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ABSTRACT

PERFORMANCE ANALYSIS OF THE DOMINANT MODE
REJECTION BEAMFORMER

by
Enlong Hu

In array signal processing over challenging environments, due to the non-stationarity

nature of data, it is difficult to obtain enough number of data snapshots to construct

an adaptive beamformer (ABF) for detecting weak signal embedded in strong

interferences. One type of adaptive method targeting for such applications is the

dominant mode rejection (DMR) method, which uses a reshaped eigen-decomposition

of sample covariance matrix (SCM) to define a subspace containing the dominant

interferers to be rejected, thereby allowing it to detect weak signal in the presence

of strong interferences. The DMR weight vector takes a form similar to the adaptive

minimum variance distortion-less response (MVDR), except with the SCM being

replaced by the DMR-SCM.

This dissertation studies the performance of DMR-ABF by deriving the

probability density functions of three important metrics: notch depth (ND), white

noise gain (WNG), and signal-to-interference-and-noise ratio (SINR). The analysis

contains both single interference case and multiple interference case, using subspace

transformation and the random matrix theory (RMT) method for deriving and

verifying the analytical results. RMT results are used to approximate the random

matrice. Finally, the analytical results are compared with RMT Monte-Carlo based

empirical results.
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CHAPTER 1

INTRODUCTION

1.1 Overview of Adaptive Beamforming

An adaptive beamformer (ABF) is a widely used system with an array of transmitters

or receivers that performs adaptive spatial signal processing to filter out weak

signal of interest (SOI) in the presence of strong interferences. ABFs rely on

the knowledge of the data covariance matrix to compute the beamformer weights.

For example, the minimum variance distortionless response (MVDR) beamformer,

also known as the Capon’s beamformer, is derived by minimizing output power

wMVDR = arg min
w
E
{∣∣wHp (l)

∣∣2} subject to a unity gain constraint wHvs = 1 in

the SOI’s look direction: wMVDR = arg min
w

{
wHΣI+Nw

}
, s.t. wHvs = 1, where

p (l) is the data vector, ΣI+N is the ensemble covariance matrix (ECM) and vs is the

steering vector..

Note under H0 (signal absent case), the data vector p (l) contains only D

planewave interferences and noise: p (l) =
∑D

i=1 bi (l) vi + n (l) where bi is the

amplitude of the ith planewave interference vi, n is a vector of complex noise samples

n ∼ CN (0, σ2
nI). The ECM under H0 is represented as ΣI+N =

∑D
i=1 σ

2
i viv

H
i + σ2

nI.

While on the other hand, under H1 (signal present case), the data vector p (l) contains

SOI, D planewave interferences and noise: p (l) = bs (l) vs +
∑D

i=1 bi (l) vi + n (l)

where bs is the amplitude of the signal vector vs. The ECM under H1 is represented

as ΣS+I+N = σ2
svsv

H
s +

∑D
i=1 σ

2
i viv

H
i + σ2

nI

Using the method of Lagrange multipliers, we can transform the constrained

optimization above into an unconstrained one. The Lagrangian function is given by

L(w, λ) = wHΣI+Nw + λ
(
wHvs − 1

)
+
(
vHs w − 1

)
λ∗. By equating

∂L
∂w

to zero and

solving for w, we can obtain: wMVDR =
(
Σ−1
I+Nvs

)
/
(
vH
s Σ−1

I+Nvs
)
. The above results
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are in the case of H0 (signal absent). Note that under H1 (signal present) case, the

ΣI+N is replaced with ΣS+I+N (signal partial cancellation issue may arise).

The MVDR weight vector is a function of the inverse of the ECM. In reality,

the ECM for data is not available, so that in the data-driven adaptive MVDR, the

ECM is replaced by the sample covariance matrix (SCM) S = 1
L

∑L
l=1 p (l) p (l)H.

The SCM is computed from a collection of L data snapshots. For stationary data set,

SCM approximates to ECM well. However, if there is only a limited amount of data

snapshots, the sample covariance matrix could be singular (non-invertible) and/or

resulting a bad estimate of ECM.

1.2 Overview of Dominant Mode Rejection (DMR) Beamformer

For large arrays or fast-changing environments, it is not always easy to obtain enough

number of snapshots because the data are not stationary over long enough time

intervals. Therefore, these cases require beamformers that achieve faster convergence

by reducing the adaptive degrees of freedom. The classical adaptive methods rely

on the eigendecomposition of the SCM. There are two main types of eigenvector

beamforming algorithms: The first type is Eigenspace-ABF. It projects the data

into a subspace formed from the eigenvectors associated with the largest eigenvalues.

The second type is DMR-ABF. We will discuss these two methods in detail in later

chapters.

The DMR is a type of adaptive beamformer proposed by Abraham and Owsley

[1]. DMR weight vector is the MVDR weight vector with the ECM replaced by ΣDMR:

wDMR =
(
Σ−1
DMRvs

)
/
(
vH
s Σ−1

DMRvs
)
. In practice, the ECM is not available, so ΣDMR

cannot be constructed. Instead, the structured covariance matrix required for DMR

is computed using the SCM SDMR based on snapshots. Therefore, the adaptive DMR

weight vector is: wDMR =
(
S−1
DMRvs

)
/
(
vH
s S−1

DMRvs
)
. DMR covariance matrix SDMR

uses a reshaped eigen-decomposition of SCM to define a subspace containing the
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dominant interference to be rejected, thereby allowing it to detect weak SOI in the

presence of strong interference. DMR decomposes the N×N covariance matrix into a

dominant interferer subpace and a noise subspace. The dominant subspace is denoted

by the eigenvectors associated with the D largest eigenvalues of the sample covariance

matrix while the all the eigenvalues for the N−D dim noise subspace in the SCM are

replaced by their mean value
(

1
N−D

)∑N
n=D+1 λn. The number of dominant eigenvalues

determines the dominant subspace rank. When the background noise is spatially

white, the rank of the noise subspace is known, ensemble statistics are accessible,

ΣDMR = ΣI+N or ΣDMR = ΣS+I+N (e.g., ensemble covariance matrix under H0 is

represented as ΣI+N =
∑D

i=1 σ
2
i viv

H
i + σ2

nI and under H1 is ΣS+I+N = σ2
svsv

H
s +∑D

i=1 σ
2
i viv

H
i + σ2

nI), then DMR ABF becomes equal to the MVDR beamformer.

1.3 Literature Review of DMR ABF

There exist a number of papers exploring how to make DMR ABF robust to mismatch

[5, 8, 13, 21, 25], but few considering the performance analysis of the algorithm. For

practical applications, there exist some papers [24,31] investigating DMR performance

using deep-water and shallow-water sonar data results. The experimental analysis of

in these papers supports the claim that the DMR ABF requires fewer snapshots than

the MVDR ABF to achieve the same performance, but these papers [5,8,13,21,24,25,

31] do not extend the empirical results to predict the relationship between snapshots

and performance for an arbitrary array.

In this work, we focus on two main types of eigenvector beamforming algorithms:

Eigenspace-ABF and DMR-ABF, there have been many studies done on them.

Eigenspace-ABF requires the desired signal to be loud enough that it is included

in the reduced-rank subspace used for the projection, whereas the DMR-ABF

depends on the desired signal being quiet enough that it is not included in its

dominant interferer subspace. The difference in assumptions leads to a fundamental
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performance difference between DMR and other eigenspace methods, particularly

when the subspace must be estimated from the SCM. We would like to extend the

research work of DMR-ABF from some of the above results and methods.

The recent DMR research works by Wage and Buck [37–41] focus on the

snapshot performance of the DMR algorithm. Their analyses emphasize on the

fundamental case of a single interference in white noise, and using theoretical

calculations for the ensemble case reveal the relationships among white noise gain

(WNG), notch depth (ND), and signal-to-interference-plus-noise ratio (SINR). But

the theoretical derivation to support their snapshot-based results/conjectures yet to

be developed.

The focus of this dissertation is on the performance analysis of DMR ABF, by

deriving the theoretic results on the probability density distributions (PDFs) of WNG,

ND and SINR. We study the performance through investigating adaptive dimen-

sionality reduction and subspace formulation techniques. Closed-form derivations of

the PDFs for WNG, ND and SINR are presented to confirm conjectures [37–41]. The

performance analysis contains both single interference case and multiple interference

case, along with the RMT method for deriving and verifying the analytical results.

Finally, the analytical results are compared with RMT Monte-Carlo based empirical

results.

1.4 Organization

This dissertation studies the performance of DMR-ABF through the probability

density functions of three standard metrics: WNG, ND, and SINR. We expand

our study through investigating adaptive dimensionality reduction and subspace

formulation techniques. The analysis contains both single interference case and

multiple interference case, along with the RMT method for deriving and verifying

the analytical results.
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This dissertation is organized as following:

(1) Chapter 1 introduces the background knowledge of DMR ABF, illustrates the

focus of our research and outlines the organizations.

(2) In Chapter 2, three approaches for handling rank deficient sample covariance

matrices are summarized. ND histograms generated through Monte-Carlo simulations

are used to show the performance of approaches. Among the comparison, an adaptive

dimensionality reduction and subspace formulation technique is develpoed to study

the performance of DMR-ABF.

(3) The performance analysis of DMR ABF is presented in Chapter 3-5. First,

Chapter 3 shows that the distribution of SINR loss ratio of the DMR beamformer for

single interference case. The distribution can be simplified into a beta distribution

function. Second, Chapter 4 presents a theoretical analysis for the ND of the DMR

based ABF for single interference case. A closed-form expression has been derived

for the PDF of ND. Finally, the performance analysis of DMR ABF for the multiple

interference case is discussed in Chapter 5, along with the RMT method for deriving

and verifying the analytical results.
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CHAPTER 2

APPROACHES FOR HANDLING RANK DEFICIENT COVARIANCE

MATRICES

2.1 Introduction

The estimation of covariance matrix is required in many data-driven signal processing

applications. In array signal processing over challenging environments, it is difficult

to obtain enough number of data snapshots to construct an ABF for detecting

weak signal embedded in strong interference due to the non-stationarity nature of

data. In most practical applications, ensemble statistics required in implementing

the ABF are typically not available and must be estimated from available data sets.

Therefore, data-driven adaptive beamformers (ABFs) must be implemented using

sample statistic instead of ensemble ones. Performance of ABFs depends on the

number of data snapshots used to estimate the SCM. When the number of snapshots

is much greater than the number of variables or data dimension, ECM is replaced

by the SCM. Under the assumption of Gaussian distributed data, the SCM can lead

to an unbiased and asymptotically efficient estimator of the true covariance matrix.

However, if we have insufficient amount of data (sample deficient), the SCM is singular

(non-invertible) resulting in a poor estimate of ECM.

Generally, there are two types of approaches to solving this snapshot deficient

problem. The first approach uses the technique of dimentionality reduction, also

referred to as partially adaptive processing. The idea is to introduce a data transfor-

mation without too much loss of information, so that one can operate in a smaller

dimensional subspace. These techniques can be classified either as reduced-dimension

methods where the transformation matrix is fixed, or rank-reducing methods where

the transformation matrix uses the data information.
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The second type of approach is comprised of regularizing the SCM, generally

by using diagonal loading (DL). The DL artificially converts the singular sample

covariance matrix into an invertible (positivedefinite) covariance by the simple

expedient of adding a positive diagonal matrix, or more generally, by taking a linear

combination of the sample covariance and an identity matrix. One well-known

drawback of the DL methods is that a universally accepted way of choosing the

diagonal loading factor is still lacking. Among the methods in this broad category,

there is one called DMR. Instead of projecting into a reduced-rank subspace,

DMR uses the eigen-decomposition to define a subspace containing the dominant

interference that it wants to reject, thereby allowing it to detect low-power signal in

the presence of strong interference. The DMR weight vector takes a form similar to

the adaptive MVDR, except with the SCM being replaced by the DMR-SCM.

In this chapter, we begin with a planewave beamforming problem in an

insufficient amount of data scenario. Then we present three approaches mentioned

above (dimension reduction, DL, and DMR) for handling rank deficient covariance

matrices due to limited data snapshots. Based on these approaches, we develop

an adaptive dimensionality reduction and subspace formulation technique to further

facilitate our study of the performance of DMR-ABF.

2.2 Problem

Our problem begin with an insufficient amount of data scenario: a set of L

statistically independent and identically distributed measurements or snapshots of

an N dimensional random vector where L < N is available for testing beamformer

performance.

7



Figure 2.1 Uniform linear array with N sensors under far-field conditions.

2.2.1 Planewave beamforming problem

Planewave beamforming assumes that the data measured by an array consist of one

or more planewave signals plus noise. For a sensor array receives a narrowband signal

containing D planewave interference, which can be represented as

p (l) = bs (l) vs +
D∑
i=1

bi (l) vi + n (l) (2.1)

where bs is the amplitude of the signal vector vs, bi is the amplitude of the ith

planewave interference vi, n is a vector of complex noise samples n ∼ CN (0, σ2
nI).

For the N element sensor array oriented along l-axis, the received signal vector

and the complex exponential vector for ith planewave interference can be represented

as

vs = v (θs) =
1√
N


ej

2π
λ

cos(θs)l1

...

ej
2π
λ

cos(θs)lN

 ,vi = v (θi) =
1√
N


ej

2π
λ

cos(θi)l1

...

ej
2π
λ

cos(θi)lN

 (2.2)
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where λ is the wavelength, θs is the direction of the SOI, θi is the direction of the

i-th interferer, and li is the location of the ith sensor. Without loss of generality,

this dissertation assumes that the amplitudes bs and bi are i.i.d. zero-mean complex

circular random variables bs ∼ CN (0, σ2
sI), bi ∼ CN (0, σ2

i I) and that the complex

circular random noise is zero mean and spatially white. Assuming the planewave

interference are independent, the ensemble covariance matrix(ECM) under H0 is

represented as

ΣI+N =
D∑
i=1

σ2
i viv

H
i + σ2

nI (2.3)

while on the other hand, under H1 is

ΣS+I+N = σ2
svsv

H
s +

D∑
i=1

σ2
i viv

H
i + σ2

nI (2.4)

where σ2
s is the power in the signal σ2

i is the power in the ith interference source, and

the white noise power is σ2
n.

In practice, the ECM is not available. Instead, the structured covariance matrix

required for DMR is computed using the SCM based on L snapshots. The SCM and

its eigendecomposition are defined as

S =
1

L

L∑
l=1

p (l) pH (l)
EV D
=

N∑
n=1

λnene
H
n (2.5)

where p (l) is the lth data snapshot, and en and λn are the sample eigenvectors and

eigenvalues, respectively.

Thus, we are given a N×L data matrix. The columns of data matrix are consist

of L independent identically distributed realizations or snapshots. We are interested
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in the case where L < N . Consequently the sample covariance is singular with rank

equal to L.

2.2.2 Metrics

The data-driven adaptive MVDR beamformer weight vector is

w =
S−1vs

vH
s S−1vs

(2.6)

where S is the SCM based on L snapshots. The joint distribution of the elements

of S is central complex Wishart distribution with parameters L, N . Under H0,

S ∼ CW (L,N ; ΣI+N), while under H1, S ∼ CW (L,N ; ΣS+I+N).

We use some standard metrics to test beamformer performance: WNG,

beampattern, ND, and SINR. WNG is a standard metric that quantifies the

improvement in the SNR provided by a beamformer when the noise is spatially white.

It is defined as

GWNG ,
1

wHw
=

∣∣vH
s S−1vs

∣∣2
vH
s S−2vs

(2.7)

WNG is a useful indicator of how robust a beamformer is to array perturbations or

mismatch.

The second metric of interest is beampattern. It is defined in terms of the angle

θ:

B (θ) , wHv (θ) (2.8)

The beampattern is analogous to the frequency response of a filter. It quantifies the

beamformers response to a unity amplitude planewave from angle θ.
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The third metric of interest is ND. ND is defined as the amplitude square of

the beampattern in the direction of an interference. That is, in the case of a single

interference vi,

Gnotch , |B (θi)|2 =
∣∣wHvi

∣∣2 =

∣∣vH
s S−1vi

∣∣2
|vH
s S−1vs|2

. (2.9)

ND quantifies how well a beamformer can eliminate an interference. The deeper

the notch, the better the interference suppression performance. Figure 2.1 shows

the beampattern for the canonical single-interferer example when the INR is 40 dB.

