prediction and actual data (error). The other factor that could play 

role in causing biasing of the model is the non-equal distribution of data. Even the split of data 

into ranges couldn't eliminate the clustering of permeability values towards smaller values 

(Figure 4-12).  

This clustering of data has caused the overestimation of low permeability values and 

underestimation of high permeability values. Based on the Decision tree regressor working 

principle, it can address this problem (Figure 4-13).  
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Fig. 4-12. Non-equal distribution of data, overestimation/underestimation of permeability data 

 

(a)                                                                                 (b) 

Fig. 4-13. (a) Linear fit of predicted permeability with the real permeability data (Decision tree model – Six 

Well). (b) Predicted permeability vs. true permeability for tested well  
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The decision tree regressor split the data to intervals (range) that represents the leaf of the 

tree. This leaf could carry one data point. Hence, the prediction could be made on widely smaller 

range of data point, and this might solve the problem of the non-equal distribution of data. More 

investigation of the process is out of the scope of this work. 

4.7. Conclusions  

• A machine learning technique, specifically, an artificial neural network (ANN) 

algorithm, was employed over the entire set of formation depth. The model was 

trained over the variation of core samples properties, including rock density, porosity, 

and grain volume, to improve the permeability-stress correlation. This approach 

generated a model that can accurately predict the permeability change versus 

effective stress for entire depths, using only one equation.  

• After the critical stress point, permeability change is not significant, which could be 

captured using a ML model. In contrast, an exponential model shows a continuous 

decrease in permeability at high effective stress. This inconsistency in exponential 

model results makes the ML method the best choice to obtain an accurate 

permeability-stress correlation in tight oil reservoirs. 

• Although the ANN algorithm over one set of well data showed promising results and 

accurate permeability prediction, the error between predictions and actual permeability 

data obtained from including several wells for the training is not good. The Decision 

tree regressor can address this problem.  
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CHAPTER 5 

SIMULATION MODELING AND EVALUATING EOR 

PERFORMANCE 

5.1. Introduction 

Over the recent decade, a rise in global oil demands forced the oil and gas industry to 

consider unconventional reserves that were deemed uneconomical before. Such developments of 

unconventional resources in North America became possible using advanced technologies in 

horizontal drilling and multi-stage hydraulic fracturing along with new EOR practices.  Although 

North Dakota contributed over 1.2 MMbpd of crude oil to the United States oil production 

(NDIC, 2021), only 2% of 600 billion (bbl) OOIP is recovering (Nordeng and Helms, 2010). The 

Bakken and Three Forks Formations are considered a major source of oil production and play a 

critical role in increasing oil recovery factors. The sharp decline rate of production from Bakken 

and Three Forks formation leads to the low primary recovery factor. It requires an efficient 

enhanced oil recovery (EOR) method to increase oil production. Recently, produced HC gas has 

been employed in several unconventional plays. Eagle Ford, as an unconventional reservoir and 

similar geologic conditions, reservoir properties, and production history to the majority of 

Bakken wells, showed a successful gas EOR pilot with outstanding oil production of a 30% to 

70% increase (Hoffman, 2018; Grinestaff and others, 2020; Pospisil and others, 2020). The 

results are encouraging in the possibility of improving EOR performance in the Bakken/Three 
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Forks wells with more stabilized oil rate production. Many researchers are exploring the 

mechanisms behind such higher recoveries and whether those gains can be sustained long 

enough to add reserves and cash flow to the unconventional tight shale plays. 

The following sections briefly summarize the key lessons learned from history of Bakken EOR 

tests from 1994 to 2018, the impact of permeability change during reservoir pressure change, and 

related curves are discussed. At the end of this chapter, two different simulation models with 

variable well and stimulated region pressure are presented. Gas injection scenarios are evaluated 

to find an optimum time of injection. 

5.2. Historical Bakken Tests  

Bakken pilot EOR attempts have been employed since 1994. The overall nine pilot 

efforts include CO2, water, and rich gas injection in North Dakota and Montana portions of the 

Williston basin, which were performed to address injection feasibility and incremental oil 

production. Two pilots were performed via water injection, four CO2 injections, one propane, 

and two field gas injection shown in Table 5-1.  

Table 5-1 – Summary of the historical Bakken EOR pilot tests (Pospisil et al., 2022) 

Pilot Operator Year EOR Scenarios 

1 Meridian 1994 13Mbbl Water injection 

2 EOG 2008 30.7 MMscf CO2 injection 

3 Enerplus 2009 45 MMscf CO2 injection 

4 EOG 2012 38 Mbbl Water Injection 

5 EOG 2014 88.7 Mscf field gas injection 

6 Whiting 2014 3.4 MMscf CO2 injection- Vertical well 

7 Hess 2017 9.5 MMscf C3H8 injection- Vertical well 

8 XTO 2017 1.7 MMscf CO2 injection – Vertical well 

9 Liberty 2018 160 MMscf Rich gas injection 

 

5.2.1. Water Injection Tests 

The first pilot in Bakken was a water injection test conducted by Meridian Oil in the 

Bicentennial Field, McKenzie County. Approximately 13,200 barrels of fresh water were 
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injected into a horizontal well in the Upper Bakken Shale in 1994. The well was shut-in for two 

months, after which oil production remained below pretest rates for the rest of the well’s 

operational life. In 2012 the first huff and puff water injection pilot was conducted by EOG. Two 

cycles of produced water with the rate of 1200 bbl/D were injected in Parshall Field. The results 

showed that although injectivity was not a problem, no incremental oil production was achieved. 

The third test was conducted from 2012–2013 by EOG in the Parshall Field. This unit was later 

selected for a field gas injection test. Water was injected in two cycles. First cycle with the 

injection rate of 1350 STB/D for several months, increased the injector BHP to 6000 psi. Water 

production increased significantly from offset wells and zero incremental oil production was 

observed. The second cycle started after six months, with a water injection of only 380 STB/D 

and maintaining the injection well BHP at 5500 psi. There was no significant increase in water 

production from the offset wells with no incremental oil production from any of the four wells 

(Sorensen and Hamling, 2016; Nagarajan and others, 2020). 

