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ABSTRACT

UNDERSTANDING THE ROLE OF MAGNETIC FIELD EVOLUTION
IN THE INITIATION AND DEVELOPMENT OF SOLAR

ERUPTIONS

by
Nian Liu

This dissertation aims to understand the initiation and evolution of solar eruptions.

The essential science questions to answer include: What is the role of magnetohy-

drodynamic (MHD) instabilities and magnetic reconnection in triggering and driving

eruptions? What are the role of Kink Instability (KI) and Torus Instability (TI)

in determining the successful and failed eruptions? What is the thermal behavior of

flare precursors in the initiation stage of solar eruptions? Finally, how does the corona

magnetic field respond to the flare eruptions? The dissertation mainly includes the

following studies.

First, this dissertation presents a multi-instrument study of the two precursor

brightenings prior to the M6.5 flare with a focus on their thermal behavior in terms

of time variations of temperature (T ), electron number density (n), and emission

measure (EM). This study quantitatively describes the differences in the thermal

parameters at the precursor phase, measured by different instruments operating at

different wavelength regimes and for different emission mechanisms. The precursor

brightenings in the passbands of Hard X-rays (HXR), extreme ultraviolet (EUV),

microwave (MW), and Hα are found to occur within a strong magnetic field region

(1200 G) around the flaring polarity inversion line (PIL). Such a small energy release

in the lower atmosphere may be related to the onset of the main flare.

Second, a statistical analysis of torus instability (TI) and kink instability (KI)

in solar eruptions is presented, in order to improve our understanding of the likelihood

of a CME based on the observed TI parameter decay index and KI parameter twist

number. It is found that TI plays an important role in distinguishing between



ejective and confined flares, while KI is much less influential. However, TI is not a

necessary condition for eruption. Some magnetic flux ropes (MFRs) in the TI-stable

regime still manage to break through the strong strapping field and evolve into

CMEs. It, therefore, implies that an additional driving mechanism, such as magnetic

reconnection, may be involved in eruptions.

Third, a study of the magnetic field evolution of the X5.4 flare with two

magnetic field extrapolation methods: Non-linear-force-free field (NLFFF) and

Non-force-free field (Non-FFF) extrapolations are included in this dissertation. It

is found that this flare is most likely triggered by the tether-cutting reconnection and

the subsequent DAI. Clear 3D back-reactions of increasing horizontal magnetic field

(Bh) and decreasing inclination angle (Φ) of the magnetic field from the photosphere

are presented in both NLFFF and Non-FFF. The back-reaction of the increasing

downward Lorentz force (Fz) acting on the photosphere produced by the Non-FFF

result spatially correlates with the flare initiating location in the DAI analysis.

Last but not least, a study of analyzing the magnetic field structure of the

sunspot light bridges in AR 12371 during the M6.5 flare is included in this dissertation.

Analysis of the 3D NLFFF model shows a low-lying 3D magnetic canopy as well as

a 3D current system. The most substantial difference between the LBs and umbrae

is found in the overall magnetic topology in that the field lines emanating from the

two LBs are more twisted than that from the neighboring umbrae.

At the end, this dissertation briefly introduces the SolarDB, a cyberinfras-

tructure built for flare studies and photospheric vector magnetic field reconstruction

taking advantage of machine learning (ML)/ deep learning (DL) tools, and future

work about the MHD simulation for solar eruptions.
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CHAPTER 1

INTRODUCTION

A flare is a sudden intense release of the magnetic field energy in the solar atmosphere

through radiations and emissions across basically the entire electromagnetic spectrum.

The typical magnitude of energy released during a flare is on the order of 1027 to 1032

ergs1 per second.

Solar activities like flare eruptions and coronal mass ejections (CME) are the

most important influence on space weather. The flare with and without associated

CME is called the ejective and the confined flare [89], respectively. Ejective flares

could have a much greater influence on the near-earth environment than confined

flares. The scope of such influence on earth includes but is not limited to the

disruption of electric power systems, the safety of aircraft and satellite operations,

stability of telecommunication and navigation systems, etc. Thus, it is important to

study under what magnetic field conditions can these solar activities occur and how

can we predict such powerful phenomena, i.e., space weather forecasting. However,

the initiation mechanism of solar flares and associate CME has been a long-lasting

but still not well-understood question in solar physics.

The primary theme in this dissertation is solar flare studies in terms of

magnetic field evolution leading and reacting to a solar flare. The standard

morphological structure of magnetic fields in solar flares eruptions is the famous

Carmichael-Sturrock-Hirayama-Kopp-Pneuman (CSHKP) model [104]. Some of the

key features of this model during the impulsive phase include two Hα ribbons on the

solar chromosphere, HXR sources on the footpoints and the looptop of the magnetic

arcade, and SXR loops connecting the two ribbons. In this model, the reconnection

1A CGS unit of energy equal to g·cm2·s−2, 1 erg = 10−7 joule
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of the magnetic field lines in the solar corona that are usually shown as bright arcades

over the polarity inversion line (PIL2) is considered to be the fundamental driving

mechanism of flare eruption.

Meanwhile, the magnetohydrodynamic (MHD) instabilities are also capable of

driving a flare eruption once the magnetic field parameters reach certain critical

values in the corresponding MHD instability models. The positive feedback between

magnetic field reconnection and MHD instabilities results in continuous energy

released from the magnetic field, i.e., initiating a flare.

However, there are still many unsolved questions regarding the magnetic field

reconnection configurations and relationships between different MHD instabilities.

Besides, many interesting observations during flare eruptions like precursors and light

bridges are also important to investigate.

Based on its peak flux of soft X-rays (SXR) measured by the Geostationary

Operational Environmental Satellite (GOES), from strongest to weakest, flares are

classified as X, M, C, B, and A class. Solar flares usually happen in the NOAA

SWPC3 Active Region (AR) which is characterized as a temporary region on the

solar photosphere with a strong and complex magnetic field. They often consist of

several sunspots and their number is assigned by the SWPC.

The two major flares in this dissertation are the M6.5 flare in NOAA AR 12371

and the X5.4 flare in AR 11429.

Since the solar flare was first discovered4 in white light in 1859 using a

two-meter-long brass telescope [22], the observing method has been greatly developed.

The optical emissions from flares can be observed with ground-based telescopes, e.g.,

the 1.6 m Goode Solar Telescope (GST) at Big Bear Solar Observatory (BBSO); the

2The location where the vertical magnetic field on the photosphere changes its polarity.
3Space Weather Prediction Center of National Oceanic and Atmospheric Administration
4Two scientists, Richard C. Carrington and Richard Hodgson, independently witnessed a
large flare when they observing sunspots.
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4 m Daniel K. Inouye Solar Telescope (DKIST) at Haleakala Observatory. Microwave

(MW), also known as radio, emissions could be detected by large-scale antenna

arrays, e.g., the Expanded Owens Valley Solar Array (EOVSA) at Owens Valley

Radio Observatory (OVRO); the Karl G. Jansky Very Large Array (VLA) located in

central New Mexico.

On the other hand, the observation of ultraviolet (UV) and shorter wavelengths

depends on the satellite observatories because the earth’s atmosphere blocks most

of the UV emissions. In this dissertation, we obtain the hard X-rays (HXR) data

from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and

the UV/extreme ultraviolet (EUV) emission data is mostly obtained from the Solar

Dynamics Observatory′s (SDO) Atmospheric Imaging Assembly (AIA) in seven EUV

passbands (94Å, 131Å, 171Å, 193Å, 211Å, 304Å, 335Å) and two UV passbands

(1600Å, 1700Å). The Helioseismic and Magnetic Imager (HMI) is another instrument

on board SDO which provide us with a variety of magnetographs on the photosphere.

The introduction of each type of data and their application are presented in the

Section 2. The related concepts of flare initiation studies will be introduced in the

following subsections.

1.1 Flare Precursors

The flare precursor brightenings, shown as small-scale emissions in various wavelengths

including optical, UV/EUV, SXR, HXR, and MW, have been observed prior to

many flares and regarded as a result of the localized magnetic reconnection and the

subsequent small-scale energy release. [88, 47, 43]

Although the concept of flare precursors was initially introduced almost 60

years ago [15] and precursor brightenings have been observed in many different

wavelengths, such small-scale emissions have thus far not been well understood and

characterized. For example, some studies attribute B/C-class flares prior to a major

3



flare to precursors, while for others, any brightness enhancement observed in the

vicinity of and prior to the main flare is considered a precursor, regardless of the

wavelengths. The time intervals for this kind of precursor observation are very

different, ranging from 25 min [44] to 10 hr [110]. Other studies consider very long

periodic pulsations [70, 112] and quasi-periodic pulsations [71, 18] during the pre-flare

phase to be precursors. Such kind of precursors usually have periods in the unit of

minutes.

Despite the growing literature of precursor studies, especially after the new

millennium, a comprehensive comparative study of precursors in multi-wavelength is

particularly lacking. For the same event, different data sets may come to inconsistent

conclusions. For instance, before an X-class flare, a significant precursor was found

in the HXR emission but is completely absent in the MW observation [143]. Such

a difference and the underlying physics have not been addressed in previous studies.

Part of the difference in the results is due to the varying definitions of precursors.

Statistical studies show that more than half of the precursors are visible in MW

emissions within 60 minutes before the associated SXR flare emissions reach their

maxima [28]. Some changes in magnetic characteristics of sunspot groups may even

occur two days before the main flares [1]. Most of the precursors occur within a

distance of about 0.1 diameters of the sunspot group from the site of the major flare

[43].

Presumably, precursors may be related to two types of small-scale magnetic

structures near the magnetic polarity inversion line (PIL) as demonstrated by the

magnetohydrodynamics (MHD) simulation by Kusano et al., 2012 [63]. These two

types of magnetic structures are reversed-shear (RS) and opposite-polarity (OP),

where OP means the azimuthal orientation of the small-scale injected field compared

to the large-scale force-free field is 180◦, and RS means such orientation is greater than

180◦ but less than 360◦. Both of which have been tested for their applicability by MHD
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simulations [7], and observed before major flares. For example, an RS-type magnetic

structure was seen before an X-class flare [8]. Taking advantage of the high-resolution

observation of the BBSO/GST, a magnetic channel structure5 is recognized as the

OP-type structure and is found to be associated with the precursor brightenings

before an M6.5 flare [126].

The study of precursor brightenings of solar flares holds valuable clues concerning

the flare triggering and energy release mechanisms. Wang et al., 2017 [126] studied

the M6.5 flare using Hα images and photospheric vector magnetograms obtained by

the BBSO/GST, and presented the possible relationship between the precursors and

the onset of the main flare in terms of the magnetic field structure evolution. On the

other hand, it has been observed in multi-wavelength that most of the energy released

in the precursor phase is considered to be thermal [6]. In this dissertation, we focus on

the thermal behaviors of the two precursors of the M6.5 flare, using multi-wavelength

observation, i.e., AIA/EUV, RHESSI/HXR, GOES/SXR, and EOVSA/MW.

1.2 MHD Instabilities

Generally speaking, during the impulsive phase6 of a flare, the two processes, MHD

instabilities, and magnetic reconnection may work simultaneously in triggering and

driving the eruption.

MHD instabilities that are commonly thought to trigger solar eruptions and

produce coronal mass ejections (CMEs) include MHD helical kink instability (KI, [9,

118]), MHD torus instability (TI, [61]), and a newly developed Double-arc instability

(DAI, [56]) which share the same magnetic field morphology of the tether-cutting

reconnection [89].

5A magnetic channel is an elongated alternating structure of positive and negative polarities.
6Impulsive phase refers to the first phase of a solar flare, in which X-radiation rises to a
maximum in a few seconds or minutes.
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1.2.1 Torus Instability

TI occurs when the strapping magnetic field above a magnetic flux rope (MFR)

structure decays with height at a sufficiently fast rate, as quantified by decay index:

n ≡ −∂log(Bext)

∂log(h)
(1.1)

where Bext denotes the external strapping field, usually assumed as the horizontal

component of the potential field. Numerical analysis shows that the critical threshold

of n is ncrit=1.5 [9, 61] beyond which the MFR is unstable due to TI.

1.2.2 Kink Instability

The KI, on the other hand, is expected to lead to the deformation of an MFR when

the winding number of magnetic field lines around the MFR axis exceeds 1.25 turns

[10, 117]. In this dissertation, we applied the methods of Liu et al., 2016 [81], use the

twist number Tw as a proxy of the magnetic twist of MFR:

Tw =

∫
L

µ0J||
4π|B|

dl (1.2)

where the J|| is the parallel component of current density along the direction of

magnetic field.

1.2.3 Double-arc Instability and Tether-cutting Reconnection

The tether-cutting reconnection is a kind of the magnetic field reconnection config-

uration which works as the initiation mechanism of solar flares. It is a widely

accepted model for solar eruptions proposed by Moore et al., 2001 [89]. Its scenario

is characterized by a “sigmoid-to-arcade” and a “four footpoints to two ribbons”

evolution [78, 77], i.e., the reconnection of two sheared arcades leads to the formation

of a low-lying shorter loop across the magnetic PIL and a longer MFR connecting

the two distant ends of a sigmoid. The tether-cutting reconnection below the newly
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formed MFR gradually transforms the shear arcade into the MFR, which eventually

becomes unstable due to the attenuated stabilizing effect of the overlying magnetic

field.

Recently, DAI is proposed by Ishiguro & Kusano [56], which has the same

topology as the tether-cutting reconnection, but the long magnetic loop formed by

the tether-cutting reconnection has a double-arc shape. Such a double-arc loop implies

an additional upward Lorentz force and is, therefore, more susceptible to instability.

DAI occurs when a magnetic parameter κ exceeds a threshold on the order of κ0 = 0.1,

derived from MHD simulations [56]. The value of κ is defined as:

κ ≡ Tw
Φrec

Φtot

(1.3)

where Φrec and Φtot are the magnetic flux of the double arc loops and total flux of

the external strapping field, respectively.

Furthermore, based on this value, Kusano et al., 2020 [64] developed the κ

scheme to pinpoint the onset locations of flares by finding out the minimum circle

area with κ ≤ κ0 and critical radius (rc ≤ 1 Mm) located on the PIL.

The acquisition of the MHD instability parameters relies on the three-dimensional

(3D) coronal magnetic field reconstruction. In this dissertation, we apply extrapo-

lation methods with photospheric magnetic field input, under two kinds of assumptions,

the nonlinear force-free field (NLFFF) and the non-force-free field (Non-FFF) which

will be introduced in Section 2.1.2 and Section 2.1.3.