The example uses a 50-sensor ULA with half-wave-length spacing. N = 50, L =

25/75/500, ρINR = 40dB, σ2
s = 10, σ2

1 = 10000, σ2
n = 1. The beampattern is plotted as

a function of the directional cosine. Note that this dissertation distinguishes between

a notch and a null. A null is a point where the beampattern is exactly equal to zero,

whereas a notch is a partial null, which is not a zero crossing of the beampattern.

The fourth metric of interest is SINR. The SINR of a beamformer is defined as

SINR(w) ,
σ2
s

∣∣wHvs
∣∣2

wHΣI+Nw
(2.10)

where σ2
s is the desired signal power, vs is the replica associated with the desired

signal.

2.3 Approach One: Dimension Reduction

2.3.1 The Johnson Lindenstrauss lemma

In mathematics, A powerful result by Johnson and Lindenstrauss (JL) [19] states

that a higher dimensional data set can be operated upon by a Lipschitz function and

the resulting lower dimensional output data set has similar pairwise distances as the

original data set. The lemma states that a set of points in a high-dimensional space
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can be embedded into a space of much lower dimension in such a way that distances

between the points are nearly preserved. The map used for the embedding is at least

Lipschitz, and can even be taken to be an orthogonal projection.

Theorem 1. (JL Lemma [19, 22]) Let εo ∈ (0, 1) . Given any set of points

X = {x1, x2, . . . , xn} in RN , there exists a map A: RN → Rd with d = O
(

logL
ε2o

)
such that

1− εo ≤
‖A (xi)− A (xj)‖2

2

‖xi − xj‖2
2

≤ 1 + εo.

Moreover, such a map can be computed in expected poly(L,N, 1/εo) time.

The minimum number of components to guarantees the εo-embedding is given

by d ≥ O
(

logL
ε2o

)
. Figure 2.3 shows that with an increasing number of samples L, the

minimal number of dimensions d increased logarithmically in order to guarantee an

εo-embedding.
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Figure 2.3 JL lemma bounds: number of samples L v.s. the minimal number of
dimensions. N = 50.
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Interestingly, new dimension d depends on the number of samples L rather than

the original dimension N . The equation above can help us to know whether random

projection can be used efficiently for a given dataset. Error rate is a number between

0 to 1 which determines how much error is tolerable in the transformed data. It must

be kept in mind as εo goes higher, d goes lower.

The JL lemma has been discovered, proved and reproved many times, with

each new proof providing a sharpened (i.e., reduced bound) and/or simplified result.

However, there is one particular feature that is common to all JL embeddings: the

mapping projects a vector into lower dimensions, and the length of this projection is

sharply concentrated around its expectation.

In the original paper that introduced the JL lemma [19], Johnson and

Lindenstrauss provide a lengthy, technical proof using geometric approximation. The

first significant improvement to the JL lemma came from Frankl and Meahara [10].

They replace the random k-dimensional subspace with a collection of k random,

orthonormal vectors. This approach requires a much simpler proof that attains a

sharper bound. Indyk and Motwani [18] provide the next improvement by relaxing

the condition of orthogonality in the projection matrix. Dasgupta and Gupta [9]

provide an alternative, much simpler proof of the result of Indyk and Motwani

using moment generating functions. Moreover, they provide a tighter bound than all

previous versions of the JL lemma. Achlioptas [2] subsequently shows that spherical

symmetry of the projection coefficients is not necessary in order to obtain a JL

embedding that maintains ε-distortion. Instead, he shows that concentration of the

projected points is sufficient. Finally, Matouek [23] improves upon the above results.

Currently, researchers attempt to express the JL lemma in simple terms so that it

can be better understood by the research community.

The lemma has applications in compressed sensing, manifold learning, dimension

reduction, and graph embedding. Much of the data stored and manipulated
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on computers, including text and images, can be represented as points in a

high-dimensional space. However, the essential algorithms for working with such

data tend to become bogged down very quickly as dimension increases. It is therefore

desirable to reduce the dimension of the data in a way that preserves its relevant

structure. The JohnsonLindenstrauss lemma is a classic result in this vein.

2.3.2 Random projection

In random projection, the original high-dimensional data is projected onto a

lower-dimensional subspace using a random matrix whose columns have unit lengths.

Random projection has been found to be a computationally efficient, yet sufficiently

accurate method for dimension reduction of high-dimensional data sets. While this

method has attracted lots of interest, empirical results are sparse.

Dimension reduction via random projection has recently received attention from

the data science community. In random projection, the original N -dimensional data

are projected to a d -dimensional subspace by multiplying the d×N random matrix

by N × L data matrix. The random projection was motivated by the JL lemma,

which asserts that a set of high-dimensional points can be projected into significantly

lower dimensions, while preserving its structure within a given error tolerance and

bound on the reduced dimension.

The reduced dimension d is independent of the original dimension of the

problem, but is dependent on the number of snapshots L. JL Lemma provides

guarantees that the newly projected data is representative of its original higher

dimension counterpart. The dimension-reduced covariance matrix is now d × d and

it is invertible. The inverse matrix computation required for the weight vector is

reduced from O (N3) to O (d3).

The basic idea of random projection is to use a data transformation to operate

in an smaller dimensional subspace (Figure 2.4). These techniques can be classified
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Figure 2.4 Random projections: from a high dimension to a lower dimension.

either as reduced-dimension methods which the transformation matrix is fixed, or

rank-reducing methods where the transformation matrix depends on the data. In

next section we will discuss these two different ways of choosing random projection

matrix.

2.3.3 Data independent random projection matrix

The core idea behind random projection is given in the JL lemma, which states that if

points in a vector space are of sufficiently high dimension, then they may be projected

into a suitable lower-dimensional space in a way which approximately preserves the

distances between the points.

In random projection, the original N -dimensional data is projected to a d-

dimensional (d < N) subspace, using a random d ≤ N -dimensional matrix ΦΦΦ whose

columns have unit lengths. Using matrix notation: If pl is the original N -dimensional

data vector, then ΦΦΦHpl is the projection of the data onto a lower d-dimensional

subspace, where ΦΦΦ is a N × d random matrix with d ≤ L. Random projection is

computationally simple: form the random matrix ΦΦΦ and project the data matrix onto

d dimensions. The multiplication of the N × 1 data vector pl by a random matrix

ΦΦΦH results in a data vector of reduced dimension d × 1, which in turn produces a
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statistically meaningful d× d sample covariance matrix:

ΦΦΦH 1

L

L∑
l=1

plplΦΦΦ
H = ΦΦΦHSΦΦΦ (2.11)

It is important to note that dimension reduction is the transformation of data from

a high-dimensional space into a low-dimensional space so that the low-dimensional

representation retains some meaningful properties of the original data.

Random Permutation Matrix One possible random matrix is a random permu-

tation matrix. The effect is to discard all but d of the N components of the data

vectors.

We denote φφφi, i = 1...d as the orthonormal vectors in CN . They have one thing

in common: only one entry is 1, other N − 1 entries are zeros. A permutation matrix

is a N × d matrix of the form

ΦΦΦ =

[
φφφ1 · · · φφφd

]
where φφφi 6= φφφj

For example, assume we have N = 10 sensors and L = 5 snapshots. Suppose

that we randomly select d = 3 distinct sensors: sensors 2, 3 and 7. Formally; the

dimensionality reduction of the snapshot is accomplished by multiplication by the
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conjugate transpose of a 10× 3 permutation matrix:

ΦΦΦ =



0 0 0

1 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 0 0



therefore, pl → ΦΦΦHpl, and S→ ΦΦΦHSΦΦΦ.

Figure 2.5 shows the beampattern for the canonical single-interferer example

when a random permutation matrix is in use. The beampattern is plotted as a

function of the direction angle.

Gaussian Distribution The random matrix ΦΦΦ can be generated using Gaussian

distribution random variables. The first row is a random unit vector (unit norm).

The second row is a random unit vector from the space orthogonal to the first row,

the third row is a random unit vector from the space orthogonal to the first two

rows, and so on. In this way of choosing ΦΦΦ, and the following properties are satisfied:

(1) Spherical symmetry: For any orthogonal matrix A, ΦΦΦHA and ΦΦΦH have the same

distribution. (2) Orthogonality: The columns of ΦΦΦ are orthogonal to each other. (3)

Normality: The columns of ΦΦΦ are unit-length vectors.
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Figure 2.5 Beampattern |B (θ)|2 =
∣∣wHv (θ)

∣∣2 (in dB) for the single interferer
example when a random permutation matrix is in use. The example uses a 50-sensor
ULA with half-wave-length spacing. N = 50, L = 25, d = 10. ρINR = 40dB,
σ2
s = 10, σ2

1 = 10000, σ2
n = 1. θs = 10◦, θ1 = 80◦. The red line shows location of the

interference.

For a Gaussian distribution random projection matirx ΦΦΦ =

[
φφφ1 · · · φφφd

]
,

φφφi(i = 1 · · · d) are chosen from N (0, I). Figure 2.6 shows the beampattern for the

canonical single-interferer example when a Gaussian distributed random projection

matrix is in use.

Bernoulli Distribution Another frequently used random projection is produced

using the Bernoulli distribution random variables. In this case, all the elements in

φφφi(i = 1 · · · d) are +1 or −1 with equal probabilities. Thus, all of the elements in ΦΦΦ

has zero mean and unit variance. Figure 2.7 shows the beampattern for the canonical
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Figure 2.6 Beampattern |B (θ)|2 =
∣∣wHv (θ)

∣∣2 (in dB) for the single-interferer
example when a Gaussian distributed random projection matrix is in use. The
example uses a 50-sensor ULA with half-wave-length spacing. N = 50, L = 25,
d = 10. ρINR = 40dB, σ2

s = 10, σ2
1 = 10000, σ2

n = 1. θs = 10◦, θ1 = 80◦. The red line
shows location of the interference.

single-interferer example when a Bernoulli distributed random projection matrix is

in use.

2.3.4 Data dependent random projection matrix

The random matrix ΦΦΦ can also be constructed from the principal eigenvectors of the

SCM, see [15,20] for the most well-known methods using this principle. For detection

purposes, this results in a low-rank adaptive matched filter where the inverse of
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Figure 2.7 Beampattern |B (θ)|2 =
∣∣wHv (θ)

∣∣2 (in dB) for the single-interferer
example when a Bernoulli distributed random projection matrix is in use. The
example uses a 50-sensor ULA with half-wave-length spacing. N = 50, L = 25,
d = 10. ρINR = 40dB, σ2

s = 10, σ2
1 = 10000, σ2

n = 1. θs = 10◦, θ1 = 80◦. The red line
shows location of the interference.

the SCM is replaced by the projector onto the subspace orthogonal to the principal

eigenvectors.

In [35, 36], Tucci, Marzetta, Simon and Ren proposed a beautiful and original

idea where dimensionality reduction is achieved through an ensemble of isotropically

random unitary matrices. More precisely, a column of ΦΦΦ is aligned with vs (which

guarantees that the signal of interest goes through the data transformation), while the

other columns are drawn at random in the subspace orthogonal to vs. Processing is

done in the reduced-dimension space and the outputs are subsequently combined. The

authors provided a theoretical analysis of such technique, provided insightful results
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about its relation with shrinkage of the SCM eigenvalues, and applied it successfully

to direction of arrival estimation and covariance matrix estimation.

Follow the idea in [35, 36], we consider a random N × d matrix ΦΦΦ, where

d ≤ rank (S), ΦΦΦHΦΦΦ = Id. Note it can preserve the energy of the steering vector,(
ΦΦΦHvs

)H (
ΦΦΦHvs

)
= vHs vs. The conventional spectral estimate is vHs Svs, it is still

obtainable from the reduced-dimension snapshots and steering vector,

(
ΦΦΦHvs

)H (
ΦΦΦHSΦΦΦ

) (
ΦΦΦHvs

)
= vHs Svs

All that matters is the subspace that is spanned by the columns of ΦΦΦ . Without

loss of generality we can make the first column of ΦΦΦ equal to the steering vector,

ΦΦΦ = [vs φφφ2 · · ·φφφd] (2.12)

From the discussion in the two subsections above, we can see that choosing

an appropriate ΦΦΦ is the key to dealing with quadratic form expression (e.g., the

conventional spectral estimate is vHs Svs). This reminds me of the thoughts by Reed

et al. [32]. By substituting several appropriate random projection matrices, they

keep the quadratic form expression in the distribution of the normalized signal-to-

noise ratio to be a central complex Wishart distribution. This makes sure that the

subsequent derivation of the simplification process can be completed successfully.

2.4 Approach Two: Diagonal Loading

Diagonal loading is one form of Tikhonov regularization [34]. It is used to solve

the problem of insufficient snapshots. The approach consists of adding a small

regularization matrix, usually a scaled identity matrix, to the estimated spatial
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correlation matrix (Figure 2.11). Cox et al. [14] have showed that the diagonal loading

approach reduces the sensitivity to the model mismatch caused by the insufficient

snapshots. Gilbert and Morgan [11] show that the diagonal loading improves the

beamformers robustness when the array elements are displaced with zero-mean,

independent and identically distributed random perturbations.

The number of snapshots that can be collected in the interval might be

insufficient to accurately estimate of SCM, which leads to one type of model mismatch.

To combat the sensitivity to mismatch and/or to improve the condition number of

the SCM, a diagonally loaded SCM is introduced as:

Sδ = S + δI (2.13)

where δ is the diagonal loading factor.

Figure 2.12 shows eigenvalues histogram of DL SCM. Red zone are diagonal

loading factor δ. Figure 2.13 shows the diagonal loading factor determines the gain

into the direction of the desired user (θs = 10◦) and also the null depth in the direction

of the interference θ1 = 80◦.

2.4.1 The bounds for diagonal loading factor

In order to get an optimal diagonal loading factor, or the bounds for δ, we assume

the SCM can be rewritten as

S =



s11 s12 · · · s1N

s21
. . .

...

...
. . .

...

sN1 · · · · · · sNN


= ΣI+N + Σε = VΛsV

H + σ2
nI + Σε (2.14)
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Figure 2.8 Eigenvalues histogram of DL SCM. Red zone are diagonal loading factor.

where V = [ξξξ1 · · ·ξξξD], Λs = diag {σ2
1 · · ·σ2

D}, and Σε is the inaccuracy term of

covariance matrix of sampling data. It is a zero mean random matrix with the

standard deviation equals to std (diag (S)). Therefore, the inverse of the diagonal

loaded covariance matrix Sδ can he approximately expressed as: bounds for δ, we

assume the SCM can be rewritten as

S−1
δ = (ΣI+N + δI)−1 [I + Σε (ΣI+N + δI)−1]−1

(2.15)

As [
I + Σε (ΣI+N + δI)−1] [I−Σε (ΣI+N + δI)−1] ≈ I
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Figure 2.9 Beampattern |B (θ)|2 =
∣∣wHv (θ)

∣∣2 (in dB) of MVDR ABF for the
single-interferer example. δopt = std (diag (S)). The example uses a 50-sensor ULA
with half-wave-length spacing. N = 50, L = 25. ρINR = 40dB, σ2

s = 10, σ2
1 =

10000, σ2
n = 1. θs = 10◦, θ1 = 80◦. The red line shows location of the interference.

we have [
I + Σε (ΣI+N + δI)−1]−1 ≈ I−Σε (ΣI+N + δI)−1

Therefore,

S−1
δ = (ΣI+N + δI)−1 [I + Σε (ΣI+N + δI)−1]−1

= (ΣI+N + δI)−1 [I−Σε (ΣI+N + δI)−1]
= (ΣI+N + δI)−1

[
I− 1

δ + σ2
n

Σε

[
I−V

(
VHV +

(
δ + σ2

n

)
Λ−1
s

)−1
VH
]] (2.16)
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The value of first bracket ΣI+N + δI is close to the covariance matrix ΣI+N , thus the

diagonal loading value should be far less than the diagonal elements. the diagonal

element value of the true covariance matrix can be estimated by the average of SCM

diagonal element values:

δ � 1

N
tr (S) (2.17)

Also, the beamformer performance degradation is caused by the second term I −

(δ + σ2
n)
−1

Σε

[
I−V

(
VHV + (δ + σ2

n) Λ−1
s

)−1
VH
]

thus it is desirable to have:

√√√√ 1

N

N∑
i=1

(
sii −

∑N
n=1 snn
N

)
< δ + σ2

n (2.18)

Threfore, we have

√√√√ 1

N

N∑
i=1

(
sii −

∑N
n=1 snn
N

)
− σ2

n < δ � 1

N
tr (S) =

1

N

N∑
i=1

sii (2.19)

2.4.2 Optimization and estimation of diagonal loading factor

It can be observed that the diagonal loading value has been limited to an interval. In

this part, with the value δ increasing gradually in the interval, we try to observe the

performance of MVDR on diagonal loading beamformer with the output SINR as the

index.