5.2.2. Gas Injection Tests 

In late 2008, EOG conducted a CO2 injection test in the Parshall Field, Mountrail 

County. CO2 injection of 30 MMscf within 29 days with a huff and puff approach was 

performed. Later, The Elm Coulee Field pilot test was conducted jointly by Continental 

Resources, Enerplus, and XTO Energy in the Burning Tree-State in the Bakken Formation in 

2009. Huff and puff approach with 45 days of injection and 64 days of soaking was used in this 

test in early 2009. Approximately 45 MMscf of CO2 were injected at rates as high as 3 MMcf/d. 

In 2014, a huff and puff pilot with CO2 injection in an unfractured vertical well was 

implemented in the Bakken formation in North Dakota. Due to an early gas breakthrough in an 

offset well 900 feet away, CO2 injection ceased within four days of injection. The total injection 



96 

volume was 3.4 MMscf.  In 2017, XTO Energy operated a vertical well CO2 injection test 

designed jointly by XTO and the EERC. The total injection took place over four days with a 1.7 

MMscf CO2 injection. In the continued two cycles of water injection in 2014, EOG conducted 

field gas injection using the four-producer for a gas injection test. The enriched injection gas 

with 55% methane, 10% nitrogen, and 35% C2+, was injected at a rate of 1.6 MMSCF/D for 55 

days. The objective of water injection with gas injection was to improve gas conformance in the 

fractured system, and higher pressure builds with less gas injection volume. A total of 88.7 

MMscf of field gas was injected during the process.  

All gas injection tests demonstrated injectivity is not a limiting option in Bakken, but gas 

conformance control could be challenging in fields with a high degree of natural fractures, such 

as Parshall Field. Most of the tests showed zero to slightly incremental oil during the operation. 

The slight increase in oil production could be related to the pressure build-up and miscibility of 

gas and oil (Sorensen and Hamling, 2016; Nagarajan and others, 2020). 

In 2017 Hess conducted a propane injection test in a Red Sky Nelsons Farm DSU. The 

objective of this test was to demonstrate propane injection performance. Propane can be efficient 

due to first contact miscibility with the Bakken oil and less operational requirement. Propane 

could be pumped into the injection well without needing a compressor due to its liquid form in 

field conditions (Nagarajan et al., 2020). A total injection of 19 MMscf propane was employed 

for seven months of 2 cycles. The production well was kept shut-in during injection and put back 

into production after a long soaking period. The well showed a sharp oil rate increase during 

production and then declined and steady at a higher pre-injection value for over four months. As 

pilot results showed, injectivity was not an issue, and propane could permeate into the matrix and 

interact with oil, thus swelling and mobilizing it (Nagarajan et al., 2020). 
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In 2018, Liberty Resources conducted a multi-well rich gas EOR pilot in the Stomping 

Horse Complex in Williams County, North Dakota. The pilot test was deployed using produced 

gas from the pads and mainly consisted of C1 through C3. The main objective of the pilot was to 

determine the technical feasibility of produced gas injection and the impact of incremental 

production due to gas/oil miscibility. Also, evaluate and optimize injection methods for EOR and 

assess injection conformance control (Pospisil et al., 2020). In total, ~160 MMSCF of gas was 

injected over ten months. Approximately 90% of the injected gas was produced with no 

incremental oil production. Although no dramatic incremental oil was observed, the pilot test 

indicated that higher bottom hole pressure is required to achieve higher MMP and miscibility, 

which require substantially higher gas rates and volumes, especially when pressure is below the 

bubble point (Pospisil et al., 2020). 

5.3. Reservoir Pressure Regions 

 

As per chapter 4 and the current chapter, reservoir pressure plays crucial rules in the 

effectiveness of gas injection. It is important that during the injection scenarios offset the to 

stress-dependent permeability reduction, as well as achieve the target minimum miscibility 

pressure (MMP). Both scenarios could improve the production from tight oil reservoirs. The 

reservoir gradually loses its original pore pressure during production, increasing reservoir net 

effective stress. Therefore, a reduction in reservoir properties such as permeability or porosity 

can occur in response to net stress change within the pores due to the withdrawal of the fluids 

from the reservoir. With that, it is essential to include all possible mechanisms during the 

modeling of the reservoir and capture the dynamic fluid flow before designing the test. In order 

to conduct and evaluate injection scenarios, three important regions during reservoir pressure 

change are defined. Figure 5-1 illustrates the general divided regions for a reservoir with an 
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initial pressure of 7000 psi and a critical point of 3500-4500 psi (possible range of Bakken 

critical points). Assuming Biot’s coefficient of unit and based on Eq. 3-7, the reservoir pressure 

regions would be as Figure 5-1. 

The timely reservoir pressure is divided into region 1 where the pressure is above 

possible critical pressure and higher than MMP. Region 2 works as a transition zone where the 

reservoir is close/or at critical pressure where still MMP is achievable. The third Region is 

related to the time that reservoir pressure is beyond a critical point and injection gas is not 

miscible with oil anymore. 

 

Fig. 5-1. Reservoir pressure vs. Time and respective regions 

The region ranges can be changed based on the injection gas and critical effective point. 

Therefore, considering these three major regions and integrating them into the reservoir simulation 

modeling can improve the EOR evaluation based on the injection time.  

The rest of the chapter will discuss reservoir simulation modeling by considering the 

defined regions for stimulated space unit (DSU) and well bottom hole pressure. The first set of 
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modeling discusses the model with a depleted well condition and variable DSU pressure. The 

second simulation efforts evaluate a model close to real field data with variable well BHP region. 

The Table 5-2 shows the regions of investigation based on the pressure of DSU and around 

the well. Note that BHP is always less than DSU pressure. Therefore DSU-region 2 with BHP-

region 1 or DSU – region 3 with BHP – regions 2 and 3 cannot occur in the reservoir. 