In this dissertation, we analyze the role of TI and KI in the statistical study

of eruptive and confined flares in Section 3.2. In addition, we examine all the

three instabilities in the initiation mechanism of the X5.4 flare using the NLFFF

extrapolation results in Section 3.3.1. We also calculate the KI parameter, Tw, as one

of the magnetic features of the sunspot light bridges during the M6.5 flare in Section

3.4.
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1.3 Back-reaction

The concept of back-reaction due to energy release from the coronal fields is

introduced by Hudson et al., 2008 [53] and Fisher et al., 2012 [29]. Based on the simple

principle that the abrupt force perturbations during eruptions should be balanced by

equal and opposite force perturbations acting on the solar photosphere and interior,

Fisher et al., 2012 [29] introduced a practical formulation to calculate the Lorentz force

change acting on the solar photosphere through photospheric magnetic measurements.

The downward Lorentz force change acting on the photospheric layer and the solar

interior after the flare is also predicted so that the photospheric magnetic field becomes

more horizontal.

Many previous observations have confirmed such a change on the solar

photosphere [108, 128, 127, 123, 125, 40, 95, 111, 131, 132, 130, 96]. However, the

value of Lorentz force cannot be properly calculated because the observational vector

magnetic field can be only obtained on the photosphere as one layer of data in the

two-dimensional (2D) area. The calculation of Lorentz force, on the other hand,

requires at least two layers of vector magnetic field input.

A fair approximation of the change of the Lorentz force is obtained by the

following equations [29].

δFr =
1

8π

∫
Aph

(δB2
r − δB2

h) dA (1.4)

and

δFh = − 1

4π

∫
Aph

δ(BrBh) dA (1.5)

where Fr and Fh are the radial (vertical) and horizontal component of the Lorentz

force change, respectively. Aph is the integration area on the photosphere. Br and

Bh are the radial (vertical) and horizontal component of the vector magnetic field,

respectively.
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In Section 3.3.2, we applied both NLFFF and Non-FFF extrapolations to

validate the back-reaction theory during the X5.4 flare, both on the photosphere

and in the corona. Furthermore, the 3D Lorentz force can be directly calculated in

the Non-FFF results.

1.4 Light-Bridges

Sunspot light-bridges (LBs) are intriguing narrow structures across the sunspot

umbra, even splitting it into two or multiple parts. They are often seen in the decay

phase of sunspots, indicating their imminent disintegration [120], but can also be seen

in the formation phase of nascent sunspots [34].

Physically, LBs are conceived to be intrusions of field-free hot plasma into an

otherwise stable umbral magnetic field from below [94, 21, 69, 109], with a magneto-

convective origin [46, 101, 100, 20]. Based on Parker’s hypothetical sketch of the

magnetic field over umbral dots [94], Leka et al., 1997 [69] proposes a magnetic canopy

structure above the LBs, a field-free cusp structure formed by the magnetic field lines

on either side of an LB meeting upon the top of the LB and then being forced

to converge into a vertical direction. This physical picture is later illustrated in a

numerical simulation based on a radiative MHD model [115].

For a long time, our knowledge of the magnetic field of LBs was mainly limited to

their basic characteristics, i.e., weaker magnetic field and more horizontal orientation

compared to the nearby umbra [11, 76, 103, 69]. It was not until the advent of

high-resolution solar telescopes, such as the Swedish 1 m Solar Telescope (SST) and

the GST, that we were able to take a closer look at LBs.

High-resolution observations have made great progress in understanding the

thermodynamic properties of LBs. They do consist of a chain of convective cells with

hot upflows at the center and cold downflows at the edges, similar to the granules in

the quiet-Sun [65, 116, 142, 42]. A strong spatial correlation between electric currents
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and elevated temperature is found in most regions of the LB spine suggesting that

the chromosphere is heated via resistive Ohmic dissipation [85]. Observations also

show that LBs are often associated with recurring dynamic phenomena observed

in the upper atmosphere, such as chromospheric jets, ejections, and brightenings,

which may be the result of small-scale magnetic reconnection in and around the LBs

[105, 13, 84, 116, 102, 141, 114, 72].

Apart from the advances in understanding thermodynamic properties of LBs,

the fine-scale magnetic structure of LBs has not been well demonstrated so far,

especially their three-dimensional (3D) magnetic structures. As an example, the

magnetic canopy above LBs is so taken for granted, but surprisingly, there is not

that much direct observational evidence for it. The weaker and more horizontal

photospheric magnetic field of LBs mentioned above provides, to some extent,

evidence of magnetic canopy structure at the visible surface. Jurcak et al., 2006 [60]

report for the first time the stratification of magnetic parameters in three atmospheric

layers up to 200 km, retrieved from the spectropolarimetric data with the Stokes

inversion based on Response functions (SIR) code. Their results show that the

weak magnetic field strength of LBs increases with height, while inclination with

respect to the local vertical decreases with height, coinciding with the expected

variation of magnetic canopy structure in the vertical direction. Later, Lagg et al.,

2014 [65] perform a spatially coupled inversion to retrieve depth-dependent stratified

atmospheric parameters, and present a tapered magnetic configuration overarching

the upflows on a continuum optical depth (logτ) scale.

To better represent the 3D magnetic field over LBs, it would be preferable to

use a geometric height z scale rather than the logτ scale delivered by inversions.

However, the conversion between these two scales is not straightforward due to many

unresolved issues (e.g., magnetic curvature force, optical corrugation, etc.). Felipe

et al., 2016 [27] make a great effort to convert the logτ retrieved with SIR code to
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a geometrical scale assuming hydrostatic equilibrium, neglecting curvature force and

taking the Wilson depression into account, and present the resulting 3D magnetic

structure of parts of a sunspot. To the best of our knowledge, this is the most visual

picture of the magnetic canopy obtained by observation to date.

In this dissertation, instead of retrieving depth-dependent stratification of the

magnetic field with the inversion method, we use the NLFFF models extrapolated

from the high-resolution photospheric vector magnetograms of GST to investigate

the magnetic structure of LBs at geometric heights with unprecedented detail, see

Section 3.4.

1.5 SolarDB

SolarDB (http://nature.njit.edu/solardb/) is a comprehensive resource accessible on

the Internet for advancing space weather research purposes. It contains databases

gathered from ground-based observatories (e.g., Global H-alpha Network (GHN) and

BBSO) and satellite missions (e.g., SDO/HMI and SDO/AIA), tools (e.g., Flare

Forecasting System), and computing services. These databases and tools play an

important role in analyzing adverse space weather effects and predicting extreme

space weather events.

The database involved in this dissertation is the SDO/HMI and SDO/AIA data

obtained from the Joint Science Operations Center (JSOC, http://jsoc.stanford.edu/).

It includes EUV/UV emission and magnetic field information of 129 significant flares

and 60 control group flares.

For each flare event, the vector magnetograms are provided in both the

CCD coordinates (hmi.B series) and their remapped coordinates by using Lambert

Cylindrical Equal-Area (CEA) projection (hmi.B sharp series, see Section 2.1.1 for

details), from 24 h before and 6 h after the flare. The flare database also consists

of line of sight (LOS) magnetograms, continuum images, and AIA images in all 7
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EUV wavelengths and 2 UV wavelengths. For each type of data in each event, the

magnetograms and images are provided with a uniform field of view (FOV) focusing

on the AR in which the corresponding event happened, and a quick look movie is

available.

I contribute significantly to building this database by developing a highly

integrated IDL program to download and process the data and make images and

movies, with a successful application for nearly 200 solar events, and more than

100,000 hours of data in total.
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CHAPTER 2

DATA INFORMATION AND PROCESSING

In this chapter, multi-instrument data applied in three case studies (Section 3.1,

Section 3.3 and Section 3.4) and one statistical study (Section 3.2) will be summarized

and introduced, together with various data processing methods. Each type of data

processing technique may be applied in different studies with different data inputs.

For better categorization, the three case studies in Section 3.1, Section 3.3, and

Section 3.4 are named the Multi-instrument Precursor Study, the Initiation and Back-

reaction Study, and the Light-bridges Study, respectively. At the end of each section

in this chapter, a table may be included to present the data type and data processing

techniques in each involved study.

2.1 Magnetogram

In this dissertation, the magnetograms are mostly obtained from SDO/HMI through

JSOC. We also use high spatial-resolution photospheric magnetograms obtained from

the Near InfraRed Imaging Spectropolarimeter (NIRIS) of GST.

2.1.1 Data Information

Typically, HMI provides line-of-sight magnetograms and vector magnetograms on the

photosphere with a spatial resolution of 0.”51/pixel, and temporal cadence of 720s.

For some large and flare productive ARs, high cadence magnetograms2 of 90 s or 135

s may be available. The data archive of HMI begins from 00:00 UT on May 1st, 2010.

1An unit of angle to representing distance on the solar surface. 1” ∼ 725,000 Km
2High cadence data retrieved on Oct 22, 2020 at
http://jsoc.stanford.edu/data/hmi/highcad/
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hmi.B series data is frequently used for it provides full disk vector magne-

tograms that decomposed into three segments: azimuth, inclination, and field

(magnitude). For high cadence data processing, the ”disambig” file might be needed.

hmi.B sharp series data is similar to hmi.B series but with data FOV

categorized by Spaceweather HMI Active Region Patch (SHARP) algorithm instead

of full disk. Besides the segments of vector magnetograms, it also contains other useful

information like line-of-sight magnetic fields, continuum intensity, Doppler velocity,

etc.

hmi.B sharp cea series one of the hmi.B sharp data series, which provide

vector magnetograms remapped to a Lambert Cylindrical Equal-Area (CEA) projection

and decomposed into Bradial, Bϕ, and Bθ, representing out of photosphere, westward,

and southward component of the vector magnetic field. This type of data is the ideal

choice for corona magnetic field restructure inputs.

HMI Active Region Patch (HARP) number3 is required to download the SHARP

data.

GST/NIRIS, equipped with the new infrared detector and the improved Fabry-

Perot filter system [80], provides high spatial-resolution photospheric vector magne-

tograms and continuum images with a pixel scale of ∼ 0.”08.

NIRIS data is employed to present fine magnetic field structures in the Light-

bridges Study. Considering the NIRIS data can be only obtained within a rather

small FOV compared to HMI magnetograms, an embedding technique is applied to

implant the high-resolution NIRIS images into the HMI images with larger FOV, in

the process of coronal magnetic field reconstruction.

3HARP number to NOAA AR number relation can be found here:
http://jsoc.stanford.edu/doc/data/hmi/harpnum to noaa/all harps with noaa ars.txt
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2.1.2 Non-linear Force-free Field (NLFFF)

In this dissertation, the NLFFF extrapolation was performed with the weighted

optimization method which minimizes a volume integral of both Lorentz force and

field divergence [135].

The result of this approach is the solution of vector magnetic fields satisfying

the following equations:

j×B = 0 (2.1)

∇×B = αB (2.2)

∇ ·B = 0 (2.3)

Equation (2.1) represents the force-free condition, where j and B are current

density and magnetic field vector. Equation (2.2) represents the non-linear condition,

where α is the torsion coefficient that varies according to the position. Equation (2.3)

represents the solenoidal condition.

The purpose of minimizing the volume integral of both Lorentz force and

field divergence is achieved by minimizing the following quantity within the 3D

extrapolated volume.

L =

∫
V

w(x, y, z)[B−2|(∇×B)×B|2 + |∇ ·B|2]dV (2.4)

The difference between this weighted method from the standard optimization

method [133] is that it includes a weighting function w(x, y, z) in the solution of

the minimization condition. The value of the weighting function varies from 1 at the

bottom boundary containing the vector magnetic field input, to 0 at other boundaries

in the computational box. The advantage of this method is, unlike the un-weighted

method, it can reconstruct the coronal magnetic field from the bottom boundary

data alone, without estimating the side boundary. If the coefficient α in Equation 2.2
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remains a constant, the resulting extrapolation yields a much simpler situation called

the linear force-free field (LFFF).

The NLFFF extrapolation is only applicable to low plasma β4 regions where the

force-free assumption is justified. A step called preprocessing [137] is used to remove

the net force and torque while smoothing the observed photospheric magnetic field.

In this way, the NLFFF model can reproduce magnetic fields well in the near-surface

region at the expense of spatial resolution.

2.1.3 Non-force-free Field (Non-FFF)

Due to the force-freeness nature of the NLFFF model, it can not be used to examine

the 3D distribution of the Lorentz force. Thus, the non-FFF model is applied in the

initiation and back-reaction study (see Section 3.3), which allow us to calculate the

Lorentz force by its definition (Equation 2.8) in the corona instead of estimating it

using photospheric magnetograms (Equation 1.4, 1.5).

The non-FFF extrapolation technique numerically decomposes the coronal

magnetic field into three vector components [51, 48]: one potential field (PF,

current-free) component and two distinct linear force-free field (LFFF) components

B = B1 +B2 +Bp (2.5)

with ∇×Bi = αiBi, i = 1,2, and α1 ̸= α2 ̸= 0.

In this case, the summation of these three components is not force-free (∇ ×

B×B ̸= 0), even though each component itself is force-free. This approach requires

two layers of vector magnetic field on the solar surface as inputs. Hu et al., 2008 [49]

improved this method by adding a coefficient constant in the potential field term as

cBp where c ∈ [−1, 1] with Bp known so that only one layer of input is required.

4Plasma parameter β: the ratio of the plasma pressure to the magnetic pressure.
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However, it still has limitations on real magnetograph measurements for cBp

is only a special potential field proportional to the potential field obtained from the

input photospheric magnetogram. Therefore, Hu et al., 2010 [50] further improved the

algorithm by substituting a corrector sub-field Bp =
∑

B
(k)
p , k = 1, 2, 3..., through

an iteration approach, taking advantage of the fact that the summation of a series of

potential fields remains potential. With this approach, only a one-layer photospheric

vector magnetogram is used as input without pre-processing.

Obviously, the Non-FFF method provides access to Lorentz force information

in the 3D region. According to Hu et al., 2010 [50], the Non-FFF results indicate

that the non-vanishing Lorentz force mainly exists in the low corona. In an example

in Hu et al., 2010 [50], the Lorentz force decreased to 10% of its photospheric value

at the height of ∼ 2 Mm.

2.1.4 Magnetic Field Parameters

With the 3D magnetic field data cube produced by NLFFF and Non-FFF extrap-

olations, a variety of magnetic field parameters are able to be calculated in the 3D

region.

Decay index n and Twist number Tw

Two of the most important magnetic parameters related to MHD instabilities,

TI and KI, in multiple studies in this dissertation are the decay index (n) and the twist

number (Tw), for which expressions are shown in Equations 1.1 and 1.2, respectively.

We use the code developed by Liu et al., 2016 [81] to calculate the Tw, defined by the

Equation (1.2) [12].