The ratio with output power of the desired signals to the interference adding

noise signals is defined as the output SINR:

SINR (δ) =
σ2
s

wH (δ) ΣI+Nw (δ)
=

σ2
s

∣∣vHs S−1δ vs

∣∣2∣∣vHs S−1δ ΣI+NS−1δ vs

∣∣ (2.20)
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the ensemble output SINR is: SINRens = σ2
s

∣∣vHs Σ−1
I+Nvs

∣∣.
The performance of the estimator (2.23) is measured via estimation mean square

error (MSE). Given a steering direction, the MSE of the estimator (2.23) is viewed as

a function of the loading factor δ and represented via the bias-variance decomposition

as,

MSE (δ) = E2 [SINR (δ)− SINRens] + var (SINR (δ)) (2.21)

The optimal diagonal loading opt is defined as

δopt = arg min
δ

MSE (δ) (2.22)

In the following simulation, we employ a 16-element ULA. The distance of

elements is half of the wavelength, the direction of the desired signal is 0 degrees, and

the direction of the interference signal is 40 degrees. We select the power of desired

signal is far less than the noise and the power of interference signal is greater than

the noise. At this point, the input SNR is 5 dB and the input INR is 10 dB. From

Equation(2.22), 10 points are selected in the interval. Here we optimize the diagonal

loading factor δ by using the output SINR. Figure 2.14 shows when δ equals to the

standard deviation of the diagonal elements of S, the output SINR gets the maximum

value, and the performance gets the best.

Therefore, we choose the optimum DL factor as

δopt =

√√√√ 1

N

N∑
i=1

(
sii −

∑N
n=1 snn
N

)
(2.23)
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Figure 2.10 The relations between diagonal loading value and output SINR in
different snapshots (SNR = -5 dB, INR = 10 dB).

2.5 Approach Three: Dominant Mode Rejection (DMR)

We assume that there are D strong planewave signals (interference) that need to be

attenuated to facilitate detection of a weaker desired planewave signal. With this

assumption, the SCM can be partitioned into a dominant interference subpace and a

noise subspace; the latter includes the weaker signals and the noise. DMR assumes

that the large eigenvalues are all associated with interference to be rejected and that

the small eigenvalues are due to weak signals and noise. Sorting the eigenvalues in

descending order leads to the following expression for the eigendecomposition of the

ECM:

Σ = ΞΓΞH =
D∑
n=1

γnξnξ
H
n︸ ︷︷ ︸

large eigenvalues

+
N∑

n=D+1

γnξnξ
H
n︸ ︷︷ ︸

small eigenvalues

(2.24)
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where γn is the nth eigenvalue and ξn is the corresponding eigenvector. The

eigenvectors corresponding to the D largest eigenvalues define the dominant subspace.

The DMR ABF forms a structured approximation by using the dominant subspace

plus an orthogonal noise subspace with equal power in each noise direction, i.e.,

SDMR =
D∑
n=1

λnene
H
n︸ ︷︷ ︸

large eigenvalues

+
N∑

n=D+1

s2
wene

H
n︸ ︷︷ ︸

small eigenvalues

(2.25)

where s2
w is the estimated noise power defined as average of the remaining eigenvalues,

s2
w =

(
1

N −D

) N∑
n=D+1

λn. The advantage of using the estimated noise power when

computing SDMR is that it eliminates the small eigenvalues, which cause problems

with inverting the SCM to compute the MVDR weight vector.

Figure 2.11 Eigenvalues histogram of DMR SCM. LHS is the orignal eigenvalues
histogram while RHS is the DMR SCM eigenvalues histogram.

Figure 2.16 shows the beampattern of DMR ABF. The DMR beampattern has

a notch near the interferer location. Note that while the ensemble beampattern has

a minimum at the interferer angle, the sample beampatterns have minima at slightly
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different angles due to the mismatch in the sample statistics. Referring to Figure 2.2

we can also learn that the more the snapshots, the deeper the notch.
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Figure 2.12 Beampattern |B (θ)|2 =
∣∣wHv (θ)

∣∣2 (in dB) of DMR ABF for the
single-interferer example. The example uses a 50-sensor ULA with half-wave-length
spacing. N = 50, L = 25. ρINR = 40dB, σ2

s = 10, σ2
1 = 10000, σ2

n = 1. θs = 10◦,
θ1 = 80◦. The red line shows location of the interference.

2.6 Comparison

For the case of insufficient amount of data, all three approaches focus on the

rank deficient SCM S. Each of the three approaches has its own advantages and

disadvantages.

Dimension reduction uses a random matrix to project the original N−dim space

data set into a smaller d−dim subspace data set to make sure the SCM is invertible.

These techniques can be classified either as reduced-dimension methods (in this case ΦΦΦ
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is fixed) or rank-reducing methods where ΦΦΦ depends on the data. Through the display

of beampatterns and colormaps, we find the matrix ΦΦΦ constructed from the principal

eigenvectors of the ECM and SOI is more helpful for the subsequent simplification

steps. We will continue to refer to this technique in subsequent chapters.

The diagonal loading factor can significantly affect the achievable mean squared

error (MSE) and must be carefully chosen. Ad hoc choices can result in very

conservative performance.

DMR algorithm, applied to low SNR signal circumstance, is a typical eigenspace-

based algorithm which has small computational load and fast convergence speed.

DMR requires at least two snapshots for the single interferer example since it needs

an estimate of the dominant subspace and an estimate of the power in the noise

subspace. This is DMR’s biggest advantage.

2.7 Simulations

In our simulation, we compare the performance of different approaches through the

value of ND. We use a uniform linear array (ULA) of N = 50 sensors with half-

wavelength spacing. The histograms of G = −10 log10 (Gnotch) in dB are shown in

Figures 2.15-2.20. The more the histogram is to the right hand side, the deeper the

notch, which means the higher the accuracy of the estimation.

2.7.1 Histogram results

Figures 2.13-2.15 present probability density function overlaid on the notch depth

histogram(in dB) for the single interference case using random permutation matrix/

Normal distributed matrix/ Bernoulli distributed matrix. The results show the

constrained random transformation matrix with the first column is aligned with the

SOI have best performance.
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Figures 2.16-2.17 show the diagonal loading/DMR SCM results. DMR has

a higher speed of convergence with the increase of number of snapshots. It is

important to note that the basic idea of DMR is to estimate only the large eigenvalues

and corresponding eigenvectors of SCM, and use these eigenvectors to null the

strong interference that they represent. The advantage is that less averaging (fewer

snapshots) is required. This permits rapid convergence.
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Figure 2.13 Probability density function overlaid on the notch depth histogram(in
dB) for the single interference case using random permutation matrix. The example
uses a 50-sensor ULA with half-wave-length spacing. N = 50, L = 5/25/45, d = 2,
ρINR = 10dB, σ2

s = 10, σ2
1 = 10, σ2

n = 1. θs = 10◦, θ1 = 80◦.
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Figure 2.14 Probability density function overlaid on the notch depth histogram(in
dB) for the single interference case using a Normal distributed random matrix. The
example uses a 50-sensor ULA with half-wave-length spacing. N = 50, L = 5/25/45,
d = 2, ρINR = 10dB,σ2

s = 10, σ2
1 = 10, σ2

n = 1. θs = 10◦, θ1 = 80◦.

2.7.2 Snapshot performance for the single interferer example

This section characterizes the variability of the DMR WNG, ND and SINR for the

single-interferer example using a large set of Monte Carlo trials.

White Noise Gain Statistics Figure 2.18 and Figure 2.19 illustrates how WNG

varies with different number of snapshots L and INR for the canonical single-interferer

example. The mean ND versus INR plots for these cases are very similar to the
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Figure 2.15 Probability density function overlaid on the notch depth histogram(in
dB) for the single interference case using a Bernoulli distributed random matrix. The
example uses a 50-sensor ULA with half-wave-length spacing. N = 50, L = 5/25/45,
d = 2, ρINR = 10dB, σ2

s = 10, σ2
1 = 10, σ2

n = 1. θs = 10◦, θ1 = 80◦.

ensemble result. The WNG for small L or low INR is a function of INR or L, while

for larger L or high INR, WNG is closer to the optimal value.

Figure 2.18 and Figure 2.19 also illustrate the variability of the WNG. Note

that the WNG variability is quite small. Most of the WNG values lie within 0.15 dB

of the asymptotic optimal value. For large INRs or L, WNG is concentrated around

the asymptotic optimal value.

Notch Depth Statistics Figure 2.20 and Figure 2.21 show how ND varies with

different number of snapshots L and INRs. Each curve represents a different number
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Figure 2.16 Probability density function overlaid on the notch depth histogram(in
dB) for the single interference case using diagonal loading with the diagonal loading.
The example uses a 50-sensor ULA with half-wave-length spacing. N = 50, L =
5/25/45, ρINR = 10dB, σ2

s = 10, σ2
1 = 10, σ2

n = 1. θs = 10◦, θ1 = 80◦.

of snapshots. The symbols denote the mean ND and the error bars indicate the

spread of the distribution between the 10th and 90th percentiles. The error bars

are asymmetric around the mean, as expected from the histogramm. Both figures

illustrate there is an approximate linear relationship between ND and L and INR in

dB.

The error bars in Figure 2.20 and Figure 2.21 indicate the variability of DMR

ND around the mean. As the ND decreases, the error bars maintain approximately
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Figure 2.17 Probability density function overlaid on the notch depth histogram(in
dB) for the single interference case using DMR SCM. The example uses a 50-sensor
ULA with half-wave-length spacing. N = 50, L = 5/25/45, ρINR = 10dB, σ2

s =
10, σ2

1 = 10, σ2
n = 1. θs = 10◦, θ1 = 80◦.

constant spread for INRs above 15 dB. Since a log scale is used in these figures, this

implies that the variability decreases with increasing ND.

SINR Statistics Recall that for the single-interferer example, SINR is simply the

ratio of the SNR to the sum of the interferer and noise powers.

Figure 2.22 and Figure 2.23 show SINR and WNG have similar variability. Most

of the SINR values lie within 0.2 dB of the asymptotic optimal value. For large INRs

or L, SINR is concentrated around the asymptotic optimal value.
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Figure 2.18 Mean DMR WNG as a function of number of snapshots L for the single
interference case. The symbols denote the mean WNG and the error bars mark the
span between the 10th and 90th percentiles of the data. Results are shown for ABFs
generated using INR=0dB, 10dB and 20dB. N = 50, σ2

s = 10, σ2
1 = 1/10/100, σ2

n = 1,
θs = 10◦, θ1 = 80◦.

2.8 How to Design A Proper ΦΦΦ

From the previous sections, we can see that there is no one absolutely perfect methos

to choose a random projection matrix ΦΦΦ. We must choose a proper ΦΦΦ according to the

actual problem. In the following, we will discuss how to choose a random projection

matrix ΦΦΦ that is appropriate for the problem we are currently studying— DMR ABF.

Since our current interest is DMR ABF, and we will use several different metircs

to test their performance, therefore, the expressions of metircs are well worth to look

into.
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Figure 2.19 Mean DMR WNG as a function of INR for the single interference case.
The symbols denote the mean WNG and the error bars mark the span between the
10th and 90th percentiles of the data. Results are shown for ABFs generated using
15, 50, 150 snapshots. N = 50, σ2

s = 10, σ2
n = 1, L = 15/50/150, θs = 10◦, θ1 = 80◦.

2.8.1 DMR-SCM and the Inverse of DMR-SCM

The N ×N SCM and its eigendecomposition are defined as

S =
1

L

L∑
l=1

p (l) p (l)H =
N∑
n=1

λnene
H
n (2.26)
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Figure 2.20 Mean DMR ND as a function of number of snapshots L for the
single interference case. The symbols denote the mean ND and the error bars mark
the span between the 10th and 90th percentiles of the data. Results are shown
for ABFs generated using INR=10dB, 20dB and 30dB. N = 50, σ2

s = 10, σ2
1 =

10/100/1000, σ2
n = 1, θs = 10◦, θ1 = 80◦.

where ei and λi are the sample eigenvectors and eigenvalues of S, respectively. Thus,

the N ×N DMR-SCM is constructed as,

SDMR = λie1e
H
1 +

N∑
i=2

s2
weie

H
i (2.27)

where s2
w =

(
1

N−1

)∑N
i=2 λi is the average of the scaled lowest eigenvalues.

The spectral decomposition of the N × N sample covariance matrix can be

broken into two parts: one for the D largest eigenvalues and one for the N − D
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Figure 2.21 Mean DMR ND as a function of INR for the single interference case.
The symbols denote the mean ND and the error bars mark the span between the 10th
and 90th percentiles of the data. Results are shown for ABFs generated using 15, 50,
150 snapshots. N = 50, σ2

s = 10, σ2
n = 1, L = 15/50/150, θs = 10◦, θ1 = 80◦.

smaller eigenvalues. Thus the inverse of DMR-SCM is

S−1
DMR =

D∑
i=1

λ−1
i eie

H
i +

N∑
i=D+1

s−2
w eie

H
i =

1

s2
w

[
I−

D∑
i=1

λi − s2
w

λi
eie

H
i

]
(2.28)

where s2
w is the estimated noise power s2

w =

(
1

N −D

) N∑
n=D+1

λn.
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Figure 2.22 Mean DMR SINR as a function of number of snapshots L for the single
interference case. The symbols denote the mean SINR and the error bars mark the
span between the 10th and 90th percentiles of the data. Results are shown for ABFs
generated using INR=0dB, 10dB and 20dB. N = 50, σ2

s = 10, σ2
1 = 1/10/100, σ2

n = 1,
θs = 10◦, θ1 = 80◦.

Let ED = [e1 · · · eD] and Λ = diag

(
s2
w

λ1

, · · · , s
2
w

λD

)
, the matrix form of DMR

SCM can be written as

S−1
DMR =

(
1

s2
w

)(
I− EDEH

D + EDΛED
H
)

=

(
1

s2
w

)(
P⊥ED

+ EDΛED
H
)

(2.29)

S−2
DMR =

(
1

s2
w

)2 (
P⊥ED

+ EDΛ2ED
H
)

(2.30)
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Figure 2.23 Mean DMR SINR as a function of INR for the single interference case.
The symbols denote the mean SINR and the error bars mark the span between the
10th and 90th percentiles of the data. Results are shown for ABFs generated using
15, 50, 150 snapshots. N = 50, σ2

s = 10, σ2
n = 1, L = 15/50/150, θs = 10◦, θ1 = 80◦.

where P⊥ED
= I− EDED

H.

From the expression of the inverse matrix S−1
DMR, we find that the inverse matrix

can be expressed using the first D sampled eigenvalues and sampled eigenvectors,

plus esitmated noise power s2
w. Although the problem we face may be the case of

snapshot defient, the special feature of the DMR-SCM can make sure it is full rank,

since the DMR-SCM replaces all eigenvalues with small values of its average value

(esitmated noise power), so the DMR-SCM is always full rank. The advantage of this

is that we don’t need to look for a lower dimmention d, or an N × d matrix, we can

directly choose an N ×N matrix as random projection matrix ΦΦΦ. To do this, we can

start with a matrix of random Gaussian distribution (notice that a random Gaussian
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distribution matrix is data independent, while we need a data dependent matrix to

improve performance).

So, as the first step we can start with a matrix of random Gaussian distribution:

(1) ΦΦΦ is an unitary matrix, each column is orthogonal with unit-norm.

2.8.2 The dependence of ΦΦΦ on SOI

We consider a random N ×N matrix ΦΦΦ, where ΦΦΦHΦΦΦ = Id. Note it can preserve the

energy of the steering vector,
(
ΦΦΦHvs

)H (
ΦΦΦHvs

)
= vHs vs. The conventional spectral

estimate is vHs Svs, it is still obtainable from the reduced-dimension snapshots and

steering vector, (
ΦΦΦHvs

)H (
ΦΦΦHSΦΦΦ

) (
ΦΦΦHvs

)
= vHs Svs

All that matters is the subspace that is spanned by the columns of ΦΦΦ [30].