Table 5-2 – Different reservoirs regions and possible injection scenarios 

 BHP - Region 1 BHP - Region 2 BHP - Region 3 

DSU- Region 1 
Continuous Injection or 

Huff n Puff? 

Continuous Injection or 

Huff n Puff? 

Continuous Injection or 

Huff n Puff? 

DSU- Region 2   
Continuous Injection or 

Huff n Puff? 

Continuous Injection or 

Huff n Puff? 

DSU- Region 3     
Continuous Injection or 

Huff n Puff? 

 

5.4. Reservoir Simulation Modeling 

Reservoir simulation is a valuable tool to understand the mechanisms and predict the 

performance of gas-based EOR in unconventional reservoirs. It allows engineers to evaluate a 

particular EOR method through a sensitivity analysis and more intricate optimization algorithms. 

Most simulation models often use the compressibility concept to consider the change of pore 

volume, where the rock properties are usually assumed to be insensitive to the change of stress 

state (An et al., 2019). However, shale rock and fluid dynamic features in confined nano-pore 

space show that reservoir compaction and stress changes can considerably impact reservoir 

management and production performance. Therefore, it is necessary to provide more realistic 

dynamic flow predictions.  

5.4.1. DSU Variable Regions 

In this study, based on the observation from experimental data and available 

permeability-pressure correlation for the Bakken and Three Forks formations, the focus was on 
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the effect of permeability evolution and hysteresis on CO2-EOR performance for improving 

CO2 injection design in tight oil reservoirs. First, eight layers reservoir model was built with no 

permeability change during the injection/production process. The model is compared with stress-

dependent permeability in which the permeability evolution is considered within the 

Bakken/Three Forks ranges. In this study, two different permeability-pressure correlations were 

utilized in the simulation models, one based on the derived equation by ML technique in this 

study and the second considered exponential (EXP) decline as per literature (Boualam et al., 

2020). For each correlation, the hysteresis effect was integrated during unloading by assuming a 

15-30% permeability reduction before critical effective pressure. CO2 injection at different 

reservoir pressure statues was conducted to determine permeability alteration effect on CO2-

EOR. In addition, critical effective stress is considered in the range of 25-30 MPa (Boualam et 

al., 2020; Assady et al., 2020). Single-stage fractured properties and simulation data used as the 

base case are summarized in Table 5-3 and Figure 5-2. These data are gathered from previous 

Bakken case studies (Alfarge et al., 2017) and available data in the North Dakota Industrial 

Commission (NDIC) website. For comparison, all input parameters were kept constants for all 

cases, except the matrix compaction table where it varies based on selected correlation for the 

Bakken and Three Forks formations.   

Table 5-3. Fracture properties used in this study 

Reservoir depth, 

ft. 
9,000  Fracture numbers 15 

Fracture spacing, 

ft. 
50 Fracture width, ft. 0.02 

Fractured 

permeability, md 
20 

Fracture half-length, 

ft. 
350 
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A compositional simulation approach for a symmetric Cartesian grid system and single 

porosity model was applied in this study. The compositional model for reservoir fluid was 

generated using WinProp PVT modeling with a generic fluids PVT data from the Bakken 

Formation. Hydrocarbon model was utilized to build a validated phase behavior model and 

obtain tuned composition properties. 

 

Fig. 5-2. Single-stage base model with 8 layers for Bakken and Three Forks Fm 

 

During oil production, miscibility/immiscibility of CO2 was controlled by monitoring the 

bottom hole pressure (BHP), in which pressure above MMP pressure (~2500 psi) means CO2 and 

oil are under miscible conditions. 

The base reservoir model for each studied case (i.e., the model with ML/EXP compaction 

table and no compaction table) was initially run under natural depletion condition for 5475 days 

(15 years). The production well was subjected to the minimum bottom-hole pressure of 500 psi. 

As expected, in the natural depletion scenario, the production well initially started with a high 
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production rate and followed a sharp decline until a significantly low rate, as shown in Figure 

5-3.  

 

Fig. 5-3. Decline oil rate under primary depletion for cases 1, 2 and 3 

This is the typical trend observed in most unconventional reservoirs. Also, if the stress-

dependent permeability is considered, compared to the case with no compaction table, the 

permeability and oil production will be further reduced during the depletion period. Additionally, 

based on cases 1 and 3 (Table 5-4), the production loss is dependent on the selected permeability 

correlation models (e.g., ML and exponential). 

5.4.1.1. Simulation Procedures 

To investigate the effect of time on CO2-EOR performance, CO2 at different times during 

the production-well life was injected. In the first scenario, CO2 huff and puff process in each case 

started when stimulated reservoir pressure (Figure 5-4) approached 4000 psi (above critical 

pressure). In the second scenario, the CO2 injection started at 2800 psi, in the range of critical 

pressure and miscible CO2. In the third scenario, injection at 2500 psi was chosen as it is lower 

than critical stress and CO2 is still miscible. Forth scenario was done by injecting at 1500 psi 
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where reservoir pressure approaches beyond critical pressure and CO2 is not miscible anymore. 

As shown in Figure 5-4, stimulated reservoir volume is the major area for oil production. The 

rest of the reservoir had not been affected by the production well because the drainage area 

around the wellbore was very limited due to the tight formation.  

 
(a) 

 
(b) 

Fig. 5-4. Pressure disturbance in (a) Single-stage (b) stimulated reservoir 



104 

An optimum EOR strategy with five cycles of huff and puff for 30 days injection with the 

rate of 283,160 m3 (10 MMscf) per day, 10 days soaking, and 30 days production was applied for 

CO2-EOR performance. Table 5-4 summarizes several modeled cases in this study under above 

mentioned conditions. 

