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ABSTRACT

STOCHASTIC MODELING OF FLOWS IN MEMBRANE PORE
NETWORKS

by
Binan Gu

Membrane filters provide immediate solutions to many urgent problems such as

water purification, and effective remedies to pressing environmental concerns such

as waste and air treatment. The ubiquity of applications gives rise to a significant

amount of research in membrane material selection and structural design to optimize

filter efficiency. As physical experiments tend to be costly, numerical simulation

and analysis of fluid flow, foulant transport and geometric evolution due to foulant

deposition in complex geometries become particularly relevant. In this dissertation,

several mathematical modeling and analytical aspects of the industrial membrane

filtration process are investigated. A first-principles mathematical model for fluid

flow and contaminant advection/deposition through a network of cylindrical pores,

and time evolution of membrane pore geometry, is proposed, formulated as a system

of ordinary and partial differential equations. Membrane filter performance metrics,

including total throughput (total volume of filtered fluid) and foulant concentration

at membrane pore outlets, among others, are thoroughly studied against membrane

geometric features such as porosity and tortuosity (average normalized distance

traveled by fluid through pores between membrane top and bottom surfaces). The

influence of the underlying, often complex, pore geometries on the performance of the

membrane filters is explored in the following setups: (1) layered planar membrane

structures with intra-layer pore connections; (2) general pore networks generated by

a random graph generation protocol; (3) pore size variations in a pore network and

(4) pore size gradient in a banded membrane network. Future work should include



studying pore size variations on porosity graded networks and stochastic modeling of

large-particle sieving in pore networks.

In Chapter 1, an overview of the experimental, computational and theoretical

literature on membrane filtration is given to motivate the following Chapters. In

Chapter 2, a mathematical model is proposed for multilayered membrane filters

with interconnected pores in the junction between layers. A side-by-side comparison

is carried out between three simple geometries that have various degrees of pore

connectivity and the same initial pore radius in each layer. Pore size heterogeneities,

modeled as a random perturbation on initial pore size, are also studied in detail. Via

variations in the strength of the pore-size perturbation, the statistical and physical

influence on key properties of membrane filters, such as initial resistance, total

throughput and foulant concentration at pore outlets, are analyzed and discussed.

This work appeared in Journal of Fluid Mechanics.

In Chapters 3 and 4, a random graph generation protocol is devised to generate

pore networks that generalize the structures considered in Chapter 2. A membrane

filter is modeled as a graph with vertices and edges representing pore junctions and

pore throats respectively. Local fluid and foulant transport equations are posed on

each edge, coupled with conservation laws to produce global equations that capture

the connectivity of the network. When a uniform initial pore radius is assumed

(Chapter 3), initial membrane porosity is found to be a strong predictor for total

throughput via a power law; and accumulated foulant concentration at membrane

pore outlets satisfies a negative exponential relationship to membrane tortuosity.

When pore size variations are imposed as pore-wise noise perturbation, however

(Chapter 4), it is observed that network variations induced from the random graph

generation have a stronger influence on membrane performance, unless noise strength

is large. Membrane initial porosity is again found to be a crucial geometric feature.



The work of these Chapters appeared in SIAM Journal on Applied Mathematics and

Journal of Membrane Science, respectively.

In Chapter 5, a variant of the protocol described in Chapter 3 is developed to

generate banded pore networks in which the pore radius decreases from one band

to the next, creating a pore-size gradient. Under specific assumptions, an optimal

radius gradient in the depth of the banded membrane that maximizes either total

throughput of filtrate or the particle retention capability of the membrane, is found.

Finally, in Chapter 6, conclusions from the previous chapters are discussed, along

with two open questions for future work.
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CHAPTER 1

INTRODUCTION

1.1 Motivation for Membrane Filtration

The practice of filtration dates back to primitive water filters made with rushes

and plants. Ancient Egyptians used porous clay pots as ceramic filters to remove

sediments from boiled water. The Greek physician Hippocrates invented the

“Hippocrates Sleeve”, a cloth bag that serves a similar purpose with better control

over the undesired content. Sushruta Samhita, an ancient Sanskrit text on medicine,

suggested using sand and gravel to purify water, a water treatment technique still

used in the modern world [9]. However, these water purification methods were still

insufficient to prevent water-borne illnesses caused by microbes and bacteria. Richard

Adolf Zsigmondy invented the first membrane filters at the turn of the 20th century

that saw commercial production and uses in microbiology and assessment of potable

water [146]. Through the long history of filtration, the porous gaps within filter

materials have been getting smaller and smaller, from slivers between leaves and

stems, to sand grains, and finally polymer fibers only microns apart. This trend

primarily owes to advances in other areas such as imaging and chemical analysis, which

inform our knowledge about the size of some of the unwanted substance particles in

the process fluid, from visible rocks and soil sediments to previously undetectable

microorganisms and heavy metal ions [136].

Nowadays, the use of membrane filters spans a wide range of modern appli-

cations. Implementations of membrane filters are ubiquitous in industrial plants

serving a variety of functions such as waste water treatment [59], radioactive sludge

removal [25, 2] and nuclear waste treatment [33]. Commercial membrane filters

also aid in manufacturing processes such as water purification [88], beer clarifi-

1



cation [133, 78], semiconductor and microelectronics processing [59] and membrane

bioreactors [88, 35]. Furthermore, daily household cleaning efforts, such as air

conditioning [80, 36, 3, 134], kitchen grease filtration [137] and counter-top water

purification systems [11], also benefit from utilizing membrane filters.

There are two general types of membrane materials used in commercial filters:

polymeric and ceramic [65, 42], with further sub-categorizations depending on the

specific chemical compositions. Most polymeric membranes are made with low-cost

organic materials and thus are popular in industrial applications. However, they are

often not suited for applications involving large thermal fluctuations and aggressive

chemical treatment. Ceramic membrane filters can fill this role, and offer additional

benefits such as high hydrophilicity to produce a larger fluid filtrate flux [79]. Though

ceramic filters tend to yield better filtration results, their specific design using metallic

oxides tends to increase the cost significantly. Finding the proper design with existing

materials to balance production costs has become a central relevant topic in membrane

filtration research.

Membrane filters also admit a variety of underlying pore microstructures that

are either formed naturally or manufactured to satisfy specific needs in applications.

Common configurations include node-fibril [105], flat-sheet [114] and multitube [84].

Four distinct filtration processes may be distinguished, dictated by the scale of the

pore size: microfiltration for removing micron-sized particles such as colloids and

smoke molecules, ultrafiltration for filtering bacteria and viruses, nanofiltration for

removing monovalent ions, and reverse osmosis for removing even smaller multivalent

ions and particles (making it popular in obtaining pure water) [131]. At each

associated pore scale in any filtration process, there are also three main fouling

mechanisms: 1) adsorption, where particles far smaller than the pore size adhere

to the pore walls due to chemical attraction between the particle and the membrane

material; 2) sieving, where particles with size at the order of the pore size partially
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cover or completely clog pore channels; and 3) cake formation, which happens at a

later stage of filtration when the previous two fouling modes have saturated – particles

of various sizes accumulate on the membrane’s upstream surface to form a new layer of

porous media. These fouling modes have been studied via experiments and numerical

simulations, both in isolation and with multiple modes operating simultaneously, by

many researchers with a goal of developing predictive modeling; see for example the

works of [99] and [16] on adsorption, [60, 13] on blocking, [32, 97] on caking, and

[8, 17, 56, 110, 112, 113] for multiple simultaneous modes.

Depending on the application and the selected membrane materials, indus-

trialists practice three typical membrane filtration methods – tangential [24],

dead-end [116] and direct flow [54, 28]. In dead-end filtration (Figure 1.1a), a

contaminated fluid is driven in a direction perpendicular to the membrane surface

via an applied transmembrane pressure. In tangential flow (also known as cross-flow,

see Figure 1.1b), a process fluid is driven by an applied pressure parallel to the

membrane surface. Particles smaller than the pore size or gaps on the membrane

surface will pass through, while larger particles are circulated by the tangential flow

back to the feed solution, thus delaying filter clogging. Tangential filtration prolongs

filter lifetime but suffers from low rate of filtrate (also known as permeate) production.

Unlike filters under dead-end filtration, those under tangential flow give lower rate

of filtrate production, but have longer filter lifetimes due to decreased fouling (the

interested reader is referred to [33] for a more detailed discussion on the relative merits

of these two processes). In direct flow filtration (Figure 1.1c), the flow pattern is

similar to that in tangential flow on the membrane surface. But instead of circulating

the flow, a cap is placed at the end of the filter, perpendicular to flow. This mode

is midway between the two previous methods, utilizing a fair balance of fluid flux

maintenance and filter lifetime. Each of these methods may be implemented under

conditions of constant flux or constant pressure: in the former, the applied pressure
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Figure 1.1 Schematic of three membrane filtration methods: (a) tangential; (b) dead-
end and (c) direct-flow.
Figure courtesy of [54].

increases as the membrane fouls, resulting in increasing costs of operation but a

guaranteed amount of filtrate, whereas in the latter, fluid flux decreases over time

but energy is saved.

The membrane filtration process has garnered interest from a wide range of

scientific research disciplines, including chemical and mechanical engineering, image

processing, and now applied mathematics. Research efforts initially focused on

experiments of membrane fouling and performance metrics such as fouling rates

(how quickly the membrane clogs) and selectivity (the ratio of the amount of

undesired particles in the product and in the feed; the lower the ratio, the higher

the selectivity) [55, 40, 104, 77, 109]. Since the turn of the 21st century, a variety of

experimental studies have investigated how membrane performance depends on the

interior structure of the membrane filter (see, for example, Beuscher et al. [94, 82]

among many others; also see [61, 17, 16] for extensive reviews on fouling and
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membrane design). Multilayered membrane filter designs have shown promise in

manufacturing and much improved performance guarantees [21, 3, 93]. Several

theoretical groups have also contributed greatly to the modeling, simulation and

analysis of the membrane filtration process, at the single pore level with multiple

fouling mechanisms [110, 44, 97], for pleated filters [113, 122], on repeated cells of

planar membrane [74], reactive filters [68, 83, 69] and on multilayered membrane

structures [46, 39, 112], among many others. In particular, network representations

of multilayered membrane filters have been proposed by various authors, including

works on modeling and simulations [139, 8, 45, 47, 13], multiple-scale analysis and

homogenization techniques [102, 83, 7, 69], filter design and material optimization [97,

72, 71, 122], image analysis [14] and porosity visualization [123], which are particularly

relevant for this dissertation.

The goal of this dissertation is two-fold: 1) to address open questions on

membrane filters, such as the influence of pore interconnectivity, pore size hetero-

geneity under various structural settings and porosity gradient in the direction of

fluid flow; and 2) to provide a sound mathematical background for computations and

simulations on network representations of membrane filters, including multilayered

filters.

1.2 Structure of This Dissertation

This dissertation consists of several completed published manuscripts, which may

contain overlapping introductory descriptions. We introduce the essence of each

chapter as follows.

In Chapter 2, we introduce simple branching pore models to describe the

microstructure of a membrane filter, and use these models to discuss whether having

connected layers of pores is a design favorable for optimizing filter performance (as

measured by metrics such as filtrate production and contaminant control). We
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consider several simple “layered” pore network models with varying degrees of

connectivity and compare their performance. We also investigate how pore size

variations in each layer affect initial membrane performance characteristics. The

content presented in Chapter 2 was published in the Journal of Fluid Mechanics [50].

In reality, membrane filters have more complicated microstructures than the

models considered in Chapter 2. To examine this feature, we generalize the simple

hierarchical pore structures considered there to a random network of pores in

Chapter 3, continuing our analysis on models of membrane filters. We investigate

how membrane performance correlates with network geometric characteristics, such

as maximal allowed pore length, initial membrane porosity, and tortuosity of the

pore network. In this chapter, we also derive equations for fluid flow and contaminant

transport on a general network, laying the mathematical groundwork for the following

Chapters. The content presented in Chapter 3 was published in the SIAM Journal

on Applied Mathematics [48].

Furthermore, the manufacturing of membrane filters is not always perfect. Even

if a manufacturer strives to manufacture a membrane with homogeneous pores, initial

pore sizes throughout the membrane will differ, leading to pore size variations. To

address the impact of this phenomenon and harness the potential insights it may offer

on filter design, we investigate in Chapter 4 the influence of these imperfections on

the performance of pores networks considered in Chapter 3. The content presented

in Chapter 4 was published in the Journal of Membrane Science [49].

One versatile feature of a multilayered membrane filter design is to have a

specific pore size assigned to each layer to distinguish layer functions. Larger pores

upstream allow fluid to pass through more efficiently, while smaller pores downstream

capture contaminants more effectively. This distribution of pore sizes leads to a

pore-size gradient. In Chapter 5, we explore this setup via a pore-size graded network

model. We focus on several key filtration performance metrics and investigate how
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they correlate with the pore-size gradient, with a particular interest in identifying

optimal gradient values. The content presented in Chapter 5 is undergoing final

revisions before submission for publication in a scientific journal.

In Chapter 6, we conclude our findings presented in this dissertation and discuss

preliminary ideas concerning two open questions.
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CHAPTER 2

ON THE INFLUENCE OF PORE CONNECTIVITY ON
PERFORMANCE OF MEMBRANE FILTERS

2.1 Overview

In this chapter, we study the influence of a membrane filter’s internal pore structure

on its flow and adsorptive fouling behaviour. Membrane performance is measured

via 1) comparison between volumetric flow rate and throughput during filtration;

and 2) control of concentration of foulants at membrane pore outlets. Taking both

measures into account, we address the merits and drawbacks of selected membrane

pore structures. We first model layered planar membrane structures with intra-layer

pore connections, and present comparisons between non-connected and connected

structures. Our model predicts that membrane filters with connected pore structures

lead to higher total volumetric throughput than those with non-connected structures,

over the filter lifetime. We also provide a sufficient criterion for the concentration

of particles escaping the filter to achieve a maximum in time (indicative of a

membrane filter whose particle retention capability can deteriorate). Additionally,

we find that the influence of intra-layer heterogeneity in pore-size distribution on

filter performance, depends on the connectivity properties of the pores.

2.2 Introduction

Increasing interest in studying filter design and filtering efficiency has resulted in

many comprehensive review articles, such as that by Bowen & Jenner [19], who

provide a thorough overview of membrane separation technology, by Iritani [61], who

surveys the various fouling mechanisms that operate during a membrane filtration

process, and more recently by Chew et al. [24], who compiled experimental and

modeling results on interfacial interactions and membrane fouling in tangential
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(a)

 

(b) (c)

Figure 2.1 Magnified membrane images showing (a) gradation of pores sizes through
membrane depth, and in-plane inhomogeneity of pore sizes [76]; (b) connectivity and
junction layer [141] and (c) pore size distributions [119].

filtration. Other reviews survey different aspects of membrane filtration, such as

filtration materials [143], filtration techniques [38] and applications to chemical waste

treatment [33].

There is considerable industrial interest in designing and manufacturing layered

filters that allow for fine control of particle removal while maintaining a reasonable

filter lifetime. Such filters typically have pore size that decreases from one layer to

the next (in the direction of flow, see Figure 2.1a). In this way, pore closure occurs

more uniformly throughout the filter, since fouling begins at the upstream side of the

membrane, and thus the fouling rate is a decreasing function of depth through the

membrane (as is the concentration of particles in the feed). Such layered structures

may incorporate varying degrees of connectivity between pores in different layers, seen

in Figure 2.1b.

The literature on the influence of membrane morphology (pore structure and

connectivity) on filtration efficiency is too large to provide a comprehensive review

(but see, for example, [31], [45, 46], [55], [67] and [147]). Here we briefly outline

the most relevant work that provides the primary motivation for our paper. The

starting point for our modeling is the work of Sanaei and Cummings [111], who

introduced a simple bifurcating-pore model to capture some of the layering features

described above. In that paper, adsorption is the sole fouling mechanism: small
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particles are transported through a network of initially circularly-cylindrical pores,

and deposited on the pore walls. The particle concentration in the flow decreases as

the pore network is traversed, with the goal that it reaches a sufficiently low level

by the time the flow exits the filter. While the bifurcations model inter-layer pore

connectivity, there is no additional intra-layer connectivity (see Figure 2.1b) to allow

interactions between pores in the same layer. Griffiths et al. [46] accounted for such a

feature by means of an ad hoc connectivity parameter, which can be tuned to adjust

the degree of communication (allowed flux) between pores that occupy the same

layer. An important new feature of our present work is the incorporation of inter-

layer junctions with concentration and pressure equalizing capabilities that influence

membrane performance metrics (detailed in Section 2.3.3). Furthermore, neither [111]

nor [46] consider pore-size variation within individual layers. Such pore size variation

(which we term intra-layer heterogeneity or heterogeneity, in short), is another novel

feature of the present work: it is inevitable due to imperfect manufacturing and, as

we shall see, it may have non-intuitive implications for membrane performance.

In this work, we introduce simple models of membrane pore networks that

incorporate both intra-layer connectivity and heterogeneity. Our goal is to study and

explain the effects of membrane connectivity and investigate the influence of pore

size variations introduced by manufacturing defects. We consider dead-end filtration

as the primary type of filtration and adsorption as the dominant fouling mechanism.

This approach facilitates a simpler system than would be obtained by considering

all fouling modes, allowing us to focus on gaining insight into the effects of pore

connectivity. We defer the study of multiple fouling modes in a pore-network model

to a future work. The chapter is arranged as follows: in Section 2.3, we describe a

mathematical model for the flow inside a membrane with homogeneous intra-layer

structure and its heterogeneous analogue; in Section 2.4, we give appropriate scalings

and nondimensionalizations for these models; and in Section 2.5, we present results
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and discuss their implications and limitations. Lastly in Section 2.6 we present our

conclusions and discuss several ideas for future extensions of this work.

2.3 Mathematical Modeling

In this work, we consider a planar membrane filter whose top (upstream) surface

resides in the Y -Z plane, as shown in Figure 2.2a. The flow is (at least initially)

assumed to be entirely unidirectional, in the positive X direction. Furthermore, the

membrane pore structure is assumed homogeneous in the Y -Z plane, but is allowed

to vary internally along the X-axis, thereby imparting depth-dependent permeability.

Throughout this work, uppercase symbols denote dimensional quantities, while

lowercase symbols are dimensionless (see Section 2.4 below).

We assume a membrane consists of units that repeat periodically in the Y -Z

plane of the membrane in a square lattice pattern, with period 2W . Globally, we

assume incompressible unidirectional Darcy flow [103] across the porous medium, in

which the superficial Darcy velocity, U = (U(X,T ), 0, 0), is directly proportional to

the pressure gradient,

U = −K(X,T )

µ

∂P

∂X
,

∂U

∂X
= 0, 0 ≤ X ≤ D, (2.1)

where K (X,T ) is the permeability at depth X and D is the thickness of the entire

membrane. A pressure difference across the membrane acts as the driving force for

fluid flow; hence, the following boundary conditions are imposed

P (0, T ) = P0, P (D,T ) = 0. (2.2)

Locally, the membrane’s pore network is modelled as a composition of cylindrical

tubes, of circular cross-section. The Hagen-Poiseuille model, which provides the local

permeability K(X,T ) in terms of the local pore radii, is a suitable framework for this

structure.
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Table 2.1 Key Nomenclature

U = Ui Superficial Darcy velocity in the i-th layer Up,i Cross-sectionally averaged velocity in the i-th layer

Pi Pressure in the i-th layer P0 Pressure drop across the membrane

Q Global volumetric flow rate Qi Local volumetric flow rate through each pore of the i-th layer

Ci Concentration in the i-th layer C0 Particle concentration at membrane inlet

Ai Pore radius in i-th layer Di Thickness of i-th layer

Ri Pore resistance in i-th layer D Membrane thickness

R Total membrane resistance m Number of layers

Λ Deposition coefficient ϵij Noise amplitude (see 4)

Uppercase fonts denote dimensional quantities; lowercase are dimensionless.

2.3.1 Homogeneous Model

We now present our connected pore model, first in the simplest homogeneous case

in which all pores within a given layer are identical. To incorporate intra-layer

connectivity, here referred to simply as connectivity, we require that at least two

pores in the i-th layer connect in the (i+ 1)-th layer; see Figure 2.2a for an example

of a two-inlet connected membrane. In this example, the basic period-unit has a top

layer that consists of two inlet pores (identical tubes of length D1 and radius A1) on

the upstream membrane surface. Flow from these two pores enters the first inter-layer

region, where mixing occurs. The flow then enters the second layer of the membrane,

consisting of three identical tubular pores of length D2 and radius A2, which exit into

the second inter-layer region, where mixing again occurs. This structure repeats, so

that the i-th layer contains i+ 1 pores, with mixing in each inter-layer region.

More generally, for a membrane with m layers and νi pores in layer i, we assume

that the inter-layer junction regions are short enough to have negligible resistance so

that the pressure drop between the exit of pores in layer i, and the entrance of pores

in layer i + 1, is negligible (also see [22] and [111]). Because all pores in the i-th

layer have the same initial radius and length, they consequently experience the same

local volumetric flow rate, Qi. Incompressibility (mass conservation) conditions for
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i = 1

i = 2
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Y

(a)

Q1

Q2 Q2

(b)

Q2
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Figure 2.2 Illustration of a connected, branched-pore membrane and volumetric flow
rate balance at pore junctions. (a) An m = 3 layer pore-network with unit cell area
(2W )2. (b) Schematic bifurcation of a single pore (left) and two pores merging into
one (right), homogeneous in both cases. In the former case Q1 = 2Q2, and in the
latter 2Q1 = Q2, by mass conservation.

the fluid yield

∂Qi

∂X
= 0, 1 ≤ i ≤ m, (2.3)

where Qi through any pore in the i-th layer can be related to the corresponding

cross-sectionally averaged pore velocity Up,i,

Qi = πA2
iUp,i, Xi−1 ≤ X ≤ Xi, Xi =

i∑
j=0

Dj, D0 = 0, 1 ≤ i ≤ m, (2.4)

with Ai = Ai(X,T ) and Di the radius and the length of each pore in the i-th layer,

respectively. The chosen cylindrical pore geometry allows us to calculate Qi using

the Hagen-Poiseuille equation,

Qi = −(Pi − Pi−1)

µRi

, Ri =
8

π

∫ Xi

Xi−1

dX

A4
i (X,T )

, (2.5)

where Pi is the pressure at the exit and Ri the total resistance, for each pore in the

i-th layer. By continuity, we have

Q ≡ (2W )2U = νiQi, 1 ≤ i ≤ m, (2.6)
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where Q is the global volumetric flow rate across the membrane, U the global

superficial Darcy velocity and νi the number of pores in the i-th layer, which will

vary depending on the exact pore architecture chosen (in the example of Figure 2.2a,

νi = i + 1). Volumetric flow rate through the i-th layer in the membrane, νiQi, can

then be related to the local pore velocity, Up,i, under the assumption that the pressure

gradient is uniform across each layer (an assumption implicit in Equation (2.5)). For

the case that the imposed pressure is the same at each inlet, this condition becomes

equivalent to stating that at each junction the flow rate “splits” evenly — i.e., the

fluid mass is divided at each junction according to the number of pores.

Note that Equations (2.5) and (2.6) together yield m equations for the global

superficial Darcy velocity, U , and the inter-layer pressures, Pi. Solving successively

for Pi gives

(2W )2U =
P0

µR
, R =

m∑
i=1

Ri

νi
. (2.7)

The above equation for R describes the net resistance of the membrane.

To compare and contrast with the single-inlet non-connected bifurcating pore

model presented by [111] (where νi = 2i−1), we will consider single-inlet and two-inlet

connected pore models, with linear growth in the number of pores through each layer.

In these two cases, νi = i and i+ 1, respectively in Equation (2.6).

Particle transport and fouling

The model described above constitutes Darcy flow through the membrane with the

specified pore architecture, and we now develop the model for the transport and

deposition of foulants. In this work, we consider membrane fouling due to adsorption

(also known as standard blocking) only, as we intend to study the effect of different

pore architectures rather than the complexities of multiple fouling mechanisms.

Adsorptive fouling is the process of small particles adhering to the walls of the

pores, thereby shrinking the pore radius, and is dominant in many applications. To
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model this, within each pore we follow [110], where an asymptotic analysis of the

advection-diffusion equation governing particle transport down pores is carried out,

revealing that (in a certain distinguished Péclet number limit) diffusion dominates in

the radial direction, leading to particle concentration that is approximately uniform

across the pore cross-section, while variation in concentration along the length of the

pore is governed by an advection equation,

Up,i
∂C

∂X
= −Λ

C

Ai

, Xi−1 ≤ X ≤ Xi, 1 ≤ i ≤ m. (2.8)

Here, Ai (X,T ) is the pore radius, C(X,T ) is the local concentration of adsorption

foulants carried by the flow in the membrane, Up,i is the cross-sectionally averaged

pore velocity (see Equation (2.4)), and Λ is a parameter (with dimensions of velocity)

that captures the physical attraction between particles and pore walls. This equation

is solved subject to a specified particle concentration at the upstream surface,

C(0, T ) = C0. (2.9)

In real filters, it is desirable to have membrane outlet concentration C (D,T )

significantly smaller than C0 and therefore C must vary spatially in X. In fact,

according to Equation (2.8), C changes continuously through the depth of the filter

since the concentration at the downstream surface of a given layer must match with

that at the upstream surface of the next. At the same time, since the pore radius

Ai jumps in value between layers (by design), we must in general expect ∂C/∂X

to be discontinuous at layer junctions. In the next subsection we will justify and

carry out a coarse-grained discretization of Equation (2.8), which leads us to a simple

approximate model for the particle concentration within each layer.

The rate of pore radius shrinkage in each layer is proposed to be proportional to

the local concentration of particles. The assumption underlying our deposition law,

similar to that in [111], is that (at a given location X in the pore) in a time increment
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δT the change in pore area, 2πAiδAi, is proportional to the void fraction of particles

locally (αC, where α is an effective particle volume), the deposition coefficient Λ, and

the pore circumference available for particles to stick to:

∂ (πA2
i )

∂T
= 2πAi

∂Ai

∂T
= −ΛαC (2πAi) ⇐⇒ ∂Ai

∂T
= −ΛαC, (2.10a)

Xi−1 ≤ X ≤ Xi, Ai (0) = Ai0, 1 ≤ i ≤ m. (2.10b)

Spatial discretization (Coarse-grained model)

The system of PDEs described by Equations (2.8)–(2.10) must be solved numerically.

[111] did not consider pore-size variation within layers and were able to solve the

full system of PDEs as presented above to obtain results. In our case, our later

simulations for heterogeneous membranes require simulations where the radii of pores

in the same layer are randomly assigned, and a large number of simulations is

needed to obtain reliable statistics representative of an entire membrane, which is

numerically expensive. Therefore, we propose instead a coarse-grained discretization

of the model Equations (2.8)–(2.10) in which we solve for quantities Ai, Ci that

represent approximations to pore radius and particle concentration within layer i,

respectively.

If one assumes that the layers are sufficiently numerous that the particle

concentration does not change appreciably across a single layer (corresponding to

an assumption that 32ΛµD2/(πmP0W
3) ≪ 1, see Equation (2.8)), then such a

coarse-grained approximation should be reasonable. The particle concentration can

then be approximated by a piecewise (spatially) constant function, Ci(T ), changing

in value from one layer to the next. We note that if Ci(T ) is assumed independent

of X across a given layer i, then consistency requires that the pore radii must also

be independent of X in layer i, Ai(T ), and therefore shrink uniformly within a given
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layer over time. The particle concentration within the first layer is taken to be C0, the

concentration in the feed, making a jump to the value C1 at the boundary between

first and second layers. More generally, the concentrations within each layer are taken

to satisfy

Up,i
Ci − Ci−1

Di

= −Λ
Ci

Ai

, 1 ≤ i ≤ m, (2.11)

(replacing Equation (2.8)) with C0 specified as in Equation (2.9). This equation

allows the particle concentration Ci in each pore in layer i to be expressed in terms

of the concentration in the previous layer as

Ci =
Up,iCi−1

Up,i + ΛDi/Ai

, 1 ≤ i ≤ m. (2.12)

For the pore radius we propose

∂Ai

∂T
= −ΛαCi−1, 1 ≤ i ≤ m, (2.13)

as the coarse-grained discretization of Equation (2.10). Note the shift of index on the

right-hand side: since particle deposition occurs first at the upstream side of pores, it

is the concentration at pore inlets that dominates the fouling and pore closure, hence

(we have confirmed) using the upstream value Ci−1 gives more accurate results than

using either the downstream value Ci or an average (Ci +Ci−1)/2. At the same time

local resistance Ri, previously defined in Equation (2.5), reduces to

Ri =
8Di

πA4
i

, (2.14)

since each pore in the i-th layer has length Di.

To check the accuracy of our coarse-grained model, we carried out simulations

and compared with solutions to the full PDE model over a range of geometric and

material parameters. In all simulations presented in this work we use parameter

values such that the coarse-grained model gives less than 5% error when compared
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with fully-converged solutions to the PDE model (see Appendix A.1 for more details

of how this determination of accuracy was made).

2.3.2 Heterogeneous Model

Until now, we have focused on a homogeneous model in which all pores within a given

layer of the membrane are identical. Now, we turn our attention to heterogeneous

connected pore membranes in which the initial pore sizes within a given layer may

vary. Consequently, pores in the i-th layer do not necessarily experience identical

volumetric flow rates. Similar to Equation (2.4), the net volumetric flow rate through

pores is given by

Qij = πA2
ijUp,ij, 1 ≤ i ≤ m, 1 ≤ j ≤ νi, (2.15)

where Aij and Up,ij are the radius of the j-th pore in the i-th layer and the cross-

sectionally averaged pore velocity, respectively. By balancing the flow rates through

a mass-conservation argument (cf. Figure 2.2b), we allow for non-uniform splitting

of the flow at each junction. A general representation of this model in terms of the

global superficial Darcy velocity (and global volumetric flow rate Q) is given by

Q = (2W )2U =

νi∑
j=1

Qij, 1 ≤ i ≤ m. (2.16)

Again, the junction regions are assumed to be sufficiently low-resistance that pressure

is spatially uniform within them, with perfect mixing of the flow in these regions so

that the concentration C of suspended particles is spatially uniform. Similarly to

Equation (2.5), Qij through and resistance Rij of the j-th pore in layer i becomes

Qij = −(Pi − Pi−1)

µRij

, Rij =
8

π

∫ Xi

Xi−1

dX

A4
ij (X,T )

, 1 ≤ i ≤ m, 1 ≤ j ≤ νi. (2.17)
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By continuity, Q and
∑νi

j=1Qij must be equal. In view of this, Equations (2.16)

and (2.17) lead to m equations which, when solved successively for Pi, yield

Q = (2W )2U =
P0

µR
, (2.18)

(cf. Equation (2.7)), where R is the total resistance of the membrane, now given by

R =
m∑
i=1

(
νi∑
j=1

1

Rij

)−1

. (2.19)

Comparing this expression with resistors in an electrical circuit, one can see the νi

pores in the i-th layer are analogous to resistors in a parallel circuit, while the total

resistance of each layer is summed as for resistors in series. Using Equations (2.16)

and (2.18) to isolate Pi − Pi−1 in Equation (2.17), we arrive at an explicit expression

for Qij

Qij = πA2
ijUp,ij =

P0

µR
(
Rij

∑νi
j=1

1
Rij

) , 1 ≤ i ≤ m, 1 ≤ j ≤ νi. (2.20)

Particle transport and fouling

Fouling and foulant transport for the heterogeneous scenario are governed similarly

to the homogeneous case, but here particle concentrations at the outlets of pores in a

given layer are not the same because the pores have differing initial radii, which leads

to different fouling behaviour. Continuity of concentration is therefore not automatic

in the inter-layer regions and we need to invoke our perfect mixing assumption in

order to close the model. The transport equations now read

Up,ij
∂Cij

∂X
= −Λ

Cij

Aij

, Xi−1 ≤ X ≤ Xi, 1 ≤ i ≤ m, 1 ≤ j ≤ νi, (2.21)

where Cij is the cross-sectionally averaged concentration of foulants in the j-th pore

of layer i. The initial condition is

C01(T ) = C0. (2.22)
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Figure 2.3 Schematic of a connected branching pore membrane with m = 2 layers,
pressure drop P0 and upstream particle concentration C0. Flow is assumed to be
entirely in the X-direction.

With our perfect mixing assumption the uniform particle concentration, Ci,mix, in the

junction region below the i-th layer satisfies

Ci,mix :=

∑νi
j=1 QijCij∑νi
j=1Qij

, 1 ≤ i ≤ m. (2.23)

With Cij calculated from Equation (2.21), Ci,mix then provides the boundary

(upstream) condition to calculate Ci+1,j.

The rate of change in pore radius is again determined as in Equation (2.10).

The only modification is the introduction of double indices, so that the rate of change

of radius of the j-th pore in layer i is given by

∂Aij

∂T
= −ΛαCi−1,j, 1 ≤ i ≤ m, 1 ≤ j ≤ νi, (2.24)

with the initial pore radii specified: Aij(0) = Aij0. Note that this general

heterogeneous model reduces to the homogeneous model when all pores in a given

layer are identical.