Without loss of generality we can make the first column of ΦΦΦ equal to the steering

vector,

ΦΦΦ = [vs φφφ2 · · ·φφφd] (2.31)

Note all the columns of ΦΦΦ are orthogonal with each other. Then we introduce a N×N

Householder unitary matrix Q, which collapses the steering vector into the first entry:

QHvs = [1 0 · · ·0]T ≡ e1 (2.32)
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where Q = IN− (e1 − vs) (e1 − vs)
H / (1− vs (1))H, vs (1) denotes the first element

of vs. Finally, ΦΦΦ s structured as follows:

ΦΦΦ = Q

 1 0Td−1

0N−1 G
(
GHG

)−1/2
 (2.33)

where the entries of the (N − 1) × (N − 1) random matrix G are i.i.d. zero-mean

complex Gaussian.

The key is to make sure the first column of the transformation matrix is

aligned with the SOI vector (which guarantees that the SOI goes through the data

transformation), while the other columns are drawn at random in the subspace

orthogonal to the SOI vector.

In Equations (2.7)-(2.9), there is a common item: vHs S−1vs. It is still obtainable

from the reduced-dimension snapshots and steering vector,

vHs S−1vs =
(
ΦΦΦHvs

)H (
ΦΦΦHS−1ΦΦΦ

) (
ΦΦΦHvs

)
= υυυHs

(
ΦΦΦHS−1ΦΦΦ

)
υυυs

where υυυs = ΦΦΦHvs. Due to |vs| = 1, the projected steering vector becomes υυυs =

[1 0 · · · 0]T . Figure 2.24 displays the data in vector υυυs = ΦΦΦHvs as an image that

uses the full range of colors in the colormap. If we don’t include SOI vs in the first

column of ΦΦΦ, then ΦΦΦ = [φφφ1 · · ·φφφd], this is actually the same as that of the Gaussian

distribution case. Figure 2.25 displays the data in vector υυυs = ΦΦΦHvs as an image that

uses the full range of colors in the colormap. The colormap shows νννs have a non-zero

structure. This makes it impossible to simplify expressions of WNG, ND or SINR. In

this dissertationon, we propose to use and to adapt this technique in the framework

of simplification.
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Figure 2.24 The colormap of the 10× 1 vector υυυs = ΦΦΦHvs with ΦΦΦ = [vs φφφ2 · · ·φφφd].
RHS is the colorbar.

Therefore, as the second step we can add the SOI into ΦΦΦ:

(1) ΦΦΦ is an unitary matrix, each column is orthogonal and norm is one.

(2) Let SOI vs be the 1st column of ΦΦΦ: ΦΦΦ = [vs φφφ2 · · ·φφφd].

2.8.3 The dependence of ΦΦΦ on ensemble eigenvectors

Let’s return the metric expressions. The DMR WNG is given by

GWNG ,
1

wH
DMRwDMR

=

∣∣vH
s S−1

DMRvs
∣∣2

vH
s S−2

DMRvs
=

∣∣vH
s ΦΦΦΦΦΦHS−1

DMRΦΦΦΦΦΦHvs
∣∣2

vH
s ΦΦΦΦΦΦHS−2

DMRΦΦΦΦΦΦHvs
(2.34)
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Figure 2.25 The colormap of the 10× 1 vector υυυs = ΦΦΦHvs with ΦΦΦ = [φφφ1 φφφ2 · · ·φφφd].
RHS is the colorbar.

The DMR ND for the ith interference is given by

G
(i)
notch ,

∣∣wH
DMRvi

∣∣2 =

∣∣vH
s S−1

DMRvi
∣∣2∣∣vH

s S−1
DMRvs

∣∣2 =

∣∣vH
s ΦΦΦΦΦΦHS−1

DMRΦΦΦΦΦΦHvi
∣∣2∣∣vH

s ΦΦΦΦΦΦHS−2
DMRΦΦΦΦΦΦHvs

∣∣2 , i = 1...D (2.35)

Substituting the DMR covariance into the expression, we have

ΦΦΦHS−1
DMRΦΦΦ =

1

s2
w

ΦΦΦH
(
P⊥ED

+ EDΛED
H
)

ΦΦΦ (2.36)

ΦΦΦHS−1
DMRΦΦΦ =

1

s2
w

ΦΦΦH
(
P⊥ED

+ EDΛ2ED
H
)

ΦΦΦ (2.37)
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They have a common term: (D + 1)× (D + 1) matrices,

∆∆∆k = ΦΦΦHEDΛkED
HΦΦΦ, k = 0, 1, 2 (2.38)

where ED = [e1 · · · eD] and Λ = diag

(
s2
w

λ1

, · · · , s
2
w

λD

)
. As the middle part contains

the sample eigenvectors, this raises the idea that we can add the ensemble eigenvectors

into the random projection matrix ΦΦΦ, so that the following quadratic form can appear:

ξξξHi
∑D

k=1 eke
H
k ξξξj. These quadratic form values can be estimated from RMT literature.

Adaptive Dimensionality Reduction and Subspace Formulation Technique

In summary, combining the above two techniques, we propose the following adaptive

dimensionality reduction and subspace formulation technique.

The eigen-decomposition of ECM is

ΣI+N =
D∑
i=1

σ2
i viv

H
i + σ2

nI = ΞΞΞΓΓΓΞΞΞH (2.39)

where ΓΓΓ = diag (γ1, . . . , γD, σ
2
n, . . . , σ

2
n) is a diagonal matrix of eigenvalues with

descend order such that γ1 ≥ · · · γD > σ2
n. The corresponding eigenvectors are

ΞΞΞ = [ξξξ1, · · · , ξξξN ].

We will construct an unitary tranformation matrix ΦΦΦ. The principle is makes

sure the first column of ΦΦΦ is aligned with the SOI, and other D columns equal to the

first D ensemble eigenvectors [ξξξ1, · · · , ξξξD].

Let the N × N unitary tranformation matrix ΦΦΦ be constructed as a complete

and orthonormal basis:

ΦΦΦ = [φφφs ξξξ1 · · ·ξξξD ΦΦΦ⊥] (2.40)
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where φφφs is the array manifold for the desired look direction,

φφφs =
vs −

∑D
i=1 ξξξiξξξ

H
i vs∣∣∣vs −∑D

i=1 ξξξiξξξ
H
i vs

∣∣∣ (2.41)

The advantage of this technique is that it contains all the information in the data

sets. Furthermore, we will illustrate this approach in performance analysis of DMR

for multiple interferers case in Chapter 5.

So, as the third step we can add the ensemble eigenvectors into ΦΦΦ. Note that

in order to comply with the first step, we have to do some orthogonalization.

(1) ΦΦΦ is an unitary matrix, each column is orthogonal and norm is one.

(2) Let the ensemble eigenvectors [ξξξ1 · · ·ξξξD] to be the 2nd to (D+ 1)st columns of ΦΦΦ.

(3) Let φφφs =
vs −

∑D
i=1 ξξξiξξξ

H
i vs∣∣∣vs −∑D

i=1 ξξξiξξξ
H
i vs

∣∣∣ the array manifold for the desired look direction to

be the 1st column of ΦΦΦ.

(4) Make sure the remaining columns are orthogonal to each other.

Therefore, the N × N unitary tranformation matrix ΦΦΦ is constructed as a

complete and orthonormal basis:

ΦΦΦ = [φφφs ξξξ1 · · ·ξξξD ΦΦΦ⊥] (2.42)

where φφφs is the array manifold for the desired look direction,

φφφs =
vs −

∑D
i=1 ξξξiξξξ

H
i vs∣∣∣vs −∑D

i=1 ξξξiξξξ
H
i vs

∣∣∣ (2.43)
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2.9 Summary and Conclusion

In this chapter, we investigate the way to deal with the estimation of a covariance

matrix from an insufficient amount of data. We present three approaches: dimension

reduction, DL, and DMR. Among the dimension reduction methods, we find the

adaptive dimensionality reduction and subspace formulation technique can lead to

a significant improvement for our further simplification steps. Furthermore, we

use simulations of histograms of WND, ND and SINR to show the underlying

performance. The results show DMR have a good performance compare with

other approaches. Finally, histogram results are explained and connected to system

parameters such as number of snapshots L, INR and interference’s spatial distribution

(DoA). The results show that there are some relationships between these metics and

the system parameters. In the next chapters, we will try to find the mathematical

analytical expression for these relation functions.
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CHAPTER 3

DISTRIBUTION OF SINR LOSS OF THE DMR ABF

In this chapter, a closed-form derivation of the PDF for the SINR loss ratio of the

DMR ABF is proposed. Maximum likelihood estimation (MLE) is used to estimate

the parameters of distribution function.

3.1 Background

The narrowband planewave beamforming assumes that the lth snapshot of data

measured by an ULA consist of a SOI component, a single interference, and noise,

which can be represented as

p (l) = bs (l) vs + b1 (l) v1 + n (l) (3.1)

where bs is the random amplitude of the signal vector vs with the power σ2
s , b1 is the

random amplitude of the planewave interference v1 with the power σ2
1, n is a vector

of complex noise samples with the power σ2
n.

For the N element sensor array oriented along l-axis, the received signal vector

and the complex exponential vector for ith planewave interference can be represented

as

vs = v (θs) =
1√
N


ej

2π
λ

cos(θs)l1

...

ej
2π
λ

cos(θs)lN

 ,vi = v (θi) =
1√
N


ej

2π
λ

cos(θi)l1

...

ej
2π
λ

cos(θi)lN



where λ is the wavelength, θs is the direction of the SOI, θi is the direction of the

i-th interferer, and li is the location of the ith sensor. Without loss of generality, this
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dissertation assumes that the amplitudes bs and bi are zero-mean complex circular

random variables and that the complex circular random noise is zero mean and

spatially white. The ECM under H0 is represented as

ΣI+N = σ2
1v1v

H
1 + σ2

nIN .

Let us define the eigendecomposition of the SCM as

S =
1

L

L∑
l=1

p (l) pH (l) =
N∑
n=1

λnene
H
n (3.2)

where ei and λi are the sample eigenvectors and eigenvalues of S, respectively. Thus,

the N ×N DMR-SCM is constructed as,

SDMR = λie1e
H
1 +

N∑
i=2

s2
weie

H
i (3.3)

where s2
w =

(
1

N−1

)∑N
i=2 λi is the average of the scaled lowest eigenvalues.

The DMR ABF weight vector has a similar form as the adaptive MVDR weight

vector, expect the SCM being replaced by SDMR:

wDMR =
(
vH
s S−1

DMRvs
)−1

S−1
DMRvs. (3.4)

The SINR of a DMR ABF is defined as

SINR ,
σ2
s

∣∣wH
DMRvs

∣∣2
wH

DMRΣI+NwDMR

(3.5)
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The metric of interest is the SINR loss, which is defined as the ratio of the SINR

obtained using sample statistics to the SINR obtained with ensemble statistics. That

is,

ρDMR ,
SINR

SINR(wens)
=

σ2
s

SINR(wens)

∣∣vH
s S−1

DMRvs
∣∣2

vH
s S−1

DMRΣI+NS−1
DMRvs

(3.6)

3.2 SINR Loss Using Sample Covariance Matrix

To derive the SINR loss, we focus on an illustrative example of a single planewave

interference present in spatially white noise. The following theorem which stated by

Capon and Goodman [7] is used in the process.

Theorem: If N × N matrix A is complex wishart distributed, i.e. A ∼

CW (L,N ; M), with parameters L,N and covariance matrix M, and B is a

nonsingular N ×N matrix, then BABH is CW
(
L,N ; CMCH

)
.

For a single interference under signal absent case, the expression for the ECM

simplifies to ΣI+N = σ2
1v1v

H
1 + σ2

nIN , which means S ∼ CW (L,N ; ΣI+N). As the

ensemble result is SINR(wens) = σ2
sv

H
s Σ−1

I+Nvs, we have the p.d.f

ρSCM =
σ2
s

SINR(wens)

(
vH
s S−1

vH
s S−1vs

ΣI+N
S−1vs

vH
s S−1vs

)−1

=

∣∣vH
s S−1vs

∣∣2(
vH
s Σ−1

I+Nvs
)

(vH
s S−1ΣI+NS−1vs)

.

It has been found [7] ρSCM is likewise a beta function distribution, so

fρSCM (ρ) =
L!

[(N − 2)! (L+ 1−N)!]
· (1− ρ)N−2 (ρ)L+1−N
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3.3 SINR Loss Using Dominant Mode Rejection

The expression for the ECM is ΣI+N = σ2
1v1v

H
1 + σ2

nIN . The maximum eigenvalue

of the covariance matrix is λ1 = σ2
1 + σ2

n, and the rest of the eigenvalues are λn6=1 =

σ2
n. The eigenvector associated with the maximum eigenvalue is v1. We then have

SDMR = λ1e1e
H
1 +

∑N
n=2 s

2
wene

H
n and

S−1
DMR = λ−1

1 e1e
H
1 +

N∑
n=2

(sw)−1 ene
H
n

=
(
s2
w

)−1
[
IN −

(
1− s2

w

λ1

)
e1e

H
1

] (3.7)

(3.6) can be written as,

σ2
s

ρDMRSINR(wens)
=

vH
s S−1

DMRΣI+NS−1
DMRvs∣∣vH

s S−1
DMRvs

∣∣2 (3.8)

We decompose the right-hand side into,

vH
s S−1

DMRΣI+NS−1
DMRvs∣∣vH

s S−1
DMRvs

∣∣2
=

vH
s S−1

DMR

(
σ2

1v1v
H
1 + σ2

nIN
)

S−1
DMRvs∣∣vH

s S−1
DMRvs

∣∣2
= σ2

1

∣∣vH
s S−1

DMRv1

∣∣2∣∣vH
s S−1

DMRvs
∣∣2 + σ2

n

vH
s S−1

DMRS−1
DMRvs∣∣vH

s S−1
DMRvs

∣∣2
= σ2

1 ·Gnotch + σ2
n ·

1

GWNG

(3.9)

Here Gnotch =
∣∣vH

s S−1
DMRv1

∣∣2 /∣∣vH
s S−1

DMRvs
∣∣2 =

∣∣wH
DMRv1

∣∣2 is the ND, which can

be represented as the absolute value squared of the beampattern in the direction

of the interference; GWNG =
∣∣vH

s S−1
DMRvs

∣∣2 /vH
s S−1

DMRS−1
DMRvs = 1/wH

DMRwDMR is
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the WNG, which can be represented as the improvement in SNR provided by the

beamformer when the noise is spatially white.

3.3.1 Simplification under high INR

Since the emsemble result of s2
w/λ1 is σ2

n/ (σ2
1 + σ2

n) = 1/ (ρINR + 1), it is a small

number under high INR. Equation (3.1) can be rewritten as,

S−1
DMR ≈

(
s2
w

)−1 [
IN − e1e

H
1

]
=
(
s2
w

)−1
P⊥e1 (3.10)

where P⊥e1 = IN − e1e
H
1 is the projection matrix.

In [38], white noise gain statistics indicate that it will have very low variability

under high INR, and concentrated to the value of ‖vs‖2, that is GWNG ≈ 1. Then,

vH
s S−1

DMRS−1
DMRvs∣∣vH

s S−1
DMRvs

∣∣2 =
1

vH
s P⊥e1vs

= 1

so
∣∣vH

s S−1
DMRvs

∣∣ = 1.

3.3.2 Approximating principal eigenvector

We can use the power iteration method to estimate the principal eigenvector of the

sample covariance matrix. Make an initial guess for the eigenvector, e0 = [1 · · · 1]T ,

and normalize it by assigning e0 =
e0

‖e0‖
. Compute ê1 = S · e0, and then normalize

ê1. Repeat this process until satisfying a convergence criterion.

e1 =
Sv1

‖Sv1‖
(3.11)
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For the low rank case, which means limited number of snapshots, it will have enough

accuracy to estimate the principal eigenvector.

3.3.3 Whitening the sample covariance matrix

Let U = [u1,u2, ...,uN ] be an unitary matrix [30], such that ui = Uδδδi, where δδδi =

[0, · · · , 1, · · · , 0]T . Set u1 = Σ
1/2
I+Nv1, us = Σ

1/2
I+Nvs =

∑N
i=1 αiui, γ = ‖Sv1‖.