Table 5-4. Different simulation cases studied in this study 

Case 1 2 3 

 Permeability-

pressure correlation 
ML No Damage EXP 

Injection Scenario 

A)  

Before Critical 

Pressure – 

4000 psi 

B) During 

Critical 

Pressure – 

2800 psi 

C)  

After Critical 

Pressure – 

2500 psi 

D) 

After Critical 

Pressure – 

1500 psi 

 

5.4.1.2. Results and Discussion 

In order to have a consistent comparison of all three proposed models, incremental oil 

percentage for each scenario after 3, 5, and 10 years of injection cycles end were calculated. 

Figure 5-5 illustrates oil production for the case by considering the compaction effect using ML 

correlation and four different injection scenarios based on Table 5-4. 

 

Fig. 5-5. Oil recovery factor for cases 1, 1.A, 1.B, 1.C, and 1.D 
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One of the most important criteria in designing a gas cycling scenario is the ideal time to 

start the operation. For all cases, it is observed that delaying the start of gas cycling with a more 

depleted reservoir is beneficial to production. This is mainly caused by the larger volumes of 

CO2 that can be injected into the reservoir later due to depressurization of the stimulated 

reservoir region (Sanaei et al., 2018). However, cases with different permeability behavior under 

loading/unloading do not show a similar trend in incremental produced oil. 

Based on Figure 5-6, injecting CO2 at/near-critical pressure (i.e., 2800 and 2500 psi) 

shows higher incremental oil at the early injection time compared with injection at 1500 psi. 

While at a later time (10 years), where the effect of injection cycles ceased, incremental oil will 

reduce to lower than the case at 1500 psi. 

 

Fig. 5-6. Incremental produced oil over time-Case 1 

Several mechanisms contribute to incremental oil recovery in the gas cycling process. 

Re-pressurization and oil swelling are the main mechanisms in this process (Alfarge et al., 2017). 

During the early time of injection, repressurizing would help enhance permeability along with oil 

swelling due to the interaction of oil and CO2. Based on CO2 injectivity behavior, the injected 
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CO2 can initially flow in a high permeability medium as the permeability value has retrieved 

around the wellbore. Therefore, these two mechanisms could increase oil production from the 

stimulated region, and recovery can rise in a short time as high oil volume can be displaced. 

Also, after a certain time of production, where reservoir pressure is decreased to a lower 

amount of critical pressure (less than 2800 psi), sharp permeability reduction causes a decrease 

in incremental oil production over time. While in the case with injection at 1500 psi, when pore-

pressure reaches a certain value and permeability hits the plateau, the slight change of 

permeability will not make obvious differences on the incremental and cumulative production 

anymore. The oil production process at the injection of 1500 psi is mainly dependent on oil 

swelling, and permeability alteration will not occur over time. 

For the case without any permeability change, where permeability is not decreasing 

during depletion (Case 2), re-pressurization and oil swelling as the main mechanisms in this 

process would increase oil recovery. As the reservoir is depleted more, it is expected that high 

injection CO2 would diffuse easier to a matrix and can increase oil recovery by decreasing oil 

viscosity and oil swelling (Figure 5-7).  

On the other hand, the case with exponential permeability decline (Case 3) does not 

consider any critical effective stress, and permeability reduction will be continuous under lower 

reservoir pressure. The results confirmed the prediction that CO2 would perform better in cases 

that have earlier CO2-EOR rather than the cases with low reservoir pressure at a late time, as 

shown in Figure 5-8. This could be explained by the exponential behavior of permeability 

evolution, which is significantly important to control the matrix permeability at low reservoir 

pressure in shale oil reservoirs 
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Fig. 5-7. Incremental produced oil over time-Case 2 

. 

 

Fig. 5-8. Incremental produced oil over time-Case 3 

  



108 

An early CO2-EOR application improves the performance because the injected CO2 

would find a more permeable flow path which helps in enhancing its diffusivity into formation 

oil. CO2 at lower reservoir pressure is not miscible anymore, and permeability reduction 

continuously occurs at low reservoir pressure, leading to a significant decrease in oil production. 

While in real cases, based on the experimental results, permeability alteration does not occur 

after critical effective stress. Therefore, it is expected that permeability reduction does not impact 

oil production. As a result, exponential permeability decline cannot predict oil production under 

high effective stress correctly.  

In addition, comparing different scenarios for three cases (Figure 5-9) shows exponential 

behavior would overestimate the incremental oil. This can be due to continuous change of 

permeability during the production/injection process, while permeability evolution is not 

considered or is limited in two other cases. 

 

Fig. 5-9. Incremental oil prediction for studied cases (1,2 and 3C) 
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Although the presented model is simplified the well location and fractures, it can indicate 

general behavior of CO2 injection in the presence of various permeability evolution. As the 

results showed, the oil recovery prediction caused by the stress-dependent permeability highly 

depends on the selected correlation. Neglecting permeability variation can cause unreliable 

predictions for CO2-EOR, consequently affecting oil design patterns in the future. Selecting 

appropriate permeability correlation for different porous media is essential to predict the 

compaction behaviors and the permeability change in tight oil reservoirs.  

It should be pointed out that all cases were evaluated based on rich gas scenarios. The 

results were similar to the findings from CO2 EOR. The evaluation of different gas injection 

impacts is out of this study’s scope. Due to the CO2 cost, supply and presenting real field 

scenarios the rest of the investigation is based on rich gas injection performance. 

5.4.2. Bottom Hole Pressure Variable Regions 

The methodology presented in this study mainly focuses on developing reservoir 

simulation models with different pressure conditions. These models include a general Bakken 

geologic model and single-fracture-stage model and a DSU model with a Discrete Fracture 

Network (DFN). The goal was to investigate flow behavior in tight reservoirs to predict gas 

injection EOR performance by simulating different gas injection scenarios. Fundamental 

reservoir properties, including porosity, permeability, pore throat size, and mineral composition, 

etc., for the Bakken and Three Forks Formations was also used to support the modeling efforts. 

A gridding-based planar fracture model and DFN were used to construct the fracture matrix grid 

blocks in the models. 