Spatial discretization (Coarse-grained model)

We modify Equation (2.11) according to the concentration rebalance introduced in
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Equation (2.23), replacing Ci−1 by the appropriate upstream value Ci−1,mix. The

heterogeneous analogue of Equation (2.12) then becomes:

Cij =
Up,ijCi−1,mix

Up,ij + ΛDi/Aij

, C0,mix = C0, 1 ≤ i ≤ m, 1 ≤ j ≤ νi, (2.25)

and the radius of pore j in the i-th layer evolves at the following rate

∂Aij

∂T
= −ΛαCi−1,mix, 1 ≤ i ≤ m, 1 ≤ j ≤ νi. (2.26)

Similar to Equation (2.14), Rij, total resistance of the j-th pore in the i-th layer,

defined in Equation (2.17), now reduces to

Rij =
8Di

πA4
ij

. (2.27)

2.3.3 Measures of Performance

There are several primary measures of membrane performance used in applications.

First, volumetric throughput (referred to simply as throughput henceforth), which

represents the total cumulative volume of filtered fluid (filtrate) collected at the outlet

of the filter by time T , is defined as the time integral of the global volumetric flow

rate Q, i.e.,

V (T ) =

∫ T

0

Q (T ′) dT ′. (2.28)

Q is often plotted against throughput V to illustrate the relative efficiency of the filter.

A desirable performance would be represented by a relatively uniform Q during most

of the filtration, during which significant throughput is achieved, followed by a sharp

drop in Q towards the end of the filter’s lifetime when fouling is severe.

Another important performance metric is the concentration of foulants at the

outlet of the membrane, Cm(T ) ≡ Cm,mix(T ) (see Equation (2.23)). Calculating these

performance measures using our model, our simulations will allow us to study the
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dynamics of filtration, infer dependence on material and geometric parameters, and

ultimately infer the most efficient filtration scenarios.

2.4 Scaling and Nondimensionalization

2.4.1 Homogeneous Model

The model presented in Section 2.3.1 is nondimensionalized using the following

scalings

Pi = P0pi, (X,Di) = D (x, di) , Ci = C0ci, Ai = Wai,(
U,Up,i

)
=

πW 2P0

32µDr̂0
(u, up,i) , T =

W

ΛαC0

t,
(2.29)

where the physical scaling quantities are defined in Table 2.1 (with the exception of

r̂0, a representative value of the membrane resistance, which is defined below). After

applying the boundary conditions for pressure,

p0 (t) = 1, pm (0) = 0, (2.30)

the resulting dimensionless model for u (t), up,i(t), r (t), ai(t), and ci(t) (global Darcy

velocity, cross-sectionally averaged pore velocity, total membrane resistance, radius

of pores in the i-th layer, and particle concentration in the i-th pore, respectively) is

r =
1

r̂0

m∑
i=1

di
νia4i

, (2.31)

u =
1

r
, u =

νi
4
πa2iup,i, (2.32)

ci =
up,i ci−1

up,i + λdi/ai
, λ =

32µD2r̂0
πP0W 3

Λ,
∂ai
∂t

= −ci−1, 1 ≤ i ≤ m. (2.33)

Here r̂0 is chosen from a typical value1 of

r̂ (0) =
m∑
i=1

di
νia4i (0)

, (2.34)

1r̂0 = 15000 in most of the cases we analyze. See Section 2.5 for more details.
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to ensure r and u take order-one values (at least initially), and λ is a dimensionless

deposition parameter that describes the competition between the affinity of the

foulant particles for the membrane material, and the downstream flow (which depends

on physical quantities such as viscosity µ, transmembrane pressure P0, etc.). Note

that this choice of scaling (rather than simply scaling on the membrane’s initial

resistance in all cases) enables us to make direct comparisons of membranes with

different initial resistances.

We also define dimensionless volumetric flow rate u (t) and throughput v (t):

Q =
πW 4P0

8µDr̂0
u, V =

(2W )2D

αC0

v, v (t) =
1

λ

∫ t

0

u (t′) dt′; (2.35)

see the definitions of dimensional global volumetric flow rate Q and throughput V

Equations (2.18) and (2.28). These quantities are often compared when studying

membrane performance. We make comparisons between real membranes with

variations only in Λ while all other physical parameters (e.g., µ,D, P0,W ) are held

fixed. The resulting variations in λ are directly reflected in the time scale in

Equation (2.29), but no other scalings are affected. The factor of 1/λ in v then

emerges naturally after using the scales of Q, V and T in the definition of throughput

Equation (2.28).

Nondimensionalized boundary and initial conditions are given by

c0(t) = 1, ai(0) = ai0, (2.36)

with ai0 specified for 1 ≤ i ≤ m. This closes the system described by Equation (2.31)–

Equation (2.33).
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2.4.2 Heterogeneous Model

The heterogeneous model is also nondimensionalized using the scalings of

Equation (2.29). The relevant nondimensional equations are then

r =
1

r̂0

m∑
i=1

di

( νi∑
j=1

a4ij

)−1

, (2.37)

u =
1

r
, up,ij =

4

π
a2ij

1

r(
∑νi

j=1 a
4
ij)

−1
, (2.38)

cij =
up,ij ci−1,mix

up,ij + λdi/aij
, ci,mix =

∑νi
j=1 a

2
ijup,ij cij∑νi

j=1 a
2
ijup,ij

, λ =
32ΛµD2

πP0W 3
r̂0, (2.39)

∂aij
∂t

= −ci−1,mix, 2 ≤ i ≤ m, c0,mix = c0j, (2.40)

where 1 ≤ j ≤ νi and 1 ≤ i ≤ m. The following nondimensional boundary and initial

conditions also apply, 
c0j (t) = 1, 1 ≤ j ≤ ν1,∀t ≥ 0,

cij (0) = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ νi,

aij (0) = aij0, 1 ≤ i ≤ m, 1 ≤ j ≤ νi,

(2.41)

with aij0 specified for 1 ≤ i ≤ m and 1 ≤ j ≤ νi. This closes the system given by

equations Equations (2.37)–(2.41).

2.5 Results

We now present results of the models summarized in Sections 2.4.1 and 2.4.2

above. Our focus is on comparing membranes with different internal pore structures,

with particular emphasis on how the intra-layer pore connectivity affects filtration

performance. We mainly consider the three basic pore architectures sketched in

Figure 2.4. Results for homogeneous membranes (all pores in a given layer identical)
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Figure 2.4 The three distinct pore architectures compared: (a) single-inlet non-
connected branch membrane; (b) single-inlet connected membrane; (c) two-inlet
connected membrane. The ordered color coding (black, blue and red) is used
throughout Section 2.5.

are obtained using the system Equations (2.31)–(2.36), while results for heterogeneous

membranes are obtained from Equations (2.37)–(2.41). The stopping criterion for a

simulation is when the radius of the top pore a1 (t) reaches 0, at a time we label tfinal,

defined more precisely as,

tfinal =
{
t > 0 : lim

t′→t
a1 (t

′) = 0
}
. (2.42)

The reason why the first layer pore always closes first in practical situations will be

discussed later.

In Section 2.5.1, we highlight differences in flow and fouling behaviour between

the three membrane types and consider how various performance metrics are

influenced by membrane structure. Then, in Section 2.5.2, we address the influence

of membrane inhomogeneity by examining simulations of the heterogeneous model.

In order to make the most representative comparison between the three

membrane pore structures, we simulate fouling of structures that have equivalent

initial total membrane resistance r(0) = r0. Thus, in the absence of fouling, compared

membranes should behave identically under the same imposed pressure drop.
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2.5.1 Results for Homogeneous Membranes

For all homogeneous models, the total dimensionless membrane resistance is given by

r (t) =
1

r̂0

m∑
i=1

di
νia4i (t)

, (2.43)

where r̂0 is the typical membrane resistance given in Equation (2.29) (see also

Equation (2.34)) and in layer i, νi is the number of pores and ai(t) is the radius

of each pore. Per Figure 2.4, for the non-connected membranes νi = 2i−1, while

νi = i and i+1 for the single-inlet connected and the two-inlet connected membrane,

respectively. We specify the initial value of the resistance, r(0) = r0. Additionally,

in all simulations layers are of equal thickness. Thus di = 1/m, where m is the total

number of layers.

The initial radii of pores within each layer are taken to decrease geometrically

with layer depth. This geometry is selected in order to retain tractability of the models

in terms of the number of parameters, but other scenarios can be easily implemented.

Thus,

ai(0) = a1 (0)κ
i−1, (2.44)

with 0 < κ ≤ 1 the geometric ratio, which characterizes the extent of the membrane

heterogeneity across layers. There are two parameters in Equation (2.44): a1 (0) and

κ. We impose the value of one of these parameters; the other is then determined

by using Equation (2.43), subject to the constraint that r(0) = r0. In physical

membranes, surface porosity, ϕtop = ν1πa1 (0)
2 /4, is a fairly controllable and readily

measurable membrane property. For this reason, we typically specify ϕtop in our

simulations. Nonetheless, in order to quantify more fully the differences between
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Figure 2.5 Homogeneous models: pore radius evolution for each layer. (a)
Non-connected branch membrane (b) single-inlet connected (c) two-inlet connected
membrane. For all calculations, ϕtop = 0.539 (maximum comparable porosity),
λ = 30, m = 5 and the initial resistance r0 = 1.

Figure 2.6 Homogeneous models: volumetric flow rate evolution for non-connected
branch membrane (black), single-inlet connected (blue) and two-inlet connected
membrane (red). The solid black curve lies under the solid blue curve. For all
calculations, ϕtop = 0.539 (maximum comparable porosity), λ = 30, m = 5 and the
initial resistance r0 = 1.

the three membrane types, we also briefly compare membranes with equal geometric

coefficients, κ. 2

In most simulations, we compare membranes with m = 5 layers, initial

dimensionless resistance r0 = 1, and with the dimensionless deposition coefficient

set to λtypical = 30, chosen so that the membrane particle removal efficiency is in

qualitative agreement with typical requirements in applications.

2Note that Equation (2.44) in general leads to porosity gradients within the filter, with
(initial) porosity ratio between adjacent layers readily calculated from Equation (2.44) if
desired, as ϕi(0)/ϕi−1(0) = κ2νi/νi−1.
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Figure 2.5 shows simulations for the pore radius evolution in each layer for all

three membranes with identical top-layer porosity ϕtop = 0.539. Note that this is the

largest possible surface porosity for a two-inlet membrane of the type in Figure 2.4a.

Both single-inlet models display notably longer membrane lifetimes than the two-inlet

model — the value of tfinal, determined by when the radii of pores in the top layer go

to zero, is larger. This is because for a fixed value of ϕtop, a1(0) must decrease as the

number of pores in the first layer increases.

We also observe that the radius evolution of the second layer pores presents

interesting curvature changes towards the end of the simulation. We attribute this

change in curvature to the top layer pore radius becoming smaller than the radii of

downstream pores. When the top pore is largest among all pores, it provides the

dominant contribution to particle removal. However, when it becomes smaller than

the second layer pores, it incurs a higher local pore velocity due to conservation of

mass (analyzed in a later discussion involving Figure 2.11d) increasing the advective

flux of foulants further into the membrane to the second layer, which now takes on the

majority of particle removal. The second layer radius will then decrease more rapidly

due to this higher inflow of particles. A similar reasoning can be used for layers

further downstream at later times, though the effect is less visible than for the second

layer, until the filtration ends with the top pore closing to zero. This hypothesis is

further supported by Figure 2.6, which shows the evolution of u (t) (volumetric flow

rate) for each model. For each plot, we can associate the onset of rapid decrease in

u with the time at which the top pore becomes appreciably smaller than the second

and third layer pores, shown in Figure 2.5.

In order to quantify the relative performance of our membranes, we investigate

their dimensionless volumetric flow rate u(t) versus throughput v(t) characteristics

(see Equation (2.35)). Figure 2.7 plots u(t) versus v(t) for the (equal initial

resistance) single-inlet non-connected, single-inlet connected and two-inlet connected
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simulations, λ = 30, m = 5 and initial resistance r0 = 1.
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Figure 2.8 Homogeneous models: (a) total throughput versus ϕtop for non-connected
(black), single-inlet connected (blue), and two-inlet connected (red) membrane
structures. (b) Volumetric flow rate versus throughput for connected membranes
with ν1-inlet pores and ϕtop = 0.539. For all simulations, λ = 30, m = 5 and initial
resistance r0 = 1.
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membranes depicted in Figure 2.4, for three different values of the top-layer porosity

ϕtop. Figure 2.8a shows total throughput versus porosity results for the different

pore architecture membranes as the number of layers m varies, while Figure 2.8b

illustrates u (t) versus v (t) performance as the number of inlet pores ν1 varies (of

these architectures, only ν1 = 1 and ν1 = 2 are sketched, in Figures 2.4a and 2.4b,

respectively). Together, Figures 2.7 and 2.8a show that for each system, the best

throughput performance is realized when ϕtop is maximized, or equivalently, the

initial pore radius is the widest possible at the upstream side. As ϕtop increases

(for fixed initial resistance), membranes process more filtrate and sustain larger

volumetric flow rates that decay sharply — an advantageous attribute indicating

that the system performs at a high level before failure. We also find that (for the

chosen model parameters) the single-inlet models outperform their two (or more)

inlet counterparts. When comparing systems with equivalent ϕtop, we find that

the two-inlet model exhibits notably shorter membrane lifetimes, consistent with

the results shown previously for pore radii evolution in Figure 2.5. Consequently,

the total throughput of such systems is diminished. We remark that the results of

Figures 2.7 and 2.8a reveal the two single-inlet models to exhibit strikingly similar

performance. In these simulations the two models share the same top layer radius

while the geometric ratio κ differs slightly (relative κ difference is ∼ 6%). This

indicates that for the chosen parameters, the morphology in lower layers, including

intra-layer connections, does not play a prominent role in membrane performance as

measured by total throughput. Moreover, Figure 2.8a shows that for each selected

membrane structure, with fixed top layer porosity and the same deposition coefficient

λ, membranes with more layers yield larger total throughput. This is because under

the equal initial resistance constraint (in addition to fixed top layer porosity), a

membrane with more layers has a larger κ-value and therefore larger pores in upper

layers, which take longer to close than the smaller pores of a membrane with fewer
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Figure 2.9 Homogeneous models: (a) initial particle concentration at outlet of first
layer, c1(0), versus deposition coefficient λ for single-inlet structures. Note that the
results are identical for both connected and non-connected single-inlet models because
they have the same initial top pore radius a10. (b) Initial particle concentration at i-th
layer pore outlets, ci(0), versus λ for single-inlet non-connected (black) and connected
(blue) models with ϕtop = 0.709. The vertical range is extended below zero for clarity
only; ci(0) > 0 always. For all simulations, m = 6 and r0 = 1.

layers. Motivated further by the observations of Figure 2.8a, we probe the effect of

having more than two inlets on the upstream surface (again while fixing the top-layer

porosity ϕtop) in Figure 2.8b. We find that, as the number of inlet pores is increased,

total throughput decreases. This is because the more pores a membrane has in its

top layer (with pore size constrained by circle packing in the designated square), the

smaller the initial pore sizes are in the top layer. These pores shrink to zero faster

than those in a membrane with fewer inlets (see the third equation in Equation (2.33))

and lead to less total throughput.

We also observe a common feature from Figures 2.7 and 2.8b that volumetric

flow rate u (t) decreases very sharply towards the end of the filtration. This is due

to the radii of top pore(s) becoming smaller than those of the downstream ones.

The radius of the top pore contributes more dramatically to total resistance (per

Equation (2.43)) when it is very small (smaller than pore radii in downstream layers),

thus increasing the rate at which u (t) decreases via Equation (2.32).

We next investigate the effect of variations of λ, as induced by changes in the

dimensional coefficient Λ, corresponding to changes in specific material properties of
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Figure 2.10 Homogeneous models: total throughput versus λ for single-inlet non-
connected (black) and connected (blue) membrane structures. Each set of curves
represents equivalent initial top layer porosity. Each black dot is an equivalence point
between the two models such that the same total throughput is achieved with the
same λ. For all simulations, m = 6 and r0 = 1.

the filter or the particles in the feed. This coefficient captures the overall attraction

strength or “stickiness” of the pore wall, per Equation (2.33): in general, a larger

value means that particles carried by the feed solution will adhere to the walls of a

pore more easily. This in turn causes faster pore shrinkage and a shorter membrane

lifetime. Conversely, smaller values of λ lead to reduced adsorption and more particles

escaping capture by the membrane. As Λ appears in the chosen time scale (see

Equation (2.29)), such variations in λ effectively change the time scale. This effect is

manifested in Equation (2.35), where total throughput v(t) is inversely proportional

to λ.

In Figures 2.9 and 2.10 we show results as λ varies for m = 6 layer single-inlet

membranes with initial dimensionless resistance r0 = 1 and several values of the top

layer porosity. Figure 2.9a illustrates the (initial) particle capture within the first layer

of the membrane. The results show that, as λ increases, the percentage of particles

captured by the first layer pore rapidly increases, exceeding 50% in all cases by the

time λ = 20. In Figure 2.9b, we plot the (initial) particle capture within all layers of

the membrane. We note that as λ decreases, differences in performance between the
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two models become more apparent. For smaller λ-values membrane internal structure

begins to play a more prominent role, as a greater percentage of particles reach the

lower layers. This is shown, for λ ≤ 5, by the widening gaps in the graphs of ci as

i increases, between the connected and non-connected models in Figure 2.9b. The

non-connected branch model (black curves) achieves lower particle concentration at

the outlet of each layer, because its more numerous downstream pores are able to

contribute more to overall retention capability when upstream pores capture fewer

particles (the small-λ effect).

For both connected and non-connected single-inlet models, over the range of λ

considered the membrane total throughput increases as λ decreases, as Figure 2.10

demonstrates. Furthermore, when λ becomes large, the total throughputs of the

single-inlet models converge towards one another, suggesting that, for large λ,

filtration performance is dominated by the top-layer pore (which is identical in these

two models). This conclusion is further supported by Figure 2.9a. Finally, we draw

attention to the existence of total throughput equivalence points in Figure 2.10.

For certain values of λ, the total throughput of the two models is the same (see

black solid dots). To determine if either morphology is preferential at equivalence

points, we consider the concentration of particles remaining in the filtrate as it exits

the membrane, cm(t), which measures the retention capability of the membrane.

Additional simulations (not shown here) indicate that the non-connected model does

a marginally better job (lower particle concentration at outlet) at equivalence points,

consistent with our remarks on Figure 2.9b above.

In Figure 2.11, we further analyze the influence of membrane morphology on

particle removal efficiency for our three models. In Figures 2.11a–2.11c, particle

concentration in the filtrate is plotted as a function of instantaneous throughput for

all three membrane structures, and for three different κ-values. From the y-intercepts

of those figures, we see that a smaller κ value (and consequently smaller downstream
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Figure 2.11 Homogeneous models: (a)-(c) concentration at pore outlet versus
throughput for (a) non-connected, (b) single-inlet connected, and (c) two-inlet
connected membrane structures. (d) Two-inlet connected model: the concentration
of particles leaving the first layer downstream surface (c1, solid red curve) and
cross-sectionally averaged first layer pore velocity (up,1, dashed red curve) are shown.
For all calculations, λ = 30, m = 5, κ = 0.6 and r0 = 1.
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pores) contributes to lower initial particle concentration in the filtrate, indicating

that a steeper porosity gradient in the filter medium leads to greater initial foulant

retention. Interestingly, however, for the selected parameters we observe that the

outlet particle concentrations cm(t) do not necessarily decrease monotonically in time

for all choices of geometric coefficients examined. For example, in Figure 2.11c for

κ = 0.6, the value of cm(t) for the two-inlet model increases over a considerable

portion of the membrane lifetime before finally decreasing and dropping to zero due

to complete fouling of the first layer. This phenomenon, which we investigate more

thoroughly below, is especially important because in many applications it is necessary

for membranes to maintain a guaranteed particle removal efficacy throughout their

operational lifetimes. We hypothesize that this non-monotonic behaviour is linked

to the corresponding increase in cross-sectionally averaged pore velocity, up,i, as

shown in Figure 2.11d. As up,i increases due to the reduction of pore size through

adsorptive fouling, particles in the feed solution are advected through pores faster.

The upshot is that more particles are advected through the membrane before they

have the opportunity to adhere to the pore walls, in contrast to the low pore velocity

situation.

In order to understand better which parameter regimes lead to the observed

increase in filtrate particle concentration, we plot the normalized difference between

the initial and maximum filtrate particle concentrations,

cdiff (λ;m) =
max

0≤t≤tfinal
cm (t)− cm(0)

cm(0)
, (2.45)

as a function of λ. If, for a given value of λ, the outlet concentration monotonically

decreases for the entire membrane lifetime, then max0≤t≤tfinal cm (t) = cm(0) and cdiff

vanishes. Conversely, a positive value of cdiff is indicative of a deteriorating particle

retention capability over at least some of the filter lifetime. Figures 2.12a–2.12c

show cdiff plotted against the dimensionless deposition parameter λ for the single-inlet
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non-connected model, and the single and two-inlet connected models respectively, for

a range of layer numbers m. Here we choose initial (dimensionless) resistance r0 = 2

in order to include a large range of m-values (for a given κ-value, large m leads to

very small pores in lower layers, particularly for the non-connected model, hence a

larger net resistance).

It is, in fact, possible to find a sufficient condition that characterizes parameter

choices guaranteeing the existence of a maximum in the function cm (t). Our sufficient

condition takes the form of an inequality, depending entirely on initial conditions of

the problem and model parameters, and is summarized by the following Theorem

(proved in Appendix A.2):

Theorem 1. Let

fj (λ,m) =
1

1 + γλ
m
νjκj−1

, 1 ≤ j ≤ m, f0 = 1, γ =
πa1 (0) r0

4
,

and define

g
(
λ,m; γ, {νj}j=m

j=1

)
:=

(
m∑
j=1

νj

j∏
i=0

fi (λ,m)

)(
m∑
j=1

1

νjκ4(j−1)

)
(2.46)

−4

(
m∑
j=1

νjκ
j−1fj (λ,m)

)(
m∑
j=1

∏j−1
i=0 fi (λ,m)

νjκ5(j−1)

)
. (2.47)

If g > 0, then there exists sλ,m > 0 such that dcm
dt

(sλ,m) = 0 and cm (sλ,m) is maximal.

We first provide some intuition for the terms in the theorem. The fj are closely

related to the first equation in Equation (2.33). In fact, each fj is the ratio of the

initial particle concentrations in the j-th and (j − 1)-th layers (see Appendix A.2 for

the derivation of this relation). The function g arises from the expression of c′m (0),

the initial slope of the particle concentration function cm(t), in terms of the fj and

the model parameters. Note that the sufficient condition depends only on λ,m and
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Figure 2.12 cdiff (λ;m) defined in Equation (2.45) versus λ for (a) single-inlet non-
connected (b) single-inlet connected and (c) two-inlet connected membrane structures.
(d) Zero level set of the function g defined in Theorem 1 for single-inlet model (blue),
two-inlet model (red) and the branch model (black). The colored data points are
the pairs of x-intercepts with their respective m values from panels (a), (b) and (c),
respectively. For all simulations, ϕtop = 0.4 and r0 = 2.

the membrane geometry, which is parametrised by γ (defined in the theorem) and the

number of pores per layer, νi. Even though κ appears in the inequality, it is uniquely

determined via Equation (2.43) once a1 (0) (or ϕtop) and r0 are specified.

We can illustrate the region of parameters that satisfy the inequality given

in Theorem 1, with specified initial resistance r0 and top layer porosity ϕtop. In

Figure 2.12d, we present the level curves {(λ,m) : g = 0} for each model membrane

with γ and νj specified. Two observations may be made about these contour curves.

First, for large λ, the two single-inlet models nearly coincide. This is because

membrane fouling occurs primarily in the first layer when the material has a high

affinity for the passing particles. However, in relatively small λ regimes (λ ≈ 5 and
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lower), the single-inlet and two-inlet connected models exhibit very similar behaviour.

This is because for small λ, more particles are able to penetrate to the lower layers,

where the single and two-inlet models share more or less the same structure (differing

by just one pore per layer). For applications, in order to assure particle retention

performance that does not deteriorate in time, the region to the right of the level

curves in Figure 2.12d should be avoided. This region represents the set of parameters

that satisfy the inequality, namely, the region of sufficiency for deteriorating particle

retention given by {(λ,m) : g > 0}. To check the tightness of the bound provided by

the theorem, we extract the x-intercepts (roots of cdiff = 0) in Figures 2.12a–2.12c, and

pair them with their respective m values as the second component. Together, these

ordered pairs (λ,m) make up the data points (the ×’s) presented in Figure 2.12d.

Indeed, as expected, the data points, representing the onset of local maxima in cm (t)

with various parameter choices, all lie in the region of sufficiency of the theorem.

The bound is particularly tight for the single-inlet connected model (in blue), and

reasonably so for the two-inlet connected model (red). However, it is rather poor

for the single-inlet non-connected model (black), and becomes worse as m increases.

This is because in this case, the number of pores per layer νj = 2j−1 (1 ≤ j ≤ m)

grows much faster with layer number than in the other cases (νj = j, j + 1), making

the difference between the two terms in g (λ,m) larger as m increases.

2.5.2 Results for Heterogeneous Membranes

In general, the complex membranes found in real-world systems do not possess

homogeneous geometries of the kind modelled in Section 2.3.1 and studied so far. For

this reason, we also consider membranes with varying degrees of heterogeneity in the

pore structure. Further motivation is provided by considering industrial fabrication

processes. Due to manufacturing precision limitations, even if it were desirable to

make a membrane with perfect in-plane pore homogeneity, it would not be possible.
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It is therefore worthwhile to consider how in-plane variation in pore sizes, and

manufacturing tolerance limitations, may influence membrane performance. Based

on the assumption that membrane manufacturers attempt to specify the pore size to

control permeability, we address this issue by introducing variations to the radius of

each pore within our layered structure. The same basic pore structure is considered,

but pores are no longer described by a single layer-dependent radius ai. For each

model, individual pore radii are specified by introducing a random perturbation on

top of the analogous homogeneous pore radius. More precisely, we suppose that the

initial radius of the j-th pore in the i-th layer is now given by

aij(0) = ai(0)(1 + ϵij), (2.48)

where ai(0) = a1 (0)κ
i−1 as in the homogeneous case, and ϵij is a continuous random

variable drawn independently for each (i, j) pair from a uniform distribution centered

about zero and with half-width – or noise amplitude – b, i.e.,

ϵij ∼ unif(−b, b), 0 ≤ b ≤ 1. (2.49)

For each realisation, ϵij may result in a larger or smaller initial pore size than if

unperturbed (corresponding to b = 0). In this way, by carrying out a suitably large

number N of such simulations and studying quantities such as volumetric flow rate,

throughput and membrane resistance averaged over all simulations, we are able to

gain qualitative insight into the influence of heterogeneity, and the specific effects of

varying the noise amplitude.

The admissible range of b is chosen so as to ensure that the perturbed pore

radii satisfy a physical constraint: loosely speaking, that the maximally-perturbed

pores will fit within the box of containment (a square of side length 2 in our

dimensionless units). The perturbation applied to the initial pore sizes will lead

to changes in the initial membrane resistance, the volumetric flow rate through
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the membrane, and ultimately the total throughput of filtrate. We address the

influence of the perturbations by first fixing κ, m (geometric ratio of pore sizes

between layers, total number of layers), and r0 (initial membrane resistance) for the

underlying homogeneous model, calculating the corresponding layer-dependent initial

pore radii ai (0), then perturbing these radii using Equation (2.48), before observing

the performance of the resulting heterogeneous membrane. Before so doing, we first

provide several definitions that we will need for this heterogeneous model.

In view of Equations (2.37)–(2.40) where nondimensional formulas for global

resistance r, and Darcy velocity u are given, we can analogously define the

dimensionless heterogeneous initial resistance and Darcy velocity as

rb (t = 0) =
1

r̂0

m∑
i=1

di

(
νi∑
j=1

a4ij(0)

)−1

, ub (t = 0) =
1

rb (t = 0)
. (2.50)

Note that this formula is only valid for the connected models, for which the

pore-inlet pressure is the same for each pore in a given layer, whereas in the non-

connected heterogeneous model, the pressures at different junctions in the same layer

are not necessarily the same. For the non-connected branch model, we utilize the

self-similar structure – the left and right branch at each connecting junction – and

calculate the total resistance iteratively through each layer as follows: for an m-layer

membrane with non-connected branch structure,

rb,ij (t) =
di

a4ij (t)
+

(
1

rb,i+1,2j−1 (t)
+

1

rb,i+1,2j (t)

)−1

, 1 ≤ i ≤ m− 1, 1 ≤ j ≤ 2i−1,

(2.51)

rb,m,j =
dm

a4m,j (t)
, 1 ≤ j ≤ 2m−1, (2.52)

where rb,ij (t) represents, for a fixed perturbation strength b, the aggregate resistance

in the branch originating from the j-th pore in the i-th layer. We initialize the

iteration on i with i = m−1 using Equation (2.51) and the resistance from each pore
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in the m-th layer via Equation (2.52). More generally, for each i, we find rb,ij for

each j and then proceed to i− 1 and so on, until we reach rb,11(t) =: rb(t), the total

resistance of the membrane with a non-connected branch structure.

As indicated previously, for a given value of the noise amplitude b, we average

over a large number of simulations N to obtain sample averages for membrane

performance measures. Thus, average volumetric flow rate through the membrane

is defined more precisely by

ub(t) =
1

N

N∑
i=1

ub,i(t), (2.53)

where ub,i(t) is the volumetric flow rate obtained for the i-th simulation of the

ensemble. Lastly, the average throughput is defined (analogously to Equation (2.35))

by

vb(t) =
1

λ

∫ t

0

ub(t
′)dt′. (2.54)

After some numerical experimentation the value N = 104 was chosen as a sufficiently

large number of simulations to obtain reliable averaged results. We did generate

selected results using N = 106 simulations, but found only minor qualitative changes

when compared to N = 104. In light of the significantly larger computational cost of

106 simulations, we use N = 104 to obtain all results in the following section.

Before presenting the detailed results of the evolution of heterogeneous

membranes, we briefly remind the reader of the principal structural difference between

the connected and non-connected models under this heterogeneous regime. In

Figure 2.4c, the non-connected branch model, each pore leads to two downstream

pores, with different initial radii, and pores in the same layer are connected only to

their direct sibling from the same upstream pore, and not to any other pores in that

layer. Hence, pores within the same layer can experience different upstream (and

downstream) pressures, and different particle concentrations at their inlets. However,
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Figure 2.13 Heterogeneous models: average volumetric flow rate Equation (2.53)
versus throughput Equation (2.54) of single-inlet (blue) and two-inlet (red) connected
models for varying noise amplitude, b. (a),(c) κ = 0.95 and (b),(d) κ = 0.6. All results
are averaged over 104 simulations, with common parameters λ = 30 and m = 5.

in the connected geometries of Figures 2.4b and 2.4c, pores within the same layer

are connected via a junction layer, where our mixing assumption Equation (2.39)

and the assumption of equalized pressure (see the beginning of Section 2.3.1) play

important roles in distinguishing the qualitative differences between connected and

non-connected models.

Expected volumetric flow rate vs. throughput

We first investigate the effects of noise on membrane performance by observing

the average (expected) volumetric flow rate ub(t) versus throughput vb(t) for the

heterogeneous models, with reference to the results for homogeneous membranes

obtained earlier. We are also interested in how connected and non-connected pore
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Figure 2.14 Heterogeneous models: average volumetric flow rate versus throughput
of non-connected branch model (black); and connected branch model with νi = 2i−1

(magenta), (a),(c) κ = 0.95 (b),(d) κ = 0.6. All results are averaged over 104

simulations, with common parameters λ = 30 and m = 5.
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Figure 2.15 Heterogeneous models: results for the single-inlet connected model.
(a) Initial average volumetric flow rate ub(0) (blue) and reciprocal of initial average
resistance 1/rb(0) (black) vs. noise amplitude, b. (b) a large sample approximation
of the Jensen gap J (given in Equation (2.57)), vs. noise amplitude, b. All results
are averaged over 104 simulations, with common parameters λ = 30 and m = 5.
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structures compare. In Figure 2.13, we present the ub(t) vs vb(t) results, for 5-layer

single-inlet connected and two-inlet connected membranes, with two choices of κ (0.95

and 0.6). We note the following two phenomena: firstly, we immediately observe from

the horizontal intercepts of each graph that the greater the noise amplitude, the larger

the average total throughput in both of these connected models (see blue and red

curves in Figure 2.13a-d); and secondly, that the average initial volumetric flow rate

ub(0) generally increases with b, shown by the vertical intercepts in the same figures

(with the exception of Figure 2.13a, an anomaly that we defer to a later discussion).

The corresponding ub(t) vs vb(t) results for the non-connected pore model, in

Figure 2.14a and b, reveal that the greater the noise amplitude b, the smaller the

average total throughput – exactly the opposite trend noted for the connected cases in

Figure 2.13. There are two possible factors that might explain or at least contribute to

these contrasting findings: 1) the much larger number of downstream pores in the non-

connected branch model; and 2) the absence of the pressure/concentration-equalizing

junction layer for the non-connected model. To investigate the first hypothesis, we

consider a connected model with exactly the same number of pores per layer (i.e.,

νi = 2i−1) as the non-connected branch model. Results are shown in Figure 2.14c and

d, again for the two κ-values used in Figure 2.13 and the same b-values: it is clear from

the horizontal intercepts in these plots that average total throughput again increases

as b increases, much as for the original connected model results of Figure 2.13. This

rules out the first possibility.