DAI parameter κ

17



Equation 1.3 shows the theoretical expression of the κ in DAI analysis. However,

it is difficult to derive the Φrec using observational data. Therefore, in the Initiation

and Back-reaction Study (see Section 3.3.1), we follow the approach in Muhamad et

al., 2018 [90] to calculate the estimated κ value with a critical twist number of Tc,

under the assumption that the double-arc loop is formed by reconnection between

twisted lines with Tw exceeding the critical threshold (Tc):

κTc =

∫
Tw
Tc

>1
|Tw|dϕ

Φtot

(2.6)

where dϕ = |Br|dS, Tc is the threshold twist number value of the applied field lines

in the formula.

To estimate Φtot, we first select the magnetic field at |Bz| > 300G (indicated

by the contours in Figure 3.13e) and extrapolate the field lines from the negative

polarity field closer to the MFR. We then include in the calculation the extrapolated

field lines that satisfy the following conditions, 1) the other end of the field line lies

within the selected field of positive polarity shown by the white contour in Figure

3.13e) the top of the field line exceeds the top of the MFR (∼ 10 Mm), and 3) the

connecting segment at each end of the field line spans the MFR. This approach is

similar to that method used by Muhamad et al., 2017 [91] in their paper, but with

more conditions for selecting the field lines.

Current density J

J =
c

4π
∇×B (2.7)

where c is the speed of light, B is the vector magnetic field.

Lorentz force F
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Non-FFF model allows us to calculate the Lorentz force. According to Fisher

et al., 2012 [29], the relation of the Lorentz force acting on the solar atmosphere

and the solar interior/photosphere, are in the exact same magnitude, but in opposite

directions from each other, i.e.,

F = − 1

4π

∫
V

(∇×B)×B dV (2.8)

Magnetic shear angle S

The angle between the magnetic field and the local potential vector field.

S = cos−1(
B⃗ · B⃗p

B ·Bp

) (2.9)

where B and Bp are the magnetic field vector and the local potential field vector,

respectively.

Magnetic field inclination angle Φ

The angle between the magnetic field and the solar surface plane.

Φ = arctan(
Bz

Bh

) (2.10)

where Bz and Bh are the vertical and horizontal components of the magnetic field,

respectively.

Magnetic free energy Efree

Efree =

∫
V

B2

8π
dV −

∫
V

B2
p

8π
dV (2.11)

where B and Bp are the magnitudes of magnetic field and the local potential field,

respectively.
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2.1.5 Summary

The following table summarizes the magnetic field data types, extrapolation methods,

and magnetic field parameters involved in each study.

Table 2.1 Magnetograms and Methods

Fig Source Res Size Methods Parameters

3.1-3.5 HMI 1” Lx × Ly×200”a NLFFF, PF n, Tw

3.7 HMI 0”.5 420”×224”×224” NLFFF Btot

3.12 HMI 1” 400”×400”×400” NLFFF, Non-FFF Bx, By, Bz

3.13 HMI 1” 200”×200”×200” NLFFF |J |, n, Tw, κTc

3.14 HMI 0”.5 200”×200”×200” NLFFF Tw

3.15 HMI 1” 200”×200”×200” NLFFF, Non-FFF Bh

3.16 HMI 1” 200”×200”×200” Non-FFF Fz

3.17 HMI 1” 200”×200”×200” NLFFF, Non-FFF Fz, Bh, Φ

3.18-
3.20

NIRIS 0”.078 50”×50”×130” NLFFF S, Bh, Φ

3.21-
3.22

NIRIS 0”.2 102”×102”×102” NLFFF Tw

aThe Lx and Ly of the 3D computational domain vary from case to case according to ARs’s
size to cover not only the major portion of ARs but also the plage regions surrounding the
ARs in 38 events in the statistical study.
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2.2 Ultraviolet(UV)/Extreme Ultraviolet (EUV)

The UV/EUV emission data is mainly obtained from the SDO/AIA through JSOC.

There are seven EUV channels and two UV channels that image the different regions

of the solar atmosphere with different typical temperatures of the hot plasma from

several thousand Kelvin to 20 MK5. Table 2.2 summarize the AIA EUV/UV channels

and their operation regions and typical temperatures.

Table 2.2 SDO/AIA EUV/UV Spectral Information

Wavelength
(Å)

Primary role,
ion(s)

Region of the Sun’s
atmosphere

Temperature
(log T[K])

94 Fe XVIII Flaring regions 6.8

131 Fe XX, XXIII Flaring regions 7.0, 7.2

171 Fe IX Quiet corona 5.8

193 Fe XII, XXIV Corona and hot flare plasma 6.1, 7.3

211 Fe XIV Active region corona 6.3

304 He II Chromosphere 4.7

335 Fe XVI Active region corona 6.4

1600 Continuum, C IV Upper photosphere 5.0

1700 Continuum Photosphere 3.7

2.2.1 EUV/UV Image

The AIA emission images in different channels show energetic particle distribution

that strongly correlates to magnetic field morphology during a flare. Because the

main source of EUV emissions during a flare is thermal bremsstrahlung [16, 52] and

high energy thermal electrons are mostly distributed along the magnetic field lines

in the corona [104]. Thus, AIA images could be used as the perfect reference to test

5Million Kelvin
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the results of 3D magnetic field extrapolation models. Furthermore, by observing the

AIA movies in multi-wavelength, we can picture the overall situation of a flare in

terms of its energy release process and magnetic field evolution.

In the Initiation and Back-reaction Study, we test the fidelity of the NLFFF

and Non-FFF extrapolation by comparing the visualized 3D magnetic field with

AIA/EUV 193Å images before and after the flare, see Figure 3.12. The region of

focus of the 193Å channel is both corona and the hot flare plasma structures that

could show the magnetic field lines with high-temperature signature, which is helpful

to identify the highly twisted MFR before the flare. Similar observations may be also

captured by the channel 131Å, 171Å, or 211Å.

On the other hand, AIA/EUV 304Å channel mostly focuses on the solar

chromosphere. It provides more thermal structures close to the solar surface. In

Figure 3.13 and 3.14, the brightenings displayed on EUV 304Å images at the

beginning of the X5.4 flare clearly show the MFRs footpoints of the tether-cutting

reconnection. Practically speaking, we used those brightening areas on AIA 304Å

images as the guidance location when finding the highly twisted MFRs. Furthermore,

the EUV 304Å movie clearly shows the evolution of how flare ribbons formed from

four separate MFR footpoints (see more detail in Section 3.3.1).

Two UV channels (1600Å, and 1700Å) focused on the solar photosphere region

could have similar observations with EUV 304Å.

2.2.2 DEM Analysis

Among seven EUV channels of AIA, six of them are in different states of ionized Fe

atom, see Table 2.2. They map the temperature structure of the solar corona from

1 MK to above the 20 MK range. The DEM analysis is a technique to produce the

differential emission measure at different temperature levels using AIA/EUV emission

maps.
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In the multi-instrument precursor study, since most of the energy released in

the precursor phase is considered to be thermal [6], we performed the DEM analysis

for the two precursors prior to the M6.5 flare, using level 1.5 data of AIA/EUV

passbands, i.e., 94, 131, 171, 193, 211, and 335Å. Using the sparse inversion method

of Cheung et al., 2015 [19], the DEM solutions were obtained in the course of the

precursors (17–18 UT) at a cadence of 48 s. DEM maps were obtained from inversion

on a pixel-by-pixel basis on a temperature grid with log T = 5.7, 5.8, 5.9 ... 7.6, 7.7

[58] with the spatial resolution of 0”.6 per pixel.

Three thermal parameters are calculated using the DEM analysis results:

temperature (T ), number density (n), and the emission measure (EM). To compare

with the GOES and RHESSI results in this study, the EM is defined as the

volume-integrated total emission measure in the units of cm−3.

At each pixel i, T and EM are calculated as:

Ti =

∑
t Tt,i ·DEMt,i∑

t DEMt,i

(2.12)

EMi = Ai ·
∑
t

DEMt,i (2.13)

where subscripts t and i represent each temperature grid and each pixel, respectively,

and Ai is the area of the spatial sampling.

At each pixel i, n is defined as:

ni =

√∑
tDEMt,i

L
(2.14)

where L is the length of plasma along the line of sight that contributes to the emission

over the brightening strip. The brightening strip is a slender area that displays clear

emissions in multiwavelengths, including AIA EUV and Hα, during the precursor

phase.
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Since L is not accessible from observation, the value of L is represented by

the emission width (D). We assume that the emissions are isotropic, thus the cross-

sectional width of the plasma measured in the x–y plane could represent the plasma

length along the line of sight (i.e., L ∼ D). The detailed steps are as follows.

At each time, we performed 1D Gaussian fittings to the temperature distribution

along a series of cross-sectional cuts (the red lines in each panel of Figure 3.7 constitute

one example). The Gaussian FWHM for each fitting is a simple representation of the

cross-sectional width of the plasma, and its average, weighted by its fitted peak DEM

value, was defined as D, which was used to estimate the length of the plasma along

the line of sight. It was found in this case that the value of D lies in a range of

5”–10”. AIA DEM uncertainties are estimated using the data-to-noise ratio6, where

the uncertainty of length of the plasma (L) is estimated as σ in the Gaussian fitting.

2.3 Soft and Hard X-rays

The SXR and HXR emissions and images are frequently used in flare studies. In

the CSHKP model [104], HXR emission is mostly coming from the footpoints and

the looptop of the magnetic arcade, while SXR loops connect HXR sources. In

this dissertation, GOES/SXR profiles are presented to show the time evolution of

precursors (Fig 3.6) and flares (Fig 3.15-3.17). The SXR and HXR imaging and HXR

spectra analysis is applied in the Multi-instrument Precorsor Study and presented in

the following subsections.

2.3.1 GOES and RHESSI Imaging

In the Multi-instrument Precursor Study, the SXR images are obtained from GOES

15 Solar X-ray Imager (SXI, [45]; [97]) at the peak times of the two precursors of the

M6.5 flare (Fig 3.7).

6https://www.lmsal.com/∼cheung/AIA/tutorial dem/sparse exercise1.pro
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The HXR imaging technique is applied with RHESSI [74, 75] measurements

of photon flux in HXR produced by high energy electrons via bremsstrahlung. The

best pixel resolution of RHESSI synthesis maps is about 2.3” [73]. In principle,

a two-second time interval (half rotation of the rotational modulation collimators

carried on RHESSI) provides enough Fourier components for image reconstruction.

This can be changed according to the photon count rate in practice.

In the Multi-instrument Precursor Study, Fig 3.6 and 3.7, the CLEAN algorithm

[55] was used in the HXR imaging with front detectors 3-8. The total FOV was set

to 128” × 128”, with a pixel size of 1”.

2.3.2 Spectra Analysis (GOSE & OSPEX)

GOSE GUI In the Multi-instrument Precursor Study, the time profiles of T and

EM computed from GOES SXR measurements can be directly obtained from the

GOSE GUI. The essential ideas underlying the computation have been described by

Thomas et al., 1985 [113], (see Equations 1-8).

The X-ray values, Bi, depend on EM and detector responses, bi:

Bi = EM · bi(T) (2.15)

(i=4 denotes the 0.5 to 4 Å detector and i=8 the 1 to 8 Å detector). Briefly speaking,

assuming the entire plasma volume to be isothermal, the temperature equals to the

theoretical value which could produce the same ratio of response of two detectors:

R(T) = B4/B8 = b4(T)/b8(T) (2.16)

The ratio R is only a function of T. Then the EM could be calculated simultaneously

by taking X-ray flux measurements and detector’s response ratio into account for a

certain temperature:

EM = B4/b4(T) = B8/b8(T) (2.17)
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These formulae were updated by White et al., 2005 [134] in order to modify

temperature measurements in hot flare (∼ 35 MK) condition. The advantage of

this method is that only a simple analytic curve fitting is required, and hence the

uncertainties are small in a vast temperature range (within 2% of temperature and

5% of EM between 5 and 30 million degrees, in accordance with the expressions to

determine T and EM from GOES measurements [113]). The disadvantage, on the

other hand, is that its accuracy will be diminished if more than one AR is present on

the solar disk.

In fact, there were four ARs on the solar disk during the M6.5 precursor period.

AR 12371 is the only AR near the center of the solar disk, while the other three

were very close to the west limb. Except for this flare, no other flares have been

found within 10 hours before and after this one, according to NOAA SWPC’s report.

Therefore, we assume that the flare emission in AR 12371 is dominant in the GOES

SXR measurements.

OSPEX GUI In the Multi-instrument Precursor Study, we chose an empirically

binning code (#14) provided by the RHESSI GUI to perform HXR spectra analysis

to produce T and EM profiles.

The spectral resolution varies at different energy ranges, from 1 keV resolution

at 3 keV level to 5 keV resolution at 5 MeV level. The spectra in different time

intervals can be fitted with various emission models.

In this study, the HXR spectra are fitted using the Variable Thermal Model

(vth) and the 2nd version of Thick Target Bremsstrahlung with Independent

Normalization Model (thick2 vnorm). Meanwhile, albedo is included for correcting

for albedo and pileup mod is also applied to add pileup effects to the models.

The background of HXR spectral fitting was selected carefully. For energy

ranges of 6-25 keV, we took the background before the first precursor and considered
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it to be constant during the flare. However, for energy ranges greater than 25 keV,

the HXR emissions of precursors are not so significant compared to the fluctuation

of the background. The emissions due to the precursors usually appear as several

clear but transient spikes in the HXR flux profile, and they should be separated from

the changing background. In this case, the background time was selected during the

whole flaring time except for the spikes, and the interpolated count rates were used

as the background.

The physical parameters, such as EM and T , of the thermal components, are

obtained from the vth model. The uncertainties of RHESSI are estimated using

Chi-square (χ2) test in spectra fittings.

In the process of fitting the HXR spectrum, we noticed that the thermal

component (vth) dominates under 20 keV in the vast majority of the fitting time

intervals, specifically, in almost all cases of the first precursor and more than half

cases of the second precursor. During the precursor phase, however, the maximum

flux counts of the non-thermal component continuously increased, and finally, the

non-thermal emission peaked at 17:58UT [126], which is 15 minutes after the second

precursor. Two examples of the fitting results of RHESSI photon counts and

normalized residuals are shown in Figure 2.1.

2.4 Microwave

In this dissertation, the MW data comes from the expanded Owens Valley Solar Array

(EOVSA; [35, 54, 37]). EOVSA is a solar-dedicated MW imaging array operating in

the frequency range of 1-18 GHz.

2.4.1 Emission Mechanism and Spectrum Fitting

In the Multi-instrument Precursor Study, the sequential spectral fit [36] is performed

by combining gyrosynchrotron emission and free-free emission which are responsible

for the lower and higher frequencies, respectively.
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Figure 2.1 Spectral fitting results of RHESSI HXR in photon counts (black) and
normalized residuals at two precursor peak times. The yellow, green and red lines in
each panel show the modeling results of Variable Thermal Modes (vth), Non-thermal
Modes (thick2 vnorm), and combined fitting results, respectively. The pink lines
indicate the background values. The dashed lines mark the energy ranges during
the fittings. The cyan and purple lines show the albedo and pileup mod corrections,
respectively.
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The fast gyrosynchrotron codes [31, 32, 36] were applied to quantitatively

define the gyrosynchrotron source function, which is designed for both isotropic and

anisotropic electron distributions. The uncertainties are estimated using Chi-square

(χ2) test in spectra fittings.