In order to mimic the real field well behavior and investigate different bottom hole 

pressure regions (i.e., region 1 to 3), permeability evaluation was continued using an advanced 
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simulation modeling by importing the geologic model and setting up the associated reservoir 

petrophysics, rock types, and initial conditions. The simulation modeling was employed for the 

single fracture stage of the Middle Bakken well, in Williston County. A gridding-based planer 

hydraulic fractures and discrete fracture network (DFN) were used to model permeability change 

and historical fluid production. Understanding the current reservoir conditions by history 

matching the total fluid production would provide higher confidence in gas injection prediction. 

The history matching was conducted for the oil, water, and gas rate on a field scale following the 

fracture analyses. The study area consists of one well. The reservoir model, including the 

permeability-pressure curves for matrix, natural and hydraulic fractures, was substantially tuned 

during the history matching process concerning the wells fluids production. A 3D illustration of 

the reservoir simulation model is shown in Figure 5-10. 

 

Fig. 5-10. 3D illustration of the reservoir simulation model 

A set of genetic reservoir relative permeability curves generated using Brooks-Corey 

correlation was used, which was later tuned through the history matching process. Table 5-5 

shows the general properties used for the numerical simulation analysis. The simulation results 
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were aimed to provide a mechanism to assess the technical feasibility of produced gas injection 

at the potential pilot project site. The analysis of permeability evaluation associated with several 

injection scenarios provides a comprehensive insight into a produced gas injection performance 

in the Bakken formation to find an optimum gas injection time.  

Table 5-5. Properties of modeled Middle Bakken and Three Forks Formations used for simulation griding 

 
 

Middle Bakken Three Forks 

Thickness (ft)  65 80 

Average Porosity (%) 5 6.5 

Average permeability (md) 0.005 0.02 

Average Sw (%) 40 60 

Oil Gravity (°API) 47 47 

Average pressure gradient (psi/ft) 0.68 0.7 

 

5.4.2.1. History Matching 

A base model was created for the history matching efforts to validate the model using the 

existing historical production data. A Black-oil Simulator IMEX from CMG (Computer 

Modelling Group Ltd.) was used for this process. Utilizing the black-oil simulation can reduce 

the computational time for depletion production while maintaining simulation accuracy. Data of 

the target well located at the field of interest (i.e., MB-PROD) was collected from public 

domains such as North Dakota Industrial Commission (NDIC) and integrated into this simulation 

model in preparation to conduct a history matching process. History-matching involves tuning 

the reservoir model to match the production history of wells. Once a reasonable history match 

was obtained, the model was used for evaluating the potential gas injection scenarios and 

designing the optimum injection well patterns. 
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5.4.2.2. Equation of State (EOS) Model 

The compositional simulation model was utilized to evaluate the injection EOR process. 

The fluid PVT model was generated in CMG’s WinProp, a fluid property characterization tool 

and allow the simulation to be able to predict the injection of produced gas with different gas 

compositions. A set of generic pressure, volume, and temperature (PVT) test data from the 

previous Bakken studies were used in the simulation model development (Kurtoglu, 2013 and Jin 

et al., 2017). Since majority of produced gas composition consists of light gas components, the 

lighter gas components (i.e., N2, CO2, C1 to C4) were kept separate, and the heavier oil 

components (i.e., C5+) were lumped into three pseudo-components. The Equation of State (EOS) 

was adjusted to match the available lab-tested parameters, such as saturation pressure, 

differential liberation (DL), and constant composition expansion (CCE). Then the 9-component 

PVT model was used for gas injection evaluation. Tables 5-6 indicates the simulated injection 

gas composition used in the model. More details of the EOS study are brought in by Kurtoglu, 

2013 and Jin et al., 2017. 

 
Table 5-6. Injected gas compositions used in the simulation model  

Component N2 CO2 CH4 C2 C3 IC4-NC4 

Mole Fraction, % 3 1 60 20 10 6 

 

5.4.2.3. Single Fracture Stage Modeling 

A compositional reservoir simulation model with main hydraulic, induced and, natural 

fractures was developed using the geologic/reservoir properties, EOS through GEM-CMG. The 

model consisted of four formations of Upper Bakken (UB), Middle Bakken (MB), Lower 

Bakken (LB), and Three Forks (TF) Formations with a total layer of 26. One well was included 

in the simulation model. Because of the large number of fracture stages along the wellbore of 
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each well, one fracture stage was utilized to reduce heavy computational load. The cluster 

efficiency reduced up to 60% after tunning the model as illustrated in Figures 5-11.  

 

Fig. 5-11. Top view - NFR, induced and hydraulic fractures 

 

The planer hydraulic fracture with refined gridding approach was modeled for each well, 

assuming an identical fracture in each stage. Hydraulic fractures were created along the wellbore 

based on the assumption fracturing data.  

In tight reservoirs, such as the Bakken Fm., the main fluid flow path would be micro-

cracks which can be closed from elevated stresses during the depletion. As several authors 

mentioned in their work, stress exerted on core samples can lead to permeability reduction by 

various mechanisms such as closing microcracks, rearrangement of grains, and crushing existing 

pores (Morris et al., 2003; Civan, 2017). Conversely, it might improve permeability by creating 

new cracks and opening conduit paths in core samples (Zoback and Byerlee, 1975; Paterson 

1978, Morris et al., 2003, Civan, 2017). Therefore, proper modeling of fracture geometries can 

play a crucial role in modeling the fluid flow and incremental oil recovery. However, fracture 

networks' presence and complexity make unconventional modeling challenging with traditional 

simulation approaches. Dual porosity and dual permeability methods are common methods used 
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in modeling. These models utilize a simple assumption of orthogonal fracture networks, leading 

to the low accuracy of these types of methods (Warren and Root, 1963; Yu et al., 2014). On the 

other hand, local grid refinement (LGR) and unstructured grid methods, which can simulate 

complex fracture geometries by including numerous and complicated grid structures, possess 

large computation load (Conlin et al., 1990; Choi et al., 1997; Mirzaei and Cipolla, 2012). 