Continuing to the second hypothesis, we first note that by having a

concentration- and pressure-equalizing junction layer, in particular in the hetero-

geneous regime, the connected branch model is able to split upstream volumetric

flow rates into downstream pores depending on their sizes. This feature would lead

to different average volumetric flow rate evolution for the two considered models

(non-connected vs. connected) in Figure 2.14 under different signs of the pore-size
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perturbation. We claim that the equalizing junctions in the connected model

contribute to the larger throughput observed when compared to the non-connected

case. Since the two models only begin to differ at the outlets of the second layer

and onward, we focus on the effects of initial pore-size perturbation on the pores in

the second layer as an example. If both pores are under perturbations that yield

larger initial radii, they will both experience larger initial volumetric flow rates ub(0)

than if unperturbed; such an effect on both connected and non-connected models is

roughly the same. However, if either pore is under a perturbation that reduces initial

pore radius and thus ub(0), the equalizing junction in the connected model will help

alleviate the volumetric flow rate-reducing effect via the mixing assumption, whereas

the junctions in the same layer in the non-connected model behave independently

from each other and are thus incapable of compensating in this way.

Now we return to the anomaly of Figure 2.13a, which showed that a small

random perturbation to the pore sizes may cause ub(0) to decrease in the single-

inlet connected case, in contrast to the results from two-inlet models provided in

Figure 2.13c and Figure 2.13d, where ub(0) was seen to increase monotonically with

respect to b. This is shown more clearly in Figure 2.15a, where we plot ub(0) with

respect to noise amplitude b, for various choices of κ for the single-inlet connected

model. We find that ub(0) may exhibit a minimum with respect to b, for certain

κ values (e.g., when κ = 0.92 in Figure 2.15a), illustrating the potential for non-

monotonicity of ub(0) as a function of b. Figure 2.15b is discussed in Section 2.5.2

below.

It is not immediately clear why average initial flow rate ub(0) through the

membrane should depend on perturbation amplitude (with our chosen parameters).

The intriguing behaviour indicated by these sample numerical simulations motivates

an analytical approach to calculate explicitly the expected values of key quantities

such as this.
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Expected initial volumetric flow rate and membrane resistance

Motivated by the observations in the previous subsection, we now present further

analysis to explain why, in certain parameter regimes, average initial resistance and

volumetric flow rate behave non-monotonically with respect to variations in noise

amplitude b. For each choice of b, we carry out simulations of the model described in

Equations (2.37)–(2.41)) and calculate average initial volumetric flow rate ub(0) via

the sample mean definitions in Equation (2.53).

First, we proceed with basic sampling theorems to derive key quantities of

interest. By the strong law of large numbers [64], the sample average converges to

the true mean. More specifically, for a fixed choice of b,

ub (0)
N→∞→ E [ub (0)] , almost surely , (2.55)

where N is the number of simulations and E [·] is the expectation under the joint

probability density of ϵij, 1 ≤ j ≤ νi, 1 ≤ i ≤ m.

As ub(0) is inversely proportional to initial membrane resistance for each

realization of the random perturbation to the pore sizes, ϵij, it is also of interest to

study the effect of perturbations on the expected initial resistance. The relationship

between expected initial volumetric flow rate and resistance is characterized by

Jensen’s inequality [64]

E [ub (0)] = E

[
1

rb (0)

]
>

1

E [rb (0)]
, (2.56)

by which the reciprocal of expected initial resistance provides a lower bound for

expected initial volumetric flow rate. The inequality is strict because the convex

function, here 1/x, is non-affine, while rb (0) is a non-constant random variable, almost

surely.

As a result, we cannot claim a similar governing law u = 1/r as in the

homogeneous case. To visualize Jensen’s inequality, we refer to Figure 2.15a and
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Figure 2.16 Heterogeneous models: average initial resistance for (a) single-inlet
connected model and (b) two-inlet connected model. All results are averaged over
104 simulations, with common parameters m = 5 and λ = 30.

Figure 2.15b, which together illustrate the terms on both sides of Jensen inequality,

and the Jensen gap, defined as

J (1/x,P) = E

[
1

rb (0)

]
− 1

E [rb (0)]
, (2.57)

where 1/x and P are the convex function and the probability distribution of rb (0),

respectively.

Now, upon rearrangement of Equation (2.56), we have

E [rb (0)]E [ub (0)] > 1. (2.58)

From this inequality, we can immediately conclude that if E [ub (0)] < 1 for some b,

then the corresponding expected initial resistance for the same b must necessarily

satisfy E [rb (0)] > 1. This provides a necessary condition for the phenomenon

observed in Figure 2.13a, where ub(0) does not monotonically increase with respect

to b.

To elicit further information regarding the emergence of the non-monotone

dependence of average initial resistance rb (0) on noise amplitude b, we study

the quantity E [rb (0)], the large number limit of rb (0). More precisely, we seek

mathematical reasons that could yield physical insight into the non-monotonic
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Figure 2.17 Heterogeneous models: partial derivative of expected initial resistance
with respect to noise amplitude b for (a) single-inlet connected model and (b) two-inlet
connected model. For all simulations, m = 5 and λ = 30.
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behaviour. In Figure 2.16a and Figure 2.16b, several plots of average initial resistance

rb (0) (averaged over 104 simulations) with different geometric coefficients are given,

for the single- and two-inlet models, respectively. In the single-inlet case, the

behaviour of rb (0) with b undergoes a qualitative change as κ varies. For κ close to 1,

rb (0) increases monotonically with increasing b. For κ smaller than some threshold

value between 0.8 and 0.95, rb (0) always decreases with increasing b. This complex

behaviour does not, however, persist in the two inlet case, as shown in Figure 2.16b,

where rb (0) is monotonically decreasing for all selected values of κ.

To attempt to explain these observations, we study the sensitivity of rb (0)

to b as the geometric coefficient κ is varied. With the aid of an explicit formula

for E [rb (0)] (Equation (A.10), derived in Appendix A.2), we plot in Figure 2.17

the initial slope of E [rb (t)] as b varies, the partial derivative ∂
∂b

E [rb (0)]. Evidently,

for the considered values of κ, with the exception of κ = 0.95 in the single-inlet

connected model, ∂
∂b

E [rb (0)] is negative, and only turns positive for very large noise

amplitude b. Another interesting observation is that in the single-inlet connected

model, there is a range of κ values that guarantees monotonic growth of E [rb (0)]

with b, yet for the two-inlet case, even for large geometric coefficients (κ = 0.95) the

expected initial resistance is initially decreasing as b increases. Moreover, we observe

the difference in the order of magnitude of the partial derivatives for the two models,

manifested by the range of the vertical axis in both graphs. This indicates that the

level of sensitivity to manufacturing error varies with the internal pore structure of

the membrane. Qualitatively, this observation has real implications for the design of

filters. For single-inlet membrane filters, a suitable level of manufacturing imprecision

in the initial pore size distribution could, in fact, lead to improved initial performance

due to the decreased average initial resistance, provided there is no serious negative

impact on particle retention by the membrane.
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Figure 2.18 shows the effect of varying both the geometric coefficient and

noise amplitude on the average particle concentration at membrane outlet for the

single-inlet connected model. In all cases, a local maximum is observed (worst

particle retention scenario): our work makes explicit the dependence of this maximum

on the noise amplitude. In particular, we observe that as the noise amplitude

increases, the local maximum shifts towards smaller values of κ. This implies that

when fabricating filters with known dimensional pore-size tolerances, the appropriate

geometric coefficient should be chosen in order to optimize particulate removal. For

the results shown in Figure 2.18, regardless of the fabrication precision (large or small

b), filters with smaller κ should be selected.

2.6 Ending Remarks

In this chapter, we have modelled connected-pore membrane filters by studying

fluid flow and particle transport and fouling in layered pore networks, focusing on

selected specific membrane pore structures characterized by a geometric relationship

(with ratio κ) between pore radii in adjacent layers. We first considered in-plane-

homogeneous membrane filters (the homogeneous models) composed of cylindrical

pores with flow governed by the Hagen–Poiseuille law. The local fluid volumetric

flow rate in each pore is then related to the superficial Darcy velocity in order to

measure the global flow behaviour via conservation of mass. To incorporate fouling,

we modelled the adsorption of feed solution particles onto the pore wall. We obtained

flow and fouling results for connected membranes and compared these results to

those for non-connected membranes with equal initial resistance. In addition to

the study of connectivity in homogeneous membranes, we also probe the influence

of manufacturing imprecision, manifested as random in-plane perturbations to the

initial pore sizes, on overall performance of the filter in terms of total throughput and

particle retention capability.
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For homogeneous models, our results reveal that the relative performance of

non-connected and connected membranes does not strongly depend on either intra-

layer connections or surface porosity. Rather, for our assumed periodically-repeating

pore structure in which the membrane is assumed to consist of a square lattice of

identical pore networks (see Figure 2.4) the differentiating factor is the number of inlet

pores in each unit of the lattice. Because adsorption occurs predominantly in the first

layer, the performance of membranes with equivalent top-layer porosity is governed by

the dimensions of the first layer pore(s). Judging from radii evolution Figure 2.5 and

volumetric flow rate-throughput Figure 2.7 results, we observe that within the scope

of our study, single-inlet membranes yield the best overall performance. We have

also shown that connected and non-connected single-inlet models can exhibit nearly

identical performance depending on the choice of λ, the dimensionless deposition

coefficient. Finally, we have demonstrated that for certain morphology parameter

choices, the concentration of particles leaving the membrane can increase over time.

We attribute this phenomenon to the particle advection rate, which increases as

pores shrink and may (in some cases) outweigh the increased particle adsorption

that occurs in shrinking pores. To characterize and quantify this behaviour, we have

derived a sufficient condition with a general set of initial conditions and parameters

for the appearance of a maximum in concentration at the membrane outlet. To

avoid decreasing particle retention capability during filtration, one should not design

membrane filters with geometric parameters that satisfy our sufficient condition.

In addition to our findings for homogeneous model membranes, we have found

that the effects of membrane pore connectivity are more prominent in the hetero-

geneous case (modelled by a random perturbation of the initial pore sizes), where the

mixing in inter-layer junction regions Equation (2.23) distinguishes connected models

from the non-connected case. Regarding the average influence of noise perturbation

to pore sizes on membrane performance as characterized by total throughput, we
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have shown that the filtrate collection efficiency of non-connected membranes is

highly susceptible to noise, whereas the connected models are more robust, remaining

relatively unchanged (see Figures 2.13 and 2.14). This contrast shows that from this

perspective, connected membrane filters are superior filtrate processors because of

their enhanced capability to alleviate negative effects of (inevitable) heterogeneity,

facilitated by the inter-layer junction regions where mixing occurs and pressure is

equilibrated.

We also observe that average initial resistance does not always depend monoton-

ically on the strength of noise perturbation, exemplified by Jensen’s inequality. This

further implies that statistically averaged Darcy’s law does not hold with equality, but

rather, a strict inequality, as specified in Equation (2.58). In order to characterize the

effect of noise more generally, we provide a full formula for the expression of average

initial resistance of the connected models in Equation (A.10), which we use to show

that the two-inlet model responds to increasing noise strength with a favourable

decreasing trend.

The study on the internal pore structures of the membranes presented in this

work is by no means a universal characterization of real membranes. Nonetheless,

arising from physical observations and industrial motivation, the assumptions and

results of our work are novel extensions to earlier efforts (e.g., [111] and [46]),

producing complex behaviour in both flow and foulant control under deterministic and

random regimes. Furthermore, additional fouling mechanisms and their interaction

with membrane connectivity will certainly lead to more complex problems, which

may require more advanced mathematical and physical tools to tackle. We defer a

more comprehensive study of multiple fouling modes acting on complex membrane

structures to a future work.
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CHAPTER 3

A GRAPHICAL REPRESENTATION OF MEMBRANE FILTRATION

3.1 Overview

In this chapter, we analyze the performance of membrane filters represented by pore

networks using two criteria: 1) total volumetric throughput of filtrate over the filter

lifetime and 2) accumulated foulant concentration in the filtrate. We first formulate

the governing equations of fluid flow on a general network, and we model transport

and adsorption of particles (foulants) within the network by imposing an advection

equation with a sink term on each pore (edge) as well as conservation of fluid and

foulant volumetric flow rates at each pore junction (network vertex). Such a setup

yields a system of partial differential equations on the network. We study the influence

of three geometric network parameters on filter performance: 1) average number

of neighbors of each vertex; 2) initial total void volume of the pore network; and

3) tortuosity of the network. We find that total volumetric throughput depends

more strongly on the initial void volume than on average number of neighbors.

Tortuosity, however, turns out to be a universal parameter, leading to almost perfect

collapse of all results for a variety of different network architectures. In particular,

the accumulated foulant concentration in the filtrate shows an exponential decay as

tortuosity increases.

3.2 Introduction

In many real membrane filters, cavities in the membrane material (pore junctions)

are connected by capillaries or channels (pore throats) of length significantly larger

than their radius (see Figure 3.1). Such slender geometry allows for simplifications of

the equations governing filtration. At the same time, the membrane pore structure

can be viewed as a complex network with vertices and edges, which represent the pore
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junctions and pore throats, respectively [66, 123]. A fluid feed with foulants is then

driven across the membrane through these channels by the transmembrane pressure,

while foulant is deposited on the pore walls.

(a) Experimental Image (b) Inlets and Interior Junctions

Figure 3.1 Schematic: (a) an experimental image with lateral view of a filter cross-
section [6]; (b) a corresponding (partial) graph representation with inlets on the top
surface (blue) and interior pore junctions and throats (red).

There is a broad range of studies involving dynamics on networks, such as models

of the cardiovascular network [22], chemical reaction networks [132] and optimal

control in networks of pipes and canals [29], among many others. Accordingly, there

are various graph models that may be used to represent complex networks, including

pore networks in porous media. One such setup is the random geometric graph (RGG)

model that has garnered significant attention from theoreticians [96, 30], as well as

from applied scientists working on applications such as sensor networks [37], social

science [138, 53, 145, 18], neuroscience [91] and, most relevant to our work, filtration

modeling [128, 47]. The RGG setup involves generating a specified number of random

points, uniformly distributed within a specified domain, and then connecting any pair

of points that are closer than some search radius (according to the chosen metric).

Within the specific RGG setup used by Griffiths et al. [47] for filtration

modeling, the chosen domain is a unit cube (normalized on the membrane thickness

and representing a portion of the filter membrane); the metric is the usual 3D

Euclidean distance; and to model top inlets and bottom outlets (see Figure 3.1a)
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random points are uniformly distributed on the top and the bottom surfaces of the

cube. This setup requires four parameters: the number of interior points; the search

radius; the number of top inlets; and the number of bottom outlets. Furthermore,

the fluid flow is modelled by the Hagen-Poiseuille equations, whose validity relies on

the physical assumption that the edges have a small aspect ratio (radius vs. length),

prompting an additional constraint on the network generation.

Another important aspect of modeling the dynamics of filtration on the

membrane network is fouling. Membrane fouling occurs when contaminants trans-

ported by the fluid feed within the pore network become trapped within it. There are

three primary fouling mechanisms in membrane filtration: 1) adsorption; 2) sieving

and 3) cake layer formation. Adsorption occurs when small particulate foulants are

deposited on the pore walls due to physical or chemical interactions with membrane

material (or with existing particle deposits). Sieving involves fouling particles of size

comparable to the pore size that may partially cover or completely block upstream

pore entries or internal junctions. Cake formation occurs during the later stages of

filtration, where fouling particles are packed against each other inside the pore throats

or on top of the membrane surface, further restricting fluid flow.

In this work, we consider adsorptive fouling only, modeling two main features.

First, the fouling particles (referred to simply as particles, henceforth) deposit on

pore walls as they are advected by fluid flow, thereby reducing foulant concentration

in the feed as it traverses the network. Second, pore radius decreases due to the

particle deposition on the pore wall. Within a continuum model for the particle

concentration, the first effect can be captured by an appropriate sink term in the

advection equation for the particle concentration, while the second may be modeled

by an evolution equation for the pore radius.

Classical models of particle advective transport on graphs were developed and

studied by Chapman & Mesbahi [23], but these authors did not incorporate a sink
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term to capture external effects such as fouling. Meanwhile, Gu et al. [50] considered

a coarse discretization of a transport equation with deposition on regular layered pore

structures with interconnections, which can be generalised to more complex networks

(represented by graphs). In this work, we combine these two approaches and formulate

a transport equation on the network using the graph theoretical framework.

Our principal contributions are to develop and solve a fluid flow and fouling

problem on a graph representing the pore network within a membrane filter, by

constructing the associated operators based on the underlying graph; and to use our

model to identify important correlations between measurable network properties and

key filtration performance metrics. The novel random graph generation technique

we use achieves two primary goals: the constructed network is such that physical

assumptions for the Hagen-Poiseuille fluid flow model remain valid; and the overall

number of model parameters is minimized. Our model is described in detail in

Section 3.3: in Section 3.3.1, we introduce the aspects of graph theory relevant to

the present problem; in Section 3.3.2 we present a specific graph construction that

represents a membrane network; in Section 3.3.3, we describe the fluid flow in an

arbitrary pore (edge of the graph), before defining the necessary graph operators and

associated function spaces on graphs in Section 3.3.4. With these building-blocks we

are then able to set up the governing equations for fluid flow and foulant transport on a

graph in Sections 3.3.5 and 3.3.6, respectively. In Section 3.3.7, we define the metrics

that will be used to characterize filter performance. In Section 3.4 we introduce

appropriate scalings to nondimensionalize the model and in Section 3.5 we outline

the algorithm we use to solve it. Section 3.6 contains our results, presented in the

context of the performance metrics defined in Section 3.3.7. In Section 3.7 we discuss

our findings and summarize conclusions.
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Table 3.1 Key Nomenclature

vi i-th vertex eij An edge connecting vertices vi and vj

V Set of all vertices E Set of all edges

Vtop Set of vertices on the top membrane surface Vbot Set of vertices at the bottom membrane surface

LW (Weighted) Graph Laplacian of G W Weighted adjacency matrix of G

M Incidence matrix of G MT Incidence matrix transpose

P (vi) Pressure at the vertex vi Ci Concentration in vertex vi (unit of number per volume)

P0 Pressure at membrane top surface C0 Foulant concentration in the feed solution

Kij Conductance of edge eij Qij Flux through edge eij

Rij Radius of edge eij Aij Length of edge eij

W Side length of the square cross-section χ (·, ·) Metric on V

D Search radius Ntotal Total number of vertices

Dmin Minimal edge length τ Tortuosity

µ Fluid viscosity α Parameter related to particle volume

Λ Affinity between the foulant and the pore wall (unit of velocity) N Average number of neighbors for a graph G

H Throughput Cacm Accumulated foulant concentration at membrane outlet

3.3 Modeling

In this section, we describe and construct a graph that models a membrane filter

pore network, and set up the governing equations of fluid flow and foulant transport

through the network. We then introduce the performance measures associated with

our membrane filter, which we will use to characterize filtration effectiveness. We

refer the reader to Table 3.1 for all notation used in this work.

3.3.1 Graph Theoretical Setup

We consider a membrane filter as a slab of porous material that consists of an

upstream (top) surface containing pore inlets, a downstream (bottom) surface

containing pore outlets, and a porous interior comprising membrane material as the

solid region and pore junctions and throats as the void region. We restrict attention

to a cubic sub-region of the membrane slab in which the top and bottom surfaces are

squares with side length W separated by distance W (the membrane depth). The

pore throats in the interior of this sub-region are assumed to be circular cylinders

connected at pore junctions, forming a network. We model this interior network of
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pores by a graph G consisting of a set of vertices V (the pore junctions) and edges

E (the pore throats; see Figure 3.1), more compactly written as G = (V,E). The set

of vertices V consists of pore inlets on the membrane top (upstream) surface, pore

junctions in the interior of the membrane material where edges (pores) meet, and

pore outlets at the downstream surface of the filter. Each edge e ∈ E represents a

pore throat that connects two vertices. From a fluid dynamics perspective the graph

forms a flow network, with fluid flowing along the edges and through the vertices.

Each edge of the graph is associated with a weight to be specified depending on

the context; in our model the weights are associated with the fluid flux through the

edge. In constructing G we begin with an undirected graph, with directionality to be

imparted by the direction of fluid flow (once defined).

Each vertex v ∈ V is associated with a Euclidean position vector X (v) =

(X1 (v) , X2 (v) , X3 (v)) ∈ R3, where coordinates X1, X2 lie in the plane of the

membrane, while X3 is measured perpendicular to the membrane in the direction

of flow.

Definition 1. (Vertex set) Let X3 (v) be the depth of the vertex v, measured by the

shortest distance from the vertex to the membrane inlet surface. Let Vtop, Vbot ⊂ V be

the set of vertices that lie in the top and bottom membrane surfaces, respectively,

Vtop = {v ∈ V : X3 (v) = 0} , Vbot = {v ∈ V : X3 (v) = W}

where W is the depth of the membrane. The set of vertices in the interior of the

membrane is given by Vint = V \ (Vtop ∪ Vbot).

We further assume that the graph is simple, i.e., no vertex is connected to itself,

equivalent to the assumption that fluid always flows out of a pore junction.

Definition 2. An edge eij ∈ E ⊆ V × V is a pair (vi, vj), with i ̸= j whose existence

is governed by a connection law (to be described). We do not distinguish between the

order of the pair, namely, eij = eji.
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3.3.2 Graph Generation for a Membrane Network

Here we describe a random graph model in the specific context of membrane filtration

by clarifying the constituents of Vtop, Vbot, Vint and E, using a variant of the random

geometric graph.

In the interior of a rectangular box Ω with square cross-sections of side lengthW

and height 2W , Ω := [0,W ]× [0,W ]×
[
−W

2
, 3W

2

]
, we generate independent uniformly

distributed random points in each cartesian coordinate, from which our set of vertices

will be taken. To set up a connection rule for vertices in order to define edges, we first

introduce a physically-motivated assumption. Earlier work such as that of Iritani [61]

and Siddiqui et al. [115] suggests that pore throats in certain types of membrane filters

are approximately cylindrical and slender, with Rij/Aij ≪ 1, where Rij and Aij are

the radius and length respectively of the edge (pore throat) eij connecting vertices

(pore junctions) vi and vj. We assume our model membrane filter to be of this type,

justifying the use of the Hagen-Poiseuille framework [103] to model steady laminar

flow of fluid, assumed to be Newtonian with viscosity µ, within each edge (details of

the flow model are in Section 3.3.5 later). In all simulations, we present, the initial

edge radii are the same for all i, j (though they will shrink at different rates under

subsequent fouling depending on local particle concentration), thus validity of the

Hagen-Poiseuille model requires that the length of each edge must exceed a certain

threshold, Dmin. Meanwhile, to tune vertex connectivity, we prescribe a parameter D

as the maximum possible edge length. More precisely, we define the edge set,

E = {(v, w) ∈ V × V : Dmin < χ (v, w) < D} , (3.1)

where χ (·, ·) is the metric on our graph. In this work, we investigate and compare

two distinct metrics: 1) Ω is treated as an isolated domain, with no pores entering or

leaving through the four sides parallel to the X3-direction, representing an isolated

sub-unit of the whole membrane (isolated case) and 2) Ω is treated as a periodic
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domain such that any pore exiting through one of these four sides re-enters on the

opposite side (periodic case). In each of these two cases the metric is defined by

χ (v, w) =


∥X (v)−X (w)∥2 , isolated

minz

∥∥X (v)−X (w)− (z, 0) | z = {−W, 0,W}2
∥∥
2
, D ≤ W

2
, periodic

(3.2)

where we note that the periodic metric wraps points around the boundaries in the X1

and X2 directions. This metric effectively determines the pore lengths Aij = χ (vi, vj).

All scenarios considered in this work have search radius D ≤ W
2
, so we avoid the

complication of having pores connect to each other twice (in the periodic case).

(a) (b)

Figure 3.2 (a) 2D schematic of the 3D graph generation; (b) 3D realization with the
periodic metric. Labels for (a) and (b): red filled circles form Vint, blue filled circles
form induced inlets Vtop, and black filled circles form induced outlets Vbot. In (a), blue
dotted lines are cutting lines (planes in 3D), and magenta circles are discarded points.
The blue and orange dotted circles form the search annulus enforced by D and Dmin.
In (b), periodicity is enforced only through the four interior walls per Equation (3.2).

To generate the set of upstream (top) inlets Vtop and downstream (bottom)

outlets Vbot, we cut Ω with two horizontal planes, X3 = 0 (upstream cutting plane)

and X3 = W (downstream cutting plane). The points of intersection of these planes

and the edges defined by Equation (3.1) form the set of pore inlets Vtop and outlets
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Vbot, respectively (see Figure 3.2). All points between the planes X3 = 0,W form

the set of interior vertices Vint. This cutting procedure effectively eliminates two

parameters (number of inlets and outlets) from the RGG setup proposed by Griffiths

et al. [47]. We also impose two geometric constraints: 1) total volume of the edges

generated by the above scheme cannot exceed that of the box and 2) total cross-

sectional area of all inlets (resp. outlets) cannot exceed the area of the top (resp.

bottom) membrane surface.

Our setup ensures that vertices in the top and bottom membrane surfaces are

not connected by any edges that lie in the same surface. Another nice feature of

our graph generation is that top inlets and bottom outlets are always connected to

interior points, a feature that the classical RGG setup does not guarantee (some inlets

or outlets may be isolated with positive probability and must be regenerated).

3.3.3 Flow in an Edge

We now briefly describe how Newtonian fluid of viscosity µ flows through a single

edge (pore), before introducing the definitions of the relevant graph operators and

associated function spaces (in Section 3.3.4), necessary to describe flow through the

whole network. Two key physical quantities specify the flow: pressure P (vi) at each

vertex vi ∈ V and flux Qij through each edge (vi, vj) ∈ E. For each such edge,

with length Aij and radius Rij (assumed to depend only on i, j and time T in the

following, but see the more detailed discussion in Section 3.3.6 below), we use the

Hagen-Poiseuille equation to describe fluid flow through it. This law gives fluid flux

Qij in (vi, vj) as

Qij = Kij (P (vi)− P (vj)) , (vi, vj) ∈ E, (3.3)
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where Kij are the entries of a weight matrix K listing the conductance of each edge,

Kij =


πR4

ij

8µAij
, (vi, vj) ∈ E,

0, otherwise.

(3.4)

Note that Qij is spatially uniform within the edge under the Hagen-Poiseuille

framework. Moreover, to ensure the Hagen-Poiseuille approximation remains valid

we require that the aspect ratio of each edge, Rij/Aij, is small, enforced by choosing

Dmin (introduced in Equation (3.1)) sufficiently large that

Rij

Aij

≤
max

(vi,vj)∈E
Rij

Dmin

≪ 1.

To solve Equation (3.3) on a graph with many edges, we must utilize the

graph structure to express, for example, the pressure difference P (vi) − P (vj) in

Equation (3.3), while maintaining flux conservation at each vertex. We introduce the

necessary operators below.

3.3.4 Operators and Function Spaces on Graphs

We now introduce the function spaces and operators required to solve for the above-

defined flow on our graph. First, define the set of vertex functions

V =

{
u : V → R :

∑
x∈V

u (x)2 < ∞

}
, (3.5)

endowed with inner product (u · v)V =
∑

x∈V u (x)v (x), and the set of edge functions

E =

{
F : E → R :

1

2

∑
x,y∈V

wxyF (x, y)2 < ∞

}
, (3.6)

where F is a skew-symmetric function that satisfies

F (x, y) = −F (y, x) , (3.7)
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also known as the flow condition, and wxy are specified weights. This space is endowed

with weighted inner product

(F 1 · F 2)E =
1

2

∑
x,y∈V

wxyF 1 (x, y)F 2 (x, y) .

An example of a vertex function in the context of our problem is the pressure at each

pore junction, while flux is an edge function when a well-defined weight is specified.

We next introduce the incidence matrix (and its transpose), a matrix operator

that encodes the most fundamental information of a network represented by a graph

— an array specifying the vertices that each edge connects. Its operation on edge

functions provides a finite difference of quantities prescribed at connected vertices.

Definition 3. (Incidence matrix and transpose) Let G = (V,E) be a graph. The

incidence matrix M is a linear operator M : V → E such that for u ∈ V,

(Mu) (vi, vj) = u (vi)− u (vj) , vi, vj ∈ V. (3.8)

The transpose MT : E → V is also a linear operator that satisfies

(Mu · F )E =
(
u ·MTF

)
V , u ∈ V , F ∈ E . (3.9)

A direct calculation of Equation (3.9) using the above definitions yields the

following identity (
MTF

)
(x) =

∑
y:(x,y)∈E

wxyF (x, y) , (3.10)

which computes a weighted sum of the edge functions whose edges connect to x.

Moreover, each graph G can be associated with a graph Laplacian L, an item

central to graph analysis.

Definition 4. (Graph Laplacian) The W-weighted graph Laplacian is given by

LW := D−W, (3.11)
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where D is the (diagonal) W-weighted degree matrix for G, with entries

Dij =


∑|V |

k=1Wik, j = i,

0, otherwise,

(3.12)

and W is a weighted adjacency matrix, with nonnegative entries Wij when (vi, vj) ∈

E, to be specified according to context. We also say that eij is an edge connecting vi

and vj iff Wij > 0 (or simply, vi and vj are connected or adjacent).

LW is symmetric since W is, and the nonzero entries in the diagonal matrix D

represent the respective row sums of W. An unweighted version of LW corresponds

to the case where Wij = 1 for every eij ∈ E, and thus each entry of the adjacency

matrix is an indicator that identifies an edge between a pair of vertices. In this case,

each diagonal element of D is the number of edges connected to each vertex.

Combining Equations (3.8), (3.10) and (3.11), we obtain the classical result

connecting the incidence matrix and the graph Laplacian.

Proposition 1. For u ∈ V, MTMu = LWu.

This result (a proof of which is given by Grady [43]) provides the basis for

theoretical understanding of the structure of M, and in turn, LW. The continuum

analog of this result is the equivalence between the divergence of a gradient and the

Laplacian.

In many applications, the choice of weights W depends on the physical problem

of interest. In the context of membrane filtration, it is natural to consider weights

such as conductance and flux, which we describe in Section 3.3.5 in more detail. We

will apply Proposition 1 to set up the flow problem on our graph G.

3.3.5 Flow on a Graph

In this section, we outline a general approach to describe fluid flow on a graph using

the definitions given in Section 3.3.4 above. We set up the system of governing

64



equations using the structural information of G, i.e., the graph Laplacian LW with a

properly chosen weight matrix W.

First, we rewrite Equation (3.3) using the incidence operator Equation (3.8),

Qij = Kij (P (vi)− P (vj)) = Kij (MP ) (vi, vj) , (vi, vj) ∈ E, (3.13)

where Kij is given by Equation (3.4). The values of the pressure at the vertices,

P (vi) for each vi ∈ V , form a vector of length |V | (a vertex function, P ∈ V). The

flux values Qij naturally form a matrix. Note that Q is an edge function, Q ∈ E ,

since it satisfies the flow condition Equation (3.7). Next, we impose conservation of

flux at each junction, ∑
vj :(vi,vj)∈E

Qij = 0, vi ∈ Vint. (3.14)

Using Equation (3.10) with F = MP , Equation (3.13) and noting that Q ∈ E , we

obtain for vi ∈ Vint,

0 =
∑

vj :(vi,vj)∈E

Qij =
∑

vj :(vi,vj)∈E

Kij (MP ) (vi, vj) =
(
MTMP

)
(vi) = (LKP ) (vi) ,

(3.15)

to which we append the boundary conditions

P (v) = P0, v ∈ Vtop; P (v) = 0, v ∈ Vbot, (3.16)

modeling the transmembrane pressure difference that drives fluid flow.

Once we solve the linear system Equations (3.15) and (3.16) for pressure P , we

use Equation (3.13) to compute the entries of the flux matrix Q.

3.3.6 Foulant Advection and Adsorptive Fouling

The previous section was concerned solely with the flow of Newtonian fluid through

the graph. Here we address the fact that in filtration the fluid is a feed solution
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carrying particles, which are removed by the filter, leading to fouling. Fouling can

occur via a number of distinct modes; we consider only adsorptive fouling by particles

much smaller than pores, which are transported through the network by the flow and

deposit on pore walls.

We use a continuum model for the particle (foulant) concentration within the

feed. To characterize particle transport on a network, we must describe the transport

on each edge, accomplished via an advection equation with an adsorptive sink [111,

50], then impose conservation of particle flux at each vertex. For each edge eij =

(vi, vj) of length Aij, with Y a local coordinate measuring distance along the edge from

vi (positive in the direction of flux Qij), let Cij (Y, T ) be the particle concentration

at any point of the edge at time T , then

Qij
∂Cij

∂Y
= −ΛRijCij, 0 ≤ Y ≤ Aij, (3.17a)

Cij (0, T ) = Ci (T ) , (vi, vj) ∈ E, (3.17b)

where Λ is a parameter (with dimensions of velocity) that captures the affinity

between the foulant and the pore wall. In practice this could change depending

on whether the pore wall is clean, or already fouled by particle deposits; in this work

we assume Λ is constant throughout the filtration. We denote by Ci (T ) the foulant

concentration at the vertex vi, which acts as a boundary condition for the foulant

concentration Cij flowing to downstream edges. The array of Ci (T ) values forms

a vertex function C. For vi ∈ Vtop, Ci (T ) is prescribed by imposing a constant

boundary condition (the concentration C0 in the feed solution), and conservation of

particle flux is imposed to determine the Ci (T ) for vi ∈ V \Vtop.