An important assumption of uniform emission source is made to perform the

sequential spectral fit. Although the broadband MW spectrum during the main flare

indicates the source is spatially non-uniformed, at the precursor phase, the spectral

line was fitted with a quasi-uniform source because reasonably narrow spectra are

observed during the precursor phase [126]. The size of the emission source is estimated

as the depth of 10” and area of 10”×30”, based on the observation of the GST Hα

image.

By performing such a fitting for a thermal source, three free thermal parameters

including n, T , and magnetic field strength (B) are derived [93]. As a follow-up

study to Wang et al., 2017 [126], the Multi-instrument Precursor Study uses the

same EOVSA MW data analysis results. The detailed methodology is described in

Fleishman et al., 2015 [33].

2.4.2 Thermal Condition Determination

In the Multi-instrument Precursor Study, we use the same MW analysis results as in

Wang et al., 2017 [126] which conclude that MW emission is quasi-thermal. According

to Livadiotis et al., 2012 [83] and Fleishman et al., 2015 [33], 1.5< κ <2.5: non-

thermal region; 2.5< κ <20: near thermal equilibrium region, and κ >20, thermal

region. In this study, the index of κ distribution during the two precursor periods is

mainly in the near thermal equilibrium region. Therefore, the MW of the precursors

is considered to be quasi-thermal.
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2.5 Observation from the BBSO

The BBSO is equipped with a high-order adaptive optics (AO)-corrected GST with

multiple post-focus instrumentations, and an H-alpha full-disk imager which is one

of the six institutes of the Global H-Alpha Network, i.e., GHN.

2.5.1 High Resolution Images

The BBSO/GST provides exceptionally high-resolution observations of the Sun in

multi wavelengths. It consists of a broadband filter imager (BFI); visible imaging

spectrometer (VIS); near-infrared imaging spectropolarimeter (NIRIS); fast-imaging

solar spectrograph (FISS); and a cryogenic infrared spectrograph (Cyra).

The following Table 2.3 summarize the different high-resolution GST data

applied in each figure/study.

Table 2.3 GST High Resolution Data

Fig Instrument Passbands (Å) FOV(”) Res (”/pixel)

3.6, 3.7 VIS Hα 70 0.034

3.18 BFI TiO (7057) 70 0.034

3.19, 3.20 NIRIS Fe I, He I 85 0.083

2.5.2 Full Disk Hα

The BBSO full-disk Hα images are produced by the Hα full-disk patrol telescope

with a 10 cm aperture refractor. The image was taken from local time of ∼ 9 AM

(16:00 UT) in the morning to 3 PM (22:00 UT) with a cadence of ∼ 30 minutes on

an observing day.

The detector size is 2048 × 2048 pixel, 12-bit, for a spatial scale of about

1”/pixel. There are two types of images: “fl” and “fr”. “fl” means the full disk image
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with dark area subtracted and corrected by the flat-field taken at around the local

noon time. “fr” means the full disk image with limb darkening subtracted, which

caused by the low emission intensity in the limb area.

The full-disk Hα images are applied in the cooperative study of generating

photospheric vector magnetograms of solar active regions via deep learning. Please

see Section 3.5.2 for detailed information.
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CHAPTER 3

RESEARCH PROJECTS

3.1 Statistical Study: KI and TI in Solar Eruptions

The motivation of this study is to observationally test the laboratory result of Myers

et al., 2015 [92], which is the Sun-like line-tied MFRs reveal four distinct eruption

regimes which are readily distinguished by the TI and KI parameters. Figure 2 in

Myers et al., 2015 [92] shows the four regimes MFRs are either eruptive, stable, failed

kink (i.e., torus-stable MFRs that exceed the kink threshold fail to erupt), or failed

torus (i.e., kink-stable MFRs that exceed the torus threshold fail to erupt).

In this study, we present the TI vs. KI parameter diagram, established from a

statistical study using solar observations together with the coronal field extrapolation

techniques. The goal of this study is to improve our understanding of the requirements

for a solar eruption: what the trigger/driver mechanisms might be, and what, if any,

onset criteria must be reached.

3.1.1 Sample Selection

We examined NOAA GOES soft X-ray (SXR) flare reports to search for major flares

(stronger than GOES class M5 in general) that occurred within 45◦ of the disk center

over a seven-year period from January 2011 to December 2017. Due to the small

sample size of confined flares, we relaxed the SXR class requirement from M5 to M4

for confined flares. To avoid the over-representation of a certain flare-productive AR,

at most two flares per AR were included in the samples, the one of the greatest SXR

magnitude, and the one nearest to the disk center.

For each flare, its CME association was determined by reference to the LASCO

CME catalog [39]. We regarded a flare as ejective if the following criteria are fulfilled:

(1) the CME onset time at R⊙ extrapolated backward from the CME heigh-time
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profile reasonably agrees with the flare onset time; and (2) the position angle of the

CME agrees with the quadrant on the Sun in which the flare occurred. When a

flare-CME association is identified, we also refer to the LASCO CME catalog for

the CME kinetic energy and use it as a CME parameter [122]. We then excluded

those ejective flares from the samples if their associated CMEs are neither halo nor

partial-halo, because the other types (for example, a jet-type) of CMEs may not be

compatible with an MFR topology. We regarded a flare as confined if there are no

CMEs in temporal and spatial proximity as described above.

The sample selection requirements led us to a total of 38 flares (26 ejective and

12 confined) from 27 different ARs. The properties of the flares can be found in the

Appendix. The NLFFF (see Section 2.1.2) extrapolations were performed to calculate

these magnetic field parameters.

3.1.2 Results

Figure 3.3 shows the scatter diagram of TI parameters n vs. KI parameters Tw for the

38 flares. The black symbols represent the confined flares and the rest, ejective flares.

For ejective flares, the color is assigned according to the associated CME’s kinetic

energy. At a glance, our result does not clearly show the four distinct eruption regimes

found in the laboratory experiment (Figure 2 in Myers et al., 2015). It is partly due

to the fact that the confined and ejective flares are not clearly distinguished in terms

of Tw. Instead, we see the clustering of the confined CMEless flares in the lower part

of the diagram (0.2 ≲ n ≲ 0.7), while the ejective flares spread out over most of the

n range (0.2 ≲ n ≲ 1.6). Note that the 12 flares with n ≳ 0.8 are all ejective, in

which sense we can regard this as a sufficient condition for CME. However, not all

flares of n ≲ 0.8 are confined. Only 12 out of the 26 flares with n ≲ 0.8 are confined

and the rest 14 flares are ejective. Thus the criterion, n > ncrit ≃ 0.8 found here

is not a necessary condition for CME. Note also that this value of ncrit ≃ 0.8 found
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Figure 3.1 The magnetic field of the eruptive M6.5 flare (SOL2015-06-22T18:23) of
AR 12371. (a) A blend of an AIA UV 1600Å image at the flare peak time with the
pre-flare HMI vector magnetogram Bz, superimposed with the yellow contours of the
flaring polarity inversion line (FPIL) mask. Both AIA and HMI maps are de-rotated
to a reference pre-flare time (17:36 UT in this case) and re-mapped with the CEA
projection. (b) The twist number Tw map derived from the NLFF field, scaled between
−/+1.5 (blue/red). The rectangle enclosing the flaring core region is zoomed in and
displayed in the inset. The superimposed black line shows a representative field line
of the MFR, whose |Tw| is annotated. (c) The height profile of decay index n above
the FPIL region derived from the potential field model. The error bars indicate ±1σ
spread, evaluated from 908 profiles in FPIL region in this case. The red circle marks
the data point at hapex. (d) a 3D perspective of the MFR extrapolated from the
NLFFF.
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Figure 3.2 The magnetic field of the confined M4.2 flare (SOL2015-03-12T14:08) of
AR 12297. Same layout as Figure 3.1
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Figure 3.3 Scatter diagram of TI prarameter n vs. KI parameter |Tw|. Black
and colored symbols correspond to the confined and ejective flares, respectively. For
ejective flares, the color is assigned according to the associated CME’s kinetic energy,
indicated by the color code. Three uncolored hollow symbols represent the three
ejective flares in the absence of ECME information. The error bars indicate ±1σ
spread. The horizontal grey line is drawn to illustrate ncrit ≃ 0.8.

here is much lower than those typically cited in other solar studies (ncrit ≃ 1.1− 1.3

in Demoulin et al., 2010 [24], for instance), although it agrees well with the critical

decay index found in the laboratory experiment performed by Myers et al., 2015

[92]. We presume that the difference arises from the fact that the decay indices were

often evaluated for large loops (typically in the height range of 42 − 105 Mm) in

the previous solar studies whereas the MFRs with lower heights are included in the

present statistical study. Based on the experimentally measured TI vs. KI parameter

diagram, Myers et al., 2015 [92] reports a previously unknown instability regime −−

failed torus. The “failed torus” events occur when the guide magnetic field interacts
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with electric currents in the MFR to produce a dynamic tension force that brakes

the ascension in the torus-unstable region. Our limited samples, however, do not

show the presence of this regime. Instead, all the MFRs that exceed a certain torus

threshold, ∼0.7 in our cases, are developing into CMEs. Presumably, the dynamic

tension force in solar cases is too weak to halt eruptions.

The top panels of Figure 3.4 show the histograms of |Tw|, n, and Efree for both

ejective and confined flares. To investigate the MFR geometry as a possible factor for

the eruptiveness, we also compared the histograms of hapex, distance d between the

MFR footpoints, and hapex/d for ejective and confined flares in the bottom panels

of Figure 3.4. For a quantitative comparison between the ejective and confined

samples, we performed the Student’s t-test to determine the t-statistic (t; a ratio

of the difference between two groups to the difference within the groups) and its

significance (α; the probability that the results occurred by random chance) for each

of the parameters. Briefly speaking, the larger the t-statistic, the more difference

there is between the two groups; The lower the significance, the more confident one

can replicate the results. As one might expect, the most appreciable segregation

between the two groups is in the histograms of n with t=2.337 and α=0.025. That

is, the null hypothesis (i.e., there is no difference in mean n between the ejective and

confined flares) can be rejected at the 100(1-α)%= 97.5% level of confidence. By

comparison, the role of Tw in distinguishing between ejective and confined groups is

questionable (t=0.995 and α=0.32). Based on this result, we conclude that the TI

rather than the KI plays a more important role in differentiating between the ejective

and the confined flares.

To illustrate the relationship between the MFR geometry and the strapping

effect, Figure 3.5 shows the scatter diagrams of (a) hapex vs. d, (b) n vs. d, (c) n vs.

hapex, and (d) n vs. hapex/d. The linear Pearson correlation coefficient (CC) and the

probability of obtaining a certain CC by chance (PCC) are given in each panel. We see
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Figure 3.4 Histograms of (a) |Tw|, (b) n, (c) Efree, (d) hapex, (e)d, and (f)hapex/d.
Red/Blue represents ejective/confined flares. Student’s t-statistic (t) and its
significance (α) are shown in each panel.

38



a moderate positive linear correlation between hapex and d with a CC of 0.62 (Figure

3.5a). The linear fit to these two data pairs is hapex = 2.65 + 0.26 × d, suggesting

that MFRs in our solar cases are of a more flat-arched structure or are only a minor

segment of a circular structure. A strong positive correlation between n and hapex

with a CC of 0.76 is shown in Figure 3.5c. This should not be surprising, as the

strapping magnetic field decays with height so that a low-lying/high-lying MFR is

usually relevant to a stronger/weaker strapping effect.

3.1.3 Summary and Discussion

The previous laboratory experiment reveals that the eruptiveness of MFRs is

dependent on the interplay between the TI and KI, as represented by the n − Tw

diagram. In this study, we intended to establish a solar counterpart to the diagram,

by which we may be able to tell the likelihood of a CME based on the observed n

and Tw parameters. The key results are summarized and discussed as follows:

First, the TI quantified by n appears to play an important role in differentiating

between ejective and confined flares. However, the TI onset criteria (n ≥ ncrit =∼

0.75) found here is not a necessary condition for CMEs. Some MFRs in the TI-stable

regime still manages to break through the strong strapping field and evolve into

CMEs. It, therefore, implies that an additional trigger and driving mechanism

may be involved in solar eruptions. A very likely candidate for the alternative

process is magnetic reconnection during solar flares. Actually, there are a number

of analytical/numerical models invoking magnetic reconnection in the mechanism of

CMEs. For instance, in the magnetic breakout model [3], magnetic reconnection leads

to the progressive transformation of the magnetic configuration, allowing an MFR to

burst open. In the tether-cutting reconnection model [89], magnetic reconnection

below an MFR “cut”s the “tether”s of the strapping field to unleash CMEs. Such
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Figure 3.5 Scatter diagrams of (a) apex height hapex vs. footpoint distance d of
MFRs, (b) n vs. d, (c) n vs. hapex, and (d) n vs. hapex/d. Triangles and up-side-down
triangles represent ejective and confined flares, respectively. The color is assigned
either according to the value of n (panel a) indicated by the color code, or red/blue
for ejective/confined flares (panels b-c). The linear Pearson correlation coefficient
(CC) and the probability of obtaining a certain CC by chance (PCC) are shown in
each panel. The solid lines denote the least-squares fits to data pairs, which are
hapex = 2.65 + 0.26 × d, n = 0.47 + 0.0055 × d, n = 0.33 + 0.028 × hapex, and
n = 0.32 + 1.09× hapex/d.
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non-ideal MHD processes are absent in the laboratory experiment which was designed

to simulate eruptions solely in terms of an ideal MHD process.

Second, it is unclear in this study whether the KI represented by Tw is a major

factor for solar eruption. Two MFRs with the highest value of Tw > 1.2 erupted,

but many other MFRs with smaller values of Tw were also able to erupt, and we

tend to believe that KI is less influential. We consider two possible caveats. The

first concerns the ongoing debate whether a helical magnetic structure pre-exists

before an eruption [86, 17, 26] or is formed in the course of an eruption via magnetic

reconnection [119, 2, 87]. There are observational evidence in favor of each scenario

[25, 99, 82, 107, 124, 140, 38]. In the latter case, it is not surprising that Tw derived

from the pre-eruption magnetic field may be underestimated and can not correctly

predict the eruptiveness. The second possibility is that helical KI could result in the

deformation of an MFR, but may not allow a huge expansion of the MFR to produce

a CME [41]. In this sense, we may consider that KI might be capable of initiating a

filament eruption and a flare, but may not be the key factor in driving a CME into

the heliosphere.