Replacing the DMR covariance matrix with the projection matrix P⊥e1 :

vH
s S−1

DMRv1 = vH
s P⊥e1v1 = vH

s v1 −
1

γ2
vH
s Sv1v

H
1 Sv1

= uH
s Σ−1

I+Nu1 −
1

γ2
uH
s Σ

−1/2
I+NSΣ

−1/2
I+Nu1u

H
1 Σ
−1/2
I+NSΣ

−1/2
I+Nu1

= uH
s Σ−1

I+Nu1 −
1

γ2
uH
s S0u1u

H
1 S0u1

= uH
s Σ−1

I+Nu1 −
1

γ2

N∑
i=1

αiu
H
i S0u1u

H
1 S0u1

where S0 = Σ
−1/2
I+NSΣ

−1/2
I+N follows a CW (L,N ; IN) wishart distribution.

Let us define k = uH
s Σ−1

I+Nu1, ci1 = uH
i S0u1 = δδδHi UHS0Uδδδ1 = δδδHi Cδδδ1, where

C = UHS0U still follows a CW (L,N ; IN) complex wishart distribution, we have

∣∣vH
s S−1

DMRv1

∣∣2 =

∣∣∣∣∣
N∑
i=1

αi
γ2
c11ci1 − k

∣∣∣∣∣
2

. (3.12)

Here ci1 is the element of ith row, first column of C. As the off-diagnol elements

c21, · · · , cN1 have the same distribution, we can rewrite (3.12) as

∣∣vH
s S−1

DMRv1

∣∣2 =
∣∣β1c

2
11 + β2c11c21 − k

∣∣2 (3.13)
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where β1 = α1/γ
2, β2 =

∑N
i=2 αi/γ

2.

3.3.4 Finding the distribution function

Let’s parition matrix C = UHS0U into:

C =

c11 c12

c21 C22



Since the off-diagonal element c21, ..., c2N have the same distribution, we have

∣∣vH
s S−1

DMRv1

∣∣2 =
1

N − 1

∣∣(β1 · 1 + β2c
−1
11 c21

)
c2

11 − k · 1
∣∣2 (3.14)

The p.d.f of e21 = c−1
11 c21 is

f (e12) =
Γ (L+ 1)

Γ (L−N + 2) Γ (N − 1)

1

|1 + eH12e12|
L+1

. (3.15)

An outline of the derivation of (3.15) is included in the Appendix.

c11 follows a χ2
L distribution, so the p.d.f of y = (c11)2 is

fY (y) =
1

2
L
2

+1Γ(L
2
))
y
L
4
−1e−

√
y

2 (3.16)

Since the distribution of e21 will be a decreasing power law distribution of

the norm and under low rank case, y is approximated to a decreasing power law

distribution, it is reasonable to assume the norm of x =
(
β1 · 1 + β2c

−1
11 c21

)
c2

11−k ·1,
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which is Gnotch = xHx/ (N − 1), will have a distribution of

fGnotch (g) =
L ·K

(1 +K · g)L+1
. (3.17)

Note
∫∞

0
fGnotch (g) dg = 1. In the next, we will show the maximum likelihood (ML)

estimates of the parameter K.

3.3.5 Finding the parameter K

Figure 3.1 shows the ML estimates of the parameter K. The plots show that for the

number of snapshots L ranges from 5 to 45, the parameter K is approximately equal

the INR ρINR. Thus, the approximated p.d.f. of notch depth is

fGnotch (g) =
L · ρINR

(1 + ρINR · g)L+1
(3.18)

The histogram in Figure 3.4 shows that the beta-prime distribution fits the simulated

notch depth data well.

Figures 3.2-3.3 display notch depth GND as a function of number of snapshots

L and ρINR. The symbols denote the mean ND and the error bars indicate the spread

of the distribution between the 10th and 90th percentiles. Note here the error bars

are asymmetric around the mean, as the notch depth distribution is asymmetric. The

mean notch depth on a log-log scale has a predictable slope as a function of INR and

snapshots. The log-linear relationship in Figure 3.2 and Figure 3.3 give us inspiration.

In Chapter 5, we will find the the analytical results of the sample means of ND.
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Figure 3.1 ML estimates of the parameters of the beta distribution for simulated
ND data. The environment consists of one interferer located near the peak sidelobe
of the conventional beamformer(CBF) and spatially white noise.

3.3.6 The distribution function of SINR loss

Combining with previous results, we have

1

ρDMRSINR(wens)
=
ρINR
ρSNR

·Gnotch +
1

ρSNR
· 1

GWNG

where ρSNR = σ2
s/σ

2
n.
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Figure 3.2 DMR notch depth gND as a function of number of snapshots L. The
example uses a 50-sensor ULA with half-wave-length spacing. Here N = 50, ρINR =
20dB, σ2

s = 10, σ2
1 = 100, σ2

n = 1, θs = 10◦, θ1 = 80◦. Results are shown for DMR
ABFs generated using 1000 trials for each L. The solid line denotes the mean and
the error bars mark the span between the 10th and 90th percentiles of the data.

Using the approximations for SINR(wens) and gWNG discussed in [38], we have

SINR(wens) ≈ N · ρSNR. Finally the p.d.f. of ρDMR is

fρDMR
(ρ) = L · ρL−1, 0 ≤ ρ ≤ 1 (3.19)

Figure 3.5 shows the beta distribution with parameters a = L and b = 1 is an

excellent fit for the SINR loss of the DMR ABF in the case of a single interference.
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Figure 3.3 DMR notch depth gND as a function of INR ρINR. The example uses a
50-sensor ULA with half-wave-length spacing. Here N = 50, L = 25, σ2

s = 10, σ2
n = 1,

θs = 10◦, θ1 = 80◦. Results are shown for DMR ABFs generated using 1000 trials for
each INR value. The solid line denotes the mean and the error bars mark the span
between the 10th and 90th percentiles of the data.

3.4 Summary and Conclusion

We have shown that the distribution of SINR loss ratio of the DMR beamformer

for single interference can be used a beta-distributed function to express it [16].

Numerical simulations support the beta-distributed function has a good performance.

The results presented suggest several possible further research directions, such as

multiple interference and signal present case, which will be more realistic.
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Figure 3.4 Probability density function overlaid on the notch depth histogram for
the single interference case. The example uses a 50-sensor ULA with half-wave-length
spacing. Here N = 50, L = 2, ρINR = 15dB, σ2

s = 10, σ2
1 = 32, σ2

n = 1, θs = 10◦,
θ1 = 80◦.
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Figure 3.5 Probability density function overlaid on the SINR loss histogram for the
single interference case. The example uses a 50-sensor ULA with half-wave-length
spacing. Here N = 20, L = 10, ρINR = 10dB, σ2

s = 10, σ2
1 = 10, σ2

n = 1, θs = 10◦,
θ1 = 80◦.
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CHAPTER 4

DISTRIBUTION OF DMR NOTCH DEPTH FOR A SINGLE

INTERFERENCE CASE

In this Chapter, a closed-form derivation of the PDF for the ND of the DMR ABF

is proposed. It was conjectured that the ND is a beta distribution [40]. Based

on Chapter 3’s result, another analytical derivation combined with simulations is

presented.

4.1 Background

The narrowband planewave beamforming assumes that the lth data measured by an

array consist of SOI plus a single planewave interference and noise, which can be

represented as

p (l) = bs (l) vs + b1 (l) v1 + n (l) (4.1)

where bs is the amplitude of the signal vector vs, b1 is the amplitude of the planewave

interference v1, n is a vector of complex noise samples.

For the N element sensor array oriented along z-axis, the normalized modes for

signal and planewave interference can be represented as

vs =
1√
N


ej

2π
λ
cos(θs)z1

...

ej
2π
λ
cos(θs)zN

 ,v1 =
1√
N


ej

2π
λ
cos(θ1)z1

...

ej
2π
λ
cos(θ1)zN



where λ is the wavelength, θ1 is the plavewave angle, and zi is the location of the

ith sensor. Without loss of generality, this paper assumes that the amplitudes bs and
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b1 are zero-mean complex circular random variables and that the complex circular

random noise is zero mean and spatially white. Assuming the planewave interference

are independent, the ECM under signal absent case is represented as

ΣI+N = σ2
1v1v

H
1 + σ2

nIN

where σ2
1 is the interference power, and the white noise power is σ2

n.

The N ×N SCM and its eigendecomposition are defined as

S =
1

L

L∑
l=1

p (l) pH (l) =
N∑
n=1

λnene
H
n (4.2)

where ei and λi are the sample eigenvectors and eigenvalues of S, respectively. Thus,

the N ×N DMR-SCM is constructed as,

SDMR = λie1e
H
1 +

N∑
i=2

s2
weie

H
i (4.3)

where s2
w =

(
L
L−1

) (
1

N−1

)∑N
i=2 λi is the average of the scaled lowest eigenvalues.

The DMR ABF weight vector has the same form as the adaptive MVDR weight

vector, with SCM replaced by SDMR:

wDMR =
(
vH
s S−1

DMRvs
)−1

S−1
DMRvs. (4.4)
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The ND is defined as the amplitude square of the beampattern in the direction

of an interference. That is, in the case of interference v1,

Gnotch ,
∣∣wH

DMRv1

∣∣2 =

∣∣vH
s S−1

DMRv1

∣∣2∣∣vH
s S−1

DMRvs
∣∣2 . (4.5)

4.2 Derivation of Distribution for the ND of the DMR ABF

4.2.1 Simplification of S−1
DMR

The DMR covariance matrix depends on the eigendecomposition of the SCM. In

[1], the relative influence of the sample eigenvalues and eigenvectors on ND had

been investigated. Two alternative DMR implementations were proposed: the

first alternative beamformer used ensemble eigenvectors and sample eigenvalues to

generate a structured covariance matrix, while the second used ensemble eigenvalues

and sample eigenvectors. The result showed that the sample eigenvector alternative

beamformer was indistinguishable from the standard DMR, while the result of sample

eigenvalue alternative beamformer was centered on the ensemble ND. Therefore the

sample eigenvectors determined the ND of the DMR ABF.

Combined with sample eigenvectors and ensemble eigenvalues, the DMR matrix

SDMR at a high level of INR is

S−1
DMR ≈

(
s2
w

)−1 [
IN − e1e

H
1

]
=
(
s2
w

)−1
P⊥e1 (4.6)

where P⊥e1 = IN − e1e
H
1 , e1 is the sample eigenvector corresponding to the largest

eigenvalue. Then, we have,

Gnotch =

∣∣vH
s S−1

DMRv1

∣∣2∣∣vH
s S−1

DMRvs
∣∣2 ≈

∣∣vH
s P⊥e1v1

∣∣2∣∣vH
s P⊥e1vs

∣∣2 . (4.7)
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4.2.2 Unitary transformation to simplify Gnotch expression

As vs is a unit vector (vH
s vs = 1), we can design a unitary transformation matrix

Φ = [φφφ1, · · · ,φφφN ] such that φφφ1 = Φδδδ1 = vs, where δδδ1 = [1, 0, · · · , 0]T . Define

T = ΦΦΦHvsv
H
s ΦΦΦ = δδδ1δδδ

H
1 , and Q = ΦΦΦHP⊥e1ΦΦΦ = (qij) ∈ CN×N . Then the scalar in the

denominator of (4.3) becomes

vH
s P⊥e1vs = tr

(
vH
s P⊥e1vs

)
= tr

(
vH
s ΦΦΦΦΦΦHP⊥e1ΦΦΦΦΦΦHvs

)
= tr

(
ΦΦΦHvsv

H
s ΦΦΦ ·ΦΦΦHP⊥e1ΦΦΦ

)
= tr (TQ) = q11.

Note also there exists a unitary transformation matrix M = (mij) ∈ CN×N such that

ΦΦΦMΦΦΦHvs = v1. As Mδδδ1 = ΦΦΦHv1, the elements of the first column are mi1 = φφφH
i v1,

(i = 1 · · ·N). Then the scalar in the numerator of (4.3) becomes

vH
s P⊥e1v1 = tr

(
vH
s ΦΦΦΦΦΦHP⊥e1ΦΦΦMΦΦΦHvs

)
= tr

(
ΦΦΦHvsv

H
s ΦΦΦ ·ΦΦΦHP⊥e1ΦΦΦ ·M

)
= tr (TQM)

=
N∑
i=1

q1imi1 =
N∑
i=1

(
q1iφφφ

H
i v1

)
.

To illustrate how to construct the orthogonal columns of the unitary transformation

matrix ΦΦΦ, we choose the first column φφφ1 as SOI vector vs. Then, u2 is chosen from

the subspace spanned by [vs,v1] and it is orthogonal to u1:

φφφ2 = P⊥φφφ1v1/
∥∥P⊥φφφ1v1

∥∥ , P⊥φφφ = IN − φφφ1

(
φφφH

1 φφφ1

)−1
φφφH

1 .

The remaining column vectors u3 · · ·uN are chosen orthonormal to the subspace

spanned by [φφφ1,φφφ2] e.g. , via use of the Gram-Schmidt method. So φφφH
2 v1 = α =
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√
1− |vH

s v1|2, and φφφH
i v1 = 0 (i = 3 · · ·N). Consequently

N∑
i=1

(
q1iφφφ

H
i v1

)
= q11m11 +

q12. Then,

Gnotch =

∣∣vH
s P⊥e1v1

∣∣2∣∣vH
s P⊥e1vs

∣∣2 =

∣∣∣∣m11 + α · q12

q11

∣∣∣∣2 (4.8)

where m11 = vH
s v1, q11 = φφφH1 P⊥e1φφφ1 = 1− φφφH1 e1e

H
1 φφφ1, q12 = φφφH1 P⊥e1φφφ2 = −φφφH1 e1e

H
1 φφφ2,

and α =
√

1− |vH
s v1|2.

4.2.3 Perturbation analysis on Gnotch

The random matrix theory predicts the sample eigenvectors have a phase transition

[3,7,29]. The principal sample eigenvector e1 of SCM is the estimate of the ensemble

eigenvector ξξξ1 of ECM ΣI+N when the INR is above a threshold level, that is, e1 is

regard as lying on a cone around ξξξ1. As INR and/or L/N increases, the radius of the

cone decreases.

Note
∑N

i=1φφφ
H
i e1e

H
1 φφφi = 1, and span (φφφ1,φφφ2) = span (vs,v1). Therefore

eH
1

(
φφφ1φφφ

H
1 + φφφ2φφφ

H
2

)
e1 ≥ eH

1 v1v
H
1 e1 = cos2 (v1, e1)

Since our assumption is at a high level of INR, N · ρINR is above the threshold√
N/L, then e1 is a biased esimate of ξξξ1 [1]. The prediction of the limiting value

of the generalised cosine between the ensemble eigenvector and sample eigenvector

is asymptotic to 1 . So
∑2

i=1φφφ
H
i e1e

H
1 φφφi

a.s.→ 1, and consequently, the complex ratio

q12/q11 can be repesented as

q12

q11

=
φφφH1 e1e

H
1 φφφ2

φφφH1 e1eH
1 φφφ1 − 1

≈ −φ
φφH1 e1e

H
1 φφφ2

φφφH2 e1eH
1 φφφ2

= −φ
φφH1 e1

φφφH2 e1

. (4.9)
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Now, let’s focus on finding the PDF of Z =
X

Y
=
φφφH

1 e1

φφφH
2 e1

. Note σ2
x = φφφH

1 Σφφφ1,

σ2
y = φφφH

2 Σφφφ2, and the correlation coefficient of X and Y is ρ =
φφφH

1 Σφφφ2√
φφφH

1 Σφφφ1

√
φφφH

2 Σφφφ2

.

From [7], the sample eigenvector e1 is asymptotically normally distributed as: e1 ∼

CN (v1,Σ), with Σ ≈ 1

L

N∑
k=2

γ1γk

(γ1 − γk)2ξξξkξξξ
H
k , γi (i = 1, 2 · · ·N) and ξξξi (i = 1, 2 · · ·N)

are eigenvalues and eigenvectorsof ECM ΣI+N .