The system of Equations (3.17a) and (3.17b) is simple, but once coupled to an

evolution equation for pore radii Rij(Y, T ) and solved on many different (large) graph

realizations to obtain reliable statistics, is time-consuming to solve numerically. We

therefore adopt a convenient approximation (discussed further below), assuming that
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pore radius does not change appreciably along individual pores, and may thus be

considered approximately independent of the coordinate Y . With this assumption,

we observe that the system of Equations (3.17a) and (3.17b) has analytical solution

Cij (Y, T ) = Ci (T ) exp

(
−ΛRij (T )

Qij

Y

)
, 0 ≤ Y ≤ Aij. (3.18)

We write C̃ij (T ) := Cij (Aij, T ) to represent the foulant concentration flowing from

vi into an adjacent vertex vj. Define

Bij (T ) := exp

(
−ΛRij (T )Aij

Qij

)
, (3.19)

as the multiplicative factor by which foulant concentration changes over the length

Aij of the edge. By conservation of particle flux at each vertex vi (suppressing the

temporal and spatial dependence for simplicity of notation),

0 = −

outgoing︷ ︸︸ ︷∑
vk:(vi,vk)∈E

QikCi +

incoming︷ ︸︸ ︷∑
vk:(vi,vk)∈E

QkiC̃ki, vi ∈ V \Vtop, (3.20)

= −Ci

∑
vk:(vi,vk)∈E

Qik +
∑

vk:(vi,vk)∈E

QkiC̃ki,

= −Ci

∑
vk:(vi,vk)∈E

Qki +
∑

vk:(vi,vk)∈E

QkiBkiCk, (3.21)

Ci (T ) = C0, vi ∈ Vtop, ∀T ≥ 0, (3.22)

where C0 is the constant foulant concentration in the feed solution. Note the

conservation of flux used here to derive Equation (3.21) follows a revised definition

of the flux matrix Q (see Equation (B.6) in Appendix B.2). The first term in

Equation (3.20) accounts for all outgoing particle flux from vertex vi, the second for all

incoming flux. Conservation of flux at each vi ∈ V \Vtop and the definition of C̃ij are

applied in Equation (3.21), which can be written more compactly using Q as a weight

matrix and the in-degree weighted graph Laplacian Lin
Q : l2 (V \Vtop) → l2 (V \Vtop),

Lin
Q := DQT − (Q ◦B)T , (3.23)
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where ◦ is the Hadamard product (element-wise matrix product). This operator is

similar to Equation (3.11) but with a notion of directionality imparted by Q (also

discussed by Chapman & Mesbahi [23]). The term DQT is a QT-weighted degree

matrix (per Equation (3.12)) that accounts for total incoming (upstream) flux of vi

(thereby “in-degree”). The last term, which contributes to the off-diagonal entries of

Lin
Q, displays the incoming flux reduced (multiplicatively) by the foulant deposition

effect reflected in B. Altogether, the transport equation for foulant concentration can

be concisely written as

Lin
QC = (Q ◦B)TC0, C ∈ l2 (V \Vtop) , ∀T ≥ 0, (3.24)

C0 (T ) = (C0, . . . , C0, 0, . . . , 0)
T , (3.25)

with boundary condition C0 specified for each v ∈ Vtop (the number of nonzero entries

C0 in C0 is equal to |Vtop|, per Equation (3.22)). By solving this linear system, we

obtain the particle concentration Ci at each vertex vi ∈ V \Vtop.

We assume that the pore radius shrinkage due to adsorption follows a simple

model (used by Sanaei & Cummings [111], among others) such that its rate of change

is proportional to local particle concentration. With the approximation introduced

above, that pore radius Rij varies only modestly with distance Y along the pore, we

assume that its rate of shrinkage is determined by the foulant concentration at the

upstream1 vertex vi,

dRij

dT
= −ΛαCi, Rij (0) = Rij,0, (vi, vj) ∈ E, (3.26)

where α relates to foulant particle volume, see Appendix B.1. We also assume that all

radii initially take the same value, i.e., Rij,0 = R0. This final equation Equation (3.26)

closes the membrane filtration model with adsorption.

1This concentration is chosen because it will dictate, in practice, the fastest shrinkage rate
at the upstream end of the pore, and pore resistance is dominated by the narrowest pore
radius.

68



Our assumption that pore radius is spatially uniform is motivated by significant

computational cost savings; we have verified that the simulations reported later in the

manuscript are more than 100 times faster compared to those where this simplification

is not used. The price to pay for this saving is a slight overestimate of the membrane

resistance, and therefore underestimate of the total throughput. To confirm that the

approximation introduced by the model has only a minor influence, we have directly

compared a subset of results obtained using this model with results obtained using

the full model that allows Rij(Y, T ), finding that the difference in throughput is on

average around 10% at maximum (and much smaller than 10% where the maximum

pore radius D is small compared to the membrane thickness W ). The differences in

computed values of the particle concentration are smaller still. We consider that this

is reasonable, in particular since the approximation allows us to perform efficiently

a large number of simulations and explore the influence of variability of results with

respect to the model parameters of interest.

In simulating filtration through a network, we impose a stopping criterion that

membrane filtration ends when there exist no flow paths between any vertices in Vtop

and Vbot, due to pore closures (individually characterized by Rij = 0). The criterion

is checked by a pathfinding algorithm. We terminate the filtration at the earliest

time Tfinal that the criterion is satisfied. Note that in physical membranes, even when

adsorptive foulants have accumulated to the extent that the pore is essentially closed,

leakage through the pore may still take place; we have not included such effects in

the present model.

3.3.7 Measures of Performance

Volumetric throughput of a membrane filter over its operational lifetime is a

commonly-used measure of overall efficiency.
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Definition 5. The volumetric throughput V (T ) through the filter is defined by

H (T ) =

∫ T

0

Qout (T
′) dT ′, Qout (T ) =

∑
vj∈Vbot

∑
vi:(vi,vj)∈E

Qij (T )

where Qout (T ) is the total flux exiting the filter.

In particular, we are interested in Hfinal := H (Tfinal), the total volume of filtrate

processed by the filter over its lifetime.

Another performance measure is the accumulated foulant concentration in the

filtrate, which captures the aggregate particle capture efficiency of the filter.

Definition 6. The accumulated foulant concentration is defined by

Cacm (T ) =

∫ T

0
Cout (T

′)Qout (T
′) dT ′∫ T

0
Qout (T ′) dT ′

,

where

Cout (T ) =

∑
vj∈Vbot

∑
vi:(vi,vj)∈E

Cj (T )Qij (T )

Qout (T )
.

Of particular interest is Cacm (Tfinal), which provides a measure of the aggregate

particle capture efficiency of the filter over its lifetime.

3.4 Nondimensionalization

We nondimensionalise the model presented in Section 3.3 with the following scales,

P = P0p, X = Wx, Aij = Waij,

(D,Dmin) = W (d, dmin) , Rij = Wrij, R0 = Wr0,

Qij =
πW 3P0

8µ
qij, Kij =

πW 3

8µ
kij, kij =

r4ij
aij

,

C = C0c, Y = Wy, Λ =
πWP0

8µ
λ, T =

W

ΛαC0

t, V =
W 3

αC0

v.

(3.27)

Under these scalings we derive dimensionless equations for pressure p and flux q,

Lkp = 0, (3.28a)
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p (v) = 1, ∀v ∈ Vtop; p (v) = 0, ∀v ∈ Vbot, (3.28b)

qij = kij (p (vi)− p (vj)) , ∀ (vi, vj) ∈ E, (3.28c)

where Lk is defined in Equation (3.11); for foulant concentration c,

Lin
q c = (q ◦ b)T c0, Lin

q = DqT − (q ◦ b)T , c ∈ l2 (V \Vtop) , (3.29a)

c0 = (1, . . . , 1, 0, . . . , 0)T , bij = exp

(
−λrijaij

qij

)
, (3.29b)

where Lin
q is given by Equation (3.23); and for pore radius rij (for the pore eij =

(vi, vj)),

drij
dt

= −ci, rij (0) = r0, ∀ (vi, vj) ∈ E. (3.30)

The dimensionless throughput is given by

h (t) =
1

λ

∫ t

0

qout (t
′) dt′, qout (t) =

∑
vj∈Vbot

∑
vi:(vi,vj)∈E

qij (t) , (3.31)

and hfinal := h (tfinal). Dimensionless accumulated foulant concentration is written as

cacm (t) =

∫ t

0
cout (t

′) qout (t
′) dt′∫ t

0
qout (t′) dt′

, (3.32)

where

cout (t) =

∑
vj∈Vbot

∑
vi:(vi,vj)∈E

cj (t)qij (t)

qout (t)
.

3.5 Algorithm

We summarize the network generation protocol and solution technique for the

proposed model equations in Algorithm 3.1. We refer the reader to a worked example

in Appendix B.3 for a better visualisation of how the governing equations evolve on

a very simple network and how our chosen performance metrics depend on the model

parameters.
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Algorithm 3.1 Filtration with adsorption.

1. Initialization

(a) Generate uniformly Ntotal random points in box [0, 1]2 × [−0.5, 1.5].

(b) Connect all points separated by a distance smaller than d but larger than
dmin using the metric χ (periodic or isolated). Discard isolated points.

(c) Truncate the box with cutting planes at x3 = 0 and x3 = 1; record points
with 0 < x3 < 1 as the set of interior points Vint; label intersections
between cutting planes and edges as inlets Vint for intersections at x3 = 0
and outlets Vout for those at x3 = 1. Set V = Vint ∪ Vtop ∪ Vbot.

(d) Initialise radii rij,0 for (rij)(vi,vj)∈E.

2. Fluid Flow

(a) Find pressures p and fluxes q by solving Equations (3.28a)–(3.28c).

3. Foulant Concentration

(a) Initialise concentrations c0 (per Equation (3.29b)) for vi ∈ Vtop.

(b) Find foulant concentration c by solving Equations (3.29a) and (3.29b).

4. Adsorption

(a) Evolve each pore radius rij via Equation (3.30) until it decreases to 0 and
stays at 0 for the rest of the filtration.

5. Check stopping criterion. Stop if satisfied.

6. Compute throughput using Equation (3.31).

7. Update conductance k and weighted graph Laplacian Lk.

8. Increment time t → t+ dt and return to (2).

3.6 Results

In this section, we present numerical results on how filter performance metrics,

such as total throughput and accumulative foulant concentration (introduced in

Section 3.3.7), depend on filter geometry, characterized by three main geometric

network parameters detailed below. For each metric/parameter pair considered, we

first describe the observed trends and compare the results between the isolated and

periodic network configurations. Then, we discuss how the findings are related, with

a focus on identifying universal parameters that describe filter performance.
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3.6.1 Geometric Network Parameters

To investigate different network architectures, we introduce three geometric

parameters. The first is the average number of neighbors for interior

vertices/junctions,

N :=
|E|
|Vint|

.

This parameter provides one way to characterize the connectivity strength of a

network. We compute N only over interior vertices, as any inlet or outlet has exactly

one neighbor due to our network generation protocol. Second, the initial void volume,

Vol0 =
π

2

∑
(vi,vj)∈E

aijr
2
ij (t = 0) =

πr20
2

∑
(vi,vj)∈E

aij, (3.33)

provides an estimate of how much fluid the filter can process initially, and how much

surface area is available for foulant adsorption (since the initial pore radius is the

same for all pores, the initial total pore surface area is given by 2Vol0/r0). Since the

representative membrane volume we consider is a unit cube in our dimensionless

framework, Vol0 is exactly the initial membrane porosity. Lastly, we consider

tortuosity τ , defined by the average length of paths (defined with respect to flow paths)

that connect the top and bottom membrane surface through the network, normalized

by the membrane thickness (the shortest possible path). A rigorous definition of τ is

given in the appendix (Definition 9 and Equation (B.9)).

Our input parameters (d,Ntotal) (see Algorithm 3.1) are chosen so that the

volume and area constraints (initial total pore volume should not exceed that of the

representative unit membrane cube, and total pore cross-sectional area on membrane

top and bottom surfaces should not exceed the area of the unit square, see Section

2.2) are not violated, and so that the generated graphs are nontrivially connected

from top to bottom surfaces. The ranges of d and Ntotal are [0.1, 0.45] and [100, 5000],

respectively. In all simulations, we fix r0 = 0.01, dmin = 0.06, λ = 5 × 10−7 and
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produce data curves for each chosen d-value (represented by the same marker) by

varying Ntotal.

Due to the random nature of our network generation, we compute the average

of quantities of interest over a number of realizations. For simplicity, we do not use

additional notation to indicate such averaged quantities. For all results below, each

data point is obtained by averaging over 500 simulations, i.e., 500 realizations of a

random graph with parameter pair (d,Ntotal). We histogram these 500 realizations

in the supplement for each pair (d,Ntotal), to demonstrate that their variance is

influenced only by geometric parameters, justifying the sufficiency of this number of

realizations. All results are shown for the two cases in which the underlying random

graphs are generated with isolated and periodic boundary conditions, with results

(data points in blue and red, respectively) compared side-by-side.

3.6.2 Initial Void Volume and Average Number of Neighbors

In this section, we present results showing the dependence of performance metrics on

two geometric parameters: initial void volume Vol0 and average number of neighbors

N .

Figure 3.3 shows total throughput hfinal against initial void volume Vol0 on a

log-log scale, for various d-values. Both quantities are increasing functions of the

initially-specified number of random points, Ntotal, for each d. In both isolated and

periodic cases we see a power law relationship emerge for sufficiently large Vol0,

with good collapse of the data for Vol0 ≳ 0.2, d ≳ 0.2 onto a single line, hinting at a

universal law. The fact that hfinal is an increasing function of Vol0 makes sense because

the larger the initial pore volume, the more filtrate can be processed. In both setups,

the data curves for smaller d-values begin to deviate from the universal power law

for Vol0 ≲ 0.3, which enables us to observe some hierarchy. For similar Vol0-values,

corresponding to similar total length of edges per Equation (3.33), we see that larger
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Figure 3.3 Total throughput hfinal vs initial void volume Vol0 (loglog scales).
(a) Isolated network setup; (b) periodic setup. Line of best fit for d = 0.45 is in
black, with gradient m given in legend (with R2 = 0.99989 and 0.99993, respectively).
Distribution of error for each data point is given in the histograms in the supplement.

d-values lead to larger total throughput hfinal. We attribute this to the fact that

networks with larger d-values induce more inlets on the upstream (and downstream)

membrane surfaces, allowing more filtrate to pass through. The differences between

the isolated and periodic setups in Figure 3.3 are minor.

In Figures 3.4a and 3.4b, we plot total throughput hfinal against average number

of neighbors N (the average number of pores entering or leaving each vertex) for

various values of the search radius d, using a log scale for both axes. Each data point

shown corresponds to a different choice of Ntotal; and, as discussed above, represents

results averaged over 500 individual random graph realizations. Several features are

common to both plots: first, hfinal is an increasing function of N for each d value and

in particular, obeys a power law for sufficiently large N . For fixed N , the smaller

the search radius d, the larger the average throughput hfinal. This suggests that

the number of pore junctions plays an important role in controlling and predicting

total throughput. Second, the slopes for each d-value at large N are very similar

for both isolated and periodic setups, suggesting a common power law relating hfinal
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Figure 3.4 Total throughput hfinal vs average number of neighbors N (loglog scales).
(a) Isolated network setup; (b) periodic setup. Line of best fit for d = 0.45 is in black,
with gradient m given in legend. Distribution of error for each data point is given
in the histograms in the supplement. Same setup for (c) and (d) with hfinal/Vol0 as
vertical axis (loglog scales).

and N for each d (see d = 0.45 in Figures 3.4a and 3.4b with slope ≈ 2 in both

cases). Moreover, as d increases the curves in Figures 3.4a and 3.4b become more

closely-spaced in both setups, demonstrating that filters with sufficiently large search

radius perform similarly in terms of total throughput. In both cases the quantities

N and hfinal are increasing functions of Ntotal for each d.
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We also highlight the differences between the two compared network connection

metrics in Figures 3.4a and 3.4b. First, for small d (e.g. d = 0.1, 0.15), the isolated

and periodic networks give similar throughputs since random graph generations under

the two metrics do not differ greatly; however, as d increases, the periodic metric

generates more edges than the isolated one (for the same value of Ntotal), hence the

periodic setup yields higher throughput. By the same reasoning, for fixed hfinal, N

is much larger in the periodic setup than in the isolated one for each d ≳ 0.3 (the

data curves in the isolated setup are seen to be more closely-spaced than those in the

periodic setup as d increases). In other words, though N is an increasing function of

d in each setup, it increases at a higher rate under the periodic metric.

Motivated by the strong relationship between total throughput and volume

found in Figure 3.3, we also plot volume-scaled total throughput, hfinal/Vol0, against

average number of neighbors N for both connection metrics in Figures 3.4c and 3.4d.

This volume-scaled total throughput can be understood as a measure of efficiency

of the membrane filter in terms of filtrate production capability. In Figure 3.4c,

we observe a good collapse of data in the non-periodic setup, which suggests that

the average number of neighbors is a good predictor for total throughput scaled

by volume. We see a similar trend in Figure 3.4d for the periodic setup, though

the collapse is less strong. We further note that in both non-periodic and periodic

setups, data for d = 0.1 are slightly separated from the rest. This is consistent with

the deviation of data for d = 0.1 in Figure 3.3 from the universal power law relating

total throughput and volume.

Figure 3.5 shows final accumulated foulant concentration in the filtrate,

cacm (tfinal), vs initial void volume, Vol0, on a log-log scale, as d is varied. Both

quantities are increasing functions of Ntotal for each d. The plots for both isolated and

periodic network metrics show that cacm (tfinal) increases as search radius d increases

for fixed Vol0. This is because with similar initial pore volume and thus similar
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Figure 3.5 Final accumulated foulant concentration cacm(tfinal) vs initial void volume
Vol0 (loglog scales). (a) Isolated network setup; (b) periodic setup. Distribution of
error for each data point is given in the histograms in the supplement.

initial total edge length, networks with larger d have fewer edges to which foulants

can adhere. Combining this finding with the result in Figure 3.3 for a fixed volume

further confirms the intuition that networks producing larger throughput (larger d)

also have worse foulant control. A second trait shared by both network setups is that

for larger d (for example d = 0.4, 0.45), cacm (tfinal) is relatively insensitive to changes

in Vol0, while for smaller d (say d = 0.1, 0.15), the change in cacm (tfinal) with Vol0

is much more dramatic. This says that in membrane networks with longer pores,

final accumulated foulant concentration depends less on initial void volume than in

networks with shorter pores. We further observe that for a given Vol0, for small d, the

values of cacm (tfinal) are similar for both isolated and periodic configurations. However,

as d increases, the isolated case incurs larger cacm (tfinal) and thereby exhibits worse

foulant control than the periodic case. We defer further discussion of this observation

to Section 3.6.3 below. Lastly, we find that in practice, when a tolerance level of

contaminant concentration in the filtrate is specified in Figure 3.5, networks with

smaller d values have larger initial pore volume, which corresponds to larger total

throughput via the strong relationship observed in Figure 3.3 (e.g. if a threshold of
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cacm (tfinal) = 0.06 is set, filters with d = 0.1 are preferable as they have larger initial

pore volume and thus larger total throughput).

3.6.3 Tortuosity

We now examine the dependence of our performance metrics on initial network

tortuosity τ , the average distance travelled by a fluid particle from the top membrane

surface to the bottom, before any fouling has occurred. A full characterization of τ

is given by Definition 9 and Equation (B.9) in the appendix.

Our main result is that tortuosity is an important universal parameter

that predicts accumulated foulant concentration independently of input parameters

(d,Ntotal). Figures 3.6a and 3.6b plot accumulated foulant concentration in the

filtrate, cacm (tfinal), vs tortuosity, τ , for various values of the search radius d. We

readily observe the similar collapse of data points in both cases, particularly strongly

in the isolated case. We find that cacm (tfinal) decays exponentially with τ , with a

negative exponent, which implies that networks with more winding flow-paths make

much better filters in terms of foulant control. This is because the extent of deposition

(per Equation (3.18)) increases as distance travelled by the fluid increases. We also

observe two further details: within the regime where the fit (solid black line) is

strongest in the plots, the data for the isolated setup (Figure 3.6a) has a larger

(negative) slope than that in the periodic setup (Figure 3.6b); and, for fixed τ , filters

in the periodic setup have slightly higher accumulated foulant concentration.

Figures 3.6c and 3.6d show zoomed plots of the data from Figures 3.6a and 3.6b

respectively, to probe the details of the low tortuosity regime, where accumulated

foulant concentration is highest. To facilitate the discussion below, note that for each

d, a larger value of Ntotal corresponds to a smaller tortuosity τ (i.e., adding more

vertices to the network decreases average path length). Figure 3.6d shows that for the

periodic pore network we see an emergent nonlinear trend, breaking the exponential
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Figure 3.6 Final accumulated foulant concentration cacm (tfinal) vs tortuosity τ
(semilog plot). (a) Isolated network setup; (b) periodic setup. The line of best
fit is in black in each plot, with gradient m given in the legend (with R2 = 0.99838
and 0.9961, respectively). The blue and red boxes at top left are shown as zooms
in (c) and (d), respectively, for small tortuosity values (same data as (a) and (b),
respectively). Distribution of error for each data point is given in the histograms in
the supplement.

relation between cacm(tfinal) and τ as Ntotal is increased. Although the isolated setup

in Figure 3.6c appears to persist in its linear (exponential relationship) trend, we note

that for yet larger values of Ntotal this trend must break down due to the existence of

a lower bound, τmin, on tortuosity. While there is a trivial lower bound, τmin ≥ 1 for

each setup, in Appendix B.2 we show that bounds can be tightened to approximately
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1.128 for the isolated setup and 1.304 for the periodic one. The bound is larger for

the periodic case because, for a fixed set of vertices, the additional paths obtained

from the periodic setup are on average longer, as they can penetrate through the

boundaries; see Appendix B.2. Our simulations cannot access the breakdown in the

power-law for the isolated case because, for the large values of Ntotal required to

access this regime, we increasingly often violate the volume constraint for individual

realizations of the random network.
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Figure 3.7 Total throughput hfinal vs tortuosity τ (semilog plot). (a) Isolated
setup; (b) periodic setup. Error distribution for each data point is provided in the
supplement. Same scale for hfinal as in Figure 3.3.

Figure 3.7 shows total throughput hfinal vs tortuosity τ for various d values, on

a semilog scale. We note that hfinal decreases as τ increases for each d because, if

feed solution traverses longer paths (on average) through the filter, then it deposits

more foulant and thus pores close faster. Second, for fixed hfinal, larger d corresponds

to smaller τ . Combining this finding with the results in Figure 3.6, we reach the

following conclusion: between two membrane networks that produce the same total

throughput, the one with shorter characteristic pore length (smaller d) is favoured

since it also has larger tortuosity and thus better foulant control. Lastly, in both

Figure 3.7a and Figure 3.7b, we see again the clear evidence of a limiting tortuosity
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τmin > 1: in the data curves for each d ≥ 0.35, τ does not vary greatly as we vary

Ntotal.

Now, we highlight the differences in Figure 3.7: first, for a fixed tortuosity τ (at

a given d value), hfinal in the isolated setup (Figure 3.7a) is lower than in the periodic

one (Figure 3.7b), because the periodic boundary conditions give rise to more edges

and hence a larger initial void volume Vol0. We confirm this reasoning by plotting

Vol0 against τ in Figure 3.8. There, when we fix τ for each value of d, we observe

a higher initial volume for the periodic case than the isolated one. This observation

also explains why accumulated foulant concentration is higher in the periodic case

for a fixed τ (per Figure 3.6) because networks with periodic boundary conditions,

by having larger initial volume, process more filtrate (larger throughput) which leads

to a greater quantity of foulant escaping the filter. This reasoning also explains the

difference between cacm (tfinal) in Figures 3.5a and 3.5b by fixing Vol0 for each d.
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Figure 3.8 Initial void volume vs tortuosity (semilog plot). (a) Isolated setup;
(b) periodic setup. Error distribution for each data point is provided in the
supplement.
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3.7 Ending Remarks

We here summarize our findings on the connections between performance metrics of

the network/filter and each characteristic geometric network parameter, and highlight

areas for future work. We first collect our main findings:

1. Initial void volume Vol0 is a good predictor of total throughput hfinal, partic-
ularly when Vol0 > 0.5, when there appears to be a power-law relation between
the two quantities (per Figure 3.3). Average number of neighbors N is also
correlated with hfinal, but is a weaker predictor in this respect than Vol0 (per
Figure 3.4).

2. Tortuosity τ fully characterizes final accumulated foulant concentration
cacm (tfinal) in the filtrate by a negative exponential relationship. See Figure 3.6.

3. When a minimum concentration requirement is imposed, membrane filters with
small characteristic pore length should be considered since they have larger void
volume and thus process more filtrate. See Figure 3.5.

4. When two membrane networks produce the same final throughput hfinal, the
one with shorter characteristic pore length should be favored, since it will have
higher tortuosity and thus better foulant control. See Figure 3.8.

Griffiths et al. [47] showed that the particle removal efficiency, corresponding

equivalently to 1 − cacm (tfinal) in our setup, increases as tortuosity increases,

a trend consistent with our conclusion here regarding the negative exponential

relationship between accumulated foulant concentration and tortuosity, though the

exact relationship in both approaches is different (negative sub-exponential in that

work [47]). Such differences may originate from the different graph generation

protocols used in the two works.

We also find that the choice of network connection metric (isolated versus

periodic) may significantly affect how the network functions as a filter. With identical

input parameters Ntotal (representing the number of initial random points generated)

and d (the search radius, or maximum edge length), the periodic setup yields larger
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average number of neighbors and thus higher connectivity. This is important, since

the periodic setup provides a more realistic representation of a (large) membrane.

In recent years, many modern imaging techniques to study material properties

have been developed which, in turn, provide fertile ground for graphical modeling

approaches to membrane filtration and analysis of membrane performance. For

example, Martinez et al. [66] have outlined a topological algorithm (Figure 1 in

their paper) that translates a two-dimensional image of a membrane cross-section

into a pore network. The idea is to take an original binary image where black and

white represent membrane void and materials (respectively), and then construct a

distance-to-nearest-object function (the DNO function) that computes the distance

between a pixel to its nearest object (membrane material). Then, the location of pore

junctions is determined by the local maxima of the DNO function, while the width of

the edges connecting the junctions have widths determined by the minimal distance

normal to the edge. For other techniques, see Sun et al. [121] and Sundaramoorthi

et al. [123].

In future work, as well as utilizing some of the image analysis methods

outlined above to generate more realistic networks, we plan to consider network

models of membrane filters that include pore size variations, providing a more

accurate representation of real membrane filters, due to inevitable manufacturing

defects/inhomogeneities. We plan also to incorporate other fouling modes, such as

blocking or sieving by large particles that may occlude pores, unaccounted for in this

work. Including such large-particle blocking will add new dimensions of stochastic

complexity to our modeling. In particular, a model that includes both extensions

listed above may exhibit internal blockage at an earlier stage than the closure of top

inlets (as always observed in our work here) when pore-size variations are sufficiently

large, leading to much more complex flow and fouling behaviour. Our graphical
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description of the problem will allow us to investigate problems of this type in a

systematic and computationally-efficient manner.
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CHAPTER 4

NETWORK-BASED MEMBRANE FILTERS: INFLUENCE OF
NETWORK AND PORE SIZE VARIABILITY ON FILTRATION

PERFORMANCE

4.1 Overview

In this chapter, we model porous membrane filters as networks of connected cylindrical

pores via a random network generation protocol, and their initial pore radii via a

uniform distribution of widths that vary about some mean value. We investigate

the influence of network and pore size (radius) variations on the performance of

membrane filters that undergo adsorptive fouling. We find that membrane porosity

variations, independently of whether induced by variations of the pore radii or of

the random pore network, are an important factor determining membrane filter

performance. Network and pore size variations still play a role, in particular if

pore radii variations are significant. To quantify the influence of these variations,

we compare the performance metrics of networks built from pores of variable radii to

their (equal porosity) counterparts built from pores of uniform radius. We show that

the effect of pore radii variations is to increase throughput, but also to reduce foulant

control.

4.2 Introduction

Membrane filtration is an important separation process used in many industrial

and commercial applications such as treatment of radioactive sludge, water purifi-

cation, beer clarification [78], semiconductor and microelectronics processing [59],

air filtration [80] and membrane bioreactors [35]. Membrane filters used in these

applications have a wide range of architectures, ranging from single layer thin porous

films to multilayered porous membranes [21, 93] to large scale continuous sheets of

layered fibrous material [95, 1, 10].
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Many models to describe the underlying membrane pore structure and/or

geometry have been proposed and studied in recent years. For example, there are

simple theoretical models to analyze the performance of membranes composed of

multiple layers of different porous materials [39, 93], or membranes with simple

branched structures that can incorporate porosity gradients ([111, 99], among many

others). As recent advances in imaging techniques have greatly contributed to the

ability to compare such structural models to experiments ([66, 121, 15, 123]; also

see [14] for detailed images), more sophisticated models of membrane architecture

have also been formulated, with a recent focus on accurate modeling of membrane

filters with a network-type structure, for example, membranes where the solid

component is comprised of fibres (so-called node-fibril type membranes) or those that

transport feed through networks of capillaries [74, 47, 48] (also used in the context of

condensate banking [106]).

The present work focuses on the latter type of pore network model that captures

the sponge-like structure of the membrane selective layer [125, 126, 140]. Our analysis

of pore size variations builds on a model introduced previously in [48]. Briefly, a

network model involves vertices and edges that represent pore junctions and throats,

respectively (referred to simply as junctions and pores from hereon, respectively).

Each pore is assumed to be a circular cylinder of fixed radius, with Hagen-Poiseuille

flow, and conservation of fluid flux is imposed at each junction. Foulant is advected

through pores by fluid and deposits on pore walls via adsorptive fouling. Membrane

filter performance is analyzed by recording total throughput (volume of filtrate

collected during the lifetime of the filter) and accumulated foulant concentration at

the membrane outlet.

The primary findings of [48] that motivate the present work are the following

relationships. Firstly, the initial porosity (pore void volume divided by total domain

volume) of the network is demonstrated to be an important material feature that
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predicts total throughput by a power law, which holds particularly well when initial

porosity > 0.5. Secondly, it was found that the accumulated foulant concentration at

the membrane outlet decays exponentially with the initial tortuosity of the network

(defined as the average distance travelled by a fluid particle from membrane inlet to

outlet, see Appendix C.4 for a detailed definition).

In addition to the features discussed above, pore size (radius) variation is

another important aspect of membrane filter design, which has been investigated

by a number of authors, in particular regarding how it affects membrane selectivity

and particle retention in a variety of applications [89, 109, 67, 81, 127]. It has not,

however, been extensively studied in the context of network models for membrane

filters: though such models allow for cylindrical pores with a distribution of lengths

[47, 48], random variations of the pore radii have not, to our knowledge, been

considered. Accordingly, in this work, we focus on membrane filters whose pores

may be considered as a network of interconnected capillaries of different initial radii.

Henceforth in this work, the phrase “pore size variations” refers to variations in the

initial pore radii, unless otherwise specified.

We present a novel characterisation of the membrane pore network and

model pore size variations via a set of random initial conditions for the radii of

pores. Our assumption on the pore size distribution, in contrast to the log-normal

distribution usually assumed in applications [148], has the advantage of avoiding

extreme values and offering easier control over the variance, while still providing a

reasonable description of effects such as inhomogeneities during the manufacturing

process. Other pore size distributions (including the log-normal) tend to have input

parameters that affect both the mean and variance simultaneously; furthermore,

distributions that can potentially yield very large pore radius values would require

more complicated fluid flow models than considered in this work.
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We use our network representation to investigate the effect of pore size

variations on the performance of membrane pore networks, as characterized by foulant

concentration and total throughput of filtrate over the filter lifetime. We expect

our results to improve our understanding of particle retention inside membrane pore

networks and of how the rate of membrane fouling depends on input parameters.

We note that other authors have taken complementary approaches to such issues; for

example, see [139] for numerical comparisons of a number of pore size distributions,

[108] for a study of the influence of pore size distribution on rheology in two-phase

porous media flow, [77] for experimental discussions, and [26] for a discussion of

related considerations in tissue engineering.

The paper is structured as follows: in Section 4.3, we describe the network

model setup and introduce the key performance metrics. In Section 4.4, we set out

our investigation strategy for pore size variation in an algorithm and declare the main

nomenclature used in the analysis. In Section 4.5, we present and discuss our main

results and in Section 4.6, we conclude our findings.