Third, the laboratory experiment by Myers et al., 2015 [92] shows that there

can be both failed TI and failed KI events. Namely, MFRs have more difficulty in

eruption than the solar community believed. This is contrary to our results that

even the TI-stable (n < 0.75) ones can erupt and CMEs can occur regardless of the

KI parameter Tw. As mentioned earlier, we speculate that magnetic reconnection,

which was absent in the laboratory experiment, maybe the factor causing the

differences between the laboratory and the present solar observations, if it alleviates

the difficulties in eruption.

The differences between the laboratory results and our results may also arise

from multiple sources of assumptions and approximations of this study in contrast

to the lab experiment. In the present study, the TI and KI parameters n and
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Tw are not directly measured in observations, but rather estimated from MFRs

in NLFFF models. The identification of MFRs relies on the quality of NLFFF

extrapolation. Although the up-to-date NLFFF extrapolation technique employed

here was evaluated thoroughly in comparison with a 3D radiative MHD model

and was found to offer reasonably high accuracy of the coronal field reconstruction

[138, 136, 30], the direct validation of NLFFF still cannot be performed due to the

lack of the coronal magnetic field diagnostics. We’d like to add a caution that NLFFF

extrapolation has intrinsic limitations associated with the force-free assumption and

is subject to numerous uncertainties in the data reduction and modeling process

which are not reflected in our results. It may be that n and/or Tw could not be

accurately calculated under the observational limits. In addition, the KI parameter

Tw is derived from and averaged over individual field lines, assuming that it’s related

to the winding of field lines around the axis, but actually, the twist of an MFR could

be underestimated by its built-in assumption.

Finally, we would like to mention that the present statistical study is a

step forward to access the role of the TI and KI in solar eruptions. Detailed

studies of the pre-to-post flare magnetic configuration are also needed to better

understand the underlying physics, which will be conducted in particular seperate

events with/without magnetic field reconnection in the future.
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3.2 Multi-instrument Precursor Study

In this study, we focus on the thermal behaviors of the precursors over one hour

before the flare. These two precursors show simple emission structures which are

mostly confined to a small area at magnetic PIL (see Figure 3.7).

3.2.1 Emission Mechanism in Multi-wavelengths

In general, energy in the form of non-thermal emissions is released in HXR and MW

during the solar flares. The dominant emission mechanism of HXR is bremsstrahlung

with electrons precipitating at the footpoints and loop top of a magnetic flux

rope structure, which can be approximated by the thick-target model [14]. On

the other hand, MWs are emitted by gyrosynchrotron (non-thermal) emission and

Free-free bremsstrahlung (thermal) emission mechanism [5]. During this process,

thermalization of the precipitated nonthermal electrons results in the formation of

hot dense plasma, which evaporates into the corona and leads to the EUV, HXR, and

SXR emissions via thermal bremsstrahlung [4, 16, 52]. The emission mechanisms at

HXR, MW, SXR, and EUV during the precursor phase of a flare are not different

from that during the main flare. The multi-instrument study of thermal emissions

will provide a meaningful comparison of different wavelengths in a large temperature

range.

3.2.2 Observation of the Precursors

The main phase of the M6.5 flare (SOL2015-06-22T18:23) occurred in NOAA active

region (AR) 12371, located at (223”, 183”). In Figure 3.6a, the light curve of GOES

SXR flux shows two episodes of small-magnitude emissions within one hour before

the M6.5 flare. The onset times of the two precursors are 17:24 UT and 17:42 UT,

which are denoted as P1 and P2, respectively. The n, T, and EM maps at P1 and

P2 derived from AIA data are shown in panels (b) - (g) of Figure 3.6. As mentioned

earlier, the two precursors are well confined locally near the PIL (see Figure 3.7 for
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more details), enabling a direct comparison of different wavelengths. As shown in

Figure 3.6(f-i), there is a spatial correlation among AIA EUV, RHESSI HXR, and

GST Hα emissions.

Figure 3.7 further demonstrates their spatial correlation and confinement with

the magnetic field. The top and bottom panels of Figure 3.7 show the emission maps

of four wavelengths at the precursor times P1 and P2, respectively. A slit is set

across the emissions, and the cross-sectional photo-metric intensity profiles of these

emissions are plotted and compared with the magnetic field over the slit. Based on the

comparison of extrapolated magnetic fields and those derived from spectrum fitting

of MW [126], it was found that the precursors in MW occurred in a strong magnetic

field region (1200 G) around the flaring PIL. As shown in the middle panels of Figure

3.7, the emissions of AIA EUV, RHESSI HXR, and GST Hα are also confined in

similar local areas, while the SXR emission from GOES 15 Solar X-ray Imager (SXI,

[45]; Pizzo et al., 2005 [97] extends to a substantially larger region.

3.2.3 Thermal Behavior during Flaring Precursors: Temperature (T ),

Emission Measure (EM), Electron Number Density (n)

Figure 3.8 shows the temporal variations of T, derived from four data sets using

different methodologies, during the precursor phase. The RHESSI result is only

partially shown for the first precursor, as the spectrum before 17:25 UT is not qualified

to perform a reliable fitting, due to RHESSI night time. At a glance, these T curves

show a large discrepancy in the order of magnitude, but, as a general trend, they

all reach their maxima around the two precursor times. Specifically, of the four

instruments, EOVSA MW exhibits the highest temperature value and changes most

rapidly during the precursor times, while GOES SXR and AIA EUV show the lowest

temperatures, changing more gradually. The temperature of 15 MK is a clear line of

demarcation between EOVSA and AIA/GOES. The range of 10 to 24 MK is where

the temperature variation of RHESSI HXR is located. For the first precursor, T of
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Figure 3.6 Thermal parameter maps at precursor peaks.(a) GOES SXR flux light
curve, with the gray shaded area P1 and P2 denoting two precursor periods. The
red and blue line marks the time of n and T maps in (b)-(e), respectively. The
yellow shaded areas indicate the time of HXR imaging integration time in (f)-(g).
(b)-(c) n maps, derived from AIA DEM analysis, at the selected times of P1 and
P2. (d)-(e) T maps, derived from AIA DEM analysis, at the selected times of P1
and P2. The black rectangular boxes in panels (b) and (d) are drawn to define the
area used in the calculation of average n and T (shown in Figures 6 and 4). The red
square box in panel (c) is drawn to mark the field-of-view (FOV) of panels (f)-(g), and
the small blue square box in (e) indicates the FOV of (h)-(i). (f)-(g) The close-up
view of DEM maps of logT =[6.85, 7.35], superimposed with the red contours of
30% density maximum and the black contours of 80% of RHESSI HXR intensity
maximum in 6-12 KeV. The HXR imaging time ranges of the two precursors are
17:25:00-17:26:00UT and 17:42:38-17:43:20UT, respectively. (h)-(i) Two snapshots
of GST Hα+0.6Å images showing the two precursor brightenings. The red contours
show 30% of the density maximum, the same as in (f)-(g). The white dashed contours
show 80% of the RHESSI HXR intensity maximum, the same as black contours in
(f)-(g).
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Figure 3.7 Confinement of magnetic field. The top and bottom panels show the
precursor emission maps from four wavelengths (GOES/SXR, AIA 131 Å RHESSI
HXR, and GST Hα) at the two precursor times P1 and P2, respectively. The blue
boxes in the GOES SXI panels mark the FOV of AIA EUV and RHESSI HXR images.
The green boxes in the RHESSI HXR images mark the FOV of GST Hα images. The
yellow dashed lines in each image mark the location of PIL of the corresponding
precursors, the PIL was defined by the zero value contour of vertical magnetic field
obtained by SDO/HMI. For each precursor, the slits are centered on the same location,
but the lengths of the slits are not necessarily equal. The purple segments in each
top and bottom panels indicate the estimated D values. The middle panel shows the
photometric intensity profiles along the slit and the spatial distribution of magnetic
field strength calculated from the extrapolated 3D NLFFF. The dashed line marks
the magnetic field of 1200 G.
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EOVSA peaks earliest, followed by T of AIA and GOES. The T peak of RHESSI

is unknown due to the incomplete temporal coverage of the RHESSI fitting results.

Such an order is not surprising considering the empirical tendency for the HXR (or

MW) emission temporally coincide with the time derivative of the SXR emission of a

solar flare, known as the Neupert effect [121]. For the second precursor, however, the

T peak of EOVSA is lagging behind that of RHESSI by ∼100 seconds. We plotted the

time derivative of the GOES SXR light curve (grey line in the top panel of Figure 3.6)

and found that its peak coincides in time with the peak of RHESSI HXR emission,

as the Neupert effect indicates. The temporal delay of MW to HXR emissions has

been reported before in some events, but often in the order of magnitude of seconds

[106]. The 100-second delay presented here is certainly not expected. The possible

reasons are discussed in Section 3.2.4.

Likewise, Figure 3.9 shows the temporal variation of EM, derived from AIA

EUV, GOES SXR, and RHESSI HXR data, during the precursor phase. The peak

EM of RHESSI HXR is at the same level as the peak EM of AIA EUV and GOES for

the first precursor (1048cm−3), at almost the same time. However, the second peak of

the AIA EUV is hard to distinguish because EM is constantly increasing. Likewise,

the second peak of RHESSI HXR is unknown because of the data gap. There is a

striking similarity between the EM curve obtained from the AIA EUV data and that

from the GOES SXR data, especially during the period of the first precursor. Starting

from 2 ×1048cm−3, the EM profiles of AIA EUV and GOES SXR reach 5 ×1048cm−3

during the precursor times. The EM curves obtained from the RHESSI HXR data,

however, change more rapidly over a wide range (1.5 ×1047cm−3 to 3×1048cm−3), but

are always less than AIA and GOES.

Figure 3.10 shows the temporal variation of n, derived from AIA EUV and

EOVSA MW data, during the precursor phase. Despite their significant difference in

magnitude, both n curves show peaks at the two precursor times, and EOVSA MW
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Figure 3.8 Temporal variations of temperature. Top panels are temporal variations
of temperature, derived from AIA (black), GOES (light blue), RHESSI (dark blue),
EOVSA (red), and the derivative for GOES SXR (gray) during the precursor phase.
The gray shaded areas P1 and P2 indicate two precursor periods. Middle and Bottom
panels are the magnified view of the temporal variation of T during the two precursor
periods. The solid triangle symbols mark the peaks of corresponding curves. Their
values and uncertainties are listed in each panel. The hollow dark blue triangle in the
middle panel indicates that RHESSI’s peak of the first precursor is unknown because
of the data gap before 17:25:00UT.
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emission always peaks ahead of AIA EUV emission. It is not surprising, considering

that the temporal variations of AIA EUV and GOES SXR are almost identical.

Figure 3.11 shows the time variations of AIA ∆EMs integrated over different

temperature ranges of log(T)=0.1. Concerning the two flare precursors, there are

generally two types of curves in the figure: the ones with two clear peaks at the

precursor times and the ones without. For the former ones, the higher the temperature

level, the clearer the peaks are observed during the precursor times, except for the

black curve which shows the lowest ∆ EM at the lowest T. It partially explains

why AIA’s T peaks always come before the peaks of EM or n (Figures 3.8-3.10).

Another type is that curves with the temperature of log(T) <6.65 (T <4.5 MK). The
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Figure 3.11 Time profiles of AIA ∆EMs integrated over 21 temperature ranges of
log(T)=0.1. Each curve shows the temporal variation of differential emission measure
at the corresponding temperature level. High temperature levels (log(T) >6.65) show
clear peaks at two precursor times. Low temperature levels (log(T) <6.65) do not
have clear peaks except for the curve with lowest temperature (log(T) = 5.65).

magnitudes of ∆ EMs are greater at higher temperature levels, but they do not have

clear chances during the precursor times.

Table 3.1 summarizes the numerical interval of T, EM, and n of two precursors

derived from different data sets as shown in Figures 3.8-3.10. As a response to

precursors, the values of these parameters vary depending on different instruments.

Specifically, the temperature measured by AIA and GOES increases by ∼3 MK and

∼5 MK, respectively, during both of the two precursor times. The temperature

measured by RHESSI increases by ∼10 MK, from 14 to 24 MK for the second

precursor, while the temperature measured by EOVSA increases even more, by more

than 50% as much as that of RHESSI, from 25 to 59 MK. On the other hand, EM
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and number density measured by RHESSI and EOVSA respectively increase at least

10 times during both two precursor phases, while these two parameters measured

by AIA and GOES increase only with the same order of magnitude. In general,

the measurements by AIA and GOES show the similar lowest numerical values

and the least variations, even though their results were obtained independently by

two different methodologies. To conclude, the increases of the thermal parameters

detected by AIA and GOES are at the same level. EOVSA’s thermal parameter

changes at least 10 times as much as that by AIA in the measurements of n and T.

As for HXR emission, the temperature increase detected by RHESSI is at least twice

as much as that by AIA and GOES.

Table 3.1 GST High Resolution Data

Log(T) Log(n) Log(EM)
unit K unit cm−3 unit cm−3

AIA 6.75±6% – 7.05±9% 9.20±57% – 9.60±68% 48.20±1% – 48.60±2%

DOES 6.90±2%) – 7.15±2% N/Aa 48.15±5% – 48.58±5%

RHESSI 7.05±40% – 7.35±5% N/A 47.09±63% – 48.47±27%

EOVSA 6.50±56% – 7.79±10% 9.85±81% – 11.4±31% N/A

a’N/A’ means that this parameter was not obtained from the corresponding method.

3.2.4 Summary and Discussion

To summarize, we present a case study of the temporal variation of T, n, and EM

derived from different data sets during a flare precursor period. The results from

different data sets show apparent temporal consistency among the thermal parameters

in multi-wavelengths, as well as significant quantitative differences, which is likely due

to different emission mechanisms as well as different methodologies applied in the
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data analysis of different instruments. During the precursor phase, the temperature

measured by AIA/GOES, RHESSI, and EOVSA varies over the ranges of 8-15 MK,

10-24 MK, and 15-60 MK, respectively.

Of all the available measurements, RHESSI has the smallest EM value which

varies from 1.5×1047cm−3 to 3×1048cm−3 and EOVSA has the largest number density

variation from 1 to 3 ×1010cm−3. AIA/GOES has the most gentle variations in EM

of 1.5 to 4×1048cm−3 and n of 2 to 4 ×109cm−3.

Note that EM and n have the following relationship:

EM =

∫
n2dV (3.1)

Our results are summarized as follows:

1. GOES SXR and AIA EUV have almost identical EM variations (especially
before 17:52 UT), and very similar T variations (especially after 17:23UT).
During the precursor phase, both EM and T measured by GOES SXR and AIA
EUV passbands are raised to twice their initial values (T increases from 8 to 15
MK, and EM increases from 1.5 to 3×1048cm−3).