Next, we will derive the PDF of ND, that is

Gnotch =

∣∣∣∣m11 + α · q12

q11

∣∣∣∣2 =

∣∣∣∣m11 − α ·
X

Y

∣∣∣∣2 = |m11 − α · Z|2 = |W |2 . (4.10)

4.2.4 PDF of Gnotch

The ratio of complex Gaussian random variables appears in many different appli-

cations such as wireless communication systems, optics, and medical imaging. The

real-valued Gaussian ratio distribution has been studied, and expressions in the

form of Cauchy-Lorentz distribution have been derived. In [26], Nadimi et al.

derived the joint (amplitude and phase) distribution of the ratio of two independent

non-zero-mean complex Gaussian random variables with polar representations. In

[27], Yan and Ren studied the PDFs of multivariate ratios of proper complex Gaussian

random variables. We can combine their results and get the PDF of the ratio of two

proper complex Gaussian random variables.

Theorem: Ratio of two non-zero mean correlated proper complex Gaussian

random variables. If X and Y are two correlated proper complex Gaussian random

variables having joint density

X
Y

 ∼ CN

µx
µy

 ,
 σ2

x ρxyσxσy

ρ∗xyσxσy σ2
y


 ,
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and the correlation coefficient ρ = rρe
jθρ , the joint probability distribution of the

amplitude and the phase of ratio Z = X/Y presented by the polar distribution is:

fRz ,Θz (rz, θz) =
rz
(
1− r2

ρ

)
σ2
xσ

2
y

π
[
σ2
yr

2
z − 2rρσxσy cos (θz + θρ) rz + σ2

x

]2
× e[−µ∗yσ2

xµy−µ∗xρ∗σxσyµy−µ∗yρσxσyµx+µ∗xσ
2
yµx]/[(1−r2ρ)σ2

xσ
2
y]

×1F1

(
2,1;

[(
µ∗yσ

2
x − µ∗xρ∗σxσy

)
+
(
µ∗xσ

2
y − µ∗yρσxσy

)
rze

jθz
]2(

1−r2
ρ

)
σ2
xσ

2
y

[
σ2
yr

2
z − 2rρσxσy cos (θz + θρ) rz + σ2

x

])
(4.11)

The steps to find the PDF of ND are:

(1) fZr,Zi (zr, zi) =
fRz ,Θz (rz, θz)∣∣∣ ∂(zr,zi)

∂(rz ,θz)

∣∣∣
∣∣∣∣∣∣
θz=arctan(zi/zr)

rz=
√

z2r+z
2
i

(2) fWr,Wi
(wr, wi) =

fZr,Zi (zr, zi)∣∣∣∂(wr,wi)
∂(zr,zi)

∣∣∣
∣∣∣∣∣∣
zr=(mr−wr)/α
zi=(mi−wi)/α

(3) fG,Θ (g, θ) =
fWr,Wi

(wr, wi)∣∣∣ ∂(g,θ)
∂(wr,wi)

∣∣∣
∣∣∣∣∣∣
wr=

√
g cos θ

wi=
√
g cos θ

(4) fGnotch (g) =

∫ 2π

0

fG,Θ (g, θ) dθ
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Finally, we have

fGnotch(g) =

∫ 2π

0

(
1− r2

ρ

)
σ2
xσ

2
y

2πα2
[
σ2
yR

2
g−2rρσxσy cos (Φg + θρ)Rg + σ2

x

]2
× e[−µ∗yσ2

xµy−µ∗xρ∗σxσyµy−µ∗yρσxσyµx+µ∗xσ
2
yµx]/[(1−r2ρ)σ2

xσ
2
y]

×1F1

(
2,1;

[(
µ∗yσ

2
x−µ∗xρ∗σxσy

)
+
(
µ∗xσ

2
y−µ∗yρσxσy

)
Rge

jΦg
]2(

1−r2
ρ

)
σ2
xσ

2
y

[
σ2
yR

2
g−2rρσxσy cos (Φg+θρ)Rg + σ2

x

])dθ
(4.12)

where Rg = Rg (θ) =

√
(mr −

√
g cos θ)2 + (mi −

√
gsinθ)2/α, Φg = Φg (θ) =

arctan
mi −

√
gsinθ

mr −
√
g cos θ

, mr = <
(
vH
s v1

)
, mi = =

(
vH
s v1

)
, and α =

√
1− |vH

s v1|2. Here

1F1 (a, b; z) is the confluent hypergeometric functions of the first kind 1F1(a; b; z) =

1+
a

b
z+

a(a+ 1)

b(b+ 1)

z2

2!
+. . . =

∞∑
k=0

(a)k
(b)k

zk

k!
where (a)k and (b)k are Pochhammer symbols.

.

4.2.5 Special case

Note when the angle difference between the SOI and the interference direction

approximates to 90◦, the correlation coefficient ρ ≈ 0 and the inner product vH
s v1 ≈ 0,

become negligible. Then the parameters in (10) can be simplified into: µx ≈ 0, µy ≈ 1,

and ρ = rρe
jθρ ≈ 0.

To simplify the hypergeometric function, a simpler and more manageable

expression for the distribution is proposed by Nadarajahet and Kwong [42]. The

confluent hypergeometric function of the first kind can be represented as 1F1 (2, 1; z) =

(z + 1) ez. In such case, (10) can be represented as:

fGnotch(g)=
σ2
x/σ

2
y(

g+σ2
x/σ

2
y

)2
(

1

σ2
y

(
σ2
x/σ

2
y

g + σ2
x/σ

2
y

)
+1

)
exp

(
−g/σ2

y

g + σ2
x/σ

2
y

)
. (4.13)
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For a single interference case, the ECM is ΣI+N = σ2
1v1v

H
1 + σ2

nIN , where σ2
1

is the power in the interference source, and σ2
n is the white noise power. In such

case, the maximum eigenvalue is γ1 = σ2
1 + σ2

n, and the rest of the eigenvalues are

γn6=1 = σ2
n. The eigenvector associated with the γ1 is ξξξ1 = v1. The INR is defined as

ρINR = σ2
1/σ

2
n. With the assumption of high level INR, γ1 � γn 6=1 and σ2

1 � σ2
n.

1

σ2
x

=
1

φφφH
1 Σφφφ1

=
L

φφφH
1

(∑N
k=2

λ1λk
(λ1−λk)2

ξξξkξξξHk

)
φφφ1

≈ L
γ1σ2

n

(γ1−σ2
n)2
φφφH

1 (IN − ξξξ1ξξξH1 )φφφ1

≈ (γ1 − σ2
n)L

σ2
n

= ρINR · L
(4.14)

Note σ2
x, σ

2
y � 1, g � σ2

x/σ
2
y and 1/σ2

x = 1/φφφH
1 Σφφφ1 ≈ ρINR ·L, therefore we can

simplify (11) into:

fGnotch(g) =
1

σ2
x

exp

(
− g

σ2
x

)
≈ ρINR · L · e−ρINR·L·g. (4.15)

4.2.6 Comparison with previous study

The distribution of Gnotch in [38, 39] is

fGnotch (g) =
ρINR · L

(1 + ρINR · g)L+1
, (4.16)
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with the mean EGnotch (g) = 1/(ρINR · L) and variance V arGnotch (g) = 1/ (ρINR · L)2.

Note (6.12) is consistent with Cox’s conjecture [33] that the mean ND in dB goes like

−10 log10 (ρINR · L) over a wide range.

There is a connection between our result (4.11) and the previous result (4.12):

lim
g→0

ρINR ·L
(1+ρINR ·g)L+1

= ρINR ·L·lim
g→0

(1+ρINR ·g)
−(L+1)· ρINR·g

ρINR·g

= ρINR · L · e−(L+1)ρINR·g ≈ ρINR · L · e−ρINR·L·g.

(4.17)

Therefore it proves that ND is exponentially-distributed under reasonable assumptions.
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Figure 4.1 Probability density function overlaid on the notch depth histogram for
the single interference case. The example uses a 50-sensor ULA with half-wave-length
spacing. Here N = 50, L = 25, ρINR = 15dB, σ2

s = 10, σ2
1 = 32, σ2

n = 1, θs = 10◦,
θ1 = 80◦.

72



Figure 4.2 Probability density function overlaid on the notch depth histogram(in
dB) for the single interference case. The example uses a 50-sensor ULA with half-
wave-length spacing. Here N = 50, L = 25, ρINR = 15dB, σ2

s = 10, σ2
1 = 32, σ2

n = 1,
θs = 10◦, θ1 = 80◦. LHS histogram uses L = N/2 = 25 snapshots, while the RHS
uses L = 20N = 1000 snapshots.

4.3 Numerical Results

In our simulation, we use a ULA of 50 sensors with half-wavelength spacing. Figure

4.1 shows that the distribution function of Gnotch fits the simulated ND data well

for the single interference case. The histograms of G = −10 log10 (Gnotch) in dB are

shown in Figure 4.2 to compare the performance of our model accuracy. Inspired by

the snapshot analysis of adaptive MVDR beamformer in [41], we also show the PDF

and ND histogram with varying L and fixed N . The result compares the NDs of the

DMR ABFs with L = 0.5N = 25 and L = 20N = 1000 snapshots. Note that the ND

histograms are unimodal and asymmetric. The tail on the RHS (lower ND values) is
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longer than the tail on the LHS (higher ND values). As L/N increases, simulation

results approach to the ensemble value of G = 100dB. Note our result will fail for

the snapshot severely deficient case or at a low level of INR.

4.4 Summary and Conclusion

This chapter presents a theoretical analysis for the ND of the DMR based ABF.

A closed-form expression has been derived for the PDF of ND. Numerical results

demonstrate the close approximation between proposed distribution function and the

simulated ND histogram. Our result applies to the case of single interference with

reasonable levels of INR when the angle between the SOI and interference direction

satisfies Rayleigh resolution. The PDF shows the ND of the DMR based ABF is

related to the number of snapshots, INR, the SOI and interference direction [17].
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CHAPTER 5

PERFORMANCE ANALYSIS OF DMR FOR MULTIPLE

INTERFERERS CASE

In this chapter, we focus on an illustrative example of multiple planewave interference

in spatially white noise. Section one gives an overview of the multiple interference

case, and presents several standard metrics. Section two derives models of the

notch depth (ND), white noise gain (WNG), and signal-to-interference-and-noise ratio

(SINR) for the DMR ABF through an adaptive dimensionality reduction and subspace

formulation technique. Section three presents RMT models. Section four compares

the analytical results to the sample means computed through Monte-Carlo based

simulations.

5.1 Background

5.1.1 Model and metrics for multiple interferers case

The narrowband planewave beamforming assumes that the lth data measured by an

array consist of SOI plusD planewave interference and noise, which can be represented

as

p (l) = bs (l) vs +
D∑
i=1

bi (l) vi + n (l) (5.1)

where bs is the amplitude of the signal vector vs, bi is the amplitude of the planewave

interference vi, n is a vector of complex noise samples.
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For the N element sensor array oriented along z-axis, the normalized modes for

signal and planewave interference can be represented as

vs =
1√
N


ej

2π
λ
cos(θs)z1

...

ej
2π
λ
cos(θs)zN

 ,v1 =
1√
N


ej

2π
λ
cos(θi)z1

...

ej
2π
λ
cos(θi)zN



where λ is the wavelength, θi is the plavewave angle, and zi is the location of the

ith sensor. Without loss of generality, this paper assumes that the amplitudes bs and

bi are zero-mean complex circular random variables and that the complex circular

random noise is zero mean and spatially white.

The N ×N ECM under signal absent for the multiple interference case can be

represented as

ΣI+N =
D∑
i=1

σ2
i viv

H
i + σ2

nIN (5.2)

where σ2
i is the power in the ith interference source, and σ2

n is the white noise power.

The N ×N SCM and its eigendecomposition are defined as

S =
1

L

L∑
l=1

p (l) pH (l) =
N∑
n=1

λnene
H
n (5.3)

where ei and λi are the sample eigenvectors and eigenvalues of S, respectively. Thus,

the N ×N DMR-SCM is constructed as,

SDMR = λie1e
H
1 +

N∑
i=2

s2
weie

H
i (5.4)
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where s2
w =

(
L
L−1

) (
1

N−1

)∑N
i=2 λi is the average of the scaled lowest eigenvalues.

The DMR ABF weight vector has the same form as the adaptive MVDR weight

vector, with ECM ΣI+N replaced by SDMR:

wDMR =
(
vH
s S−1

DMRvs
)−1

S−1
DMRvs. (5.5)

The WNG is a standard metric that quantifies the improvement in the SNR

provided by a beamformer when the noise is spatially white. It is defined as

GWNG ,
1

wH
DMRwDMR

=

∣∣vH
s S−1

DMRvs
∣∣2

vH
s S−2

DMRvs
(5.6)

The ND is defined as the amplitude square of the beampattern in the direction

of an interference. That is, in the case of interference v1,

Gnotch ,
∣∣wH

DMRv1

∣∣2 =

∣∣vH
s S−1

DMRv1

∣∣2∣∣vH
s S−1

DMRvs
∣∣2 . (5.7)

The SINR of a beamformer is defined as

SINR ,
σ2
s

∣∣wH
DMRvs

∣∣2
wH

DMRΣI+NwDMR

(5.8)

where σ2
s is the desired signal power, vs is the replica associated with the desired

signal.
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5.1.2 Inverse of DMR-SCM

The spectral decomposition of the N × N sample covariance matrix can be broken

into two parts: one for the D largest eigenvalues and one for the N − D smaller

eigenvalues. Thus the inverse of DMR-SCM is

S−1
DMR =

D∑
i=1

λ−1
i eie

H
i +

N∑
i=D+1

s−2
w eie

H
i =

1

s2
w

[
I−

D∑
i=1

λi − s2
w

λi
eie

H
i

]
(5.9)

where s2
w is the estimated noise power s2

w =

(
1

N −D

) N∑
n=D+1

λn.

Let ED = [e1 · · · eD] and Λ = diag

(
s2
w

λ1

, · · · , s
2
w

λD

)
, the matrix form of DMR

SCM can be written as

S−1
DMR =

(
1

s2
w

)(
I− EDEH

D + EDΛED
H
)

=

(
1

s2
w

)(
P⊥ED

+ EDΛED
H
)

(5.10)

S−2
DMR =

(
1

s2
w

)2 (
P⊥ED

+ EDΛ2ED
H
)

(5.11)

where P⊥ED
= I− EDED

H.

5.2 Adaptive Dimensionality Reduction and Subspace Formulation

Technique

5.2.1 Unitary transformation matrix

The eigen-decomposition of ECM is

ΣI+N =
D∑
i=1

σ2
i viv

H
i + σ2

nI = ΞΞΞΓΓΓΞΞΞH (5.12)
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where ΓΓΓ = diag (γ1, . . . , γD, σ
2
n, . . . , σ

2
n) is a diagonal matrix of eigenvalues with

descend order such that γ1 ≥ · · · γD > σ2
n. The corresponding eigenvectors are

ΞΞΞ = [ξξξ1, · · · , ξξξN ].

We will use adaptive dimensionality reduction and subspace formulation

technique from Chapter 2 to construct an unitary tranformation matrix ΦΦΦ. The

principle is makes sure one column of the random unitary matrix ΦΦΦ is aligned with

the SOI vector, and other D columns equal to the first D ensemble eigenvectors

[ξξξ1, · · · , ξξξD].

Let the N × N unitary tranformation matrix ΦΦΦ be constructed as a complete

and orthonormal basis:

ΦΦΦ = [φφφs ξξξ1 · · ·ξξξD ΦΦΦ⊥] (5.13)

where φφφs is the array manifold for the desired look direction,

φφφs =
vs −

∑D
i=1 ξξξiξξξ

H
i vs∣∣∣vs −∑D

i=1 ξξξiξξξ
H
i vs

∣∣∣ (5.14)

Note it is orthogonal to the ensemble interference subspace.

Therefore, the multiplication of vs, v1 and ΦΦΦ leads to the unitary transformation

as

νννs = ΦΦΦHvs = [υυυs 0 · · · 0]T =
[
φφφHs vs ξξξH1 vs · · ·ξξξHDvs 0 · · · 0

]T
(5.15)

νννi = ΦΦΦHvi =
[
υυυi ΦΦΦH

⊥vi
]T

=
[
φφφHs vi ξξξ

H
1 vi · · ·ξξξHDvi ΦΦΦH

⊥vi
]T
, i = 1...D (5.16)

where υυυs =
[
φφφHs vs ξξξH1 vs · · ·ξξξHDvs

]T
, and υυυi =

[
φφφHs vi ξξξ

H
1 vi · · ·ξξξHDvi

]T
.
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In the next, we will expresse WNG, ND, and SINR loss in terms of random

matrices containing sample and ensemble eigenvectors and eigenvalues.