In this study, A high-efficient fracture stimulation technique— Discrete fracture network 

(DFN) technique —was used to set up complex fractures including natural and induced fractures 

in the simulation model. Figure 5-11 shows that the final DFNs were added to the simulation 

model. The properties of DFN, such as permeability and aperture, etc., were adjusted during 

history-matching process (Easley, 2014, Strum and Gomez, 2009). Table 5-7 shows the range of 

DFN parameters used in this study during the history matching process. 

Table 5-7 – Different reservoirs regions and possible injection scenarios 

 Range Final Model 

Theta (degree) 0-100 30-50 (NFR) 90-100(IF) 

Permeability (md) 1-1000 1-900 

Number of Fractures 15-42 32 

Aperture (.in) 0.001-0.01 0.001 

Dip 70-90 70-90 

 

High-stress dependency of the Bakken shale porous media leads to significant 

permeability evolution during reservoir effective stress changes. During the production stage, the 

reservoir gradually loses its original pore pressure, and net effective stress increases. 

Consequently, a reduction in reservoir properties, such as permeability or porosity, can occur in 

response to net stress change within the pores due to the withdrawal of the fluids from the 

reservoir. Therefore, to include this behavior, the exponential, and separated exponential 



115 

pressure-dependent permeability, and porosity used in this simulation course and shown in 

Figure 5-12. The models are adjusted based on history matching results and obtained the same 

pressure response for sake of comparison. It should be noted that using a machine learning model 

from one well data (Chapter 4) is not applicable due to the complexity of the model. Therefore, a 

separated exponential model for each medium (i.e., matrix, natural fractures, and hydraulic 

fracture) was used – the description of the separated exponential model can be found in Chapter 

3 of this thesis. 

 
Fig 5-12. History matched DFN Pressure dependent permeability – 2 sets - Exponential models before and after 

critical effective pressure 

 

5.4.2.4. History Match and Simulation Results 

Due to the high production of oil and gas during primary production, acute pressure 

depletion can occur in Bakken wells. Matrix and fracture properties such as permeability-

pressure curves were modified to mimic well fluid production history. So, the permeability-

pressure coefficient of the fractures for each model (i.e., exponential and two sets of 

exponentials) is modified for three different regions of the matrix, natural fracture, hydraulic, and 
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associate induced fractures. The history matched permeability reduction is shown in Figure 5-12. 

Example results of fluid rates history matching up to the year 2019 for the target EOR well, and 

the pressure decline is presented in Figure 5-13.  

 
Fig 5-13. Results of history matching model for well MB-PROD 

 

The results indicated that the model could capture the flow dynamics to a reasonable 

degree. Once a good history match was obtained, the model was used to evaluate the potential 

injection performance and design the optimum injection scenario. Results of several reservoir 

simulation case studies are used to explore methods for characterizing the recovery mechanism 

and EOR performance of rich gas injection single-well at different states of well bottom hole 

pressure. 

5.4.2.5. EOR Forecasting 

A series of simulation efforts were employed to evaluate the EOR performance at 

different well life stages. The analysis of EOR performance can provide an insight into the 

optimal time of the gas injection in the Bakken formation and associate permeability change 

effect. Bottom hole pressure based on pressure response is divided into three regions for each 
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permeability-pressure curve (Figure 5-14). The continuous and huff and puff test with several 

injection configurations were tested. 

 
Fig. 5-14. Bottom hole pressure response from three different permeability correlations (1. No permeability 

change, 2. exponential 3. Two sets of exponentials before and after critical pressure) 

 

 The optimum cases in terms of recovery and running time were selected for further for 

evaluation of the EOR performance at a different time with 3 permeability correlation models 

(Table 5-8):  

Table 5-8. Optimum injection case selected for this study 

Case ID 

Region 

(reservoir 

statues) 

Injection Scenario Gas Rate 
Injection-Soaking-production 

time 
Cycle 

1 
1 

Huff n Puff 1 MMscfd 30 days 2 

2 Continuous 1 MMscfd 60 1 

3 
2 

Huff n Puff 1 MMscfd 30 days 2 

4 Continuous 1 MMscfd 60 1 

5 
3 

Huff n Puff 1 MMscfd 30 days 2 

6 Continuous 1 MMscfd 60 1 

 

During the EOR evaluation, a wide variety of different injection cycles, injection 

volumes, pressures, and injection fluid compositions were evaluated. A detailed discussion of the 

simulation parameters, assumptions, and approaches is beyond the scope of this research. The 
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EOR scenarios described and discussed below were selected to serve as illustrative examples that 

predict how permeability modeling may affect EOR operations in a Bakken reservoir.  

Injection/production scenario tests of huff and puff and continuous injection at region one 

when BHP is above 3500 psi for all three models suggest that both EOR methods would not 

result in significant oil recovery improvement compared to the case that continues using primary 

depletion production. The results are expected and discussed in the previous section when well is 

at region 3 and DSU at region 1. As the results in the huff and puff process show (Figure 5-15), 

using the model where critical effective pressure is integrated, predicted higher incremental oil 

while two other models are slightly lower. On the other hand, the prediction of the huff and puff 

process in region 3 suggests an exponential model with higher oil recovery compared to the 

model with two sets of permeability correlation. This was expected since pressurizing the well 

using an exponential model will cause a gradual increase in permeability change while in model 

with effective pressure- permeability change at this region requires higher pressure build-up.  

Overall, when DSU is under region 1 and wells are in variable regions, the huff and puff 

process did not show significant improvement in incremental oil after 4 years of production. 