4.3 Setup: General Pore Networks

In this section we construct our model of a membrane filter represented by a random

network of connected cylindrical pores. In Section 4.3.1, we describe how we generate

a network that represents the internal pore structure of a membrane filter; in

Sections 4.3.2 and 4.3.3, we outline the governing equations for the Hagen-Poiseuille

fluid flow, for the advection of foulant particles carried by the flow, and for the

pore evolution in time; in Section 4.3.4 we specify our notation; in Section 4.3.5, we

provide the relevant physical scales; and in Section 4.3.6, we introduce two metrics

to characterize the performance of a membrane filter with a specified pore network.
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Figure 4.1 2D schematic of the 3D network generation with periodic boundary
conditions showing: interior junctions Vint (red filled circles); pore inlets Vin (blue
filled circles) and outlets Vout (black circles) induced by the cutting process; the
cutting planes blue dashed lines; discarded points (magenta filled circles). Solid
lines represent pores, while dash-dotted lines are pores that arise from the periodic
boundary condition (red are interior to the membrane). lmaxW and δW are prescribed
maximum and minimum pore lengths, respectively.
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4.3.1 Network Generation

We first demonstrate the 3D random network generation protocol employed in this

work (following [48]). In Figure 4.1, for illustration purposes, we show a 2D schematic

of this protocol: the domain is a rectangular cell (square prism in 3D) of lateral

height two times its horizontal width W , assumed to repeat periodically at the

lateral boundaries (more details in Appendix C.1). We generate a pore network

by first uniformly distributing Ntotal (a large integer to be prescribed) points as the

junctions (nodes of the network) inside the domain. We construct pores (the edges of

the network) by connecting all pairs of points that lie within a prescribed maximal

distance lmaxW , but at least some minimal distance δW apart. We then cut the prism

horizontally at two locations (see blue dotted lines in Figure 4.1), and discard the

end pieces to produce a square (or cube in 3D), which will represent an element of a

membrane filter. The intersections of the two cutting planes and the pores (edges)

naturally form membrane inlets and outlets, respectively (see Figure 4.2 for a 3D

realization, with lengths scaled by W ).

4.3.2 Fluid Flow

We next characterize fluid flow in the membrane network. The flow through the pores

(which, within the current model, are cylinders of circular cross section) is assumed

to obey the Hagen-Poiseuille model, valid provided the pores have sufficiently small

aspect ratio (ensured in practice by choice of δ). The Hagen-Poiseuille equation states

that fluid flux Q is proportional to pressure difference ∆P along each pore,

Q = K∆P, K =
πR4

8µL
, (4.1)

where the conductance K depends on R and L, the radius and length respectively of

the pore, and µ is fluid viscosity. To drive the flow, we prescribe the transmembrane

pressure by setting the values on the top (P0) and bottom (0) membrane surfaces,
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Figure 4.2 Schematic of a 3D network with lmax = 0.15 and Ntotal = 2000. Solid red
lines are interior pores; dashed red lines are pores created by the periodic boundary
conditions. Blue dots are inlets. Black dots are outlets.

while the pressures at interior junctions are unknown. At each junction, we impose

conservation of fluid flux, which leads to a system of equations (a discrete Laplace

equation for these junction pressures, see Appendix C.2 for details). Once the

pressures are found, flux through each throat is determined by Equation (4.1).

4.3.3 Advection and Adsorptive Fouling

Feed solution enters the membrane top surface with a fixed foulant concentration

(simply referred to as concentration from hereon), which serves as a boundary

condition. Foulant particles are advected by the fluid while depositing on the pore

walls, causing pores to shrink and eventually close up, a process known as adsorptive

fouling. For each pore, let C (Y, T ) be the particle concentration at any point Y of

the pore at time T , where Y is a local coordinate measuring distance along a pore in

the direction of fluid flow. The concentration is assumed to satisfy the steady state
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advection equation (see [48] and references therein)

Q
∂C

∂Y
= −ΛRC, 0 ≤ Y ≤ L, (4.2)

C (0, T ) := Cup (T ) . (4.3)

Here, the right hand side of Equation (4.2) is a sink of concentration that models

foulant particles depositing on pore walls as they traverse the edge, with Λ (units of

velocity) a parameter that captures the affinity between foulant particles and the

membrane material. In reality Λ could change during filtration due to different

affinities between the particles and the clean membrane, and the particles and

the fouled membrane, the latter being more akin to particle-particle interactions;

for simplicity, however, we assume Λ is a constant. In Equation (4.3) Cup (T )

is the concentration at the upstream entrance of a pore. For pores connected

to the membrane top surface (at inlets), we prescribe a constant concentration

Cup (T ) = Ctop as the upstream boundary condition, representing the concentration in

the feed solution. The foulant concentrations at interior junctions are solved for using

conservation of foulant particle flux QC; that is, the total combined incoming particle

flux from upstream pores must be equal to that entering downstream pores. Similar

to the fluid flux conservation, this law can be expressed by a system of equations that

accounts for the network connectivity (see Appendix C.2 and [48]).

Lastly, as foulant particles deposit on the pore wall, pore radius decreases at a

rate depending on local upstream concentration Cup (T ),

dR

dT
= −ΛαCup (T ) , R (0) = R0, (4.4)

where α is a parameter related to particle volume (see the appendix of [48] for

details). The filter lifetime Tfinal is reached when the outgoing flux at the membrane’s

downstream surface falls to zero.
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Equation (4.4) implicitly assumes that the radius of each pore is a function

only of time T and is independent of the local coordinate Y during its evolution,

which is determined only by the upstream particle concentration. A more accurate

model would be ∂R(Y, T )/∂T = −ΛαC(Y, T ); however, the simplification represented

by Equation (4.4) yields only minor differences in model outcome, while providing

significant computational benefit since it permits analytical solution of Equation (4.2),

leading to immense computational speed-up (more than 100 times faster than the

alternative). See [48] for further discussion, including a sufficient condition for this

simplification to be reasonably valid. In particular, we have verified that the more

accurate model leads to only a modest increase (at most 10%) in total throughput.

The difference in accumulated foulant concentration is smaller still, and differences in

the models’ predictions of both performance measures are particularly insignificant

when lmax (the ratio of the maximum pore length to the membrane thickness) is small.

The computational savings afforded by this simplification facilitate the large number

of simulations carried out in Section 4.4, needed to obtain reliable statistics.

4.3.4 Network Notations

In Sections 4.3.2 and 4.3.3, we introduced fluid flow and adsorptive fouling in

each individual pore and described the conservation laws that govern the physical

quantities of interest in a pore network. Since describing the dynamics of such

quantities requires coupling of all junctions and pores, we introduce the following

indexing scheme. We use a single index (·)i to indicate junction dependence only,

e.g., pressure Pi at junction i. We use a double index (·)ij to indicate dependence

on the pore connecting junctions i and j. We do not distinguish between ij and ji

for scalar quantities such as conductance Kij; however, we do for quantities with a

notion of direction, e.g., Qij as fluid flux from pore i to pore j. We summarize all

physical quantities in Table 4.1.
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Table 4.1 Key Dimensional Quantities

Dimensional Quantity at time T Symbol

Length of pore ij Lij

Radius of pore ij Rij (T )

Membrane unit length W

Maximum pore length lmaxW

Minimum pore length δW

Pressure at junction i Pi (T )

Concentration at junction i Ci (T )

Flux in pore ij Qij (T )

Deposition Coefficient Λ

4.3.5 Scales

We nondimensionalize the fluid flow and foulant transport model described in the

previous sections as follows:

Lij = Wlij, (Rij, Rij,0) = W (rij, rij,0) ,

Pi = P0pi, (Ci, Cij) = Ctop (ci, cij) ,

Λ =
πWP0

8µ
λ, T =

W

ΛαCtop

t,

(4.5)

where the upper case symbols are dimensional quantities (listed in Table 4.1).

Parameter values are listed in Table 4.2. We comment briefly regarding the parameter

λ: its main influence is in determining the time scale on which fouling occurs in the

problem, and how deep within the pore network fouling particles penetrate. The

numerical value of λ is expected to be small; such values promote more efficient use

of the filter by allowing particles to permeate deeper into the membrane interior

(larger λ values lead to a majority of fouling occurring very close to the membrane
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Table 4.2 Key Dimensionless Parameters

Parameter Symbol Values

Initial number of junctions Ntotal 500, 775

Maximum pore length lmax 0.3

Minimum pore length δ 0.06

Unperturbed pore radius r0 0.01

Noise Amplitude β 0.06, 0.25, 0.5, 0.7

Number of networks Nnet 1000

Number of noise realizations Nnoise 500

Deposition coefficient λ 5× 10−7

top surface). Our choice of the specific value, while somewhat arbitrary, satisfies

this requirement. Further work, beyond the scope of this paper, would be needed

to explore how the exact value assigned to this quantity influences the statistics

of membrane performance metrics. We have confirmed numerically that moderate

variations in λ do not change the trends that we describe in this work.

4.3.6 Performance Metrics

We evaluate the performance of a membrane network using the following two metrics:

1) total throughput (h) and 2) accumulated foulant concentration at membrane outlet

(c). Total throughput is the total volume of filtrate collected at the membrane

outlet over the lifetime of the membrane network filter (at time tfinal, when the flux

through the membrane falls to zero). Accumulated foulant concentration measures

the aggregate concentration of foulant particles in the collected filtrate when the filter

is exhausted. Precise definitions of these quantities are given in Appendix C.3.
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4.4 Investigation Methods

We study pore size variations by prescribing a random initial condition for each pore

radius, rij,0. More precisely, we consider perturbations to uniform pores by imposing

a multiplicative noise,

rij,0 = r0 (1 + ϵij) , (4.6)

where ϵij ∼ Unif (−β, β) is a uniform random variable with noise amplitude 0 <

β < 1, independent for each pore. For the rest of this work, when we use the terms

perturbation or noise, we are referring to Equation (4.6). This assumption on the

distribution of pore size variations has the advantage that we can directly control

the width of the distribution via the input parameter β, making the analysis and

interpretation of the results simpler.

We will study selected simulation outputs, f , as model parameters vary, with a

primary focus on the influence of noise amplitude, β. Specifically, in this work f will

be one of the following:

• h, total throughput (throughput),

• c, accumulated foulant concentration at membrane outlet (concentration),

• ϕ, initial network porosity (porosity),

• τ , initial tortuosity (tortuosity),

where the abridged terms in parentheses are used freely henceforth (see detailed

definitions of h, c and τ in Appendix C.3 and Appendix C.4). We note also that since

the nondimensional model operates in the domain of a unit cube, initial void volume

and membrane porosity are equal in value. We refer to porosity only hereon.

A principal aim of this work is to compare the influence of two independent

sources of randomness, namely, the random network generation process (network

variability henceforth), and the random initial condition for the pore radius that yields
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pore radius variations (noise variability henceforth), on statistics of membrane filter

performance metrics. In other words, network variability stems from variations in

node and edge locations in membrane networks, while noise variability is due to pore

size variations. Here we describe the methodology of our study, before summarizing

the approach as an algorithm with enumerated steps below.

First, we generate a large number, Nnet, of random membrane networks (per

Section 4.3.1), each with the same initial pore radius r0. We perturb the pore networks

via Equation (4.6) in the following two distinct ways: To probe noise variability, we

fix one particular “typical” (to be made precise in what follows) network from the

Nnet that were generated, perturb it independently Nnoise times (for Nnoise sufficiently

large), solve the governing Equations (4.1), (4.2) and (4.4) (coupled over the entire

network using continuity as described) and collect statistics of performance metrics

from these Nnoise realizations of noise. To probe network variability, we perturb each

of the Nnet networks independently just once, and collect performance statistics from

the perturbed networks.

Perturbing the pore radii inevitably changes the porosity of the network. This

is important, since initial network porosity was shown to influence strongly both of

our membrane performance metrics in the unperturbed case [48]. To investigate the

importance of such induced porosity changes, we devise the following strategy. First,

note that the initial porosity of a network is given by

ϕ =
π

2

∑
ij

r2ij,0lij
Equation (4.6)

=
π

2
r20
∑
ij

(
1 + 2ϵij + ϵ2ij

)
lij, (4.7)

where the last expression implies that perturbed networks have larger porosities on

average, since ϵ2ij is nonnegative (the factor of 1/2 is needed because the double sum

counts every pore twice). Note that this increase of porosity for perturbed network

is influenced by the choice (uniform) of pore size perturbation distribution; other

distributions (not considered in this work) that have nonzero mean may influence
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the porosity differently. For each perturbed network, we obtain its porosity via

Equation (4.7). We then impose this porosity on the underlying unperturbed network

by determining a new initial pore radius such that the unperturbed and perturbed

networks have the same porosity. This new unperturbed network is referred to

as a porosity-corrected network, from which we also collect performance statistics.

With these preparations, we define a ‘score’ as the difference between the outputs

of the perturbed and porosity-corrected networks, normalized by the outputs of the

porosity-corrected ones.

Each of the Nnet membrane networks has a fixed maximum pore length lmax =

0.3, minimum pore length δ = 0.06 and initial unperturbed pore radius r0 = 0.01. We

vary two parameters: 1) noise amplitude β; and 2) total number of junctions Ntotal.

The ensuing study first fixes an average porosity by fixing Ntotal, while varying β. All

geometric parameters used in the algorithm are listed in Table 4.2, with their values.

We summarize the above procedures in the following algorithm:

1. (Random network generation) Choose Ntotal. Generate Nnet unperturbed
networks. Compute the initial porosity ϕ0 for each network.

2. (Noise perturbation) Choose noise amplitude β.

(a) (noise variability) Fix a typical network and perturb it Nnoise times
independently. Compute the outputs of the perturbed networks, fnoise,
referred to as output under noise realizations. The typical network is
chosen such that its porosity is the closest to the average porosity of the
ensemble, a posteriori.

(b) (network variability) Perturb each unperturbed network once indepen-
dently via Equation (4.6). Compute the associated outputs fnet, referred
to as output under network realizations.

3. (Porosity correction) For each perturbed network, consider its underlying
unperturbed equal-porosity network (created by prescribing the appropriate
uniform pore radius for its pores; see Appendix C.5 for a short derivation).
This new network is called a porosity-corrected network, with output labeled
fpc.
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4. (Scores) We construct two scores that characterize the noise and network
variability when comparing networks of equal porosity. The two scores are
constructed independently from each other, so there is no confusion between
notations.

(a) (Noise score) We compute the following score,

f̂noise =
fnoise − fpc

fpc
, (4.8)

where fnoise and fpc are computed via Items 2a and 3, respectively. All
quantities in Equation (4.8) are vectors of length Nnoise. The subtraction
and division are element-wise.

(b) (Network score) Perform Item 2b to obtain the outputs under network
realizations fnet. Compute the following score,

f̂net =
fnet − fpc

fpc
, (4.9)

where fpc are computed via Item 3. All quantities in Equation (4.9) are
vectors of length Nnet. The subtraction and division are element-wise.

In the following discussions, we refer to the quantities defined by Equation (4.8)
or Equation (4.9) as porosity-corrected scores.

5. Obtain the means and standard deviations of model outputs, fnoise and fnet,

and scores, f̂noise and f̂net. The means under noise and network realizations are
computed by averaging over the number of noise (Nnoise) and network (Nnet)
realizations, respectively.

6. Go back to Item 2 with a different β.

7. Go back to Item 1 with a different Ntotal (to vary initial porosity).

All outputs computed in this algorithm are summarized in Table 4.3.

4.5 Results and Discussions

In Section 4.5.1, we study the performance metrics under a specific choice of model

parameters as an example. First, we compare the noise and network variability of

the raw metrics (throughput and concentration) and geometric quantities (porosity
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Table 4.3 Key Output Quantities

Output Symbol

Porosity-corrected fpc

Noise realizations fnoise (fnoise,σfnoise)

Network realizations fnet (fnet,σfnet)

Noise score f̂noise (f̂noise,σf̂noise
)

Network score f̂net (f̂net,σf̂net
)

The quantities in parentheses are the mean and standard deviation of the
corresponding output.

and tortuosity). Then, we compare the porosity-corrected scores under noise

(per Equation (4.8)) and network (per Equation (4.9)) realizations (steps 4a and

4b in the algorithm, respectively). In Section 4.5.2, we reinforce the example by a

thorough sweep of the parameter space and present our main results.

4.5.1 Detailed Example: Low Porosity Network in Low Noise Regime

In this section, we present a set of results for membrane pore networks in the regime of

low noise amplitude perturbations to the pore radii and low initial porosity. We choose

this parameter regime as a detailed example because the results at higher porosities

are qualitatively similar but more time-consuming to compute. We generate Nnet

networks with an initial number of points Ntotal, which yield an ensemble average

initial porosity ϕ ≈ 0.25 (averaged over Nnet unperturbed networks). The noise ϵij is

realized Nnoise times for each network, with fixed noise amplitude β = 0.06 here. We

give values of Nnet, Nnoise and Ntotal in Table 4.2 and have found that these numbers

are sufficient to account for the random nature of the network and noise generation

protocol; larger numbers produce similar results.
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When we study noise variability (per Item 2a in the algorithm), we fix a

typical network with initial porosity very close to the ensemble average, 0.25. We

first compare the statistics of performance metrics (per Items 4a and 4b in the

algorithm) and then discuss the similarities and differences in the network and noise

scores calculated for the initial porosity and tortuosity of the networks, similarly

averaged over many network and noise realizations. In particular, we focus on the

two relationships found in [48] as example results: throughput vs. porosity, and

concentration vs. tortuosity.

Throughput and Porosity

Figure 4.3 shows throughput versus porosity under (a) noise and (b) network

realizations, respectively. Both figures show that, as expected, throughput is an

increasing function of porosity because more porous filters process more filtrate.

However, we note the different scales in the two figures: in Figure 4.3b we also plot a

black rectangle that represents the total range of Figure 4.3a showing that, before we

correct for induced porosity changes, network variations incur much more variation

in total throughput than pore size variations in this noise/porosity regime. In other

words, the variability induced by noise is significantly smaller than that induced by

network variability.

As noted in Section 4.4 (per Equations (4.6) and (4.7)), and as evident from

Figure 4.3, each pore size perturbation leads to a porosity variation. Since initial

porosity is known to be a key parameter determining filter performance [48], we

proceed by considering the noise and network scores that correct for induced porosity

changes, formulated in Equations (4.8) and (4.9) in Item 4 of the algorithm in

Section 4.4. Figure 4.4 presents histograms of throughput scores under noise and

network realizations. We see that the two histograms are very similar. Comparing

Figures 4.3 and 4.4, we deduce that the porosity change is the crucial factor (at least
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Figure 4.3 Scatter plot of throughput versus porosity, under (a) noise realizations,
(b) network realizations (with each network perturbed once). The black rectangle in
(b) shows the horizontal and vertical range of (a). For both plots, β = 0.06.

for the present (ϕ, β) values) since Figure 4.4, in marked contrast to Figure 4.3, shows

that variations of network and noise as measured by the scores have a very similar

effect.

(a) (b)

Figure 4.4 Histogram of throughput score, under (a) noise realizations, (b) network
realizations (with each network perturbed once).
Same parameters as in Figure 4.3.
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Concentration and Tortuosity

We next investigate the influence of noise perturbation on the accumulated concen-

tration of particle impurities in the filtrate (concentration) and the tortuosity of the

pore network (see Appendix C.4 for a detailed definition), quantities that are strongly

related in unperturbed pore networks [48].

Figure 4.5 shows concentration versus tortuosity under (a) noise and (b) network

realizations. First, both figures show that concentration is a decreasing function of

tortuosity. This makes sense because the longer foulant particles travel in the network,

the more likely they are to adsorb to the pore walls, leading to lower concentration at

the membrane outlet. Second, we point out that the black rectangle in Figure 4.5b

covers the total range of Figure 4.5a, showing, once again, that before induced porosity

changes are accounted for, network variability dominates over noise, for the present

choice of parameters.
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Figure 4.5 Scatter plot of concentration versus tortuosity.
Same description and parameters as in Figure 4.3.

Figures 4.6a and 4.6b plot the data of Figure 4.5 as a histogram of tortuosity

under noise and network realizations (respectively). Note the different horizontal

ranges on the two plots (cf. Figure 4.5). Also, in Figure 4.6b, we see that the
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distribution of tortuosity shifts slightly to the right relative to the unperturbed case,

possibly due to some subtle geometric influence from the random network generation,

not yet understood.

(a) (b)

Figure 4.6 Histogram of tortuosity under (a) noise realizations (b) network
realizations.
Same parameters as in Figure 4.3; same data as Figure 4.5.

Section 4.5.1 shows histograms for the porosity-corrected concentration and

tortuosity scores under noise (Figures 4.7a and 4.7c, generated using Equation (4.8))

and network (Figures 4.7b and 4.7d, generated using Equation (4.9)) realizations.

The histograms of concentration scores in Figures 4.7a and 4.7b are very similar in

shape and width, suggesting that, after we correct for porosity differences, perturbing

one network many times is equivalent to perturbing many networks once.

4.5.2 Results for Varied Noise Amplitude and Porosity

We now explore the influence of noise amplitude, β, and of initial network porosity, ϕ.

For brevity, we condense results for different initial porosity regimes in terms of the

average outputs (see Item 5 of the algorithm) and their standard deviations (shown

via error bars; see Table 4.3 for their notations) plotted as functions of β.
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(a) (b)

(c) (d)

Figure 4.7 Histogram of concentration and tortuosity scores, respectively under
(a,c) noise realizations and (b,d) network realizations.
Same parameters as in Figure 4.3.

Figures 4.8a and 4.8b plot the raw mean throughputs hnoise and hnet against noise

amplitude β for low and high network porosity regimes, respectively. These raw mean

throughputs are increasing functions of β, an observation that we attribute largely to

the fact that an increase of β on average increases initial porosity, which then allows

more filtrate to be processed. Figures 4.8c and 4.8d plot the mean throughput scores

that correct for porosity changes, for filters of low and high porosity, respectively.

We find that the mean throughput scores are also increasing functions of β; however,
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Figure 4.8 Mean throughput hnoise, hnet (a,b) and mean throughput scores ĥnoise, ĥnet

(c,d) versus noise amplitude β under noise and network realizations. Low porosity
ϕ ≈ 0.25 (a,c) and high porosity ϕ ≈ 0.6 (b,d) cases are shown. Vertical error bars
are standard deviations for each mean value. Note that the scores (c,d) show relative
change, so that, e.g., an increase from 0 to 0.6 on the vertical axes means a 60%
increase.

this increase (which is still significant, around 60% for β = 0.75 for both low and

high porosity networks per Figures 4.8c and 4.8d) is due purely to the pore size

variations. This implies that, for equal porosity networks, when the magnitude of the

noise perturbation β is large enough, pore radius variations do lead to an appreciable
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change in total throughput. This further suggests that pore radius variations promote

filtrate production, at least for the considered uniform pore size distribution.
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Figure 4.9 Ratio of standard deviations of raw throughput (black squares) and
throughput scores (black diamonds) for (a) Low porosity (corresp. Figures 4.8a
and 4.8c) and (b) high porosity (corresp. Figures 4.8b and 4.8d).

We now study the variability of throughput and throughput scores induced

by pore radius variations, represented by the error bars (standard deviation of each

statistic) for all cases shown in Figure 4.8. To facilitate this comparison, we plot in

Figure 4.9 the ratio of the standard deviations of the mean quantities under noise

and network realisations (referred to simply as the s.d. ratio below) from Figure 4.8,

for raw throughputs and their scores. A value of the s.d. ratio near 1 implies that

the compared quantities have similar standard deviations, whereas a value near 0

says that variation induced by network realisations dominates that from noise. In

both low and high porosity regimes (Figures 4.9a and 4.9b, respectively), we observe

that the s.d. ratios for the raw throughput (black squares) are all below 0.5 for any

value of noise amplitude β, thus the throughput variability from network realisations

dominates that from noise. However, the s.d. ratios of the throughput scores (black

diamonds) are close to 1 in both porosity regimes, for all β values considered. This
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finding shows that, when considering the total throughput metric, network porosity

accounts for the differences between network and noise variability.
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Figure 4.10 Mean concentration and concentration score.
Same setup as in Figure 4.8.

Figures 4.10a and 4.10b show mean concentrations cnoise and cnet of particles

in the filtrate as a function of noise amplitude β for low and high porosity regimes.

We observe that the mean raw concentrations in both cases are increasing functions

of β. We attribute this increase largely to the increase of porosity with β, as

evident in Equation (4.7), allowing more particles to pass through unfiltered and

thus worsening foulant control. In contrast, Figures 4.10c and 4.10d plot the mean
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concentration scores ĉnoise and ĉnet (see Equations (4.8) and (4.9)), which correct for

porosity changes: the increase with β seen here is a direct consequence of the pore

size variations. For example, for β = 0.75, the perturbed networks show more than

150% increase in concentration when compared with porosity-corrected unperturbed

counterparts. This implies that pore radius variations influence foulant concentration

in the filtrate significantly for sufficiently large noise amplitude β, and in fact are

detrimental for foulant control.
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Figure 4.11 Same setup as Figure 4.9 for raw concentration and concentration scores.
(a) Low porosity (corresp. Figures 4.10a and 4.10c) and (b) high porosity (corresp.
Figures 4.10b and 4.10d).

Now, we discuss the observed variability of the raw mean concentration and

concentration scores induced by pore size variations. Similar to the study of

throughput variability, Figure 4.11 plots the ratios of standard deviations of the

mean concentrations (raw values and scores) under noise and network realisations,

found in Figure 4.10. The observed trends are similar to Figures 4.9a and 4.9b:

before correcting for induced porosity changes, network variability dominates noise

variability for all porosities and noise amplitudes tested, exemplified by the s.d. ratios

for the raw concentrations (black squares). However, this dominance is weaker for

particle concentration than for throughput: in Figure 4.11, the s.d. ratios for the
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raw concentrations are larger than those for the raw throughputs in Figure 4.9. This

means that concentration, as a performance metric, experiences larger variations when

pore radii are perturbed than does throughput. We further note that the s.d. ratio

of concentration scores (black diamonds) is close to 1 for small β (underscoring the

importance of porosity), but decreases as β increases. In other words, porosity changes

due to network variations are solely responsible for concentration variability at small

noise amplitudes, but not at high amplitudes.
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Figure 4.12 Mean tortuosity and tortuosity score. Same setup as in Figure 4.8.
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As noted earlier, tortuosity (the average dimensionless path length of a fluid

element as it passes through the pore network; see definition in Appendix C.4) is an

important quantity determining membrane filter performance [48]. Figure 4.12 shows

mean tortuosities τnoise and τnet, and mean tortuosity scores τ̂noise and τ̂net as noise

amplitude varies. We find that in both porosity regimes, network variability (red

error bars) still dominates noise variability (blue error bars) if we do not correct for

induced porosity variations. The dominance is less strong for higher noise amplitudes,

however, where the error bar sizes become similar, indicating that sufficiently high

noise amplitude induces similar variability in network tortuosity to that due to the

network generation protocol. Figures 4.12c and 4.12d show the means of the tortuosity

scores τ̂noise and τ̂net; we observe that after correcting for porosity changes, noise and

network variability are now very similar for all noise amplitudes considered, in both

porosity regimes. This implies that, when porosity variations are accounted for, the

effects of noise and network variability on tortuosity are comparable.

Furthermore, we observe that the mean tortuosity and tortuosity scores in

Figure 4.12 are increasing functions of noise amplitude β in all cases, but the changes

are modest compared to those in throughput seen in Figure 4.8 (see a further

discussion in Appendix C.4 on how β affects τ). Overall, tortuosity variations do

not exceed 4% for all parameters considered (note the vertical scales of Figures 4.12c

and 4.12d). Based on this observation, we infer the relative influence of throughput

and tortuosity scores on concentration scores. On the one hand, filters with larger

throughput scores tend to allow more foulants to pass through and thus produce

higher foulant concentrations in the filtrate. On the other hand, filters with larger

tortuosity lead to lower concentrations [48]. Hence, as β increases, the increased mean

throughput and tortuosity scores have opposite effects on mean concentration scores.

The fact that we observe still an increased concentration score as β increases (per

Figures 4.10c and 4.10d) implies that the effect of increasing throughput dominates
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that from increasing tortuosity. In other words, although pore size variations

do increase pore network tortuosity (favorable for foulant control), this effect is

apparently insufficient to lead to improved foulant removal when balanced against

the tendency of the increased throughput to transport a greater proportion of foulant

particles through the filter.

Before closing, we note in passing some perhaps unexpected features of the

results. First, comparing Figures 4.12c and 4.12d, we observe that filters with higher

porosity show a smaller increase in tortuosity with β. Second, we note that, according

to Figures 4.12c and 4.12d for the smallest value of β used, some networks may have

smaller tortuosity than their unperturbed counterparts, as shown by the first error

bar crossing the zero line.

4.6 Ending Remarks

In this chapter, we have devised and implemented a network model for adsorptive

fouling of a membrane filter whose pore structure is formed by randomly generating

junctions and pores. Within this network representation, we have modelled pore

size variations as random initial conditions (uniform multiplicative noise for the pore

radii). We have studied these two sources of randomness – the random network

generation protocol and pore radius variations – by comparing their effects on

two key membrane filter performance metrics: total throughput and accumulated

concentration of adsorptive foulants in the filtrate.

We report three principal findings. First, we find that the initial porosity

of the pore network is a critical feature of the filter, and a strong determinant of

performance. Secondly, we observe that the influence of pore radius variations on

membrane performance becomes prominent when the noise amplitude is large. Lastly,

we conclude that pore size (radius) variations are favorable for maximizing filtrate

production, but unfavorable for foulant control.
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To arrive at these conclusions, we first compare membrane network perfor-

mances directly by varying noise amplitude. Then, to rule out the effect from

variations in porosity, we formulate the corresponding porosity-corrected networks

and study the relative change in performance metrics via a well-defined score.

We note that the reported findings were obtained by assuming a uniform

distribution of pore radius variations, and furthermore we have not considered

large-particle sieving. Considering sieving in addition to adsorptive fouling and

exploring the influence of other pore size distributions will be a focus of future work.
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CHAPTER 5

ON PORE-SIZE GRADED MEMBRANE NETWORKS

5.1 Overview

Pore-size gradients are often used in the design of membrane filters to increase

filter lifetime and ensure fuller use of the initial membrane void volume. In this

chapter, we model pore-size gradients in the setting of a membrane filter with an

internal network of interconnected pores, and study the influence on membrane

performance measures such as total filtrate throughput and accumulated contaminant

concentration at the membrane downstream pore outlets. Within the limitations of

our modeling assumptions, we find that there is an optimal pore-radius gradient that

maximizes filter efficiency independent of maximal pore length (an input parameter

that influences membrane geometry), and that membrane pore networks with longer

characteristic pore length perform better.

5.2 Introduction

Membrane filtration is an industrial process that uses porous material to separate

contaminants from feed solutions. It is crucial to commercial applications such as

waste water treatment [75], radioactive sludge removal [25], beer clarification [78] and

membrane bioreactors [35], among many others. Filtration is also relevant to many

daily household uses including water purification [11], air filters [142, 134, 120, 80],

and grease filters [137]. To design an ideal filter, one aims to tailor the geometric

features of the filter (specifically, the pores’ size, shape and connectivity) so that

impurities are removed efficiently, while producing a required amount of filtrate up

to a certain standard of purity.

Membrane filtration employs a wide variety of pressure-driven separation

methods, distinguished by the scales of pore sizes at which they operate. For
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example, microfiltration is effective in sieving solids and bacteria; ultrafiltration is

often employed in virus and toxin removal; nanofiltration is a popular final step for

water treatment that removes major monovalent ions such as chloride and sodium;

and reverse osmosis separates multivalent ions that escape from the previous methods

by applying mechanical pressure to overcome osmotic pressure [131]. A wide range

of materials may be used in membrane manufacture, but membrane materials in

common use are roughly divided into two categories: polymeric and ceramic [42].

Membrane filters are also manufactured with many different spatial configurations of

membrane materials (leading to differently-structured pores) such as node-fibril [105],

flat-sheet [114] and multitube [84], either mimicking natural filters found in plants

and animal organs or resulting from careful design considerations.

In addition to these intrinsic features, membrane filter design using a combi-

nation of materials and pore layouts has profound implications for performance, and

is the main focus of this chapter. A well-designed membrane filter not only maintains

particle retention capability but also provides sufficient output (filtrate) to serve

the immediate needs of the application. Common membrane designs incorporate

structural variations at the microscale (connectivity of interior pores, pore branching,

etc.) as well as the macroscale; e.g., pleated filters (also known as spiral-wound

modules [12]) and multilayered membrane filters [93]. This last class of membranes has

garnered particular attention from industrialists and practitioners for their versatility

in applications. In multilayered membrane filters, single-layer membrane filters, each

with a different characteristic pore size, may be stacked on top of each other to form

a composite membrane with a distribution of pore sizes in its depth (in addition to

any intra-layer pore size variations, which are assumed to be less important; but see

Gu et al. [49] for more discussion of this feature). Common practice is to place the

layers with larger pores upstream, allowing more fluid to pass through and providing
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more surface area to capture particles; and layers with smaller pores downstream to

capture any particles that may escape from upstream layers.

We emphasize that the notions of porosity gradient and pore-size gradient are

inherently different, though they are sometimes related; and the terms are often used

interchangeably in various contexts within current literature. To illustrate, consider

first a simple membrane structure where the membrane upstream and downstream

surfaces are connected by single continuous pores (a “track-etched” type structure [6]).

If such pores have circular cross-section (but with depth-varying radius) and a straight

axis perpendicular to the membrane, then if one identifies local pore radius with

pore size, a direct relation may be made between pore size gradient and porosity

gradient: a pore size (radius) gradient does induce a porosity gradient (or vice versa).

However, for a more general network of pores, one can easily design a network that

has decreasing pore size in the depth but no porosity gradient, by appropriately

increasing the number density of pores with depth. With this distinction between

porosity and pore-size gradient in mind, we briefly review current relevant literature

that considers either gradient, noting the key findings and motivating the work of the

current chapter.