2. Compared to GOES SXR and AIA EUV, RHESSI HXR shows greater
temperature changes at the 15 MK level and above. EM measured by RHESSI
HXR during the precursor phase is 10 times higher than it was before the
precursors. For the first precursor, they have very close peaks no matter in
magnitude or temporal sequence.

3. The T peak measured by EOVSA MW (59 MK) is almost 3 times higher than
the T peak measured by the AIA EUV and GOES SXR (15 MK). The n peak
of EOVSA MW (3 ×1010cm−3) is more than 10 times higher than the n peak
of AIA EUV (3 ×109cm−3). EOVSA MW exhibits high thermal variations of
T and n, and it has the greatest uncertainties in its measurements as well.

It is clear that AIA and GOES, compared to RHESSI and EOVSA, show lower

temperatures and smoother variations. Such a result is not very surprising, as different

instruments, operating at different wavelengths, inherently are sensitive to different

temperature ranges. Moreover, the difference is also the result of different emission
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mechanisms at play as well as the result of different emitting area selections used

in the temperature calculation. For AIA and GOES, the temperature measurements

are averaged over a large area. Specifically, AIA temperature is averaged within the

black boxes in Figure 3.6b,d, and GOES receives emissions from the whole solar disk.

On the other hand, the temperature derived from EOVSA MW data reflects the

instantaneous thermal behavior within a small area of precursor brightening, and the

temperature derived from RHESSI HXR data is calculated within the footpoints and

loop top of the HXR emission.

The variations of temperature for AIA and GOES are in good agreement

with each other. However, there is a constant difference of about 3-5 MK in

their magnitudes. As shown in Figure 3.11, the hot components (>4.5 MK) of

AIA DEM are increasing from 17:13UT, whereas the cold components (<4.5 MK)

remain unchanged. Considering AIA EUV and GOES SXR have almost identical

EM variations (Figure 3.9), the difference in temperature between AIA EUV and

GOES SXR is probably due to the unchanging cold components of AIA emissions. It

also explains why the difference is not so obvious until 17:13 UT, which is when the

hot components start to increase.

The temperature derived from EOVSA MW data shows a larger variation and a

higher maximum value than that from RHESSI HXR data. This is probably because

the emitting area used in calculating MW temperature is much smaller than that in

calculating RHESSI temperature, i.e., 10”×30” vs. ∼ 30”×50” according to HXR

images.

Besides the difference in magnitudes, we notice a significant long time delay

(100s) between the temperature peak of RHESSI HXR and that of EOVSA MW

observed from the second precursor. The time delay of MW flux peaks relative to

HXR flux peaks has been known for a long time. For example, a statistical study of

57 bursts from 27 solar flares shows that such delays are 6±5s for impulsive flares and
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15±6s for non-impulsive ones [106], which are, however, much shorter than the time

delay under the present discussion. Several ideas were adopted for interpreting time

delays: the delay is either due to the trapping effect of non-thermal electrons in the

loop top and the energy-dependence of Coulomb collisions [68] or to other generic loss

mechanisms [62, 67]. The trapping of non-thermal electrons in the loop top may arise

due to the magnetic mirroring and the energy-dependent Coulomb collisions because

it is more difficult for higher-energy electrons to be scattered into the loss cone than

lower-energy electrons [68]. This scenario can explain the observed time delay if

the high-energy (>300keV) electrons are responsible for the MW emissions and the

low energy (20-200 keV) electrons for the HXR emissions. However, the time delay

(100s) that we found for the second precursor is unusually long. In a more general

approach, Lee et al., 2005 [66] suggested that the trapping effect can be severe for

strongly converging magnetic fields and extended electron ejection time, in which case

our observation may be explained. We anticipate that the present observation would

motivate theoretical modeling of magnetic evolution combined with the participation

of thermal processes in the future.
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Figure 3.12 3D visualized magnetic field lines of NLFFF and Non-FFF. The upper
panels and lower panels show the extrapolation results one hour before and after the
flare, respectively. The middle panels show the AIA/EUV 193Å channel images 2
minutes before and 40 minutes after the flare start time.

3.3 Initiation and Back-reaction Study

In this study, we investigate the initiation and back-reaction of the X5.4 flare

(SOL205-03-07T00:02) in NOAA AR 11429. The nonlinear force-free field (NLFFF,

[133, 135]) model and the newly developed non-force field (Non-FFF, [48, 98]) model

are used to help us understand the 3D coronal magnetic field.

Figure 3.12 shows the coronal magnetic fields extrapolated from both NLFFF

(left column) and Non-FFF (right column) models before and after the flare, in

comparison with the AIA/EUV 193 Å observation (middle column). The AIA

observations show the sigmoid-to-arcade evolution, which is consistent with the

tether-cutting reconnection scenario. Both models generally agree well with the AIA

193Å observations.

3.3.1 Initiation Mechanism

In order to identify the possible initiation mechanisms of the flare, we study the

pre-flare magnetic field conditions. The pre-flare NLFFF model clearly exhibits the

presence of a current-carrying MFR prior to the flare, as shown in Figure 3.13. The
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MFR is oriented along the PIL and co-spatial with the bright emission in the AIA

304 Å image. The critical threshold of decay index ncrit for TI is 1.5 [9, 61]. In this

case, however, only n at the top of the MFR is close to 1, while the vast majority

of the MFR is in the region where the n value is below 1. This suggests that the

external strapping magnetic field has a strong constraining effect on the MFR and

that TI is unlikely to be the main triggering/driving mechanism for this eruption.

On the other hand, this MFR is moderate to highly twisted, with Tw values

mostly in the range of 0.5 to 1. Some magnetic field lines have Tw values even up

to 2 (see Figure 3.14), which adequately exceeds the critical value (Tw,crit=1.25) of

KI [10, 117]. However, in the AIA/EUV observations, we did not find any indication

corresponding to the occurrence of KI.

Instead, we found signs of tether-cutting reconnection. We mentioned earlier

that the transition of the coronal magnetic field from sigmoid to arcade, as shown in

Figure 3.12, is consistent with the tether-cutting reconnection scenario. In addition,

as shown in Figure 3.14a, four small flare brightenings (denoted by p1, p2, n1, n2) are

distributed on two sides of the PIL, which is also an important observational feature

of the tether-cutting reconnection. The magnetic lines coming out of EUV emission

brightenings are divided into four groups, according to the position of their footpoints,

p1n1, p2n1, p1n2, and p2n2, respectively. Figure 3.14b,c show the variation of the

four groups of the MFR before and after the flare starts. It appears that the loops of

p1n1 and p2n2 increase, suggesting that some of the magnetic field lines of n1p2 and

n2p1 are reconnected to form p1n1 and p2n2.

DAI is a trigger mechanism recently proposed by Ishiguro & Kusano (references).

The topology of the DAI scene is the same as that of the tether-cutting reconnection.

It shows that when the κ parameter exceeds a threshold value of 0.1, the double-arc

loop structure due to the tether-cutting reconnection becomes unstable in the joint

region bridging the two reconnected sheared loops systems. A previous study by
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Figure 3.13 NLFFF results of the internal magnetic field at one hour before the flare.
Panel (a) shows the chromospheric AIA/EUV observation of 304Å at 2 minutes before
the flare. Panel (b)-(d) show the internal field lines with different colors showing the
intensity of current density (A×m−2), twist number, and decay index, respectively.
Panel (e) shows the MFR of high twist values and the white and cyan contours
indicate the areas selected in the calculation of κ where the vertical magnetic field
intensity is greater than 300G. Panel (f) shows the time variations of κ values with
different threshold twist numbers (Tc). The shaded area in panel (f) indicates the
flare period.
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Figure 3.14 The high-resolution NLFFF MFRs overplotted on the AIA/EUV 304Å
images. The green curve in panel (a) indicates the PILs. The white and black contours
donated as p1 and p2, n1, and n2 in all panels show the four footpoints of MFRs of
positive and negative polarity, respectively. The blue boxes and yellow circles in penal
(a) mark the position of the ROI in this study and the initiation location determined
in [64], respectively. The MFRs in panels (b), and (c) are colored with the intensity
of the twist number values.

Kusano et al., 2020 [64] used the κ-scheme method to predict the initiation location

of this flare, which is located on one of the brightenings and marked by the small

circle in Figure 3.14a. Here we investigate the possibility of DAI triggering this flare

by estimating the κ in Equation 1.3.

We use Equation 2.6 introduced in Section 2.1.4 to calculate three κTc time

variations, corresponding to three values of Tc of 0.5, 1.0, and 1.5, respectively, are

presented in Figure 3.13f. All three profiles declined significantly after the flare onset.

Except for κ0.5, κ1.0 and κ1.5 both drop below the DAI threshold κcrit ∼= 0.1. This

suggests that DAI may be responsible for triggering the flare.

3.3.2 Back-reaction

As the result of the back reaction by the coronal field evolution required to release

energy with conservation of momentum, the photospheric magnetic fields are expected

to become more horizontal after flares [53]. Previous observational evidence for

back-reaction is abundant, such as the enhancement of the photospheric horizontal

magnetic field after the flare onset [125, 132, 130]. Here, we investigate the evolution of

horizontal magnetic fields with a time series of NLFFF models. Figure 3.15 shows the
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enhancement of the horizontal magnetic field after this flare, with the most significant

changes occurring around the PIL. As shown in Figure 3.15a, the Bh profiles start

to rise within 5 minutes after the flare start time. Even after the flare, soft X-ray

emission reached its peak indicated by the purple line, but the Bh time profiles still

show an enhancement at a slower rate until one hour after the flare. The enhancement

in Bh is not only seen in the photospheric layer, but also in a certain height range

above the photosphere. As an example, the variations of the horizontal magnetic field

in the Non-FFF and NLFFF models at a height of 1.5 Mm above the photosphere are

shown in Figure 3.15(c1-c2) and NLFFF Figure 3.15(d1-d2), respectively. A similar

Bh enhancement is evident in both the NLFFF and Non-FFF models, but the latter

shows weaker changes.

Figure 3.16a shows the temporal evolution of the vertical Lorentz force (Fz) at

three selected altitudes, averaged over a small region of interest (ROI) marked by

the rectangle in the middle and bottom panels. This ROI is along with the PIL and

mainly at the location of brightenings p2 and n2. The average value of Fz at all

three altitudes shows a significant decrease after the onset of the flare, suggesting the

enhancement of downward Lorentz force. The higher the altitude, the smaller the

magnitude of the change and the later the change appears. In the middle and bottom

panels, we can see a decrease in the area of the upward Fz and an increase in the area

of the downward Fz in the ROI.

Figure 3.17 further shows the variation of Fz, Bh and inclination angle Φ (the

angle between the magnetic field and the horizontal direction) with time and altitude.

The consequences of back-reaction are clearly shown in both NLFFF and Non-FFF

models, i.e., an increase in Bh and a decrease in Φ. In addition, Non-FFF shows an

obvious increasing downward Fz in the near-surface region.

However, there are non-negligible differences between the two models in the

range of altitudes affected by the back reaction. The NLFFF exhibits distinguishable
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Figure 3.15 Horizontal magnetic field variations on the photosphere and at the
height of 1.5 Mm of NLFFF and Non-FFF results, before and after the flare. Panel
(a) shows the time profiles of GOES SXR and Bh variations within the ROI. The
yellow shaded area indicates the flare period. Two green vertical lines show the times
of penal (b1)-(d1) and panel (b2)-(d2), respectively. The purple line indicates the
flare peak time. The black boxes and circles in penal (b1)-(d2) mark the position of
the ROI in this study and the initiation location determined in [64], respectively.
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Figure 3.16 Vertical Lorentz force variations at the heights of 0.7 Mm, 2.2 Mm,
and 3.6 Mm of Non-FFF results, before and after the flare. Panel (a) shows the time
profiles of GOES SXR and Fz variations within the ROI. The yellow shaded area
indicates the flare period. Two green vertical lines show the times of penal (b1)-(d1)
and panel (b2)-(d2), respectively. The purple line indicates the flare peak time. The
white boxes and circles in penal (b1)-(d2) mark the position of the ROI in this study
and the initiation location determined in [64], respectively. The different colors of the
contours in penal (b1)-(d2) indicated the different directions and magnitudes of Fz.
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Figure 3.17 The time variations of Fz from Non-FFF, Bh, and Φ from both NLFFF
and Non-FFF within the height limit of 10 Mm of ROI. The upper left panel shows
the time profiles of GOES SXR and the magnetic free energy of NLFFF. The yellow
shaded area indicates the flare period. The vertical dashed lines and purple lines in
each panel mark the flare start time, end time, and peak time, respectively.
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back-reaction at ∼ 8 Mm and below, while in the non-FFF model, the back-reaction

is affected in the range below 5 Mm. More discussion about the differences between

NLFFF and Non-FFF is presented in Section 4.

3.3.3 Summary and Discussion

In summary, we investigated the initiation and back-reaction of the X5.4 flare on

March 7, 2012, and our main results are as follows.

1. The X5.4 flare eruption is triggered by the tether-cutting reconnection and the
subsequent DAI.

2. The back-reaction effects, manifested as enhancement of horizontal field and
decrease of inclination angle, are observed over a certain altitude range, which
is 0–8 Mm for the NLFFF model and 0–5 Mm for the Non-FFF model. In
addition, the Non-FFF model shows an increased downward Lorentz force at
low altitudes, 0–2 Mm.

We find that the MFR is torus stable, but there are strongly twisted field lines

(Tw ∼ 2) as early as 2 h before the flare, which is sufficient to cause KI. However,

there is no observational evidence from the AIA/EUV to support the occurrence

of KI. Instead, we find the evolution of “four footpoints to two ribbons”, which is

a key feature of the tether-cutting reconnection. In the NLFFF, the 3D magnetic

configuration is also consistent with the magnetic configuration in the tether-cutting

reconnection. The long loops connecting the two far ends of the sigmoid appear to

be an MFR with enhanced strong current density, as the result of the tether-cutting

reconnection in DAI. Such MFR is a typical meta-stable double-arc shaped MFR in

DAI with a concave in the middle part of the MFR, which is more prone to instability

than toroidal loops. It is evident that the κ parameter characterizing DAI exceeds

the critical threshold of DAI before the flare and then drops below the threshold

after the flare starts. These indicate that the tether-cutting reconnection and the

subsequent DAI are responsible for initiating the flare. In this study, we identify the
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initiation location to be where tether-cutting reconnection happens, which should

cover the PIL between n2 and p2 in Figure 3.14a. On the other hand, Kusano et

al., 2020 [64] predicted the location of the flare onset using the κ scheme in DAI

shown by the circles in Figures 3.14-3.16, which overlapped with the n2 region in this

study. In general, these two studies show consistent results in terms of finding the

tether-cutting reconnection location.