However, continuous injection at regions 2 and 3 due to higher pressure build-up, more chance 

of miscibility of gas during the injection and permeability retrieve (Figure 5-16).  
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(a) 

 

 
(b) 

Fig. 5-15. Incremental oil of all three models during regions 2 and 3: (a) BHP at region 2 (b) BHP at region 3 
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Fig. 5-16. Incremental oil of all two sets of the exponential model during huff and puff and continuous gas injection 

 

Therefore, the injection scenario is highly dependent on reservoir pressure and the degree 

of DSU depletion. If the initial BHP is low (Region 3) and DSU is partially/fully depleted (i.e., 

in region two or three), the continuous injection would not be able to pressurize the formation 

enough to observe a significant EOR effect due to permeability change. However, gas huff and 

puff would be the better option since the near miscibility/miscibility mechanism can reduce oil 

viscosity and improve oil recovery. Based on Table 5-9 and obtained oil recovery, the best time 

to start a huff and Puff process would be at well pressure of region 3 and DSU of region 2 and 3. 

Table 5-9 – Different reservoirs regions and possible injection scenarios 

 BHP - Region 1 BHP - Region 2 BHP - Region 3 

DSU- Region 1 No action Continuous Injection Continuous Injection  

DSU- Region 2   N/A Huff n Puff 

DSU- Region 3     Huff n Puff 

 

Further optimization can be done toward higher oil recovery by the increasing cycle of 

injection, the volume of gas injection, and adding soaking. However, higher injection rates seem 



121 

to lead to higher production rates, but there is a limit to how much can be injected.  Also, the 

injection cases produce lots of water and gas, which can be problematic and expensive to deal 

with operationally. Economic considerations will determine which injection strategy would be 

the best to implement.  

5.5. Summary and Conclusions 

• The general permeability alteration effect on CO2-EOR oil recovery is evaluated. A 

synthetic reservoir model was built to investigate the impact of stress-dependent 

permeability on oil production performance. Several stress-permeability correlations 

were chosen to separately apply to the Bakken and Three Forks matrix based on their 

rock properties and compaction behaviors. Although these values might not reflect 

the real field data, they can be useful sources to show the noticeable effect of 

permeability evolution in tight reservoirs under different EOR conditions. 

• Compared to the model without considering stress-dependent permeability, the 

cumulative production could reduce because the permeability decreases along with 

reservoir pressure decline. Compared to the model with exponential permeability 

decline, the production loss caused by the stress-dependent permeability varies based 

on the selected correlation.  

• The study of operational parameters indicated that an optimum time for the start of 

gas cycling depends on the permeability behavior under reservoir depletion. 

However, all models showed that beginning the gas cycling operations too early in 

the life of the well will negatively affect the EOR performance.  

• Based on numerous past studies and this work, it is evident that lab measurements 

and field data are required to highlight the role of permeability-pressure change, 
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critical effective stress, in order to predict reservoir behavior close to reality. 

Selecting appropriate permeability correlations for different porous media is critical 

to better describe the compaction behaviors and predict the permeability decline over 

the reservoir depletion. If proper stress-dependent permeability is not considered, the 

hydrocarbon production will be significantly overestimated/underestimated, leading 

to unwise management decisions.  

• An advanced single-stage simulation modeling including geologic/reservoir 

characterization, EOS tuning, fracture modeling, history matching, and EOR 

scenarios development was employed in this study to characterize BPS in the target 

Middle Bakken and Three Forks formations. The model matched primary depletion 

and predicted EOR scenarios for a different types of permeability behavior.  

• The injection scenario is highly dependent on reservoir pressure and the degree of 

DSU depletion. If the initial BHP is low (Region 3) and DSU is partially/fully 

depleted (i.e., in region two or three), the continuous injection would not be able to 

pressurize the formation enough to observe a significant EOR effect due to 

permeability change. However, gas huff and puff would be the better option since the 

near miscibility/miscibility mechanism can reduce oil viscosity and improve oil 

recovery. Based on Table 5-9 and obtained oil recovery, the best time to start a huff 

and puff process would be at well pressure of region 3 and DSU of region 2 and 3.  

  



123 

 

 

 

CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

In this study, the permeability of some Bakken core samples was measured under various 

cases of loading/unloading effective-stress conditions. The permeability-stress sensitivity, critical 

effective stress, and average permeability damage were evaluated under short- and long-stress 

ranges, different pore pressures, and effective porosities. The effect of permeability change under 

different reservoir pressure on gas injection scenarios was studied in detail as part of this 

research project. The first section of this chapter lists the main conclusions made from this work 

and the second section presents some of the future work that is recommended as a continuation 

of this study.  

6.1. Conclusions 

From this study the following conclusions are drawn:  

• The exponential permeability model can well describe the permeability measurement 

data of Bakken core samples through straight lines on the semi-log plot of 

permeability vs. effective pressure. From such plots, observations are made to 

identify the impact of critical effective stress on permeability sensitivity and average 

formation damage. 

• Permeability continuously declines upon loading the sample and does not fully 

retrieve during unloading. The rate of permeability reduction changes beyond a 

certain point referred to as critical effective stress. Moreover, this research 



124 

experiment reveals that the span of loading/unloading stress has a direct impact on the 

hysteresis distance and average permeability damage. However, after the critical 

effective stress, there would be no significant change in the permeability and 

hysteresis and permeability recovery is almost zero. In other words, injection of fluids 

at any high pressure would not help the collapsed cracks and crushed grains to re-

open, thus leading to lower production. Therefore, it is recommended that the critical 

effective stress be determined in the lab which helps us better design, optimize, and 

execute successful and timely-planned pressure maintenance and EOR treatments. 

•  Based on the conducted experiments it is shown that the length of loading/unloading 

pressure has a direct effect on hysteresis distance. But after reaching the critical stress 

point, there is no significant change in permeability and hysteresis. Therefore, the 

majority of changes happen before this point, which indicates that finding critical 

stress for each field can help to improve early injection decisions for pressure 

maintenance.  

• The effect of pore pressure on the Bakken core samples is studied in this work. As the 

results illustrate, higher pore pressure in an early stage of a reservoir (i.e., low 

confining pressure) can have a positive impact on improving formation damage. 