Many experimental studies have shown that improved performance can be

achieved with porosity-graded multilayered membrane filters. In terms of

membrane performance, the ability of porosity-graded ceramic filters to delay

internal fouling when compared to common homogeneous ceramic filters has been

discussed [90]; and the improved throughput production and foulant removal

capability of a photocatalytic membrane with hierarchical porosity was also inves-

tigated [41]. Progress has also been made on the manufacturing side. Improved

tunability of the physical membrane characteristics in porosity-graded membrane

filter assembly has been demonstrated by Amin et al. [3]; a novel fabrication strategy

of porosity-graded porous foams via 3D printing has been discussed by Cappaso et
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al. [20]; and recent advances in additive manufacturing techniques for porous materials

with controllable structure have been reviewed by Guddati et al. [51]. On the other

hand, much attention has also been given to manufacturing pore-size-graded filters

with desired characteristics, such as the work of Dong et al. [36] on fabricating air

filters represented as pore-size-graded networks (mimicking bryophyte leafs), and of

Harley et al., who present a novel strategy to build porous tubular scaffolds with

prescribed pore-size gradient [52]. Kosiol et al. use gold nanoparticles as a probe

to estimate the pore-size gradient in commercial and non-commercial parvovirus

retentive membranes, as these gradient values were found to correlate strongly with

virus retention [73]. The advantages of pore-size-graded filters in applications such

as tissue engineering [34, 85, 118] and fuel cells [92] have also been discussed.

Several theoretical groups have also contributed to the breadth of the study

on multilayered membrane filters with porosity gradients via mathematical modeling

and numerical studies; for example studying filter performance optimization as a

function of pore-size gradient within a simply-structured membrane [97, 46, 122, 112];

carrying out numerical simulation and analysis of performance of simple multilayered

filter structures [39], and investigating geometric and topological properties of

membrane networks [48]. There is also significant work on techniques to probe the

microstructure of membrane filters, including imaging techniques used to recover

network representations of membranes structures in 3D [14, 123] that further motivate

and inform our modeling work using pore networks.

This chapter focuses on the modeling of pore-size-graded filters with no

porosity gradient. We specifically exclude porosity variations so that the impact of

pore-size gradient alone can be elucidated; and also because the membrane porosity

has been shown to influence membrane network performance rather strongly, to

the extent that no benefit would be anticipated by having porosity decrease in the

membrane depth (see [48, 49], for example). Our goals are to model a membrane filter
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with a pore-size gradient and then to probe and explain the influence of this gradient

on membrane performance metrics such as total filtrate throughput and particle

retention (only adsorptive particle fouling is considered in this chapter). For the

first goal, we model the membrane filter as a network of circularly-cylindrical pores.

We introduce the pore-size gradient by dividing the membrane into bands of equal

thickness (within each of which pore radius is constant), and designating a linearly

decreasing sequence of radius values for pores from upstream to downstream bands.

We generate membrane pore networks with such a banded structure following a

random network generation procedure, adapted from that employed by Gu et al. [48].

We further impose that the porosity of each band, an influential geometric feature of

membrane pore networks, is approximately equal across all bands, so that we reveal

the sole influence of pore size (radius) gradient on membrane filter performance.

In addition to studying pore size gradient variations, we also consider variations in

maximal pore length, a model input parameter that controls the geometric structure

of the pore network.

The chapter is outlined as follows: in Section 5.3, we describe the details of the

mathematical model, first introducing how the banded pore networks are constructed

with specified pore-size gradient in Section 5.3.1 and then presenting the governing

equations for fluid flow and foulant particle transport in Section 5.3.2; in Section 5.4

we define the performance metrics we use to compare our membrane pore networks;

in Section 5.5, we provide the appropriate physical scales of the problem and then

summarize the model in nondimensional form; in Section 5.6, we present and explain

our observations; and in Section 5.7, we conclude our findings.

5.3 Mathematical Modeling

In this section, we introduce a mathematical model that captures the multilayered

membrane structure using a pore network representation. We first describe the
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general network generation protocol and how this creates pore junctions and

cylindrical pores, and define our computational domain. After introducing our notions

of pore-size gradient, band radius and band porosity, we provide a detailed algorithm

that explains how we generate radius-graded banded networks under specific physical

constraints. Lastly, we present the governing equations for fluid flow, foulant particle

transport and pore radius evolution, and their solution techniques when they are

posed on a network.

5.3.1 Pore Size-Graded Networks

We model a representative unit of a membrane filter as a block of porous material

that occupies a cube with side length W (see [48] for a similar setup) and contains

a network of pores. Each pore is assumed to be circularly cylindrical and thus fully

characterized by its length and radius. We use the terms “pore size” and “pore radius”

interchangeably from hereon. The unit consists of a membrane top surface with pore

inlets, interior pore junctions (vertices of the network), pores (edges of the network),

and a bottom membrane surface with pore outlets. The membrane unit is generated as

follows: interior junctions are points represented by Euclidean coordinates, uniformly

randomly placed in a rectangular box with height 2W and square cross section of

side length W . Pores are constructed as slender circular cylinders, with axis along

straight lines that connect the junctions according to a periodic connection metric (see

Appendix D.1). More specifically, we connect junctions (possibly through the four

vertical parallel walls) when they lie within a distance of Amax and at least Amin away

from each other. These two parameters are referred to as the maximal and minimal

pore lengths, respectively. Inlets and outlets are the intersection points between the

pores thus generated and two horizontal planes at heights Z = 0.5W and Z = 1.5W ,

respectively (thus Z is the coordinate perpendicular to the membrane surfaces). The

space created between these planes forms our computational domain – a cube with
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Figure 5.1 Schematic of a 3D banded network represented in 2D. Colored junctions
and pores correspond to each band as follows: red 1st band; green 2nd band; light blue
3rd band and indigo 4th band. Blue dots are inlets. White dots are outlets. Dashed
lines are pores created by the periodic boundary conditions (see Equation (D.3) in
Appendix D.1).

side length W (referred to as the domain in the following), while the parts exterior

to this cube are discarded.

In the following sections, we first introduce the notion of pore size (radius)

gradients, as studied in this chapter, and define band porosity. In addition, in order

to tune membrane porosity (a readily measurable quantity in practice), we devise a

rule to determine the number of pore junctions to be placed (randomly) in the domain

to complete the banded network generation protocol.

Bands and Radius Gradient

We introduce a pore radius gradient by first dividing the domain in the Z-direction

(the coordinate direction perpendicular to the membrane upstream and downstream
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surfaces) into m bands, each of thickness W/m. See a 2D representation of a

3D schematic in Figure 5.1. Let Vk and Ek be the set of junctions and pores in

the kth band (numbered from the upstream surface; see the detailed definitions in

Equations (D.4) and (D.6) in Appendix D.1). Each pore in Ek is assigned an initial

radius

Rk = Rm + (m− k)sW, 1 ≤ k ≤ m, (5.1)

where s is the radius gradient and Rm is the radius of pores in the bottom band. This

consideration assumes that the initial pore radius in each band is a constant. We say

that a pore belongs to the kth band when the largest proportion of its total length

lies strictly inside the kth band, and we then assign Rk as its radius (see the different

thicknesses and color coding of pores across the bands in the schematic of Figure 5.1).

We refer to Rk as the k
th band radius from hereon. We also call networks with s = 0

uniform networks and those with nonzero s values graded networks.

In this chapter, to reduce the number of degrees of freedom and to make our

comparisons of different membranes as “fair” as possible, we impose the constraint

that the average radius across all bands is equal to some value R0, for any Rm

and s values. More precisely, for each graded network, we find a range of (Rm, s)

pairs corresponding to an average pore radius R0 across the bands, and compare the

performance of these networks versus their uniform counterparts with radius R0. The

average radius R0 across the m bands satisfies

(Constraint 1a) R0 =
1

m

m∑
k=1

Rk = Rm +
sW

2
(m− 1) . (5.2)

Thus, once R0 is prescribed, we can choose s and then uniquely determine Rm.

We here point out an important fact: to generate a banded network, in addition

to declaring band radii using Equation (5.1), we must also specify an initial number

of randomly placed junctions in each band. This in general leads to different band
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porosities (void volume in the band divided by volume of the containing slab, discussed

in detail later). As the goal of our work is to isolate the influence of pore size (radius)

gradients, we enforce that each band has the same porosity. To achieve this, we devise

a guess-and-correct procedure detailed in the following sections.

Band and Membrane Porosity

Before we introduce the banded network generation procedures, we clarify the crucial

definition of band porosity. The band porosity of the kth band of a graded network

with m bands is given by

Φk =

π
2

∑
eij∈E R2

ijLk,ij

W 3/m
, (5.3)

where eij is the pore connecting junctions i and j with radius Rij, and Lk,ij measures

the length of eij that lies within the kth band (by which definition Lk,ij = 0 if eij has

no component within layer k; see Appendix D.1 for a detailed definition of Lk,ij and

its distinction with edge length Aij). The sum in Equation (5.3) is over all pores since

Lk,ij includes the contributions from pores that cross multiple bands. The numerator

is the void volume of the kth band (volume of empty space), while the denominator is

the volume of the rectangular slab with a square cross section of side length W and

height W/m. The membrane porosity is given by

Φ =
1

m

m∑
k=1

Φk, (5.4)

that is, the average band porosity across the bands. This definition is equivalent to

the sum of total void volume divided by the volume of the cube with side length W .

In general, the band porosities and overall membrane porosity are functions

of time, since pore radii evolve due to foulant particle deposition and adsorption;

Equations (5.3) and (5.4) hold pointwise in time. In the following Section 5.3.1,

however, we are concerned only with describing the initial membrane structure, hence
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we adopt a simpler notation by dropping the time dependence as we work only with

initial porosities.

Constant Radius in Each Band

Here we present the methodology of generating radius-graded membrane networks.

In this section only, for notational simplicity, Φk and Φ correspond to the initial

porosity in the kth band and initial membrane porosity. We divide the domain

into m bands of equal thickness in the direction perpendicular to the membrane

top surface, as motivated in Section 5.3.1. We assign a typical initial porosity

value Φ for the membrane structure we consider, e.g., Φ = 0.6 that approximates

commercial filters. The principal aim of this section is to estimate the number

of points (pore junctions) needed in each band to generate networks that satisfy

prescribed constraints, including Equation (5.2) and more to be detailed below.

To isolate the effect of pore radius gradients on membrane performance, we

enforce that every band has approximately the same initial porosity (we cannot

insist that band porosities be exactly equal due to the random nature of the network

generation protocol). This (soft) constraint is given by

(Constraint 2a) Φn ≈ Φk, n, k = 1, . . . ,m, (5.5)

where the “≈” is to be made precise in the algorithm introduced below. Since the

initial pore radius is constant within each band, Equation (5.3) simplifies to

Φk :=

π
2
R2

k

∑
eij∈E Lk,ij

W 3/m
. (5.6)

Using Equations (5.1) and (5.3), for arbitrary bands n and k, we have

W 3

m
Φn =

π

2
R2

n

∑
eij∈E

Ln,ij ≈
π

2
R2

k

∑
eij∈E

Lk,ij =
W 3

m
Φk,
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which implies

R2
n

∑
eij∈E

Ln,ij ≈ R2
k

∑
eij∈E

Lk,ij. (5.7)

We now relate Nk, the number of pore junctions randomly placed in the kth

band, to the sum in Equation (5.7) and use the result to provide an estimate for

Nk, to generate pore networks that satisfy the constraints given in Equations (5.2)

and (5.5). We use basic probabilistic arguments to deduce that
∑

eij∈E Lk,ij, total

edge length in the kth band, scales with Nk (Nk − 1) and other terms common to all

other bands (so that they cancel from each side of Equation (5.7)). Details of this

derivation are in Appendix D.2. Equation (5.7) then reduces to

R2
nNn (Nn − 1) ≈ R2

kNk (Nk − 1) , ∀n, k = 1, . . . ,m, n ̸= k. (5.8)

Since we consider only situations where pore size decreases in the membrane depth,

a nonzero pore size gradient s implies that Rm, the radius in the mth band, is the

smallest (per Equation (5.1)). Thus, the mth band requires more points than other

bands to satisfy Equation (5.8), and motivates our initializing our algorithm with this

band (more computationally efficient, since this choice minimizes the errors incurred

in the sequential process outlined below). To estimate the Nk sequentially, we first

prescribe s, the radius gradient. This fixes each band radius Rk via Constraint 1,

Equation (5.2). We then make several guesses for Nm and stop when we find a value

such that Φm ≈ Φ. With Nm determined, we employ Equations (5.1) and (5.8) to

obtain the relationship

R2
mNm (Nm − 1) ≈ (Rm + (m− k) s)2Nk (Nk − 1) , (5.9)

which we solve to estimate the number of junctions, Nk, for all other bands.

The relationship Equation (5.9) is by no means exact, and can fail by some

margin to guarantee equal porosity for each band when the gradient s becomes
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too large, but it provides a useful starting point. After estimating the Nk values

as described, we compute the corresponding Φk and check their proximity to the

prescribed value Φ. We correct Φk to Φ by adding or removing nodes randomly. This

correction procedure starts with themth band and proceeds upstream. We iterate this

procedure until the network achieves band porosities close to Φ within a prescribed

relative tolerance ϵ = 0.005. Variations in porosity as such are sufficiently small for

the stability of our results on performance metrics (see [49] for details on the effect

of porosity variations).

5.3.2 Governing Equations

In this section, we briefly describe the dimensional governing equations for flow of

the feed solution and transport of foulant concentration in a single pore, then extend

the description to a network of such pores using conservation laws at pore junctions.

For more details of the derivation, we refer the reader to Gu et al. [48].

Fluid Flow

The feed is assumed to be a Newtonian fluid with viscosity µ, driven through a

cylindrical pore with small aspect ratio via a pressure difference P0. The flux Qij

between junctions i and j is characterized by the Hagen-Poiseuille equation [103],

Qij = Kij (Pi − Pj) , eij ∈ E, (5.10)

where Kij is the conductance of the pore eij, given by

Kij =


πR4

ij

8µAij
, eij ∈ E,

0, otherwise,

(5.11)

where Rij and Aij are the radius and length of eij. Enforcing conservation of flux at

each junction leads to a system of equations for the pressure at each interior junction,
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subject to the boundary conditions

Pi =


P0, i ∈ Vtop,

0, i ∈ Vbot,

(5.12)

where Vtop and Vbot are the set of membrane pore inlets and outlets, respectively (see

Equation (D.1) for their definitions in detail). Once the pressures are known, we use

Equation (5.10) to find the flux in each individual pore. The scales for these equations

are defined in Section 5.5.

Foulant Transport

In this chapter, only adsorptive particle fouling is considered, in which foulant

particles much smaller than the pore radius are transported by the flow and adhere

to the pore wall due to a variety of chemical or physical effects that depend on the

affinity between the particles and the membrane material. Cij, the concentration of

foulant particles in pore eij, satisfies the steady state advection equation,

Qij
∂Cij

∂Y
= −ΛRijCij, (5.13)

where Λ is an affinity parameter that describes the interaction between foulant

particles and the membrane material; and Y is a local coordinate along the pore

in the direction of flux Qij. Equation (5.13) is paired with a boundary condition

Cij (0, T ) =


C0, i ∈ Vtop,

Ci (T ) , otherwise,

(5.14)

where Ci (T ) is the (unknown) concentration at junction i, determined by enforcing

conservation of foulant particle flux, i.e., QijCij, at each junction i (for all adjacent

j).
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Pore Radius Evolution

Once we obtain the foulant concentration at each junction, we model pore size

evolution with a decay rate directly proportional to the concentration at the upstream

inlet (for a stronger justification of this model choice see [48]). More precisely, Rij,

the radius of a pore eij, satisfies

dRij

dT
= −ΛαCi, α =

Vp

2π
, eij ∈ E, (5.15)

where Vp is the effective volume of each foulant particle. This ODE is subject to the

initial condition

Rij (0) = Rk, eij ∈ Ek, k = 1, . . . ,m, (5.16)

that is, we assign an initial pore radius Rk to each pore that lies in the kth band.

5.4 Performance Metrics

In this section, we define the performance metrics used in this chapter to evaluate

membrane filter performance.

1. Membrane Lifetime, Tfinal.

(a) (Flux extinction) It is the earliest time at which there exists no feasible
path for fluid transit from the membrane top surface to the bottom. This
corresponds to the case when flux reaches zero.

(b) (Flux threshold) It is the earliest time at which flux level reaches below a
prescribed threshold.

2. Filtrate Throughput H (T ),

H (T ) =

∫ T

0

Qout (T
′) dT ′, (5.17)

Qout (T ) =
∑

vj∈Vout

∑
i:eij∈E

Qij (T ) , (5.18)

where Qout (T ) is the total flux exiting the filter and Vout is the set of pore
outlets at the membrane bottom surface. In particular, we are interested in
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Hfinal := H (Tfinal), the total volume of filtrate processed by the filter over its
lifetime.

3. Initial Flux Qout (T = 0).

4. Accumulated Concentration of Foulant at Membrane Outlet Caco (T ) (ACO in
short),

Caco (T ) =

∫ T

0
Cout (T

′)Qout (T
′) dT ′∫ T

0
Qout (T ′) dT ′

=

∫ T

0
Cout (T

′)Qout (T
′) dT ′

H (T )
, (5.19)

where

Cout (T ) =

∑
vj∈Vout

∑
i:eij∈E

Cj (T )Qij (T )

Qout (T )
(5.20)

is the instantaneous foulant concentration at the membrane outlet. Of
particular interest is Cfinal := Caco (Tfinal), which provides a measure of the
aggregate particle capture efficiency of the filter over its lifetime.

5. Following Griffiths et al. [47], we also investigate a combined score that captures
the mass of particles retained in the filter,

Ξ = Hfinal (1− Cfinal) , (5.21)

which captures the trade-off between throughput and concentration usually
observed in filtration experiments, i.e., filters producing a large throughput
tend to have low impurity retention. We refer to Ξ as the filter mass capacity
(or simply capacity) in the following discussions as it represents the mass of
impurity that has been deposited in the membrane at the end of its lifetime.

6. Band porosity and membrane porosity as functions of time (per Equations (5.3)
and (5.4), respectively),

Φk (T ) =

π
2

∑
eij∈E R2

ij (T )Lk,ij

W 3/m
, k = 1, . . . ,m, (5.22a)

Φ (T ) =
1

m

m∑
k=1

Φk (T ) , (5.22b)

and their changes from initial to final values, referred to as band and
membrane porosity usage, respectively,

∆Φk = Φk (0)− Φk (Tfinal) , k = 1, . . . ,m, (5.23a)

∆Φ = Φ (0)− Φ (Tfinal) . (5.23b)

Per Equation (5.5), Φk (0) ≈ Φ (0) ≈ 0.6 where ≈ is up to some tolerance ϵ.

We summarize the procedures described in Section 5.3.1 in Algorithm 5.1.
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Algorithm 5.1 Filtration on Radii-Graded Networks.

1. Choose maximal pore length Amax, average pore radius R0 and porosity Φ.

2. Initialise radius gradient s. Find Rk as constrained by R0 via Equation (5.2).

3. Generate NG banded networks parametrized by Amax and Rk:

(a) Guess Nm such that Φm ≈ Φ.

(b) Determine Nk for k = 1, . . . ,m− 1 via Equation (5.9).

(c) Generate networks using Nk random junctions in the kth band according

to the periodic connection metric defined in Equation (D.3).

(d) Correct membrane porosity by adding or deleting junctions until it is

within relative tolerance ϵ = 0.005 to Φ. More precisely, we perform

this procedure until
∣∣1− Φcorr

Φ

∣∣ < ϵ where Φcorr is the porosity during this

iterative procedure.

4. Compute the performance metrics (defined in Section 5.4).

5. Go back to Item 2 by varying s.

6. Go back to Item 1 by varying Amax.

5.5 Scales

We nondimensionalize the model presented in Section 5.3, key quantities introduced

in Section 5.3.1 and the performance metrics defined in Section 5.4, with the following
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scales,

P = P0p, (Aij, Lk,ij) = W (aij, lk,ij) ,

(Amin, Amax) = W (amin, amax) , (Rij, R0) = W (rij, r0) ,

Qij =
πW 3P0

8µ
qij, Kij =

πW 3

8µ
kij, kij =

r4ij
aij

,

(Cij, Caco, Cint) = C0 (cij, caco, cint) , Z = Wz, Λ =
πWP0

8µ
λ, T =

W

ΛαC0

t.

(5.24)

Equation (5.1) for the initial pore radius in layer k, in dimensionless form now reads

rk = rm + (m− k) s. (5.25)

Using the scales for pore radius Rij and pore length Lk,ij in the kth band, band

porosity now becomes

Φk (t) :=

π
2

∑
eij∈E r2ij (t) lk,ij

1/m
. (5.26)

The dimensionless performance metrics become

h (t) =
1

λ

∫ t

0

qout (t
′) dt′, qout (t) =

∑
vj∈Vbot

∑
vi:(vi,vj)∈E

qij (t) , (5.27a)

caco (t) =

∫ t

0
cout (t

′) qout (t
′) dt′∫ t

0
qout (t′) dt′

, cout (t) =

∑
vj∈Vbot

∑
vi:(vi,vj)∈E

cj (t) qij (t)

qout (t)
, (5.27b)

ξ = h (tfinal) cint (tfinal) . (5.27c)

Tables 5.1 and 5.2 summarize the key nondimensional parameters and

quantities, their symbols/definitions and range of values.

5.6 Results and Discussions

In this section, we present results on the performance metrics of banded networks as

the pore radius gradient s and maximal pore length amax are varied. For every gradient
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Table 5.1 Key Nondimensional Parameters

Parameter Symbol Values/Range

Maximum pore length amax 0.1, 0.15, 0.2

Minimum pore length amin 0.06

Radius in kth band rk [2.5× 10−3, 0.016]

Uniform Radius r0 0.01

Radius gradient s [0, 4× 10−3]

Total number of bands m 4

Deposition coefficient λ 5× 10−7

Initial membrane porosity Φ (0) 0.6

Initial band porosity Φk (0) 0.6

Relative error for porosity correction (see Algorithm 5.1) ϵ 0.005

Table 5.2 Key Nondimensional Quantities

Quantity Symbol Formula/Range of Values

Pore Length aij [amin, amax]

Pore Radius rij (t) [2.5× 10−3, 0.016]

Pore length in the kth band lk,ij see Appendix D.1

Porosity of the kth band Φk (t)
mπ
2

∑
eij∈E r2ij (t) lk,ij

Membrane Porosity Φ (t) 1
m

∑m
k=1Φk (t)

Total Throughput h (t) 1
λ

∫ t

0
qout (t

′) dt′

ACO (see Equation (5.19) for nomenclature) caco (t)
∫ t
0 cout(t′)qout(t′)dt′

λh(t)

Filter mass capacity (capacity) ξ h (tfinal) cint (tfinal)
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s, we generate 1000 networks independently using the banded network generation

protocol described in Section 5.3.1 and collect the mean and standard deviation of

each performance metric defined in Section 5.4. The system of ODEs Equation (5.15)

is solved using a simple forward Euler method with a time step size of 2.5 × 10−4.

We investigate the trend of the mean performance metrics against gradient s and

maximal pore length amax.

(a) (b)

(c) (d)

Figure 5.2 Performance metrics against radius gradient. (a) Total throughput;
(b) initial flux; (c) accumulated foulant concentration; and (d) filter mass capacity.

In Figure 5.2, we present how performance metrics vary with pore-radius

gradient s in banded networks with m = 4 bands, within each of which the initial
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pore radius is constant (specified by Equation (5.25)). Results are shown for three

different values of the maximum pore length, amax. In Figure 5.2a, we show total

filtrate throughput against pore radius gradient s. We observe that for each amax

value considered, we have a non-monotone trend with a clear maximum in total

throughput at a radius gradient of s = 2 × 10−3 (apparently independent of amax,

though the total filtrate throughput achieved in all cases is monotone increasing

in amax). Figure 5.2b plots results for initial flux, showing it to be a monotone

decreasing function in radius gradient s, and monotone increasing in maximal pore

length amax. In Figure 5.2c, we plot final accumulated foulant concentration at

membrane outlet against s. The trend is monotone decreasing in radius gradient

for all amax values considered (that is, highly graded networks provide better foulant

control); and monotone increasing in amax. Figure 5.2d shows the filter mass capacity

ξ (see Equation (5.21) and Equation (5.27c)), the (dimensionless) mass of particles

retained inside the pore network throughout its lifetime, as a function of s. Here

we see a non-monotone trend, with a clear optimal pore radius gradient, at about

s = 2.5×10−3 (a little larger than that in observed in Figure 5.2a). In other words, for

all amax values considered, at the end of the filter lifetime, banded networks with this

radius gradient value have captured the greatest mass of impurities. These results

also show that the uniform networks have the worst filter mass capacity for each amax.

We first discuss the trends in radius gradient s observed in Figure 5.2. We

rationalize the existence of a throughput-maximizing value for pore radius gradient

by considering the extreme values of s. Our results show that, when compared to a

uniform network (s = 0), banded networks with large radius gradient tend to have

much lower flux due to the high-resistance small outlets in the bottom band; however,

they have longer lifetime due to the large pore inlets upstream (we hypothesize that

pores always close first at the upstream side of the membrane, a claim supported by

an analytical result in Appendix D.3). Indeed, the flux trend with s is evident from
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Figure 5.2b, which shows that non-graded networks have the largest initial flux for all

amax values considered. Pore size graded networks admit a trade-off between initial

flux and filter lifetime as the gradient value varies, suggesting that an intermediate

value of radius gradient should exist (and is found at s = 2 × 10−3) that maximizes

total throughput. Furthermore, the monotone trend of concentration against radius

gradient s observed in Figure 5.2c is also not unexpected. The smaller pores in the

bottom band of strongly graded networks are much more effective at removing foulant

particles.

We now comment on two interesting observations from Figure 5.2d – the

maximum in filter mass capacity and the larger maximizing gradient value than that

in Figure 5.2a. The latter is an artifact of the definition of filter mass capacity ξ –

product of a concave total throughput with a clear local maximum (per Figure 5.2a)

and a monotone increasing function 1 − caco. In other words, a maximizing radius

gradient for capacity must be larger than that for total throughput. Indeed, consider

the following heuristic argument: suppose total throughput h (s) (suppressing the

“final” subscript) is maximized at a radius gradient s = sh,max, then the slope of filter

mass capacity ξ (s) at this value is

ξ′ (sh,max) =
d

ds
(h (s) cint (s)) |s=sh,max

=������:0
h′ (sh,max)cint (sh,max) + h (sh,max) c

′
int (sh,max)

= h (sh,max) c
′
int (sh,max)

> 0.

Thus, filter mass capacity is increasing with s at the maximizing gradient value for

total throughput. We return to this point later in Section 5.6.1.

We now briefly comment on the trend of the performance metrics as maximal

pore length amax varies in Figure 5.2. First, each metric varies monotonically

with amax. More precisely, the larger the maximal pore length, the greater the
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total throughput (Figure 5.2a) and initial flux (Figure 5.2b); and the higher the

accumulated foulant concentration (Figure 5.2c). With the prescribed membrane

porosity level Φ = 0.6, these observed trends appear consistent with the findings

of Gu et al. [48], which exclusively focused on networks with uniform pore radius

(gradient s = 0). Meanwhile, the reason for the higher foulant concentration from

banded networks with larger amax is that networks with longer pores tend to be less

tortuous than those with shorter pores (smaller amax).
1

5.6.1 Total Porosity Evolution

Though initially the porosity is approximately the same for each membrane, porosities

decrease over time as fouling occurs. In this section, we present how overall membrane

porosity evolves in time for each value of the maximal pore length. Our discussion

focuses on the changes in membrane porosity and the final values achieved when

filtration ceases, for each radius gradient value. We emphasize the difference ∆Φ

between the initial porosity Φ (0) = 0.6 and the final porosity values, which we refer

to as porosity usage, because it is proportional to the volume occupied by retained

contaminants and thereby to the retained mass ξ (per Figure 5.2d) as well.

In each of Figures 5.3a–5.3c, we show, for each maximal pore length amax, the

evolution of membrane porosity in time, for all radius gradients considered. Filter

lifetime may be inferred from the various curves by noting the time at which they stop.

To showcase the porosity usages of networks with each radius gradient, we condense

them into Figure 5.3d by plotting the difference between initial and final porosity,

∆Φ. We notice that not only is ∆Φ a non-monotone function of pore radius gradient

s, but also the shape of the curves is very similar to those in Figure 5.2d (other than

1The membrane tortuosity is defined as the average (normalized) distance travelled by a
fluid particle from membrane top surface to bottom. See [48] for its detailed definition and
discussion of the negative exponential relationship between concentration and tortuosity.
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(a) (b)

(c) (d)

Figure 5.3 Total porosity evolution. (a) amax = 0.1; (b) amax = 0.15; (c) amax = 0.2.
In (d), for each amax, membrane porosity usage (Equation (5.23b)) is plotted against
radius gradient s. Φ (0) = 0.6 is the initial porosity.

a small shift in the value of the maximizing radius gradient, from s = 2.5 × 10−3 to

s = 3× 10−3).

Now we check the maximum of capacity ξ in Figure 5.2d for consistency with

the findings from Figure 5.3d, noting that (since we showed ξ must be increasing at

a point to the left of the observed maximum) we only have to show that networks

with the largest radius gradients s = 4 × 10−3 have less capacity than those with

s = 3.5× 10−3. From Figure 5.3d, we clearly see that networks with radius gradient
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s = 4×10−3 incur less porosity change and thereby, have less capacity than networks

with s = 3.5× 10−3 for all time t (also true for all amax values).

5.6.2 Band Porosity Evolution

While overall membrane porosity evolution shines light on the behaviour of pore-

radius-graded networks, individual band porosity evolution helps us identify the

depth of foulant penetration in the membrane, for each pore radius gradient value

considered. In this section, we explore how band porosities change as the pore

radius gradient s varies and aim to draw further insight from this evolution into

indicators of good pore-size-graded filters. The following discussion again focuses

on the quantitative changes of band porosities, and the final porosity values when

filtration stops.

In Figure 5.4, we show the evolution of band porosities for the shortest maximal

pore length considered (amax = 0.1), and for all radius gradient values s; the inset

subfigure plots band porosity usage (the total change in band porosity, ∆Φk, see

Equation (5.23a)) as a function of radius gradient s. In Figure 5.4a, the evolution of

the 1st band porosity (the upstream band) shows that the larger the radius gradient,

the larger the porosity decline (see inset subfigure). This is because the largest pore

size gradient yields the largest 1st band pore radius and thereby the longest filter

lifetime, allowing more particles to adsorb and thus using more empty space in the

interior. We note in passing that though the lifetimes of the networks (evidenced by

the times at which each porosity curve stops) are quite different, the final values of 1st

band porosity for each gradient value are relatively close to each other (exemplified in

the small range of vertical axis in the inset subfigure), which implies that the 1st band

processes foulants similarly regardless of the pore radius gradient. In Figure 5.4b, we

plot the evolution of the 2nd band porosity against time for each radius gradient

value s. Here, the final porosity values are clearly separated according to their radius
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Figure 5.4 Band porosity evolution with amax = 0.1. (a) 1st band; (b) 2nd band;
(c) 3rd band (d) 4th band. Each inset subfigure plots band porosity usage (the total
change in band porosity over the filter lifetime) as a function of radius gradient s.

gradient values, in contrast to Figure 5.4a. In particular, the uniform networks (in

red) clearly undergo the smallest porosity change over the filter lifetime, and thus

retain the smallest mass of particles within this layer (consistent with Figure 5.2d).

The porosity usage of this band increases with radius gradient s until s = 3 × 10−3

and s = 3.5 × 10−3, for which values the largest total change in band porosity is

observed (see inset). In Figure 5.4c where we show 3rd band porosity evolution, the

largest porosity change occurs in networks with a somewhat smaller gradient value
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s = 3 × 10−3, with s = 2.5 × 10−3 having almost as large a change (but larger

s-values showing smaller changes), implying that foulant particles penetrate deeper

into membrane pore networks with these gradient values. Lastly, we see in Figure 5.4d

that networks with radius gradient s = 2.5×10−3 (solid black) experience the largest

change in 4th band porosity (corresponding to the maximum in the inset subfigure),

suggesting that such networks allow the deepest penetration of foulants.

Meanwhile, membrane networks with s = 0 (uniform) and s = 4×10−3 (steepest

gradient) each perform poorly in terms of mass capacity (Equation (5.27c)) in the

4th band as their 4th band porosity does not change as appreciably as that of

networks with other radius gradient values. To explain this, in the case of uniform

networks, their upstream pores close earlier than those in the graded counterparts

(which have larger inlets due to the radius constraint via Equations (5.1) and (5.2)),

thus prohibiting flow at an early stage by fouling upstream pores too quickly; in the

case of s = 4 × 10−3 (the largest pore-size gradient used), the smaller downstream

pores with their high resistance slow down the overall flow, causing the majority of

fouling to also take place upstream.

In Figures 5.5 and 5.6, following Figure 5.4, we plot the band porosity evolution,

for maximal pore lengths amax = 0.15 and amax = 0.2, respectively. We discover very

similar correlations between the filter mass capacity and the fouling of downstream

bands, to those just discussed for Figure 5.4 (amax = 0.1). The 1st band porosity

change, ∆Φ1, is always monotone increasing in the radius gradient, and uniform

networks and those with the steepest gradient incur the least porosity usage in their

4th band. Altogether, we conclude that when taking total throughput, accumulated

concentration of foulants and porosity usage all into account, membrane pore networks

with radius gradient s = 2.5 × 10−3 make the most favourable filters. More

importantly, this optimal value does not depend on amax.
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Figure 5.5 Same setup as Figure 5.4. amax = 0.15.