The Lorentz force in the corona has rarely been studied before, as the coronal

magnetic field is not available from observations and the NLFFF model, which is

usually used to study the coronal magnetic field, is inherently not applicable to

the calculation of the Lorentz force. In this study, we use the Non-FFF model to

derive the 3D spatial distribution of the Lorentz force and find an increase in the

downward Lorentz force, which, together with the enhanced horizontal magnetic field

and decreased inclination angle, confirms the concept of back-reaction of coronal

restructuring. To the best of our knowledge, this is the first application of the

Non-FFF model to the analysis of the Lorentz force in the 3D solar magnetic field. In

addition to the unique advantage of calculating Lorentz forces, the Non-FFF model

also reproduces reasonably well the magnetic field in the near-surface region.

It is worth noting that the location of the flare initiation is also the location

where the back-reaction is particularly significant. As shown in Figures 3.14-3.16, the

most significant back-reaction occurs in the dashed box, which is overlapping part

of p2 and n2 and the PIL between. In the tether-cutting reconnection scenario, the

magnetic field becomes more horizontal near the PIL and the surface, due to the

newly formed short loops there. In that same area, the vertical Lorentz force changes

accordingly. This result is in agreement with the expectations of the back-reaction

theory and has been demonstrated with the evolution of 3D magnetic fields in this

study.
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3.4 Light-bridges Study

Although the thermodynamic properties of LBs are well understood taking advantage

of the high-resolution observation, the fine-scale magnetic structure of LBs has not

been well demonstrated so far besides some basic characteristics, i.e., weaker magnetic

field and more horizontal orientation compared to the nearby umbra [11, 76, 103, 69].

In this study, we focus on the high-resolution 3D magnetic structure of the LBs

in NOAA AR 12371 using the nonlinear force-free field (NLFFF) models extrapolated

from the high-resolution GST photospheric vector magnetograms. Together with

the multi-instrument thermal analysis of precursors in this AR, the high-resolution

magnetic field analysis may change the view of the ARs.

3.4.1 At the Photosphere

Figure 3.18a presents a GST TiO snapshot of the sunspot group taken on June

22, 2015, at 17:36 UT in AR 12371. The two LBs of interest, labeled LB 1 and

LB 2, and their host sunspots were close to the disk center. Soon, a few minutes

later, an M6.5 flare (SOL2015-06-22T18:23) initiated in this AR, which has been a

subject of intense research due to the complete GST observations of the flare process

[59, 79, 126, 129, 139], etc. Although understanding magnetic field structure can help

us understand flares, this study is not directly related to the flare. We only use the

pre-flare GST data to investigate the magnetic field of LBs.

Figure 3.18d shows the cross-sectional continuum intensity profiles of the two

LBs (along the colored slits in Figure 3.18a) and the average of these curves as well

as its Gaussian fit curve. The Gaussian full widths at half maximum (FWHM) of

LB1 and LB2 are 810 km and 2475 km, respectively. The solid rectangle boxes

in Figure 3.18a correspond to the close-up regions of the two LBs, as shown in

Figure 3.18b. The high-resolution TiO observation reveals a long central dark lane,

intersected with short intergranular lanes, running through the long axis of the narrow
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Figure 3.18 GST observation of two LBs. (a) A GST TiO snapshot of AR 12371 that
shows the sunspot group and two LBs of interest (labeled LB1 and LB2, respectively).
The two solid rectangle boxes are defined for the zoom-in TiO images of the two LBs
shown in (b), and the slits cross-cutting LB1 and LB2 show where the cross-sectional
continuum intensity were measured. The large dotted rectangle box is drawn to
mark the region of interest for the GST continuum and Bz images shown in (c).
(b) The zoom-in TiO images of LB1 and LB2. (c) GST continuum and Bz images,
superimposed with arrows representing horizontal magnetic field vectors. The arrows
in the two LBs are highlighted in red. (d) GST continuum intensity (Ic) profiles (with
different colors) along the slits in (a), the mean intensity profile (thick black curve)
and the Gaussian fit (thin black curve). For reference, the color of each profile is the
same as the color of the slit (see panel a). The Gaussian FWHM and ±3σ of LB1
and LB2 are provided.
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LB1. Such long and short lanes are regarded as manifestations of convective upflows

and downflows, respectively [142]. The broader LB2, on the other hand, exhibits

a discernible photospheric granulation pattern, suggesting a deeper anchoring in the

convection zone [100]. Figure 3.18c shows the NIRIS photospheric horizontal magnetic

field vectors superimposed on the continuum and Bz images, with the portion on

the two LBs highlighted in red. The two LBs are sandwiched between the sunspot

umbrae of positive magnetic polarity, and magnetic field vectors fanning out from

the neighboring umbrae converge at LBs. We see a distortion in azimuth at the LB

regions, i.e., field vectors in and around the LBs are somewhat sheared to the long

axis of the LBs, indicating a disruption of magnetic field there.

We measured magnetic parameters along the colored slits across the two LBs

(see Figure 3.18a), and the results are shown in Figures 3.19 and 3.20. The black curve

in each panel represents the average of the profiles measured in multiple slits for each

LB. There are distinctions between the LBs (shaded area) and umbrae. Compared

to the umbrae, the magnetic fields on the two LBs are weaker (in both vertical and

horizontal components, Bz and Bh), more horizontally orientated (shown as a larger

inclination angle between the magnetic field vector and the local vertical direction),

and more sheared (shown as a larger shear angle between the magnetic field vector

and the local potential vector). This trend is particularly evident for the wider LB2.

Our results are in good agreement with previous observations of the LB magnetic

field at the photosphere summarized by Leka et al, 1997. [69].

3.4.2 At the Low Atmosphere

The main goal of this study is to investigate the 3D magnetic characteristics of LBs,

which are not directly observable. Therefore, we extrapolate two NLFFF models

(Model 1 and Model 2) from the photospheric vector magnetograms of 17:36 UT

using the weighted optimization method [135]. Model 1 is extrapolated from the full
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Figure 3.19 Cross-sectional profiles of vertical and horizontal components of
magnetic field (panels a and b, respectively), magnetic shear angle (panel c) and
inclination angle with respect to the local vertical (panel d), along the slits cutting
across LB1 in Figure 3.18a. The profiles of different colors represent the measurements
at different locations (see Figure 3.18a), and their averages are shown as the black
curves. The shaded region in each panel indicates the approximate position of the
LB1, estimated from the Gaussian FWHM of continuum intensity (see Figure 3.18d).
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Figure 3.20 Cross-sectional profiles of LB2. Same as for Figure 3.19, but for LB2.
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resolution NIRIS magnetograms to show the magnetic structure at fine scales. Since

the field of view (FOV) of the NIRIS magnetogram is small (shown as the square area

surrounded by the white box in Figure 3.21a) and positive and negative fluxes are

not well balanced, which may have an impact on the extrapolation results, Model 2

is extrapolated from the expanded FOV (shown as the entire FOV of Figure 3.21a)

but lower resolution HMI magnetograms with the NIRIS magnetograms of reduced-

resolution embedded in the middle. Model 2 serves to demonstrate the large-scale

magnetic topology and to examine the impacts of small FOV and unbalanced flux

on Model 1. Prior to the extrapolation, the bottom boundaries of both models are

pre-processed toward the force-free conditions [137].

Table 3.2 Properties and Extrapolation Metrics of Models

Models Pixel Scale Dimensions CWsinθa |∇ ·B|

NLFFF model 1 0.057 Mm 648×648×160b 0.26 8.4×10−11

∼37×37×9 Mm3 (G cm−1)

NLFFF model 2 0.28 Mm 512×512×512 0.24 4.9×10−11

∼145×145×145 Mm3 (G cm−1)

Potential model 0.28 Mm 512×512×512 N/A 3.6×10−11

∼145×145×145 Mm3 (G cm−1)

athe current-weighted average of sinθ [133], where θ is the angle between the current density
J and B
buniform grid points, same in NLFFF model 2 and Potential model

Table 3.2 lists the properties and the domain-averaged extrapolation metrics,

CWsinθ, and |∇⃗ · B⃗|, of the two models, along with that of a potential field model

extrapolated from the same boundary conditions as that of Model 2. Both the NLFFF

models show very similar metrics, which are typical for the weighted optimization

algorithm and suggest a moderately satisfied force-free and divergence-free condition.

The overall magnetic topology obtained from the NLFFF model 2 (Figure 3.21c)
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offers a truthful reconstruction of observations in comparison with the AIA 94 Å

image (Figure 3.21d). We then compared the Bx, By, and Bz components of the two

NLFFF models in the same small volume as that of Model 1, and found a very strong

correlation between the two models (Figure 3.21b), indicating that the small FOV

and the unbalanced flux of Model 1 do not have a serious impact on the extrapolation

in this case. Therefore, we are confident in using NLFFF model 1 to characterize the

fine-scale 3D magnetic structures.

Before showing the fine-scale magnetic structures, Figure 3.22 obtained from

the large-FOV NLFFF Model 2 displays the overall connectivity of magnetic field

lines emanating from LB1 (top), LB2 (middle), and the umbra in between (bottom),

respectively. The color of field lines indicates the value of twist number (Tw =

1
4π

∫
L
αdl). Although not on a fine scale, this figure gives us an overall impression

of the LB magnetic fields. Apparently, the magnetic field lines from the two LBs

exhibit a stronger nonpotentiality, shown in a greater degree of twist and complexity,

than the magnetic lines from the umbra.

The following results are all from the high-resolution NLFFF Model 1.

Figures 3.23 and 3.24 show the stratification of the same magnetic parameters

of LB1 and LB2 as analyzed in Figures 3.19 and 3.20 at geometrical heights. The

curves at each height layer represent the average of magnetic parameters at multiple

slits at this layer. At the low layers near the surface, the magnetic field on LBs

shows a lower field strength, a larger inclination angle, and shear angle compared to

the umbrae, as noted before. As height increases, such differences become less and

less conspicuous until a certain height where the gap disappears. It is worth noting

that the field strength at the non-bridge umbral regions decreases monotonically with

height, while magnetic field strength at the center of the LBs (especially the wider

LB2) increases with height in a certain range close to the surface. Specifically, the

field strength at the center of LB2 is ∼800 Gauss at z = 0 km and increases to
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Figure 3.21 HMI NLFFF results and AIA 94ÅImage. (a) The large field-of-view
(FOV) HMI magnetogram Bz (∼145 Mm × 145 Mm) at 17:36 UT, 2015 June 22,
with the small FOV NIRIS Bz (∼37 Mm × 37 Mm) of the same time embedded in the
middle (enclosed by the square box). The small and large FOVs define the bottom
boundaries of NLFFF models 1 and 2, respectively. (b) Scatter plots of NLFFF model
1 vs. NLFFF model 2 in the same volume as NLFFF model 1, in three components
Bx (cyan), By (navy) and Bz (pink). The linear Pearson correlation coefficients are
shown in the panel. (c) Magnetic field lines obtained from NLFFF model 2, with
color indicating the twist number Tw. (d) An EUV 94 Å image taken by SDO/AIA
at 17:36 UT.
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Figure 3.22 Magnetic field lines obtained from the NLFFF model 2, with field lines
originating from the locations of LB1 (top), LB2 (middle) and the middle umbra
(bottom), respectively, superimposed over the continuum image. The color of field
lines indicates the value of twist number Tw.
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∼1400 Gauss at z = 1000 km, and then decreases with height. The narrower LB1

shows a much higher field strength at z = 0 km, 1800 Gauss, and a much lower range

of variation (less than 100 Gauss increase over a range of 400 km), but exhibits the

same trend. Correspondingly, the inclination of both LBs decreases sharply compared

to the neighboring umbrae, especially LB2 which decreases by at least 10 degrees

over a height range of 600 km. This implies that the magnetic lines above the LBs

shift to a more vertical direction in the low atmosphere layers. Such changes in field

strength and inclination are in accordance with the expected behavior of a low-lying

magnetic canopy structure above LBs. At the same time, not surprisingly as shown

in Figure 3.18c, we see an increased shear at the two LBs, and this shear decreases

with height.

Figure 3.26 shows vertical slices of the magnetic field strength |B|, current

density |J |, and inclination angle. The positions of the two cuts through LB1 and

LB2 are indicated by the lines in Figure 3.25a. Clearly, there is a weak-field region

inside the wide LB2 that separates the two umbrae, and at the top of this region,

magnetic field lines away from both umbrae converge to a more vertical direction and

hence form a cusp-like configuration. The height of this cusp is less than 500 km,

which can be better seen in the superimposed vectors in the |B| slice and in the

low-lying, more horizontal region in the inclination slice. The presence of such a

configuration above LB must cause a disruption of the magnetic field, so there must

be a large amount of current there. As shown in the vertical slice of |J |, currents

extend vertically from the surface to 2500 km. The strongest current density on LB2

is 0.4 A m−2, which is comparable to those found previously, e.g., 0.04-0.1 A m −2 in

Leka et al., 1997 [69], 0.2 A m −2 in Jurcak et al., 2006 [60] and 0.3 A m −2 in Louis

et al., 2021 [85], but at the high end. It is remarkable that |J | at LB2 shows two

current sheets near the visible surface which then become closer together at higher
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Figure 3.23 The stratification of magnetic parameters of LB1 at different layers,
vertical and horizontal components of magnetic field (panels a and b, respectively),
magnetic shear (panel c) and inclination (panel d). The curves at each layer represent
the average of these magnetic parameters at multiple slit positions in this layer of the
NLFFF Model 1. The height information of the averaged profiles is given on the right,
corresponding by color. The shaded region in each panel indicates the approximate
position of the LB1, estimated from the Gaussian FWHM of continuum intensity.
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Figure 3.24 The stratification of magnetic parameters of LB2 at different layers.
Same as for Figure 3.23, but for LB2.
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Figure 3.25 Cross-sectional vertical slices through the two slits of LB1 and LB2 (see
Figure 8a). Panels show from left to right magnetic field strength superimposed with
the magnetic field vectors, electric current density, and magnetic field inclination. A
1800 Gauss contour line is over-plotted.

altitudes to form the cusp shape. In the narrow LB1, the weak field region and canopy

structure are very insignificant compared to LB2, but still discernible.

3.4.3 Summary and Discussion

In this study, we use the 3D NLFFF model to study the 3D magnetic field of the

two LBs, with special attention to the magnetic canopy structure in the conventional

view of sunspots.

Magnetic canopy represents an upward intrusion of field-free plasma from

beneath the sunspot umbra. With very high-resolution data we demonstrate the

presence of a field-free, or more precisely weak-field, region inside the LBs, covered

by the canopy of a stronger and more vertical magnetic field and accompanied by

substantial currents extending up to the upper atmosphere. This canopy structure

is subtle in the narrow LB1 and more evident in the granular-looking wide Lb2.