5.2.2 DMR white noise gain

The DMR WNG is given by

GWNG ,
1

wH
DMRwDMR

=

∣∣vH
s S−1

DMRvs
∣∣2

vH
s S−2

DMRvs
=

∣∣vH
s ΦΦΦΦΦΦHS−1

DMRΦΦΦΦΦΦHvs
∣∣2

vH
s ΦΦΦΦΦΦHS−2

DMRΦΦΦΦΦΦHvs
(5.17)

Since νs = ΦΦΦHvs,

GWNG =

∣∣νννHs ΦΦΦHS−1
DMRΦΦΦνννs

∣∣2
νννHs ΦΦΦHS−2

DMRΦΦΦνννs
(5.18)

Substituting the DMR covariance into the expression, we have

ΦΦΦHS−1
DMRΦΦΦ =

1

s2
w

[
φφφHs ξξξH1 · · ·ξξξHD ΦΦΦH

⊥
]T (

P⊥ED
+ EDΛED

H
)

[φφφs ξξξ1 · · ·ξξξD ΦΦΦ⊥] (5.19)

ΦΦΦHS−2
DMRΦΦΦ =

(
1

s2
w

)2 [
φφφHs ξξξH1 · · ·ξξξHD ΦΦΦH

⊥
]T (

P⊥ED
+ EDΛ2ED

H
)

[φφφs ξξξ1 · · ·ξξξD ΦΦΦ⊥]

(5.20)

Let us define (D + 1)× (D + 1) matrices,

∆∆∆k =
[
φφφHs ξξξH1 · · ·ξξξHD

]T
EDΛkED

H [φφφs ξξξ1 · · ·ξξξD] , k = 0, 1, 2 (5.21)

Therefore, both the numerator and denominator of (5.18) are quadratic forms. Note

matrix νs have N − D − 1 zeros, thus we can simplify both the numerator and
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Figure 5.1 Matrix multiplication of the numerator of Equation(5.20). The number
of columns in the first matrix equals N .

Figure 5.2 Matrix multiplication of the numerator of Equation(5.20). The number
of columns in the first matrix equals D + 1.

denominator as the multiplication of rank D+1 matrices (Figures 5.1-5.2). Therefore,

the WNG can be computed as

GWNG =

(
1− υυυHs (∆∆∆0 −∆∆∆1)υυυs

)2

1− υυυHs (∆∆∆0 −∆∆∆2)υυυs
(5.22)

where υυυs =
[
φφφHs vs ξξξH1 vs · · ·ξξξHDvs

]T
.
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5.2.3 DMR notch depth

The DMR ND for the ith interference is given by

G
(i)
notch ,

∣∣wH
DMRvi

∣∣2 =

∣∣vH
s S−1

DMRvi
∣∣2∣∣vH

s S−1
DMRvs

∣∣2 =

∣∣vH
s ΦΦΦΦΦΦHS−1

DMRΦΦΦΦΦΦHvi
∣∣2∣∣vH

s ΦΦΦΦΦΦHS−2
DMRΦΦΦΦΦΦHvs

∣∣2 , i = 1...D (5.23)

Since νννs = ΦΦΦHvs,

G
(i)
notch =

∣∣νννHs ΦΦΦHS−1
DMRΦΦΦνννi

∣∣2∣∣νννHs ΦΦΦHS−2
DMRΦΦΦνννs

∣∣2 , i = 1...D (5.24)

Substituting the DMR covariance into the expression, we can also get equation (5.21)

and (5.22).

Therefore, the ND can be computed as

G
(i)
notch = ρ

(i)
INR ·

(
υυυHs υυυi − υυυHs (∆∆∆0 −∆∆∆1)υυυi

)2

(1− υυυHs (∆∆∆0 −∆∆∆1)υυυs)
2 (5.25)

where ∆∆∆k =
[
φφφHs ξξξH1 · · ·ξξξHD

]T
EΛkEH [φφφs ξξξ1 · · ·ξξξD] , k = 0, 1, 2.

5.2.4 DMR SINR

The DMR SINR is

SINR ,
σ2
s

∣∣wH
DMRvs

∣∣2
wH

DMRΣI+NwDMR

=

σ2
s

σ2
n

∣∣wH
DMRvs

∣∣2∑D
i=1

σ2
i

σ2
n
|wH

DMRvi|
2

+ wH
DMRwDMR

=
ρSNR∑D

i=1

(
ρ

(i)
INR

)2

·G(i)
notch +G−1

WNG

(5.26)
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The terms in the denominator represent the power of the interference and the

power of the white noise at the output of the ABF. Note the SINR is a function of

WNG, ND, SNR and INRs. Combined with G
(i)
notch and GWNG, we get

SINR = ρSNR·

(
D∑
i=1

(
ρ

(i)
INR

)2

·
(
υυυHs υυυi − υυυHs (∆∆∆0 −∆∆∆1)υυυi

)2

(1− υυυHs (∆∆∆0 −∆∆∆1)υυυs)
2 +

1− υυυHs (∆∆∆0 −∆∆∆2)υυυs

(1− υυυHs (∆∆∆0 −∆∆∆1)υυυs)
2

)−1

(5.27)

5.3 RMT Models

In snapshot-deficient case, classical asymptotic results for the eigenvalues and

eigenvectors do not perform well. RMT asymptotic analysis differs from the

classical mthods. It characterizes the sample eigenvalues and sample eigenvectors

of SCM. Recent work on RMT contains valuable insights about the behavior of the

eigenvalues and eigenvectors of large random matrices. RMT predicts that the sample

eigenvectors have a phase transition [6,28,29]. When the INR is above the threshold,

the sample eigenvector is a biased estimate of the true eigenvector. The sample

eigenvector lies on a cone around the true eigenvector.

As shown in [39], the sample eigenvectors have a greater impact on DMR

performance than the sample eigenvalues. Paul [29], Nadler [28], and Benaych-

Georges and Nadakuditi [6] describe the eigenvectors of the spiked covariance model

(when some of the eigenvalues are larger than 1 and the others are 1, then the model

is called spiked covariance model). This model assumes that the data consist of one

or more loud signals plus white noise. The RMT analysis of the spiked covariance

case is asymptotic N,L → ∞ and the ratio N/L = c. The spiked covariance model

is characterized by an ECM with eigenvalues γ1 ≥ · · · γD > 1 +
√
c. Since the

spiked covariance model ECM matches that of the DMR model, the eigenvalue and

eigenvector results for spiked covariance are applicable to modeling the WNG, ND
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and SINR. The spikes are consist of the D largest spectral components that exceed

the phase transition threshold 1+
√
c can represent the interferers in the DMR model.

5.3.1 Sample eigenvalues

In [4], Baik and Silverstein consider a spiked population model whose population

eigenvalues are all unit except for a few fixed eigenvalues. It shows sample eigenvalue

λi asymptotically converges to

λi→γi +
γic

γi − 1
(5.28)

Note that as c→ 0, λi→γi, it will match the classical asymptotic results.

5.3.2 Sample eigenvectors

The key result related to DMR is a prediction of the limiting value of the generalized

cosine between the ensemble eigenvector and the sample eigenvector [29]

cos2 (ξi, ei)→


0, if N · ρINR ≤

√
c

1− c
(γi/σ2

n−1)2

1 + c
(γi/σ2

n−1)

, if N · ρINR >
√
c

(5.29)

This describes a phase transition phenomenon. Then the scalar product of ensemble

eigenvectors ξξξi and ξξξj in subspace spanned by {e1, · · · , eD} is approximate to

ξξξHi

D∑
k=1

eke
H
k ξξξj→


0, if i 6= j

1− c
(γi/σ2

n−1)2

1 + c
(γi/σ2

n−1)

= µi, if i = j
(5.30)
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Considering i = j, as c→ 0, ξξξHi
∑D

k=1 eke
H
k ξξξj→1, this means the ensemble interference

eigenvector is completely contained in the sample eigenvector subspace. Thus the

accuracy of the sample outlier subspace as a prediction of the ensemble outlier

subspace increases as the number of snapshots increases for a fixed dimension. The

sample outlier eigenvector is unbiased in directions orthogonal to ensemble outlier

eigenvector when the ensemble outliers are well separated. Thus the error component

of the sample eigenvector is uniformly distributed over the ensemble bulk subspace

[6, 28, 29].

5.3.3 The bound for RMT model

It is important to note that our results only have a good match for reasonable levels

of INR. As the spiked covariance model is characterized by an ECM with eigenvalues

γ1 ≥ · · · γD > 1 +
√
c = 1 +

√
N/L, the minimum reasonable level of INR is

10 log10

(
1 +

√
N/L

)
.

One more point, DMR requires at least two snapshots for the single interference

example since it needs an estimate of the dominant subspace and an estimate of the

power in the noise subspace. The dominant subspace is defined by the eigenvector

associated with the maximum eigenvalue. With two snapshots, the noise power

is simply a scaled version of the only other nonzero eigenvalue. For the multiple

interference case, DMR requires at least D + 1 snapshots. The dominant subspace

needs D largest eigenvalues and the dominant subspace needs the smallest eigenvalue.

5.3.4 Calculate matrix ∆∆∆k

The (D + 1)× (D + 1) matrix ∆∆∆k is a diagonal matrix.

∆∆∆k =
[
φφφHs ξξξH1 · · ·ξξξHD

]T
EDΛkED

H [φφφs ξξξ1 · · ·ξξξD] , k = 0, 1, 2 (5.31)
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For the element in 1st column and 1st row: φφφHs EDΛkED
Hφφφs, φφφs is the ensemble

eigenvector while eeei, i = 1 · · ·D are sample eigenvectors. As introduced before, the

sample outlier eigenvectors are unbiased in directions orthogonal to the ensemble

outlier. Then the residual outlier energy 1−µi will be uniformly distributed over the

N −D eigenvectors. Thus,

φφφHs EDΛkED
Hφφφs →

D∑
i=1

λ−ki (1− µi)
N −D

(5.32)

For the element in ist column and ist row: ξξξHi EDΛkED
Hξξξi → λ−ki µi.

Using the RMT results for the sample eigenvectors and eigenvalues of the spiked

covariance model, we have the RMT approximations of ∆∆∆k:

∆∆∆k = diag

{
D∑
i=1

λ−ki (1− µi)
N −D

,λ−k1 µ1, · · · , λ−kD µD

}
(5.33)

5.3.5 RMT result for white noise gain

GWNG =

(
1− υυυHs (∆∆∆0 −∆∆∆1)υυυs

)2

1− υυυHs (∆∆∆0 −∆∆∆2)υυυs
(5.34)

where υυυs =
[
φφφHs vs ξξξH1 vs · · ·ξξξHDvs

]T
.

5.3.6 RMT result for notch depth

G
(i)
notch = ρ

(i)
INR ·

(
υυυHs υυυi − υυυHs (∆∆∆0 −∆∆∆1)υυυi

)2

(1− υυυHs (∆∆∆0 −∆∆∆1)υυυs)
2 (5.35)

where υυυs =
[
φφφHs vs ξξξH1 vs · · ·ξξξHDvs

]T
, and υυυi =

[
φφφHs vi ξξξ

H
1 vi · · ·ξξξHDvi

]T
.
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5.3.7 RMT result for SINR

SINR = ρSNR·

(
D∑
i=1

(
ρ

(i)
INR

)2

·
(
υυυHs υυυi − υυυHs (∆∆∆0 −∆∆∆1)υυυi

)2

(1− υυυHs (∆∆∆0 −∆∆∆1)υυυs)
2 +

1− υυυHs (∆∆∆0 −∆∆∆2)υυυs

(1− υυυHs (∆∆∆0 −∆∆∆1)υυυs)
2

)−1

(5.36)

equations (5.33-5.35) are the RMT results, the expressions contain SNR, INR, the

number of sensors N , the number of snapshots L (c = N/L), the ensemble interference

rank D, ensemble eigenvalues γi, SOI vs and interference v1.

5.4 Simulation for RMT Results

In this section, we compares the RMT models to the sample means computed through

Monte Carlo simulations. The comparisons are under multiple interference scenarios.

We use a ULA of N = 50 sensors with half-wavelength spacing.

In Figures 5.3-5.8, the solid line denotes the mean and the error bars mark the

span between the 10th and 90th percentiles of the data. Results are shown for WNG

generated using 1000 trials for each snapshot. Figures 5.3-5.4 show the RMT based

DMR ABF WNG model predictions and sample means of Monte Carlo simulations.

The results show our model predictions match the sample mean, even for the snapshot

deficient case.

Figures 5.5-5.6 show the RMT based DMR ABF ND model predictions and

sample means of Monte Carlo simulations. The results show our model predictions

match the sample mean for the snapshot deficient case. But there is a little deviation

in the low INR part. The reason is equation(5.26) is derived under the assumption

of ΦΦΦH
⊥vi ≈ 0, which only works under high INRs.

Figures 5.7-5.8 show the RMT based DMR ABF SINR model predictions and

sample means of Monte Carlo simulations. The performance is still good under high

INRs case while poor under low INRs. Similarly, the results show well for the snapshot

deficient case.
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Figure 5.3 The RMT based DMR ABF WNG model predictions(red circles) and
sample means of Monte Carlo simulations (blue lines) with L ranges from 5 to 200.
There are D = 3 interferences. The example uses a 50-sensor ULA with half-wave-
length spacing. Here N = 50, σ2

s = 10, σ2
1 = σ2

2 = σ2
3 = 10, σ2

n = 1, θs = 30◦, θ1 = 20◦,
θ2 = 60◦, θ3 = 80◦.

5.5 Distribution for WNG

Let αi = ξξξHi EDED
Hξξξi, i = 1 · · ·D, and αD+1 = φφφHs EDED

Hφφφs ≈
D∑
i=1

(1− αi)
N −D

.

For the model here [29, 40], we can get: ξξξHi EDΛkED
Hξξξi ≈ λ−ki αi, i = 1 · · ·D

and φφφHs EDΛkED
Hφφφs ≈ λ−ki αD+1. From [29, 40], αi is a random variable that

converges in distribution to a chi-squared variable: αi ∼
µi
D
χ2 (D), where µi =
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Figure 5.4 The RMT based DMR ABF WNG model predictions(red circles) and
sample means of Monte Carlo simulations (blue lines) with INR ranges from 3dB
to 15dB. There are D = 3 interferences. The example uses a 50-sensor ULA with
half-wave-length spacing. Here N = 50, L = 15, σ2

s = 10, σ2
n = 1, θs = 30◦, θ1 = 20◦,

θ2 = 60◦, θ3 = 80◦.

(
1− c

(γi/σ2
n − 1)2

)
/

(
1 +

c

(γi/σ2
n − 1)

)
. Therefore,

GWNG =

(
1− υυυHs (∆∆∆0 −∆∆∆1)υυυs

)2
1− υυυHs (∆∆∆0 −∆∆∆2)υυυs

=

(
1−

∑D
i=1

∣∣ξξξHi vs∣∣2 · αi (1− λ−1
i

)
− |φφφ

H
s vs|2
N−D

∑D
i=1

(
1− λ−1

i

)
(1− αi)

)2

1−
∑D

i=1

∣∣ξξξHi vs∣∣2 · αi (1− λ−2
i

)
− |φφφ

H
s vs|2
N−D

∑D
i=1

(
1− λ−2

i

)
(1− αi)

(5.37)

where υυυs =
[
φφφHs vs ξξξH1 vs · · ·ξξξHDvs

]T
.
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Figure 5.5 The RMT based DMR ABF ND model predictions(red circles) and
sample means of Monte Carlo simulations (blue lines) with the number of snapshots
ranges from 10 to 1000. There are D = 3 interferences. The example uses a 50-sensor
ULA with half-wave-length spacing. Here N = 50, σ2

s = 10, σ2
1 = σ2

2 = σ2
3 = 100, σ2

n =
1, θs = 30◦, θ1 = 20◦, θ2 = 60◦, θ3 = 80◦.