Through Figures 5.4–5.6, we observe that the maximizing radius gradients (s =

2.5× 10−3) observed in Figure 5.2d all correspond to the largest amount of porosity

usage ∆Φ4 in the 4th bands. Though this correspondence may not be a definitive

explanation for why s = 2.5 × 10−3 maximizes filter capacity, porosity usage in the

4th band may serve as a necessary indicator of a good filter.
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Figure 5.6 Same setup as Figure 5.4. amax = 0.2.

5.6.3 Performance Metrics with Flux Threshold

The results discussed so far are based on performance metrics evaluated at the end

of the filter’s lifetime, when there is no feasible flow path and flux through it falls to

zero. In practice, when industrialists observe a low flux level in the filtration process,

they tend to discard the fouled filters and replace with fresh ones. In this section, we

mimic this procedure by imposing a minimal threshold for the flux level at which we

halt the process and collect statistics of the performance metrics up to this critical
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time. The symbols for each performance metric F evaluated with an imposed flux

threshold are labelled with a subscript, Fthreshold.

(a) (b)

(c) (d)

Figure 5.7 (a) Total throughput; (b) ACO; (c) filter mass capacity; and (d) porosity
usage. Flux Threshold is 2× 10−6.

Figure 5.7 shows the performance metrics of radius-graded membrane networks

where filtration is halted after the flux level drops below 2 × 10−6, which is

approximately 30% of the initial flux for uniform networks, and roughly 80% of that

for the steepest-graded network with gradient value s = 4 × 10−3 (see the vertical

scale of Figure 5.2b). From this observation alone, we anticipate that filters with

smaller initial fluxes, namely, networks with large radius gradients, are more prone
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to halt filtration prematurely and are thereby disadvantageous under this filtration

mode.

In Figure 5.7a, we plot total filtrate throughput against radius gradient for

radius-graded networks that operate until they reach the imposed flux level. We again

observe a maximizing radius gradient value, but note that its value at s = 1.5× 10−3

is smaller than that in Figure 5.2a (s = 2 × 10−3), where networks operate until

flux extinction. Thus, under the new threshold-based stopping criterion, filters with

smaller radius gradient (and hence larger initial flux) are more favored in terms

of throughput production. In fact, networks with s ≥ 3 × 10−3 underperform

more significantly than the uniform networks because their total filtering time is

greatly shortened due to the imposed flux threshold. Figure 5.7b shows accumulated

concentration of foulant against radius gradient. Here, we observe a monotone trend

in both radius gradient s and in maximal pore length amax. These trends maintain

qualitatively the same shape and order of magnitude as seen in Figure 5.2c, though

we observe that here the concentration is pointwise (for every s) larger than that in

Figure 5.2c. This is expected because filtration is stopped prematurely. In Figure 5.7c,

we show the relationship between filter mass capacity and radius gradient under

the flux threshold. We observe also a smaller maximizing radius gradient than in

Figure 5.2d. This change is consistent with Figures 5.7a and 5.7b by the definition of

capacity (Equation (5.27c)). Lastly, we present the membrane porosity usage against

radius gradient in Figure 5.7d to correlate with Figure 5.7c. Indeed, the trends in

both figures are very similar.

The results in Figure 5.7 imply that with the imposed lower threshold on fluid

flux, membrane networks with a radius gradient of s = 1.5×10−3 should be preferred

over others due to their combined score of filtrate production, particle retention

capabilities, filter mass capacity and porosity usage. Once again, we note that this

optimal value is independent of maximal pore lengths considered and thus is not
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influenced by membrane geometry. We would, however, anticipate that the optimal

radius gradient will change (increase) if the imposed lower flux threshold is changed.

5.7 Ending Remarks

In conclusion, we have devised a general procedure to generate pore-size-graded

banded membrane pore networks. We have studied the influence of the pore-size

(radius) gradient s, and maximal pore length amax, on the performance metrics of

these networks, under two setups of relevance to applications – filtration until flux

extinction, or until a flux lower threshold is reached. We have also determined

optimizing radius gradient values for some of the performance metrics considered

(compiled in Table 5.3).

When filters run to extinction, we find that total filtrate throughput satisfies a

non-monotone trend against pore radius gradient. More precisely, for the parameters

we studied, membrane networks with a pore radius gradient value of s = 2 ×

10−3 achieve maximal total filtrate throughput. However, accumulated foulant

concentration at the membrane outlet is monotonically decreasing in s, suggesting

that, for foulant control purposes only, one should prefer membrane networks with

a radius gradient as large as possible. A metric that attempts to combine these

two requirements is the mass capacity of the membrane, defined as the product of

total throughput and accumulated foulant concentration in the membrane interior

(per Equation (5.27c)). This quantity is also found to be non-monotone in s, with

a pronounced maximum achieved at a pore-radius-gradient value of s = 2.5 × 10−3.

This trend is affirmed by further investigation on band porosity evolution, where

we observe a strong correlation between filter mass capacity and porosity usage in

downstream bands of the membrane.

However, when we stop the filtration at a prescribed minimum flux level, we

observe more universal behaviours in terms of performance metrics. For the chosen
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Table 5.3 Optimal Radius Gradient Value for Each Performance Metric

Performance Metric (Section 5.4) Metric Symbol Optimal Radius Gradient

Until flux extinction

Total throughput hfinal 2× 10−3

Initial flux qout (0) 0

Accumulated concentration of foulant

at membrane outlet

cfinal 0

Filter mass capacity ξ 2.5× 10−3

Membrane porosity usage ∆Φ 3× 10−3

Until flux threshold

Total throughput hthreshold 1.5× 10−3

Accumulated concentration of foulant

at membrane outlet

cthreshold 0

Filter mass capacity ξthreshold 1.5× 10−3

Membrane porosity usage ∆Φthreshold 1.5× 10−3
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model parameters, total filtrate throughput, filter capacity and porosity usage are all

maximized at a radius gradient value of s = 1.5 × 10−3, while accumulated foulant

concentration at membrane outlet remains a monotone decreasing function in radius

gradient. The fact that we observe a smaller optimal radius gradient than that in the

former filtration setup is mainly because of the advantage given to filters with large

initial flux. Uniform networks benefit from this practice as we clearly see them rise up

the ranks into the better performing filters. At the same time, graded networks with

large radius gradients perform poorly because they tend to halt prematurely due to

their small initial fluxes inflicted by the high-resistance downstream pores. We also

anticipate that the optimal gradient value(s) for performance metrics considered in

this chapter will depend on the flux threshold we impose (indeed, we expect that s = 0

may become the optimal value when the imposed flux threshold is small enough).

We also found that the observed trends in pore radius gradient persist for all

values of the maximal pore length amax considered. This suggests that our findings of

how performance metrics depend on pore radius gradient are independent of variations

in membrane interior microstructure (characterized by amax) and solely dependent on

the variations in radius gradient.

For future work, we will include intra-layer pore size variations in radius graded

banded networks. One analytical result based on the governing equations derived

from our model of this chapter suggests that membrane networks with constant band

radius achieve zero flux only when all inlets on membrane top surface have closed. In

other words, filtration does not halt due to critical disconnections in the interior of

the network but only when the radii of all inlets on the top surface have vanished.

With intra-layer pore size variations, adsorptive behaviours at the global scale may

become more complicated and more interesting than the constant band radius case.

Additionally, other fouling mechanisms such as sieving may be introduced to provide

a fuller view of the membrane filtration process. Furthermore, though we did not vary
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λ (a band-independent parameter that captures particle-membrane affinity) in this

study, we anticipate that variations in λ will only shift the results vertically without

affecting the overall trend in radius gradient. An idea for future work would be to

introduce band specific λk’s, which represent multilayered membrane filters consisting

of different materials.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Here, we conclude the findings from previous Chapters and present some ongoing

and future work. In Section 6.1, we highlight the essentials of the constructed

mathematical models and summarize important messages from this dissertation. In

Section 6.2, we present two open questions with some supporting preliminary details.

6.1 Conclusions

In Chapter 2, we explored the effect of intra-layer pore interconnectivity and

pore size heterogeneity in multilayered membrane filters via three simple layered

pore structures (representing basic building-blocks of a membrane): single-inlet

non-connected branching pores; single-inlet connected pores; and two-inlet connected

pores (see Figure 2.4). We found that for homogeneous models (membranes with the

same initial pore radius in each layer), the relative performance of the structures is

not strongly influenced by intra-layer connections. However, this observation did not

persist in the heterogeneous case, when the pore size in each layer was perturbed by

uniform noise. There, we discovered that the performance metrics of non-connected

pore structures incur much wider variations as perturbation strength increases than

the relatively robust connected models. As a result, intra-layer connectivity should

be favored as part of the membrane design when the membrane has intrinsic or

manufactured pore size variations.

In addition to the findings on the influence of intra-layer connectivity and pore

size heterogeneity, we also observed some other curious phenomena. For instance, we

saw that foulant concentration at the membrane outlet may increase over time because

the rate of particle advection temporarily dominates that of particle deposition on the

wall during pore constriction. Another example pertained to the effect of increasing
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the magnitude of the pore-size perturbations (the “noise strength”) on the average

initial resistance of the three considered membrane pore structures. We found that

the initial resistance of the single-inlet connected membrane does not always decrease

as noise strength increases, but that of the two-inlet case does. This observation

suggested that a two-inlet (or multi-inlet) connected membrane design is favorable.

In Chapter 3, we generalized the models of Chapter 2 to a network of connected

pores. We first devised a random graph generation protocol designed to mimic real

membrane pore networks. Pore junctions are connected when they lie within a certain

maximal pore length, but outside a prescribed minimal distance. We then formulated

the fluid flow, foulant advection and pore radius evolution first in each pore and then

on the entire network using conservation principles. This system of equations was

expressed as weighted graph operators acting on physical quantities such as pressure

and foulant concentration at each pore junction. Meanwhile, these weighted graph

operators fully characterized how the pores are connected. All simulations in this

chapter assumed that the pores in the network have the same initial radius.

The main findings of Chapter 3 were two strong relationships between selected

membrane geometric factors and performance metrics, nearly independent of model

input parameters such as the maximal pore length (which we vary in our simulations).

First, we found that membrane total throughput satisfies a power law against

initial membrane porosity. This relation was particularly strong when initial

porosity is larger than 0.5, a typical range for real commercial membrane filters.

Second, we noted that the accumulated foulant concentration at the membrane

outlet satisfies a negative exponential relationship against membrane tortuosity (the

average normalized distance travelled by a fluid particle from membrane inlets on

the top surface to outlets on the bottom surface). We also provided a primary

recommendation for industrial practitioners: one should always favor membrane

networks with shorter characteristic pore lengths, whether the industrial requirement
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is on minimal foulant concentration threshold or a fixed amount of filtration

production.

In Chapter 4, we extended the general network model of Chapter 3 to include

pore size (radius) variations as a model for manufacturing defects/inhomogeneities of

the membrane pores. To model the pore size variations, we perturb each pore radius

by a uniformly distributed noise with prescribed amplitude. We simulated the fluid

flow, foulant advection and pore radius evolution on this network for a variety of noise

distribution widths, and studied their influence on membrane performance metrics.

We also compared this influence to the impact of network variations due to the random

network generation procedure. Lastly, by noting that pore size variations inevitably

change initial membrane porosity (an influential feature as noted in Chapter 3), we

constructed porosity-corrected performance metrics, that is, a score involving the

change in the chosen metric relative to that of an equivalent uniform pore-size network

with equal porosity.

Our main finding was that the effect of pore size variations on membrane

performance is eclipsed by that of network variations inherent to the random network

generation protocols, unless the amplitude of the noise added to the pore sizes

is overwhelmingly large. We further confirmed that initial membrane porosity is

an important feature of the filter, by studying the trends of porosity-corrected

performance metrics against noise amplitude. Lastly, we showed that having pore size

variations appears to be a double-edged sword as regards membrane performance –

it increases both total throughput (favorable) and accumulated foulant concentration

in the filtrate (unfavorable) as the noise amplitude increases.

In Chapter 5, we studied fluid and foulant advection on pore size-graded

networks and investigated how pore size gradient influences membrane performance

metrics. We first constructed banded networks (large pores upstream, small pores

downstream) that are natural extensions of the networks used in Chapters 3 and 4.
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We reduced the size of the parameter space to study by enforcing two constraints:

equal porosity in each band of the network; and fixed average pore radius across all

bands, for any radius gradient considered. The goal was to quantify the effect of pore

size gradient on performance metrics under two industrial standards – running the

filtration until 1) zero flux or 2) a prescribed flux lower threshold.

Under the first standard, our results suggest that there is a radius gradient value

that maximizes total throughput. Accumulated foulant concentration at membrane

pore outlets appears to be a monotone decreasing function of radius gradient. Particle

retention capability of the membrane (the total mass of impurity retained by the

membrane over its lifetime) also appears to be optimized by a certain pore radius

gradient (smaller than that which maximizes throughput). Within the limitations of

our study, all findings were independent of maximal pore length, suggesting that the

conclusions may be universal for the considered membrane pore structures.

Under the second standard where filtration is halted at some prescribed flux

level, we found that the aforementioned trends from the first standard persisted,

however, with optimal radius gradients shifting to smaller values. We believe this

phenomenon is due to the flux-based cutoff adding much weight to the initial flux

that such networks admit, a quantity that may be small for the more severely graded

networks due to the relatively large initial resistance originating from their smaller

downstream pores.

Through the main body of this dissertation, we have noticed the convenience and

significance of the general pore network model. It lends to a systematic formulation of

simple fluid dynamics on complicated geometries by capturing the network structure

with conservation laws. We find this approach particularly promising as a general

study of membrane filtration problems and look forward to applying it to other

interesting dynamical problems posed on networks.
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6.2 Future Work

In this section, we provide some basic setups for two future projects. In Section 6.2.1,

we consider intra-layer pore radii variations in the banded networks introduced in

Chapter 5 and explain the numerical procedures that generate radius-graded banded

networks with prescribed physical and statistical constraints. In Section 6.2.2,

we discuss membrane filtration in a network of pores with adsorption and sieving

operating simultaneously. We investigate how the two fouling mechanisms interact

and affect the performance of membrane networks in terms of total throughput and

accumulated foulant concentration.

6.2.1 Non-constant Band Radius for Pore-size Graded Networks

In this section, we explain the necessary modifications to the procedure shown in

Section 5.3.1 in order to incorporate pore size variations in each band. By this point,

we already know the constant band radius Rk that follows Equation (5.1). We start

by fixing a single network as generated in Section 5.3.1 with radius gradient s and

initial band pore radii Rk. Our goal then is to determine the statistical parameters,

namely, mean and standard deviation, of the pore radius distribution so that the

average porosity is the same for each band (similar to Equation (5.5)).

We assume that Rk,ij, the radius in the kth band for pore eij, follows some pore

size distribution Fk (with nonnegative support). We denote the expectation operator,

the mean and variance under this distribution by E [·], µk and σ2
k, respectively. The

average band porosity satisfies

E [Φk] =

π
2
E
[
R2

k,ij

]∑
eij∈E Lk,ij

W 3/m
=

π
2
(µ2

k + σ2
k)
∑

eij∈E Lk,ij

W 3/m
, (6.1)

where we use the definition of the second moment of a probability distribution.
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For each band, we have two unknown parameters µk and σ2
k, for which we

provide two constraints as follows. First, we set

µ2
k + σ2

k = R2
k, (6.2)

where Rk is the constant band radius introduced in Equation (5.1) in Section 5.3.1.

This ensures that the average band porosity E [Φk] = Φconst
k (see Equation (5.6)), for

k = 1, . . . ,m.

Second, we set

CVk :=
σk

µk

= α, k = 1, . . . ,m, (6.3)

where CVk is known as the Coefficient of Variation (CV in short) of the distribution

Fk. Setting CVk equal to some prescribed value α for every band ensures that the

extent of pore radius variation relative to the mean radius is the same. We refer to α

as the self-similarity constant and study the influence of its variations on membrane

network properties and performance.

We observe that implementing Equations (6.2) and (6.3) yields a different

gradient for the average band radius E [Rk,ij]. Indeed, using both constraints, we

have

µk =
Rk√
1 + α2

(6.4)

which implies that the average band radius has a gradient of s√
1+α2 . This makes sense

because when α = 0, we retrieve the constant band radius case.

Altogether, for a fixed network generated from Section 5.3.1 with gradient s,

we now have devised a pore radius distribution Fk for the kth band, with mean µk

and variance σ2
k prescribed by Equations (6.2) and (6.3). We present an example

distribution below.
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Example 1. If Fk is a log-normal distribution with parameter pair
(
µk,p, σ

2
k,p

)
,

determined by the desired mean pore size µk and variance σ2
k (and thus R2

k is also

known), then

µk,p = ln

(
µ2
k√

µ2
k + σ2

k

)
, σ2

k,p = ln

(
1 +

σ2
k

µ2
k

)
. (6.5)

6.2.2 Sieving

The motivation for this section originates partly from experiments and numerical

simulations conducted by Beuscher [13]. In that work, mono-sized spherical particles

were sent through several layers of parallel circularly-cylindrical tubes with various

radii. Each particle traverses through the layers until it encounters a tube with radius

smaller than its own. This size exclusion mechanism, or sieving, eventually fouls the

multilayered membrane filter.

In practice, the sieving process involves particles of size comparable to the pore

sizes (simply, sieving particles, hereafter). The blockage time scale is also much shorter

than that of adsorption. Sieving manifests in primarily two ways characterized by

the extent of blockage – complete blocking and incomplete blocking. In the former

case, sieving particles completely cover an inlet or clog a pore throat in the interior

of the membrane, prohibiting local fluid flow henceforth. In the latter case, sieving

particles partially cover the entrance of a pore throat and thus impede (but not

completely prohibit) fluid flow by significantly narrowing the size of the entrance in a

short amount of time (occurs much faster than adsorption). Feed solution still leaks

through the partially blocked channel but at a considerably smaller volumetric flow

rate. Due to the different natures of the sieving process in the two cases, we make a

distinction between complete and incomplete blocking in our discussion.

Assumptions

We introduce some general assumptions about the sieving process and then provide

the proper definitions to set up the numerical simulation. We will continue to
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use terminology defined for the graphical representation of a membrane network in

Section 3.3.

Sieving particles in the feed solution are assumed to arrive at the membrane

top surface following a Poisson process N (T ) with rate Γ, i.e.,

Prob (N (T ) = k) =
(ΓT )k

k!
e−ΓT , k = 0, 1, 2 . . . . (6.6)

where Prob (N (T ) = k) is the probability of having k arrivals by time T . Particle

sizes Sk (indexed by arrival) are independent and identically distributed (i.i.d.) with

cumulative distribution function F , i.e.,

Prob (Sk < s) = F (s) .

When the k-th particle of size Sk arrives at the entry of a particular edge (pore)

eij, a size comparison is made: if the particle is strictly smaller than the radius

of the edge Rij, it will immediately pass through and arrive at the vertex j (pore

junction). The subsequent direction of particle movement at the junction is governed

by preferential flow (defined more precisely in the next subsection) — the larger the

flux in an edge, the more likely the particle will take that route. A particle will

continue to travel in this fashion through the membrane until either it enters an edge

with radius smaller than (or equal to) its size and thereby blocks the pore; or it exits

the membrane.

We also consider the following general assumptions that apply to any sieving

process considered in this work.

Assumption 1. We assume the following:

1. Blocking is irreversible, i.e., once an edge is blocked, it cannot be unblocked.

2. The size and the arrival of sieving particles are independent.
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Probabilistic Setup

We simulate blocking by first generating Poisson arrival times according to

Equation (6.6). At each arrival time, a particle arrives at the top surface and chooses

the entrance (any vi ∈ Vtop) with probability proportional to the flux outgoing vi

relative to the total flux from all vi ∈ Vtop. The sieving particle then goes through

a series of size comparisons to the edge it attempts to go through. If the particle

exits an edge, it will go to one of the neighboring downstream pores via the edge

that connects them with probability determined by preferential flow, described more

precisely below.

The general setup would be similar to that of Chapter 3. We first solve the

discrete Laplace equation on the graph G = (V,E) for pressure p with conductance

as weights. Then we determine the flux matrix Q (also known as the in-degree flux

weighted Laplacian) via Hagen-Poiseuille. Sieving particles perform a random walk

following a transition matrix P obtained by normalizing the flux matrix by each row.

Definition 7. (Preferential flow) Let vi ∈ Vtop ∪ Vint. For vj ∈ N (i) (neighbors of

vi), the probability of moving from vi to vj (via eij) is defined by

Pij (T ) := Prob {vi → vj} =


Qij(T )∑

vj∈N (i) Qij(T )
, ∀vi ∈ V \Vbot

0, otherwise

, (6.7)

π0,i =


∑

vj∈N (i) Qij∑
vi∈Vtop

∑
vj∈N (i) Qij

, ∀vi ∈ Vtop

0, otherwise

(6.8)

where Qij (T ) is the (local) flux that goes from vertices vi and vj through the edge eij,

N (i) the set of neighbors adjacent to vi, and π0 the initial distribution of the position

of sieving particle on the top surface of the membrane.

P is referred to as the normalized in-degree adjacency. Note that the neighbor

set N (i) over which we sum the i-th row of Q works consistently with the definition
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of flux-weighted adjacency matrix Q as it contains only positive entries for flux to

go from an upstream pore to a downstream one (while the reverse direction incurs

zero flux). The initial distribution µ0 of the random walker (representing the sieving

particle) is the probability of entering the membrane at each vertex on the membrane

surface. It is quantified by the proportion of outgoing flux at each vertex on the

membrane surface relative to the total outgoing flux from all vertices on the membrane

surface.

In light of Equation (6.7), we consider that sieving particles will more likely go

to the downstream pore that has higher flux. One can view its motion as a random

walker following the flow. More precisely, we say that a random walk (k-th arrived

particle, k arbitrary) with position Yk ∈ V follows the one-step transition matrix P

on V . By standard Markov chain terminology, Y
(n)
k is the position of the random

walk after n transitions that abides the n-step transition matrix Pn, i.e., n-th power

of P .

We say that under both adsorption and blocking, the conductance of the edge

eij is given by

Kij (T ) =
πR4

ij (T )

8µAij

1{eij open} (T ) , (6.9a)

Kij (T ) := EPois [Kij (T )] =
πR4

ij (T )

8µAij

αij (T ) , (6.9b)

where αij (T ) is the unconditional probability that the edge eij is open by time T

(a cumulative probability). In other words, αij (T ) describes the proportion of time

that pore ij is open. We consider Equation (6.9a) as a simulation-based approach,

while Equation (6.9b), the mean-field counterpart under the Poisson measure, is to

describe the average effect of blocking on the conductance of the pore.

In the latter analytical approach, we are thus interested in calculating αij (T ),

which should contain factors involving arrival, transition on the graph and particle size

distribution. Using standard theory of the Poisson process, we need to characterize
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the instantaneous probability of a blocking particle arriving at pore ij, labelled as

βij (T ). Then, αij (T ) is equivalent to the probability of observing zero arrival of

blocking particles at this edge. More precisely,

αij (T ) = e−Γ
∫ T
0 βij(T

′)dT ′
. (6.10)

We will utilize the network structure by describing the relationship between

the instantaneous blocking probability of βij and those of the upstream neighbors

of the edge ij (by now we know the direction of flow via Q). The key is to define

a Markov chain operating on edges with a proper transition matrix. Each entry of

the matrix depends on the state of all edges. This argument may be adapted from

the mean-field theory of Markov chains such as [5, 58, 57, 129, 124] and dynamical

systems on networks [101].

159



APPENDIX A

SUPPLEMENTARY MATERIAL FOR CHAPTER 2

In this appendix, we provide a brief numerical justification of the coarse-grained model

introduced in Section 2.3 and the parameter value λ.

A.1 Norms for Accuracy and Sufficient Penetration

Consider the homogeneous model. Let ai (x, t) and âi (x, t) be the radii in the i-th

layer, found from the solutions of the continuum model and the coarse grained model,

respectively (see Equations (2.8)–(2.10), and Equations (2.11)–(2.13)). We solve both

models numerically using the same time step. We wish to ensure a sufficiently accurate

coarse-grained approximation âi to ai, as well as identify parameter regimes that lead

to particle penetration to some specified depth of the membrane. More precisely, we

look for parameter pairs (m,λ) that satisfy the following conditions,

1. Accuracy:

∥ai (x, t)− âi (x, t)∥L∞(R+;L2(Ωi))
< δ1, i = 1, 2, . . . , N < m,

where

Ωi =

{
x :

i− 1

m
< x <

i

m

}
, N = ⌊βm⌋ , 0 < β < 1;

and

∥f∥L∞(R+;L2(Ωi))
= sup

t≥0

(∫
Ωi

|f (x, t)|2 dx
) 1

2

.

2. Sufficient penetration:

∥aN (x, 0)− aN (x, tfinal)∥L2(ΩN )

∥aN (x, 0)∥L2(ΩN )

> δ2.
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Figure A.1 Single-inlet model: region of parameters that are δ1-accurate and allow
sufficient δ2 penetration. Parameter choice: δ1 = 0.05, δ2 = 0.3, β = 1

3
, r0 = 1,

ϕtop = 0.4.

For (i), we consider the L2 error in space, which essentially records the volume

of each pore. Once we find errori (t) := ∥ai (x, t)− âi (x, t)∥L2(Ωi)
, we compute its

maximum (or L∞ norm) over all time and compare it to our tolerance δ1. We only

check accuracy up to a certain layer depth, controlled by the parameter N .

For (ii), we measure the relative L2 difference of the radius of a pore in the N -th

layer, between times t = 0 and t = tfinal. We desire that a sufficient amount of its

volume is occupied by particles at the final time, with δ2 as a minimum threshold.

N is technically arbitrary but should be chosen with care. For example, if we desire

roughly 30% of the membrane to be penetrated, we put β = 0.3. The floor function

simply ensures that N is an integer.

We refer to Figure A.1 for a region of parameter pairs (m,λ) for the single-inlet

model, with δ1 = 5 × 10−2, δ2 = 0.3 and β = 1
3
while other membrane geometric

parameters are held fixed.
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A.2 Calculations and Proofs

Proof of Theorem 1

The two main non-dimensional equations associated with Theorem 1 are

Equations (2.32) and (2.33), where di = 1/m. Note that Equation (2.33) can be

viewed as a recurrence relation as follows:

ci (t) =

(
1

1 + λ
mai(t)up,i(t)

)
ci−1 (t) , (A.1)

a′i (t) = −ci−1 (t) , (A.2)

(where prime denotes d/dt) with initial and boundary conditions

c0 (t) = 1, a1 (0) = a0, ai (0) = a0κ
i−1, i = 1, . . . ,m.

Proof. Iterating Equation (A.1) m times on i, we obtain

cm (t) =
m∏
j=1

(
1

1 + λ
maj(t)up,j(t)

)
,

where we used c0 (t) = 1 for all t > 0. Using Equation (2.32), we rewrite cm (t) as

cm (t) =
m∏
j=1

(
1

1 + ηνjaj (t) r (t)

)
=:

m∏
j=1

fj (t) , (A.3)

where η = πλ/(4m).

To derive a condition for the existence of a maximum, we first characterize the

end time behaviour of cm (t). Using Equation (2.43), we see that

aj (t) r (t) =
aj (t)

r̂0

m∑
i=1

di
νia4i (t)

→ ∞, as t → tfinal,

which implies cm (t) → 0 as t → tfinal. Note that since aj (t) ∈ C1 (0, tfinal) for all j

and all fj are positive quantities without singularities, cm (t) ∈ C1 (0, tfinal). Hence by

the mean value theorem, cm (t) will achieve a maximum whenever c′m (0) > 0.
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Taking a time derivative of cm (t) using the product rule of multiple functions,

we have

c′m (t) =
m∏
j=1

fj (t)
m∑
j=1

f ′
j (t)

fj (t)
(A.4)

where we can find the derivative of fj,

f ′
j (t) =

−ηνj
(
a′j (t) r (t) + aj (t) r

′ (t)
)

(1 + ηνjaj (t) r (t))
2 = −ηνj

(
r (t) a′j (t) + aj (t) r

′ (t)
)
f 2
j (t) .

(A.5)

We combine Equation (A.2) with Equation (A.3) to obtain

a′j (t) = −cj−1 (t) = −
j−1∏
i=1

fi (t) , 2 ≤ j ≤ m, (A.6)

a′1 (t) = −c0 (t) = −1 =: −f0 (t) . (A.7)

Inserting Equations (A.5)–(A.7) into Equation (A.4) and evaluating at t = 0, we have

c′m (0) = −η

(
m∏
j=1

fj (0)

)[
m∑
j=1

νjfj (0)

(
−r (0)

(
j−1∏
i=0

fi (0)

)
+ aj (0) r

′ (0)

)]
,

whence we see that c′m (0) > 0 is equivalent to

m∑
j=1

νjfj (0)

(
−r (0)

(
j−1∏
i=0

fi (0)

)
+ aj (0) r

′ (0)

)
< 0, (A.8)

as η and fj are positive quantities.

Using Equation (2.43) to express r (t), its time derivative, and the initial

conditions for ai (0) in Equation (A.8),

r (t) =
1

mr̂0

m∑
i=1

1

νia4i (t)
, r′ (t) = − 4

mr̂0

m∑
i=1

a′i (t)

νia5i (t)
,

we arrive at the following equivalent condition to c′m (0) > 0,(
m∑
j=1

νj

j∏
i=0

fi (0)

)(
m∑
j=1

1

νjκ4(j−1)

)
> 4

(
m∑
j=1

∏j−1
i=0 fi (0)

νjκ5(j−1)

)(
m∑
j=1

νjκ
j−1fj (0)

)
.
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Analytical Formula for E [rb (0)]

Given the form of the initial resistance with random perturbations in Equation (2.50),

we can explicitly compute

E [rb (0)] = E

a−4
0

r̂0

m∑
i=1

di

(
νi∑
j=1

(1 + ϵij)
4

)−1
 =

a−4
0

r̂0

m∑
i=1

diE

[
1∑νi

j=1 (1 + ϵij)
4

]

where the last step follows by linearity of expectations. We now compute the

expectation in the summand with a fixed index i. First, since ϵij ∼ U (−b, b),

it has cumulative distribution function Fϵij (x) = x+b
2b

. Therefore, if we define

Yij = (1 + ϵij)
4, then

FYij
(y) = P

(
(1 + ϵij)

4 ≤ y
)
= P

(
ϵij ≤ y

1
4 − 1

)
=

y
1
4 − 1 + b

2b
, (1− b)4 ≤ y ≤ (1 + b)4 ,

and thus the probability density of Yij is

fYij
(y) = F ′

Yij
(y) =

1

8b
y−

3
4 , (1− b)4 ≤ y ≤ (1 + b)4 .

Employing the following integral statement,

E

[
1

X1 + . . .+Xn

]
= E

[∫ ∞

0

e−t(X1+...+Xn)dt

]
,

where the expectation is taken with the density fYij
, we have (via Fubini’s theorem

to justify the swapping of expectation and integration)

E

[
1∑νi

j=1 Yij

]
= E

∫ ∞

0

e−t
∑νi

j=1 Yijdt =

∫ ∞

0

E
[
e−t

∑νi
j=1 Yij

]
dt. (A.9)

By the independent identically distributed assumption (of ϵij and thus Yij), we rewrite

the integrand as

E
[
e−t

∑νi
j=1 Yij

]
=
(
Ee−tYi1

)
. . .
(
Ee−tYi,νi

)
=
[
Ee−tY

]νi
,
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Figure A.2 Heterogeneous models: initial resistance for single-inlet model
(a) Average ūb (0) over 10

5 simulations; (b) exact large number limit E [rb (0)].

where we defined Y
d
= Yij, which exists by the identical distribution assumption. We

carry out the computation of the right hand side for Y and find

E
[
e−tY

]
=

1

8b

∫ (1+b)4

(1−b)4
e−tyy−

3
4dy

z=ty
=

1

8b

∫ t(1+b)4

t(1−b)4
e−z
(z
t

)− 3
4

(
1

t

)
dz

=
1

8bt
1
4

[
γ

(
1

4
, t (1 + b)4

)
− γ

(
1

4
, t (1− b)4

)]
,

where γ (s, x) =
∫ x

0
ts−1e−tdt is the lower incomplete gamma function. Altogether,

we have

E [rb (0)] =
a−4
0

r̂0

m∑
i=1

diκ
−4(i−1)

∫ ∞

0

[
1

8bt
1
4

[
γ

(
1

4
, t (1 + b)4

)
− γ

(
1

4
, t (1− b)4

)]]νi
dt.

(A.10)

Figure A.2 shows the excellent agreement between the numerical and analytical

results.
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR CHAPTER 3

In this appendix, we first provide justification for the pore radius evolution model

shown in Equation (3.26), then define tortuosity and derive its formula using

a probabilistic argument, and lastly set up a worked example that illustrates

Algorithm 3.1.

B.1 Justification for the Pore Radius Evolution Model

In this section, we justify the form of the pore radius evolution equation

Equation (3.26) using the (exact) solution for the foulant concentration model,

Equation (3.18), to relate the rate of change of particle volume accretion inside a

single pore to pore radius shrinkage. In the following derivation, we drop the indices

ij for notational simplicity and assume that the radius R is spatially constant at each

time T (though the arguments can be adapted to the variable radius case with a

suitable bound on ∂R/∂Y ).