This may be because the wide LB2 is deeply rooted in the convection zone with

a large-scale convective upflow, and hence more readily transports weak fields to
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the surface. Our results allow us to get a glimpse of the canopy structure and obtain

quantitative measurements about it (shape, size, |J |, etc.), which would be important

in the context of studying magnetic reconnection and heating mechanism at the

chromosphere because this magnetic canopy could be a preferred location for fast

magnetic reconnection and responsible for various dynamic phenomena of activity

observed in the LBs.

On large scales, we find a substantial difference between the LBs and umbrae

in the overall topology of magnetic field lines, i.e., the field lines emanating from the

two LBs are more twisted than that from the neighboring umbrae, which is clearly

visible in Figure 3.22. This difference may be related to the formation of LBs. A

numerical MHD simulation simulates the rise of a buoyant magnetic flux bundle from

a convective zone to the photospheric layer during the formation phase of an AR

[20]. It shows that magnetic field lines in the LB are highly twisted with a serpentine

structure below the visible surface, and are being continuously transported to the

surface by convective upflows [115]. Although these magnetic field lines undergo

unraveling due to reduced tension force as they rise into the corona, some of the twist

may be still retained and is shown in our NLFFF model. Future simulations can help

to clarify the topology of the magnetic field as they evolve.
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3.5 Joint Study: Generating Photospheric Vector Magnetograms of
Solar Active Regions via Deep Learning

This dissertation also includes a joint study of the application of a deep learning

tool called the MagNet in predicting photospheric vector magnetograms using

LOS magnetograms, Bx and By taken by SDO/HMI, and full-disk Hα observations

collected by BBSO. The purpose of the MagNet is to generate vector components

B′
x and B′

y which would form vector magnetograms with observed LOS data.

In this study, we mainly provided the high-quality Hα data as the ground truth

of the model to train their temporarily closest full disk HMI LOS magnetograms and

HMI vector magnetograms

BBSO produces over 4000 full-disk Hα images per year. we excluded low-quality

Hα images with an incomplete field of view (FOV) and cloud shades as well as other

out-of-focus images. Finally, we selected 2874 Hα images from 2014-01-01 to 2017-

08-04.

The conditions to select Halpha images during the selecting process are listed

as follows:

1. The image should be intact and clear. Some images are incomplete because
of operating issues (including the angle of the telescope, loss of focus, sudden
shaking of the telescope, etc), and external blocking items (birds, airplanes,
leaves, etc). These problematic images are mostly easy to find and would be
removed from the database.

2. The image should be showing the healthy appearance of the solar disk. Because
of the issue of the cloud, some of the thick clouds could be identified more
easily, but high and thin clouds are well hidden sometimes. This issue would
influence the brightness unity of the image. The images with a clear unbalanced
brightness are removed from the database.

3. For the images with very close appearances, that the identifiable items on the
solar disk do not have observable changes, the clearest one is selected. If the
items like active regions and filaments are close to the limb where it is darker
than the solar center, then evaluate the corresponding ”fr” image to check if
the items are clear. The images with a very close appearance but less clearness
are also removed from the database.
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Finally, about 400-500 images could be left for every year’s data. Doing such a

selection is to unify the quality of the images in the deep learning algorithm.

Experimental results demonstrate the good performance of the proposed

method. To our knowledge, this is the first time that deep learning has been

used to generate photospheric vector magnetograms of solar active regions. With

this MagNet and the LOS magnetogram provided by Michelson Doppler Imager

(MDI) on board the Solar and Heliospheric Observatory (SOHO), we can expand the

availability of vector magnetograms to the period from 1996 to the present.
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3.6 Future Work: Data-driving MHD Simulation

This undergoing study aims to numerically drive the eruption of the X5.4 flare of

AR11429 and the NLFFF extrapolation of the hmi.sharp.cea 720s magnetogram as

the initiation condition.

The Data-driving MHD simulation are basically according to following equations:

∂ρ

∂t
= −∇ · (ρv) (3.2)

∂v

∂t
= −(v · ∇)v +

1

ρ
J ×B + ν∇2v (3.3)

∂B

∂t
= ∇× (v ×B) + η∇2B −∇ϕ (3.4)

J = ∇×B (3.5)

∂ϕ

∂t
+ c2h∇ ·B = −c2h

c2p
ϕ (3.6)

where the ρ is plasma density, B is the magnetic flux density, v is the velocity, J is

the electric current density, and ϕ is the convenient potential to remove errors derived

from ∇ ·B [23].

The NLFFF is performed with the weighted optimization method [135] with

preprocessing [137] at 22:22 UT, 6 March 2012, which is ∼ 2 h before the X5.4 flare.

3.6.1 Current Results

In order to trigger the flare, an anonymous resistivity is introduced to the simulation

in terms of the turbulence of J at the bottom boundary of the initiation condition.

The value and the range of the application of J depend on the NLFFF results. Figure

3.28 shows the NLFFF results and the |J | distribution on the photosphere.
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Figure 3.26 Simulation of the magnetic field and current density. The magnetic
field lines and the MFR in the core region (colored) of the NLFFF as the initiation
condition of the simulation. The isosurface of the J is 0.03 A/M2

83



So far, we have tried the simulation with anonymous resistivity applied in the

restricted area of the region of interest in the Initiation and Back-reaction Study.

Equation 3.7 shows the expression of the J turbulence:

η = 10−5 + 5× 10−4 × (
J − Jcri
Jcri

)2 (3.7)

where Jcri = 0.03 is the threshold to determine the area of anonymous resistivity,

and η is the electrical conductivity. Unfortunately, this attempt failed to make an

eruption. Thus we remove the limit of the area that applies the anonymous resistivity,

and we successfully triggered a flare.

3.6.2 Future Plans

Even though we numerically derived a flare eruption, many questions still don’t

have a proper answer except for the fact that this AR is fully energized and very

flare productive. One successful simulation doesn’t answer the questions of “when”,

“where” and “how” the solar flares.

In future work, we are proposed to do a series of simulations based on the

different magnetic field evolution statuses. The steps are briefly described here:

1. Use the relaxation code to drive the magnetic field evolution without triggering
anonymous resistivity.

2. Select candidate initiation conditions from the relaxation code results to derive
eruptions with anonymous resistivity (“when”).

3. Repeat the last step with different turbulence areas (“where”).

4. Initiation analysis of successful simulations and compare with observations
(“how”).
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CHAPTER 4

SUMMARY

This dissertation presents four innovative studies regarding the initiation mechanism

and evolution of flare eruptions. The M6.5 flare in AR12371 and the X5.4 flare in

AR 11429 have been well analyzed with multi-wavelength data processed by various

analyzing methods.

Specifically, in the statistical study including 38 flare events, we find that the

TI plays an important role in distinguishing eruptive and confined events, but the KI

is not a major factor in the type of eruptions. It is the first time to use real event

observations to study the role played by MHD instabilities in the CME association

with solar flares. This study also shows the difference between the observational result

for solar eruptions with that of the laboratory result in terms of the role played by

magnetic reconnection.

In the multi-instrument precursor study, we quantitatively analyzed the variation

of thermal parameters (i.e, temperature T , emission measure EM , and number

density n) at the precursor phase of the M6.5 flare, measured by multi instruments

operating at different wavelength regimes with different emission mechanisms. The

uniqueness of this study is that it presents a comprehensive thermal analysis, in

terms of both spectrum wavelengths and the variety of thermal parameters, of flare

precursors which share the same magnetic field conditions with their subsequent

events.

In the Initiation and Back-reaction Study, we investigate the 3D magnetic

structure and MHD kink instability (KI), torus instability (TI), and double arc

instability (DAI), and conclude that the X5.4 in AR 11429 flare is most likely

triggered by the tether-cutting reconnection and the subsequent DAI. We also find

clear back-reactions in both NLFFF and Non-FFF in terms of an increase of horizontal
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magnetic field (Bh) and a decrease of inclination angle (Φ) of the magnetic field near

the PIL. In addition, the Non-FFF model shows an enhancement of the downward

Lorentz force acting on the photosphere, and the location of the enhancement spatially

coincides with the location of the flare onset. To the best of our knowledge, it is

the first application of Non-FFF in the calculation of Lorentz force in back-reaction

studies. This study draws a clear picture of how the magnetic field evolution could

lead to a flare eruption and the other way around, the influence of the occurrence

of solar eruptions on magnetic field changes. From another field of view, this study

helps us understand the evolution of ARs, especially the highly flare productive ones.

In the light-bridges study, we investigated the three-dimensional (3D) magnetic

structure of the two light bridges over the sunspots in AR 12371. High-resolution

magnetogram analysis shows the fine structure of enhanced electric currents and

magnetic shear in greater detail. The 3D NLFFF model shows a low-lying 3D

magnetic canopy as well as a 3D current system. The highlight of this study is the

application of the high-resolution which is the most visual picture of the magnetic

canopy obtained by observation to date.

In addition, a joint study with computer science researchers aiming at generating

photospheric vector magnetograms using deep learning tools is partially included. In

the end, We briefly introduce an undergoing study aiming to numerically drive the

eruption of the X5.4 flare of AR11429 and our future plans. We also introduce the

cyberinfrastructure for advancing space weather research named SolarDB and its flare

database.

This dissertation presents a systematical study of the magnetic field evolution

and flare initiation-related topics. Combining the multi-wavelength thermal analysis

in the initiation phase of the flare and a more realistic magnetic field boundary

condition with the presence of Lorentz force, the potential of this dissertation may

lead to the development of more advanced modeling techniques.
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APPENDIX

LIST OF 38 EVENTS IN STATISTICAL STUDY

This list of 38 event consists of 26 ejective flares and 12 confined flares selected in the

statistical study in Section 3.1. See Jing et al., 2018[57] for more detailed information

of the flares in this list.

Table A.1 Event List

No. SXR Peak Time Class AR Position Typea nb |Tw|c

1 SOL2011-02-13T17:38 M6.6 11158 S20E04 E 0.58± 0.16 0.39± 0.03

2 SOL2011-02-15T01:56 X2.2 11158 S20W10 E 0.86± 0.46 0.62± 0.04

3 SOL2011-03-09T23:23 X1.5 11166 N08W09 C 0.62± 0.04 0.73± 0.21

4 SOL2011-07-30T02:09 M9.3 11261 S20W10 C 0.45± 0.12 0.47± 0.14

5 SOL2011-08-03T13:48 M6.0 11261 N16W30 E 1.28± 0.12 0.73± 0.16

6 SOL2011-09-06T01:50 M5.3 11283 N14W07 E 0.86± 0.14 0.63± 0.09

7 SOL2011-09-06T22:20 X2.1 11283 N14W18 E 0.98± 0.33 0.98± 0.20

8 SOL2011-10-02T00:50 M3.9 11305 N12W26 C 0.63± 0.08 0.55± 0.09

9 SOL2012-01-23T03:59 M8.7 11402 N28W21 E 0.79± 0.11 1.08± 0.20

10 SOL2012-03-07T00:24 X5.4 11429 N17E31 E 0.89± 0.11 0.62± 0.06

11 SOL2012-03-09T03:53 M6.3 11429 N15W03 E 0.78± 0.09 0.78± 0.15

12 SOL2012-07-02T10:52 M5.6 11515 S17E08 E 0.60± 0.18 1.44± 0.16

13 SOL2012-07-12T16:49 X1.4 11520 S15W01 E 0.51± 0.06 0.81± 0.09

14 SOL2013-04-11T07:16 M6.5 11719 N09E12 E 0.61± 0.12 0.92± 0.17

15 SOL2013-10-24T00:30 M9.3 11877 S09E10 E 0.18± 0.20 0.99± 0.12

16 SOL2013-11-01T19:53 M6.3 11884 S12E01 C 0.70± 0.23 1.15± 0.21

17 SOL2013-11-03T05:22 M4.9 11884 S12W17 C 0.53± 0.12 0.81± 0.14
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Table A.1 Event List (Continued)

No. SXR Peak Time Class AR Position Type n |Tw|

18 SOL2013-11-05T22:12 X3.3 11890 S12E44 E 0.31± 0.18 0.54± 0.14

19 SOL2013-11-08T04:26 X1.1 11890 S12E13 E 0.28± 0.19 0.59± 0.08

20 SOL2014-01-07T18:32 X1.2 11944 S15W11 E 0.61± 0.07 0.84± 0.15

21 SOL2014-02-02T09:31 M4.4 11967 S10E13 C 0.43± 0.05 0.66± 0.09

22 SOL2014-02-04T04:00 M5.2 11967 S14W06 C 0.67± 0.09 0.67± 0.11

23 SOL2014-03-29T17:48 X1.1 12017 N10W32 E 0.73± 0.19 1.26± 0.09

24 SOL2014-04-18T13:03 M7.3 12036 S20W34 E 1.07± 0.10 0.75± 0.12

25 SOL2014-09-10T17:45 X1.6 12158 N11E05 E 0.42± 0.06 0.49± 0.09

26 SOL2014-10-22T14:28 X1.6 12192 S14E13 C 0.22± 0.04 0.72± 0.03

27 SOL2014-10-24T21:41 X3.1 12192 S22W21 C 0.70± 0.08 0.97± 0.26

28 SOL2014-11-07T17:26 X1.6 12205 N17E40 E 0.66± 0.13 1.03± 0.11

29 SOL2014-12-04T18:25 M6.1 12222 S20W31 C 0.56± 0.10 1.05± 0.17

30 SOL2014-12-17T04:51 M8.7 12242 S18E08 E 1.34± 0.10 0.71± 0.12

31 SOL2014-12-18T21:58 M6.9 12241 S11E15 E 1.57± 0.10 1.08± 0.14

32 SOL2014-12-20T00:28 X1.8 12242 S19W29 E 0.65± 0.06 0.91± 0.09

33 SOL2015-03-12T14:08 M4.2 12297 S15E06 C 0.36± 0.15 0.54± 0.08

34 SOL2015-06-22T18:23 M6.5 12371 N13W06 E 0.92± 0.06 1.14± 0.05

35 SOL2015-06-25T08:16 M7.9 12371 N12W40 E 0.74± 0.20 0.93± 0.07

36 SOL2015-09-28T14:58 M7.6 12422 S20W28 C 0.44± 0.13 0.74± 0.21

37 SOL2017-09-04T20:33 M5.5 12673 S10W11 E 0.80± 0.27 0.70± 0.08

38 SOL2017-09-06T12:02 X9.3 12673 S09W34 E 0.63± 0.09 0.79± 0.14

a Flare type: (E)jective or (C)onfined;
b Decay index with ±1σ uncertainty calculated over the FPIL mask;
c Twist number with ±1σ uncertainty calculated over the NLFF field lines forming the
MFRs.
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to coronal magnetic field extrapolation based on the principle of minimum
dissipation rate. The Astrophysical Journal, 679(1):848–853, May 2008.

[50] Q. Hu, B. Dasgupta, M.L. DeRosa, J. Büchner, and G.A. Gary. Non-force-free
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