5.5.1 Use ensemble eigenvalues

The DMR weight vector depends on the eigendecomposition of the SCM. In , [39], the

authors investigate the relative influence of the sample eigenvalues and eigenvectors

on ND. Through the comparison the standard DMR ABF (generated with sample

statistics) with two alternative DMR implementations: the first one uses the ensemble

eigenvectors and the sample eigenvalues to generate the structured covariance, while

the second one uses the ensemble eigenvalues and the sample eigenvectors to generate

the structured covariance. The results show when the ensemble eigenvectors are

used to construct the covariance matrix, the resulting histogram is centered on the
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Figure 5.6 The RMT based DMR ABF ND model predictions(red circles) and
sample means of Monte Carlo simulations (blue lines) with INR ranges from 10dB
to 30dB. There are D = 3 interferences. The example uses a 50-sensor ULA with
half-wave-length spacing. Here N = 50, L = 25, σ2

s = 10, σ2
n = 1,θs = 30◦, θ1 = 20◦,

θ2 = 60◦, θ3 = 80◦.

ensemble ND. In contrast, when the sample eigenvectors are used to construct the

covariance matrix , the histogram is centered on the standard DMR result. Therfore,

sample eigenvectors are the dominant part rather than the sample eigenvalues. So in

our equation (5.37) and (5.38), we can use ensemble eigenvalues γi, i = 1 · · ·D to

replace the sample eigenvalues λi, i = 1 · · ·D to make a simplification.
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Figure 5.7 The RMT based DMR ABF SINR model predictions(red circles) and
sample means of Monte Carlo simulations (blue lines) with the number of snapshots
ranges from 5 to 200. The example uses a 50-sensor ULA with half-wave-length
spacing. Here N = 50, σ2

s = 10, σ2
1 = σ2

2 = σ2
3 = 10, σ2

n = 1, θs = 30◦, θ1 = 20◦,
θ2 = 60◦, θ3 = 80◦.

5.5.2 Approximated distribution for WNG

Therefore, the WNG expression can be simplified into:

GWNG =
(aα + b)2

cα + d
(5.38)
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Figure 5.8 The RMT based DMR ABF SINR model predictions(red circles) and
sample means of Monte Carlo simulations (blue lines) with INR ranges from 3dB
to 15dB. There are D = 3 interferences. The example uses a 50-sensor ULA with
half-wave-length spacing. Here N = 50, L = 15, σ2

s = 10, σ2
n = 1, θs = 30◦, θ1 = 20◦,

θ2 = 60◦, θ3 = 80◦.

where α ∼ χ2 (D), and the rest of paramaters a, b, c, d are defined as,

a = − 1

D

D∑
i=1

∣∣ξξξHi vs
∣∣2 (1− γ−1

i

)
µi +

∣∣φφφHs vs
∣∣2

D(N −D)

D∑
i=1

(
1− γ−1

i

)
µi

b = 1−
∣∣φφφHs vs

∣∣2
N −D

D∑
i=1

(
1− γ−1

i

)
µi

c = − 1

D

D∑
i=1

∣∣ξξξHi vs
∣∣2 (1− γ−2

i

)
µi +

∣∣φφφHs vs
∣∣2

D(N −D)

D∑
i=1

(
1− γ−2

i

)
µi

d = 1−
∣∣φφφHs vs

∣∣2
N −D

D∑
i=1

(
1− γ−2

i

)
µi

(5.39)
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Let g =
(aα + b)2

cα + d
, then α =

1

2a2

(√
(2ab− cg)2 − 4a2 (b2 − dg)− (2ab− cg)

)

∣∣∣∣dαdg
∣∣∣∣ =

∣∣∣∣∣∣ 1

2a2

 c (cg − 2ab) + 2a2d√
(2ab− cg)2 − 4a2 (b2 − dg)

+ c

∣∣∣∣∣∣ (5.40)

Through the Change-of-Variable Technique, the probability density function for

GWNG is:

fGWNG
(g) =

1

2D/2Γ (D/2)
·

∣∣∣∣∣∣ 1

2a2

 c (cg − 2ab) + 2a2d√
(2ab− cg)2 − 4a2 (b2 − dg)

+ c

∣∣∣∣∣∣
· g

1
4a2

(√
(2ab−cg)2−4a2(b2−dg)−(2ab−cg)

)
−1
e
− 1

4a2

(√
(2ab−cg)2−4a2(b2−dg)−(2ab−cg)

)

(5.41)

5.5.3 Special case

For Figure 5.9, we find that the distribution of αi is close to a Gaussian distribution

only when there is a sufficient number of samples and a more substantial number

of domiant modes. That is to say: the limit of a Chi-squared distribution will be a

Gaussian distribution. This property follows from the central limit theorem, using

the fact that the chi-squared distribution is obtained as the distribution of a sum of

squares of independent standard normal random variables. For αi = ξξξHi EDED
Hξξξi =

µi
D
α ∼ µi

D
χ2 (D) , i = 1 · · ·D, or α ≡

∑D
i=1 Z

2
i ∼ χ2 (D), we have E (α) = D and

V ar (α) = 2D. Applying the classical central limit theorem we get:

lim
D→∞

P
(
α−D√

2D
6 z

)
= Φ(z) (5.42)
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Another way of writing this formal limiting result is that:

α−D√
2D

Dist→ N(0, 1) (5.43)

That is the formal convergence result that holds for the chi-squared distribution.

Informally, for large D we have the approximate distribution: α
Approx→ N(D, 2D).

Though not strictly correct, sometimes this informal approximation is asserted as a

kind of convergence result, informally referring to convergence where p appears on

both sides.

The above results show that with a sufficient number of samples and a more

substantial number of domiant modes, we can consider the distribution of α as a

Gaussian distribution:

α
Approx→ N(D, 2D). (5.44)

Note when the INRs are large, ∆∆∆1 ≈ ∆∆∆2, that means Equation(5.37) can be

simplfied into

GWNG =

(
1− υυυHs (∆∆∆0 −∆∆∆1)υυυs

)2
1− υυυHs (∆∆∆0 −∆∆∆2)υυυs

≈ 1− υυυHs (∆∆∆0 −∆∆∆1)υυυs (5.45)

while at the same time, in Equation(5.39) a ≈ c, b ≈ d. Therefore, Equation(5.38)

can be represented as:

GWNG = aα + b (5.46)
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where α ∼ χ2 (D), and

a = − 1

D

D∑
i=1

∣∣ξξξHi vs
∣∣2 (1− γ−1

i

)
µi +

∣∣φφφHs vs
∣∣2

D(N −D)

D∑
i=1

(
1− γ−1

i

)
µi

b = 1−
∣∣φφφHs vs

∣∣2
N −D

D∑
i=1

(
1− γ−1

i

)
µi

µi =

(
1− c

(γi/σ2
n − 1)2

)
/

(
1 +

c

(γi/σ2
n − 1)

)
, (i = 1 · · ·D)

(5.47)

and γi, (i = 1 · · ·D) are D largest eigenvalues of ECM ΣI+N .

In such cases, the distribution function of α is a Gamma distribution Γ (p, λ)

with parameters p = D/2, and λ = 1/2:

f (α) =
αD/2−1e−α/2

2D/2Γ (D/2)
, for α ≥ 0 (5.48)

Through the Change-of-Variable Technique, the probability density function for

GWNG is:

fGWNG
(g) =

1

a · 2D/2Γ (D/2)
·
(
g − b
a

)D/2−1

· e−(g−b)/2a (5.49)

In particular, we note one thing: when D = 1, Equation(5.49) will reduce to the

square of normal distribution variable or a chi-square distributed variable with one

degree of freedom:

fGWNG
(g) =

1

a
√

2π
·
(
g − b
a

)−1/2

· e−(g−b)/2a, for D = 1 (5.50)
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Table 5.1 The WND PDF plots obtained with different system parameters
Parameters

WNG L N D INR
Figure 10 25/100/1000 50 6 10dB
Figure 11 50 25/50/100 6 10dB
Figure 12 100 50 1/3/6 10dB
Figure 13 100 50 6 3/10/20dB

We note that when D = 1,

a =

(
1

N − 1
−
∣∣vH1 vs

∣∣2)(1− 1

σ2
1 + σ2

n

)(
1− N/L

(σ2
1/σ

2
n)

2

)
/

(
1 +

N/L

σ2
1/σ

2
n

)
b = 1− 1

N − 1

(
1− 1

σ2
1 + σ2

n

)(
1− N/L

(σ2
1/σ

2
n)

2

)
/

(
1 +

N/L

σ2
1/σ

2
n

)
EGWNG

(g) = a+ b

= 1−
∣∣vH1 vs

∣∣2 · (1− 1

σ2
1 + σ2

n

)(
1− N/L

(σ2
1/σ

2
n)

2

)
/

(
1 +

N/L

σ2
1/σ

2
n

)
V ARGWNG

(g) = 2a2

=

((
1

N − 1
−
∣∣vH1 vs

∣∣2)(1− 1

σ2
1 + σ2

n

)(
1− N/L

(σ2
1/σ

2
n)

2

)
/

(
1 +

N/L

σ2
1/σ

2
n

))2

(5.51)

In particular, for high INRs case, σ2
1 � σ2

n, the mean and variance can be further

simplified as:

EGWNG
(g) ≈ 1−

∣∣vH1 vs
∣∣2

V ARGWNG
(g) ≈

(
1

N − 1
−
∣∣vH1 vs

∣∣2)2 (5.52)

This is consistent with our previous appromation result in Chapter 3, section

3.3.1. EGWNG
(g) ≈ 1 (in high INR scenario) and Buck and Wage’s conjecture (see

Figure 10 in [39]).
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Figure 5.9 Histogram of αi. D = 6, L = 1000, N = 50. 20000 trials are
used.ρINR1 = ρINR4 = 13dB, ρINR2 = ρINR5 = 10dB, and ρINR3 = ρINR6 = 7dB.
Red line indicates the mean.

Table 5.1 shows the WND/ND PDF plots obtained with different system

parameters. Figures 5.10-13 show the probability density function (5,49) overlaid on

the WNG histogram for different system parameters (L, N , D, INR). The example

uses a 50-sensor ULA with half-wave-length spacing. One obvious result is that: with

the increases of L/N or INR, the WNG histogram will become thinner and taller, and

the mean value will be closer to 1. Moreover, Figure 5.12 illustrates the variability

of the WNG with different D, the WNG with multiple interferers is less than the

single interferer, this explains the fact that when D = 1, it can be approximated

as an exponential distribution, since chi-squared distriobution with two degrees of

freedom and exponential distribution have the same PDFs, since degree of freedom

for complex-valued cases is supposed to be double of real-case.
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Figure 5.10 Probability density function overlaid on the WNG histogram for the
multiple interference case(D = 6). Here N = 50, ρINRi = 10dB, i = 1...6. 10000
trials are used.

5.6 Summary and Conclusion

In this chapter, we focuse on an illustrative example of multiple planewave interference

in spatially white noise. We show the performance analysis of DMR ABF by three

standard metrics: ND, WNG, and SINR for multiple interference case. The analysis

uses the RMT method for deriving and verifying the analytical results. Finally, the

analytical results are compared with RMT Monte-Carlo based empirical results.
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Figure 5.11 Probability density function overlaid on the WNG histogram for the
multiple interference case(D = 6). Here L = 50, ρINRi = 10dB, i = 1...6. 10000
trials are used.
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Figure 5.12 Probability density function overlaid on the WNG histogram for the
single/multiple interference case. Here N = 50, L = 100, ρINRi = 10dB, i = 1...6.
10000 trials are used.
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Figure 5.13 Probability density function overlaid on the WNG histogram for the
multiple interference case(D = 6). Here N = 50, L = 100. 10000 trials are used.
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CHAPTER 6

CONCLUSION

This dissertation studies the performance of DMR-ABF by deriving PDFs of

important metrics, namely ND, WNG, and SINR. Through three approaches for

handling rank deficient sample covariance matrices, we proposed and developed data

transformation methods to facilitate our study on the statistical performance of the

DMR beamformer. Chapter 3 presents detailed derivation of the distribution of

SINR loss ratio of the DMR beamformer for single interference case can be used a

beta-distributed function to express it. Chapter 4 presents a theoretical analysis for

the ND of the DMR based ABF for single interference case. A closed-form expression

has been derived for the PDF of ND. Finally, the performance analysis of DMR ABF

for the multiple interference case are discussed in Chapter 5, along with the RMT

method for deriving and verifying the analytical results.

In summary, we have shown the performance analysis of the DMR ABF for

single and multiple interference case. The analysis provides valuable insights into the

research of DMR ABF.
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APPENDIX A

INDEPENDENCE OF C−1
11 C21 AND C11

In this appendix, we want to show c−1
11 c21 and c11 are independent.

We begin with a random Hermitian matrix C. It can be represented as:

C = UHΣ
1/2
I+NSΣ

1/2
I+NU = UHΣ

1/2
I+N

(
1

L

L∑
l=1

p (l) pH (l)

)
Σ

1/2
I+NU

where U, Σ are deteministic Hermitian matrix and p is N × 1 sample vector. The
fundamental parameters of the central complex Wishart distribution are L, the sample
size, N , the number of dimensions of vector p, and IN the N×N ensemble covariance
matrix of C. Therefore, we can designate a central complex Wishart distribution with
these parameters by CW (L,N ; IN). The partition matrixes C is

C =

(
c11 c12

c21 c22

)

where c12 = cH21. The PDF is given by the central complex Wishart distribution.

p (C) =
|C|L−N

I(IN)
exp [−tr(C))] =

|C|L−N · exp [−tr(C))]

πL(L−1)/2)Γ(L)Γ(L− 1) · · ·Γ(L−N + 1)

where for a general matrix M, the definition of I(M) = πL(L−1)/2)Γ(L)Γ(L −
1) · · ·Γ(L − N + 1) |M|L. With matrix partition, the random Hermitian matrix C
can be factored as

C =

(
c11 0
c21 IN−1

)(
1 c−1

11 cH21

0 C22 − c−1
11 c21c

H
21

)

Hence, by Laplace’s rules for computing determinants, |C| = |c11|
∣∣C22 − c−1

11 c21c
H
21

∣∣,
one gets

p (C) =
|c11|L−N

I(IN)

∣∣C22 − c−1
11 c21c

H
21

∣∣L−N exp (−c11 − tr
(
c−1

11 c21c
H
21

))
· exp

[
−tr

(
C22 − c−1

11 c21c
H
21

)]
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Following them, make the change of variables:

D11 = C22 − c−1
11 c21c

H
21

d12 = c21

d22 = c11

p (D11,d12, d22) =
|d22|L−N

I(IN)
|D11|L−N

exp
(
−d22 − tr

(
d−1

22 d12d
H
12

)
− tr (D11)

)
where

p (D11) =
1

I(IN−1)
|D11|L−N exp (−tr (D11))

a complex wishart distribution, and

p (d12, d22) =
I(IN−1)

I(IN)
|d22|L−N

· exp
(
−d22 − tr

(
d−1

22 d12d
H
12

))
Next, let e12 = d12d

−1
22 = c−1

11 c21, e22 = d22 = c11 so that

∂ (e12, e22)

∂ (d12, d22)
=

∣∣∣∣∣
∂e12
d12

∂e12
d22

0 I

∣∣∣∣∣ =

∣∣∣∣∂e12

d12

∣∣∣∣ = |e22|−2

then

p (e12, e22) =
I(IN−1)

I(IN)
|e22|L−N+2 · exp

(
−e22 − tr

(
e−1

22 e12e
H
12

))
Observe the RHS, if the norm of e12 is held constant, then det

(
IN−1 + e12e

H
12

)
is

independent of the components of e12, hence p (e22) below is independent of e12. Here
we can refer to the complex Wishart distribution developed by Goodman in [12]. As

e22 has a distribution of CW (L+ 1, 1;
[
1 + eH12e12

]−1
), we have

p (e22) =
1

I(I1)
|e22|L−N+2

∣∣IN−1 + e12e
H
12

∣∣L+1

exp
(
−e22 − tr

(
e−1

22 e12e
H
12

))
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so

p (e12) =
Γ (L+ 1)

Γ (L−N + 2) Γ (N − 1)

1

|IN−1 + e12eH
12|

L+1

=
Γ (L+ 1)

Γ (L−N + 2) Γ (N − 1)

1

|1 + eH12e12|
L+1

e12 and e22 are independent. Let r = eH12e12, by changing to polar coordinates, one
gets

p(r) =
Γ (L+ 1)

Γ (L−N + 2) Γ (N − 1)

rN−2

(1 + r)L+1

In conclusion, we show c−1
11 c21 and c11 are independent.
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