Let Vp be the particle volume. In a single pore (assumed circularly cylindrical),

we consider an infinitesimally thin circular disk at distance Y from the pore inlet,

with thickness dY . The particle flux difference across this disk is

(C (Y + dY, T )− C (Y, T ))Q (T ) ≈ ∂C

∂Y
(Y, T )Q (T ) dY, (B.1)

i.e., the number of particles per time deposited in the disk. The total particle volume

adsorped in this pore is Vp times this quantity. We integrate Equation (B.1) over the

length of the pore to obtain the total volume of deposited particles per time in the

pore,

VpQ (T )

∫ A

0

∂C

∂Y
(Y, T ) dY = VpQ (T ) [C (A, T )− C (0, T )] (B.2a)
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= VpQ (T )C (T )

(
exp

(
−ΛR (T )A

Q (T )

)
− 1

)
(B.2b)

≈ −VpC (T ) ΛR (T )A (B.2c)

where we used the analytical expression Equation (3.18) for C (Y, T ) in the second

equality. The final approximate Taylor expansion Equation (B.2c) is justified for

sufficiently small values of the exponent, that is (using the scales in Section 3.4),

provided

q (t) ≫ λr0d, (B.3)

where d is the largest pore length (see Equation (3.1)).

As foulant particle volume accumulates at the rate given in Equation (B.2c),

pore volume Vol (T ) also changes at this rate via

dVol (T )

dT
= −VpC (T ) ΛR (T )A. (B.4)

At the same time, we relate the volume of the pore to its radius Vol (T ) = πR2 (T )A

and obtain

dVol (T )

dT
= 2πR (T )

dR

dT
A. (B.5)

Equating Equation (B.4) and Equation (B.5), we arrive at the form of Equation (3.26)

with α = Vp

2π
.

B.2 Tortuosity

In this section, we define tortuosity of a graph representing a membrane filter

pore network, and provide an explicit formula using the geometric and initial flow

information from the network (found in Section 3.3). In all of our investigations, we

restrict attention to the tortuosity of the initial pore network, with no regard for how
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it subsequently evolves under fouling, hence in the following discussion it should be

understood that we consider properties of the network at time t = 0.

We define tortuosity as the average distance travelled by a fluid particle through

the membrane via the network, relative to the thickness of membrane W . Now, given

a path from any inlet to any outlet, we can associate it with its total initial flux, which

we use as a weight for the path. This is equivalent to having the fluid particle perform

a discrete random walk on the graph G directed by fluid flux at each junction. More

precisely, the transition matrix P of this random walk is defined as follows. We omit

the argument of t = 0 for notational simplicity.

We first enforce non-negativity of the flux matrix via the following modification.

Consider Q+ and Q−, the positive and negative parts of Q respectively, such that

Q = Q+ +Q−. Owing to the skew-symmetry of Q, we construct

Q̃ = Q+ −QT
−, (B.6)

which preserves the flow information (direction and magnitude) while enforcing non-

negativity.

Definition 8. (Transition Matrix) Given modified flux matrix Q̃ in Equation (B.6),

the transition matrix P is determined by rescaling Q̃ by its row sum:

Pij =



Q̃ij∑
vj :(vi,vj)∈E

Q̃ij

, (vi, vj) ∈ E, vi ∈ Vtop ∪ Vint,

1, vi ∈ Vbot, j = i,

0, otherwise.

(B.7)

For vertices in the bottom surface, fluid particles are absorbed, i.e. once they reach

any v ∈ Vbot, they stay there with probability one.

Let Xn be a random walk with transition P, i.e. Xn is the vertex after the fluid

particle has taken n steps on V . Let P be the induced probability measure. This
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random walk has a natural initial distribution (a column vector of length |V |),

π0i = P {X0 = vi} :=



∑
vj :(vi,vj)∈E

Q̃ij∑
vi∈Vtop

∑
vj :(vi,vj)∈E

Q̃ij

, vi ∈ Vtop,

0, otherwise,

(B.8)

namely, the probability of going to each inlet on the top surface is determined by the

proportion of flux going through that inlet, relative to total flux.

Definition 9. (Tortuosity) Let ln be the total path length after the random walk has

taken n steps. Tortuosity of the graph G is defined by E [τ ] where τ := lm
W

and m

is the (deterministic) number of steps of the longest path from any inlet on the top

surface to any outlet in the bottom surface.

The integer m can be understood as a graph diameter where the notion of

graph distance for m is encoded in the unweighted adjacency matrix W (entries are

indicators of the existence of an edge). m is trivially bounded above by |Vint|+2 (one

step from Vtop to Vint and Vint to Vbot respectively, and traverse all of Vint at worst),

which we use here. Although this bound can be tightened by connectivity measures

such as the smallest number of vertices that must be removed to disconnect a graph

(see Coll et al. [27], for example), our algorithm (discussed after proving the formula

Equation (B.9)) for E [τ ] does not incur significant computational cost from the size

of m.

One may estimate this expected value by sending a large number of particles

through the network and computing the average of path lengths. We here provide

an explicit formula for E [τ ] that depends on the transition matrix P and a distance

weight matrix WE, whose entries are

WE,ij =


χ (vi, vj) , (vi, vj) ∈ E,

0, otherwise,
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where χ (vi, vj) is the distance between vertices vi and vj via the metric χ defined

in Equation (3.2). Using this formula directly obviates the use of large-number-of-

particle simulations and thus reduces computational load significantly.

Proposition 2. (Tortuosity formula)

E [τ ] =
1

W
E [lm] =

πT
0

W

(
m∑

n=1

Pn−1

)
diag (PWE) , (B.9)

where diag (A) is a column vector that lists the diagonal elements of a matrix A.

Proof. We compute E [lm]. Denote the conditional probability and expectation

P [· | X0 = i] = Pi [·] , E [· | X0 = i] = Ei [·] .

First, we observe by law of total expectation that

E [lm] =

|V |∑
i=1

E [lm | X0 = i]P {X0 = i} =

|V |∑
i=1

Ei [lm] π0i := πT
0 U ,

where π0 is given by Equation (B.8) and U := (Ei [lm])vi∈V . We now focus on an

arbitrary element of U . Noting that Ei [L0] = 0, and using linearity of expectation,

law of total expectation, the Markov property of the random walk and symmetry of

WE, we have

Ei [lm] = Ei

[
m∑

n=1

(ln − ln−1)

]
=

m∑
n=1

Ei (ln − ln−1)

=
m∑

n=1

∑
j∈V

Ei (ln − ln−1 | Xn−1 = j)Pi (Xn−1 = j)

=
m∑

n=1

∑
j∈V

(∑
k∈V

WE,jkPjk

)
P

(n−1)
ij =

m∑
n=1

∑
j∈V

P
(n−1)
ij (PWE)jj
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where P
(k)
ij is the k-th iterate of P. Thus, in matrix form,

U =
m∑

n=1

∑
j∈V



P
(n−1)
1j

.

.

.

P
(n−1)
|V |j


(PWE)jj =

(
m∑

n=1

Pn−1

)
diag (PWE) ,

using the fact that P(n−1) = Pn−1, completing the proof.

In practice, to avoid taking large matrix powers when evaluating Equation (B.9),

we have devised a fast algorithm in evaluating the geometric series
∑m

n=1 P
n−1, by

appealing to a geometric sum formula on matrices involving matrix inversions. We

utilize the block upper triangular structure ofP by block partitioning into components

(known as a divide and conquer-type scheme) including the identity block in its

southeast corner, to ease the computational load of inversions. Naive evaluation

of the series is of complexity O
(
m |V |3

)
(cubic term from matrix multiplication and

m additions) while our algorithm is O
(
|V |3

)
.

We argue that the constant initial radius assumption on the pores deems τ a

geometric parameter independent of fluid flow, even though its definition requires

initial flow information and geometric information such as a distance weighted

adjacency (see Equation (B.9)). In essence, we claim that τ does not vary too much

until the filtration stopping criterion. Firstly, foulant concentration is monotonically

decreasing along each edge, and thus the radii of all inlets, under the influence of

foulant concentration in the feed solution (see Equation (3.29b)), go to zero earlier

than all other downstream channels. Thus, adjacencies of the network do not change

until the filter top surface is clogged. Secondly, though outflowing flux from an

arbitrary junction changes over time as the filter fouls, the relative contribution from

each outgoing edge does not vary greatly. Altogether, we expect that tortuosity
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does not depend heavily on the time of filtration but only on the initial geometry

of the network. This feature makes tortuosity a universal parameter for foulant

concentration.

Lastly, we note that a theoretical limit exists for tortuosity for both setups. As

Ntotal → ∞ (so that the membrane interior, top and bottom surface are uniformly

densely packed with pore junctions), we can provide a simple lower bound for the

limit in the following sense. Consider an arbitrary inlet-outlet pair. They will be

connected by a path with vertical component 1. For the isolated setup, the horizontal

component can be estimated as the average distance between two uniformly random

points in 2D in a unit square, and is about 0.521 (length of Y K in Figure B.1a).

Together, these numbers provide a lower bound for the limiting tortuosity τmin of

around 1.128 =
√
12 + 0.5212 for the isolated case. The argument for the periodic

case is slightly more elaborate – while the vertical component of an average path is still

1, the horizontal component now is the average distance between two random points

uniformly sampled from the squares [0.5, 1.5]2 and [0, 2]2, respectively (found to be

0.838 (length of Y K in Figure B.1b)); thus an average path length is about 1.304. The

difference arises because with the periodic metric, any inlet uniformly sampled from a

unit square can potentially connect to outlets that are outside the unit square (bottom

surface) but within 0.5 distance to the boundary (due to the constraint that search

radius d < 0.5). These arguments provide some justification for the observations

that the tortuosity in the periodic case may be larger than the isolated case. The

numerical values given above are obtained by standard probabilistic calculations and

numerical integration. We look forward to a more theoretical study of how tortuosity

is affected by initial number of points, search radius and the underlying metric.
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(a) (b)

Figure B.1 Tortuosity limit: (a) Isolated setup (unit cube); (b) periodic setup (unit
cube and a square of side length 2 containing the bottom surface of the unit cube). X
(blue) and Y (red) are uniformly sampled from the top and bottom membrane surface,
respectively. K (black) in both figures is the projection of X onto the bottom surface;
XK in both figures has length 1.

B.3 Worked Example

In this section, we provide an example of a simple network (see Figure B.2) to illustrate

how the governing equations described in Sections 3.3.3–3.3.6 depend on the model

parameters. The network is a reflected Y-shape, with two inlets and outlets of length

1/2 and one interior edge of length 1/3.

Each edge has conductance kij (t) per Equation (3.27). For this network, the

conductance-weighted graph Laplacian, acting on the pressures at interior vertices,

yields Equation (3.15) (the graph Laplace equation),

Lkp (t) =

 k13 (t) + k23 (t) + k34 (t) −k34 (t)

−k34 (t) k34 (t) + k45 (t) + k46 (t)


 p2 (t)

p3 (t)


=

 k13 (t) + k23 (t)

0

 (B.10)

where the final equality incorporates the boundary conditions Equation (3.28b).

Then, the fluxes qij satisfy

q13 (t) = k13 (t) (1− p3 (t)) ,
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q23 (t) = k23 (t) (1− p3 (t)) ,

q34 (t) = k34 (t) (p3 (t)− p4 (t)) ,

q45 (t) = k45 (t) p4 (t) ,

q46 (t) = k46 (t) p4 (t) .

To proceed, we then solve Equation (3.29a) (the advection graph Laplace equation)

to find the foulant concentration at each vertex,

Lin
q c =



q13 + q23 0 0 0

−q34b34 q34 0 0

0 −q45b45 q45 0

0 −q46b46 q46





c3 (t)

c4 (t)

c5 (t)

c6 (t)


=

(q ◦ b)T c0 =



q13b13 q23b23

0 0

0 0

0 0


 1

1

 =


q13b13 + q23b23

0

0

0


(B.11)

where the 3rd equality uses the boundary condition Equation (3.29b).

After obtaining the concentrations ci (t) for each vertex, we evolve edge radius

via Equation (3.30).

By appealing to the symmetry of this network, one may reduce the system for

the dynamics of network evolution to a system of two non-autonomous nonlinear

ordinary differential equations (ODEs), describing the radius evolution r34 (t) and

r45 (t) (which by symmetry is equal to r46(t)), with a closed solution for the linear

shrinkage rate of r13(t) = r23(t). Since our principal concern here is the end state of

the network, we do not present or study this system here.
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Figure B.2 2D schematic of a reflected-Y network with labelled physical quantities
presented in Section 3.4.
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APPENDIX C

SUPPLEMENTARY MATERIAL FOR CHAPTER 4

In this appendix, we provide a brief description of the network generation procedure,

the associated graph operators, detailed definitions of performance metrics and

tortuosity (also see its derivation in Appendix B.2), and lastly the porosity correction

procedure.

C.1 Network Generation

We generate a membrane pore network via a variant of the Random Geometric

network. To generate the set of pore junctions V , we place Ntotal randomly distributed

points (following a uniform distribution) in a rectangular box of height 2W , with

square cross-section of length W . We connect points that lie within a distance

of lmaxW , but also at least δW apart, where δ is a control parameter (fixed

throughout this work) such that when chosen large enough, it ensures validity of

the Hagen-Poiseuille framework used to model fluid flow. These connections form

a set of pores E and together with the junction set V we obtain an initial network

G = G (V , E). We say (vi, vj) ∈ E when two junctions vi, vj ∈ V form a pore.

We then cut through the rectangular box with two horizontal planes at heights

0.5W and 1.5W , respectively. The intersections of these two planes and the set of

pores E form the set of inlets Vin and outlets Vout, respectively. Altogether, the above

procedure forms the domain for fluid flow and fouling, described in Section 4.3.

C.2 The Graph Laplacian

We associate each network G with a (weighted) graph Laplacian, a generalization of

the finite difference discretization of the classic Laplace operator ∇·∇. It is a square

matrix whose off-diagonal terms indicate connection weights, and whose diagonal
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terms record the total weights of neighbors of each discretization point (junction). In

our work, the most relevant weight is the conductance Kij of each pore, given by

Kij =
πR4

ij

8µLij

.

Then the K-weighted graph Laplacian is defined as

LK := D−K, (C.1)

where

Dij =


∑|V|

l=1Kil, j = i,

0, otherwise,

(C.2)

where |V| is the number of junctions.

While the above setup characterizes the flux inside an individual pore, we

employ conservation of flux at each interior vertex vi throughout the network,

0 =
∑

vj :(vi,vj)∈E

Qij. (C.3)

Combining Equations (3.3) and (C.3), we form a graph Laplace equation for the

pressures P at each vertex, to which we add the specified pressure drop boundary

conditions,

LKP (vi) = 0, vi ∈ Vint, (C.4)

P (v) = P0, v ∈ Vin, (C.5)

P (v) = 0, v ∈ Vout. (C.6)

Once the pressures P (vi) are found for all interior junctions vi ∈ Vint, we use

Equation (3.3) to find flux Qij in each pore to form a flux matrix Q with i and

j as row and column indices, respectively.
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Using conservation of particle flux at each junction, we arrive at the following

advection Laplace equation for foulant concentration Ci (T ) at each vertex vi ∈ Vint,

Lin
QC = (Q ◦B)TC0, Bij = exp

(
−ΛRijLij

Qij

)
, (C.7)

C0 = (Ctop, . . . , Ctop, 0, . . . , 0)
T , (C.8)

where Lin
Q = DQT − (Q ◦B)T is the advection Laplacian with a sink B (also see

Equation (3.23)), whose form arises from an analytical solution to Equation (3.17a).

T and ◦ denote matrix transpose and the element-wise multiplication, respectively.

See [48] for a detailed derivation of this linear system.

C.3 Performance Metrics

Volumetric throughput of a membrane filter over its operational lifetime is a

commonly-used measure of overall efficiency. The volumetric throughput H(T )

through the filter is defined by

H (T ) =

∫ T

0

Qout (T
′) dT ′, (C.9)

Qout (T ) =
∑

vj∈Vout

∑
vi:(vi,vj)∈E

Qij (T ) , (C.10)

where Qout (T ) is the total flux exiting the filter. With the scales chosen in

Equation (2.29), throughput H has scale

H =
W 3

αC0

h. (C.11)

In particular, we compute hfinal := h (tfinal), the total volume of filtrate processed by

the filter over its lifetime.

To connect with experiments and applications, we briefly discuss the order of

magnitude of the dimensional throughput H in Equation (C.11). The parameter

α is of the order of foulant (contaminant) particle volume while C0 is the number
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of particles per fluid (solvent) volume. The product αC0 then yields an estimate

of the volume ratio of the (contaminant) solute and the (fluid) solvent. For

example, the permissible exposure limit by OSHA (Occupational Safety and Health

Administration) for 1-dioxane in contaminated water is at a concentration of about

100 mg/L [130]. The density of 1-dioxane is close to that of water, and thus this level

of concentration translates to a volume ratio (αC0) of 10
−4. With this estimate and

the order of magnitude for dimensionless throughput H seen in Figure 4.3a (about

10−2), H then is of the order of 102W 3 where W 3 represents the volume of a cubic

unit of a membrane filter of side length W . This estimate suggests that this cubic

unit will process filtrate volume of order 100 times its membrane material volume,

given the parameters used in this work.

Another performance measure is the accumulated foulant concentration in the

filtrate, which captures the aggregate particle capture efficiency of the filter. The

accumulated foulant concentration is defined by

Cacm (T ) =

∫ T

0
Cout (T

′)Qout (T
′) dT ′∫ T

0
Qout (T ′) dT ′

,

where

Cout (T ) =

∑
vj∈Vout

∑
vi:(vi,vj)∈E

Cj (T )Qij (T )

Qout (T )
.

Cacm has scale Cacm = Ctopcacm. Of particular interest is cfinal := cacm (tfinal), which

provides a measure of the aggregate particle capture efficiency of the filter over its

lifetime.

We further simplify the notations hfinal and cfinal to h and c in the main text as

we consider only the end states of these performance measures in our analysis.
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C.4 Tortuosity

Tortuosity τ of a membrane network is defined by the average distance travelled by a

fluid particle from membrane top surface to bottom, relative to membrane thickness

W . We here provide a formula via a probabilistic approach,

τ =
πT
0

W

(
m∑

n=1

Pn−1

)
diag (PWE) , (C.12)

where T means vector transpose and diag means the diagonal component of a matrix.

Here we provide some intuition for each term. The initial distribution π0 describes

the probability of the fluid particle choosing an inlet on the membrane top surface. To

calculate π0, we compute the proportion of flux entering each inlet on the upstream

surface relative to total flux. P within the sum describes the law of how a fluid

particle traverses the network from one junction to its adjacent neighbors (known as

a step); the upper limit m is the largest number of steps a particle takes to exit the

membrane bottom surface, which can be found for each network. Lastly, diag (PWE)

describes the average distance travelled by the fluid particle in one step starting from

each junction. We refer the reader to [48] for details of the derivation.

In our study, since we perturb each pore radius via Equation (2.48), tortuosity

τ implicitly depends on the noise amplitude β through π0 and P because they both

involve the fluxes (affected by the pores’ perturbed conductances).

C.5 Porosity Correction

In Item 3 (porosity correction) of the algorithm, we derive the expression of rpc such

that ϕnoise = ϕpc. It relies on writing ϕpc in terms of ϕ0 (see Item 1 and consider

Equation (4.7) with β = 0), the porosity of the unperturbed network with initial

radius r0:

ϕnoise = ϕpc =
π

2
r2pc
∑
edge

(edge length)
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=

(
π

2
r20
∑
edge

(edge length)

)(
rpc
r0

)2

= ϕ0

(
rpc
r0

)2

and thus rpc = r0

√
ϕnoise

ϕ0
.

181



APPENDIX D

SUPPLEMENTARY MATERIAL FOR CHAPTER 5

In this appendix, we first define pores and junctions in a specified band, and then

provide the benchmark estimates for the number of junctions to be placed in each

band of the porosity-graded networks introduced in Chapter 5. Lastly, we present

several analytical results on the relationship between upstream and downstream pore

closure time, which then leads to some insight on membrane network dynamics.

D.1 Junctions and Pores in a Band

In this appendix, we define the set of junctions (vertices) and pores (edges), and their

respective band-specific counterparts. We use junctions and vertices, and pores and

edges interchangeably.

In this work, we treat a junction and a pore as a point and a straight line

respectively that lie in our dimensionless domain – the unit cube, even though the

notion of a vertex and an edge is generally more abstract in terms of graph theory.

Each junction v of the junction set V has a Euclidean coordinate v = (vx, vy, vz) ∈

[0, 1]3, with z-direction positive pointing (down) from membrane top (z = 0) to

bottom surface (z = 1). The coordinate of a junction depends on the random

generation protocol outlined in Section 5.3.1. We further define the set of membrane

pore inlets and outlets,

Vtop = {v ∈ V : vz = 0} , (D.1a)

Vtop = {v ∈ V : vz = 1} . (D.1b)

.
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The set of edges E is formed by connecting the junctions via

E = {evw ∈ V × V : amin < χ (v, w) < amax} , (D.2)

where amin and amax are the dimensionless minimal and maximal distance allowed

between two junctions, respectively; χ (·, ·) is a periodic metric, defined by

χ (v, w) = min
z

∥∥v − w (z, 0) | z = {−1, 0, 1}2
∥∥
2
, amax ≤

1

m
. (D.3)

that is, junctions close to the four sides parallel to the z-direction may be connected

through the boundary. We require that amax does not exceed the thickness of a band

because otherwise edges may cross more than two bands and thus reduce or defeat

the purpose of having a gradient of pore radii.

Next, we define precisely junctions and edges in a band. Denote the kth band

as the set of coordinates

Vk =

{
v ∈ [0, 1]3 | k − 1

m
≤ vz <

k

m

}
. (D.4)

We say a junction w lies in the kth band if w ∈ Vk.

We treat each edge as a straight line in the unit cube,

evw =
{
u ∈ [0, 1]3 | u = ζv + (1− ζ)w, 0 ≤ ζ ≤ 1

}
.

Let L (evw) be the one-dimensional Lebesgue measure of evw such that L (evw) =

χ (v, w). Define a band-specific length measure Lk such that

Lk (evw) = L (evw ∩ Vk) , (D.5)

which computes the length of the edge strictly inside the kth band (known in general

as an intersection measure). We say that a pore belongs to the k-th band when the

largest proportion of its length lies strictly inside the k-th band. More precisely, we
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define the set of the pores in the kth band as

Ek =
{
evw ∈ E | Lk (evw) = max

n
Ln (evw)

}
. (D.6)

In this definition, we see that if v, w ∈ Vk, then evw ∩ Vk = evw while evw ∩ Vn = ∅ for

all n, which implies that the inequality is automatically satisfied.

The formula Equation (D.5) also facilitates the computation of Φk, the band

porosity of the kth band (Equation (5.3)), in the sense that we consider the lengths

of edges that strictly lie in Vk; edges reaching two bands will contribute to the band

porosities of the two bands separately. We simplify the notation as

Lk,vw := Lk (evw) .

D.2 Number of Random Points in Each Band

With prescribed Φ and m, we provide an estimate of how many random points should

be used in the kth band, labelled Nk. We write total pore length as χij := χ (i, j) per

Equation (D.3). More precisely, we use basic arguments to deduce that total edge

length in the kth band scales with N2
k , i.e.∑

eij∈E

Lk,ij ≈
∑

eij∈Ek

χij = χ |Ek| = χ
DkNk

2
= (D.7)

=
χ

2
[(Nk − 1) p (Amin, Amax)]Nk =

χ

2
p (Amin, Amax)Nk (Nk − 1) (D.8)

where χ, Dk and p (Amin, Amax) are the average edge length, average number of

neighbors in the kth band and the probability of finding two random points being

connected, respectively. The first approximation relies on the fact that the edges

in the kth band that cross boundaries do not have too much excess length outside

the kth band. The first equality is trivial. The second equality is because total

number of edges in the kth band is exactly equal to average number of neighbors

times the number of junctions divided by 2 (to account for double counting). The
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third equality expresses the average number of neighbors Dk as the total number

of neighbors a junction could have times the probability of obtaining a neighbor

p (Amin, Amax), which is independent of k and Nk. Assuming that we use a small

Amax, χ does not depend too heavily on Nk and thus is approximately the same for

all k. Since χ is a sample mean with |Ek| as the sample size, it can be approximated

by the expected edge length (based on hypercube line-picking [135]) and therefore a

constant independent of k.

D.3 Analytical Results on Pore Closure Time

In this section, we show that lifetime of a simplified network is governed by the radius

of the top pore(s). More precisely, for such a simplified network, the radius of the

inlets will always go to zero earlier than that downstream pores, independent of

the initial upstream and downstream pore radii and model parameters. This result

contributes to the claim that networks considered will also only clog at membrane

inlet. This result also serves as a worked example for the general network solver (see

also [48] for another example).

A membrane network stops functioning when there exists no more path

connecting any inlet on the top surface to any outlet on the bottom surface. The

critical event leading to filtration arrest is when the radius of a pore vanishes as the last

straw that disconnects the main network into at least two disconnected subnetworks

such that each subnetwork contains only a subset of the inlets or outlets but not both.

We consider a simple setup (depicted in Figure D.1) which consists of an arbitrary

pore junction connecting nup upstream and ndown downstream pores.

The upstream and downstream pores all have a length of 1 unit (though they

appear to have different lengths in Figure D.1, this choice of a common length does

not affect our result). We solve the dimensionless governing equations (per scales

presented in Section 5.5) for the unknown pressure pjunc (t) and concentration cjunc (t)
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Figure D.1 Schematic of a simplified setup for Theorem 2. Colored junctions and
pores correspond to each band as follows: red upstream pores and indigo downstream
pores. Blue dots are inlets. The red dot is an interior junction. White dots are outlets.
Here nup = 4 and ndown = 5.
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at the interior junction. Since the pore lengths are assumed the same, and the

upstream (resp. downstream) pores obey the same boundary conditions for pressure

and concentration, the radius and concentration evolution in these pores are therefore

also the same. As a result, we simply monitor the evolution of quantities for one

upstream and one downstream pore. Let r1 (t) and r2 (t) be the radius of each

upstream and downstream pore, respectively.

Fluxes through each upstream and downstream pore, labelled q1 (t) and q2 (t)

respectively, satisfy the dimensionless Hagen-Poiseuille equations,

q1 (t) = (1− pjunc (t)) r
4
1 (t) ;

q2 (t) = pjunc (t) r
4
2 (t) .

where pjunc (t) is the (unknown) pressure at the exit of the top pore. Conservation of

flux yields

nupq1 (t) = ndownq2 (t) (D.9)

and therefore

pjunc (t) =
nupr

4
1 (t)

nupr41 (t) + ndownr42 (t)
=⇒ q1 (t) =

ndownr
4
1 (t) r

4
2 (t)

nupr41 (t) + ndownr42 (t)
. (D.10)

Foulant concentration in the upstream pore, c1 (y, t), satisfies the dimensionless

advection equation,

q1
∂c1
∂y

= −λr1c1, c1 (0, t) = 1,

which has an analytical solution

c1 (y, t) = c1 (0, t) exp

(
−λyr1 (t)

q1 (t)

)
Equation (D.10)

= exp

(
−λy

[
nupr1 (t)

ndownr42 (t)
+

1

r31 (t)

])
.

The evolution of the pore radii satisfies

dr1
dt

= −1, r1 (0) = ϵ1 =⇒ r1 (t) = ϵ1 − t;
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dr2
dt

= −cjunc (t) , r2 (0) = ϵ2.

By conservation of particle flux at the junction, we have ndownq2 (t) cjunc (t) =

nupq1 (t) c1 (1, t). Conservation of flux (per Equation (D.9)) reduces this to cjunc (t) =

c1 (1, t). Hence,

dr2
dt

= −c1 (1, t) = − exp

(
−λ

(
nup (ϵ1 − t)

ndownr42 (t)
+

1

(ϵ1 − t)3

))
, r2 (0) = ϵ2. (D.11)

Theorem 2. The solution r2 (t) to Equation (D.11) satisfies r2 (t) > 0 for all t ∈

T := [0, ϵ1], for all ϵ1, ϵ2, λ > 0 and arbitrary positive integers nup and ndown.

Proof. We note first that r2 (t) ≥ 0 for all t ∈ T since the initial condition is positive,

i.e., ϵ2 > 0, the right hand side of Equation (D.11) is a nonpositive function, which

goes to zero as r2 → 0, i.e., dr2
dt

→ 0− as r2 → 0+. In other words, the radius of the

downstream pore decreases to zero until it reaches zero and will not yield negative

values. Therefore, to prove the claim that r2 (t) > 0 for all t ∈ T , we suppose that

there exists t∗ ∈ T such that r2 (t
∗) = 0 and arrive at a contradiction as follows.

We noted earlier that r2 (t) is a monotone decreasing function, and in fact, is

equal to 0 for all t ≥ t∗. Now, when r2 (t) is bounded away from 0, i.e., t < t∗, we

divide both sides of Equation (D.11) by r2 (t) and integrate to obtain

log (r2 (t)) = log (ϵ2)− I (t) , (D.12)

where

I (t) =

∫ t

0

1

r2 (τ)
exp

(
−λ

[
nup (ϵ1 − t)

ndownr42 (τ)
+

1

(ϵ1 − τ)3

])
dτ. (D.13)

Note that under the assumption that r2 (t
∗) = 0, I (t) → −∞ as t ↗ t∗. We now

prove that 0 ≤ limt↗t∗ I (t) < ∞ to arrive at our contradiction. Here, the lower

bound is obvious since the integrand is nonnegative.
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First, we note that (by simply removing a positive term from the argument of

the exponential)

lim
t↗t∗

I (t) ≤ lim
t↗t∗

∫ t

0

1

r2 (τ)
exp

(
−κ (ϵ1 − t)

r42 (τ)

)
dτ =: lim

t↗t∗

∫ t

0

f (τ ;κ, ϵ1) dτ, (D.14)

where κ = λnup

ndown
.

It would suffice to show that the integrand f is bounded on [0, t] for t ≤ t∗. We

first note that when r2 (τ) is bounded away from 0, the integrand is continuous in r2

(as an independent variable). We check the behaviour of the integrand in the limit

as t → t∗ or equivalently r2 (t) → 0+.

lim
r2(τ)→0+

1

r2 (τ)
exp

(
−κ

(
ϵ1 − τ

r42 (τ)

))
u(τ)= 1

r2(τ)= lim
u(τ)→∞

u (τ)

exp (κ (ϵ1 − τ)u4 (τ))

L’Hopital
= lim

u(τ)→∞

1

4u3 (τ) exp (κ (ϵ1 − τ)u4 (τ))

= 0.

Therefore, f is a continuous function on [0, t∗] and achieves a maximum value Cκ,ϵ1 :=

∥f (t)∥∞ < ∞. We must then have

lim
t↗t∗

I (t) ≤ lim
t↗t∗

∫ t

0

f (τ ;κ, ϵ1) dτ ≤ t∗Cκ,ϵ1 < ∞.

Thus, the right hand side of Equation (D.12) is finite, but the left hand side of it

is not. We arrive at our contradiction. Therefore, there exists no t∗ ∈ T such that

r2 (t
∗) = 0, which then proves the claim.

However, the situation becomes far more complicated once pore size variation

within each layer is involved. In fact, we show via examples that the radius of a

downstream pore can go to zero before the upstream ones. Consider an inverted-Y

shaped network with one upstream pore and two downstream pores, with initial radius

ϵ1, ϵ2 and ϵ3, respectively. Without loss of generality, we assume ϵ2 > ϵ3. Using a

similar set of calculations to the case above using nup = 1 and ndown = 2, we find that
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the outlet radii r2 (t) and r3 (t) satisfy the set of coupled ODEs,

dr2
dt

=
dr3
dt

= − exp

(
−λ

(
ϵ1 − t

r42 (t) + r43 (t)
+

1

(ϵ1 − t)3

))
. (D.15)

The difference between this setup and the one in Theorem 2 is that now the evolution

of each downstream pore depend on each other because they have different initial

conditions. Note that r2 and r3 simply differ by a constant ϵ2 − ϵ3. Thus, we can

further deduce that

dr3
dt

= − exp

(
−λ

(
ϵ1 − t

(r3 (t) + ϵ2 − ϵ3)
4 + r43 (t)

+
1

(ϵ1 − t)3

))
(D.16)

From this, we observe that one can make ϵ2 − ϵ3 sufficiently large so that regardless

of how small r3 becomes, r3 decreases at a nontrivial rate. This is a scenario different

than the case in Equation (D.11). An explicit condition involving ϵ1, ϵ2, ϵ3 and λ may

be derived.

We have tested using a numerical example with ϵ1 = ϵ2 = 0.01, ϵ3 = 3 × 10−3,

λ = 5× 10−7 (the same value used in Section 5.6) and have found that r3 (t) goes to

zero earlier than r1 (t).

We conclude that the difference in initial conditions for pore radii does play a

role in driving the dynamics of each pore. Downstream pore closure can be earlier

than the upstream one. However, even if one downstream pore closes earlier, the local

structure at the junction always reduces to the case where we have multiple upstream

pores and one single downstream one, which is the setup used in Theorem 2 with

nup arbitrary and ndown = 1. In other words, the moment we encounter a lone

downstream pore, then it will not close until all upstream pores have closed. With

this heuristic argument (that can be chained upstream), we believe that a general

membrane network with various initial conditions will only close on the top surface

under adsorption. The introduction of sieving would contribute to instantaneous

blocking of interior pores (see Section 6.2.2).
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