However, in higher effective stress the effect is not significant. This can be 

considered another important behavior that leads to early injection in reservoir 

management.  

• Comparing two different cores with various PSDs, proves that the heterogonous 

sample has slightly larger hysteresis. However, low effective porosity and pore sizes 

in homogenous samples cause lower permeability due to more sensitivity to stresses. 
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Therefore, both heterogeneity and pore sizes can affect hysteresis behavior and need 

to be considered during permeability hysteresis.  

• The effect of pore pressure on permeability hysteresis is investigated in this research. 

The results demonstrate that at the early stages of production in unconventional 

reservoirs where pore pressure is higher (i.e., lower confining stress), the relapse of 

permeability has a better chance than that during the late time after the depletion has 

started. In higher effective stress increasing pore pressure has a negative impact on 

improving formation damage. This observation highlights the significance of optimal 

time injection for better EOR outcomes.  

• With regards to the pore-size distribution, permeability hysteresis becomes more 

notable as the heterogeneity of samples is more significant. Comparing two different 

cores with various PSDs, concludes that the heterogonous sample has slightly larger 

hysteresis. However, low effective porosity and pore sizes in the homogenous sample 

can cause lower measured permeability and higher permeability reduction rate. 

Therefore, the permeability behavior in Middle Bakken core samples is mainly 

controlled by the pore size distribution, heterogeneity, and micro cracks. 

• From the experiments a 50% reduction of the stress-sensitivity coefficient is 

observed, during both loading and unloading, when the applied stress approached the 

critical effective stress. Comparing stress sensitivity during loading with unloading 

results, show a reduction in permeability stress dependency during un-loading. Also, 

higher pore pressures before reaching the critical effective stress may cause greater 

sensitivity of permeability to effective-stress change.  
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• Before approaching the critical points, a direct relationship between stress 

dependency and permeability damage is observed, for the same core sample with 

varying pore pressure. However, this relationship would flip for the core sample with 

different porosities. This implies that stress sensitivity is not the only parameter 

controlling the permeability evolution. 

• Due to limited laboratory conditions, stress sensitivity evaluation is not fully 

reflecting the reservoir conditions where stress relief or drilling-induced fractures can 

happen. Besides, the hysteresis phenomenon occurs based on several complicated 

processes, such as elastic and plastic deformation, contraction, shearing, compaction, 

and the like.  Therefore, for a more accurate investigation, actual reservoir conditions 

need to be simulated as much as possible.  

• A machine learning (ML) technique, specifically, an artificial neural network (ANN) 

algorithm, is employed over the entire set of formation depths. The model is trained 

over the variation of core sample properties, including rock density, porosity, and 

grain volume, to improve the permeability-stress correlation. This approach generated 

a model that can accurately predict the permeability change versus effective stress for 

entire depths, using only one equation. After the critical stress point, permeability 

change is not significant, which could be captured using an ML model. In contrast, an 

exponential model shows a continuous decrease in permeability at high effective 

stress. This inconsistency in exponential model results makes the ML method the best 

choice to obtain an accurate permeability-stress correlation in tight oil reservoirs. 

• Although ANN algorithm over one set of well data showed promising results and 

accurate permeability prediction, the permeability prediction error for core data of 
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several wells is not low. Training the model does not cover the variation of data in 

wide range, higher permeability values are underestimated and R2 is not reliable. 

Therefore, decision tree regression due to small range of investigation interval are 

better approach to capture the permeability trend. 

• The general permeability alteration effect on gas EOR oil recovery is performed 

through the Bakken/Three Forks reservoir model simulation. Several stress-

permeability correlations are chosen to separately apply to the Bakken and Three 

Forks matrix based on their rock properties and compaction behaviors.  

• Compared to the model without considering stress-dependent permeability, the 

cumulative production could reduce because the permeability decreases along with 

reservoir pressure decline. Compared to the model with exponential permeability 

decline, the production loss caused by the stress-dependent permeability varies based 

on the selected correlation.  

• If the permeability enhancement is intended in an injection process, it should be done 

before reaching the critical point. A higher bottom hole pressure could compensate 

for the certain production loss caused by the permeability decline, while it is not the 

best strategy in terms of final oil recovery. 

• Integrating the permeability alteration over well life production, leads to defining 

three new regions with respect to critical effective pressure and miscibility of gas 

injection. The transition region in which critical effective pressure and miscibility are 

active is counted as a crucial time for starting gas huff and puff. This necessitates 

finding the critical points in each operating field and thus an optimal time of injection 

to improve the decision-making for EOR operations and reservoir management. 
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6.2. Recommendations 

Namouras ideas and potential applications of permeability model were mentioned 

throughout this study, which require further investigations. Here, some of these ideas are 

recommended as continuation of this study:   

• It would be useful if data from field studies are used to verify results of simulations 

and analytical studies from literature. 

• The opportunity to develop a wide range of permeability-pressure coefficient data in 

Bakken/Three Forks that can be used as reference in reservoir modeling. Other labs 

and industries would benefit as more analysis can be done through the available core 

data. Utilize reliable model to fill the gap between oil recovery results in both lab and 

field-scale  

• Based on numerous past studies and this work, it is evident that lab measurements 

and field data are required to highlight the role of permeability-pressure change, 

critical effective stress in order to predict reservoir behavior close to reality. Selecting 

appropriate permeability correlations for different porous media is critical to better 

describe the compaction behaviors and predict the permeability decline over the 

reservoir depletion. If proper stress-dependent permeability is not considered, the 

hydrocarbon production will be significantly overestimated/underestimated, leading 

to unwise management decisions. 

• It is highly recommended to couple geomechanics with reservoir fluid flow to capture 

permeability change under stress evolution. An accurate geomechanical model can 

provide more realistic dynamic flow prediction and a reliable long-term production 
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forecast via reservoir simulation for operators to design more effective enhanced oil 

recovery plans in the Bakken. 
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