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ABSTRACT 

FLEXIBILITY VS CONSISTENCY: QUANTIFYING DIFFERENCES IN 
NEUROMODULATORY ELICITED PATTERNS OF ACTIVITY 

 
 

by 
Elizabeth M. Cronin 

Central pattern generating circuits underly fundamental behaviors such as respiration or 

locomotion and are under the influence of neuromodulators.  The presence of 

neuromodulators is thought to confer flexibility to these circuits to generate distinct 

patterns of activity to meet distinct behavioral needs.  Network output flexibility can be 

achieved by distinct classes of neuromodulators, those which have convergent cellular 

actions but divergent circuit actions or by those which have divergent cellular actions but 

convergent circuit actions.   

Both classes of neuromodulator exist in the stomatogastric nervous system of the 

crab Cancer borealis and influence the activity of a central pattern generating circuit in the 

stomatogastric ganglion, the pyloric network.  The ability of both classes of 

neuromodulator, when applied individually, to generate qualitatively and quantitatively 

distinct patterns of activity has been demonstrated with respect to a baseline activity state.  

While it is assumed that each individual neuromodulator’s activity pattern is distinct, there 

has yet to be a fully quantitative description of the degree of difference between two 

modulated activity patterns.  It is also unlikely that any single circuit will be under the 

influence of only a single neuromodulator at any point.  Therefore, the possibility of 

generating distinct network outputs increases with each distinct combination of 

neuromodulators.  While the actions of individual neuromodulators have been explored, 

the consequences of co-modulation on the pyloric network’s output are less understood.  



Previous attempts at quantifying the effects of a neuromodulator on the pyloric 

network output relied on evaluating only a single, often multi-dimensional, attribute of 

activity at a time and statistically testing the dependent parameters of that attribute with 

statistics that assume independence.  This dissertation uses a new approach to quantify and 

statistically test how different one neuromodulator elicited pattern of activity is from 

another, preserving the inherent multi-dimensional nature of the attributes evaluated.  The 

results of this dissertation show that the pyloric network output is able to generate 

statistically distinct network outputs with individual neuromodulators; however, flexibility 

is lost in favor of consistency under co-modulatory conditions. 
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CHAPTER 1 
 

GENERAL INTRODUCTION 
 
 

1.1 Central Pattern Generators and the Stomatogastric Nervous System 
 
Central pattern generating circuits underly the generation of fundamental rhythmic 

behaviors such as locomotion, respiration and feeding (Marder and Bucher, 2001; Guertin, 

2012; Katz, 2016).  A prominent feature of central pattern generating circuits is the ability 

to generate rhythmic activity in the absence of sensory feedback.  Because of the 

importance of these behaviors, it is necessary to understand how and under what 

circumstances these circuits generate their rhythmic outputs.   

Central pattern generating circuits are found in both invertebrates and vertebrate 

species, though in vertebrates, these circuits are not well defined and likely contain a large 

number of neurons (MacKay-Lyons, 2002).  Invertebrates, however, do have well defined 

central pattern generating circuits whose activity depends on a reasonably small number of 

neurons which can be easily identified, recorded and manipulated.  One such invertebrate 

central pattern generating circuit is the pyloric network in the stomatogastric nervous 

system of decapods crustaceans.    

The stomatogastric nervous system in decapod crustaceans consists of four ganglia: 

the paired commissural ganglia (CoGs), the unpaired esophageal ganglion (OG), and the 

stomatogastric ganglion (STG).  The stomatogastric ganglion contains approximately 25 

neurons, the absolute number differs across invertebrate species and can also vary across 

animals of the same species  (Marder and Bucher, 2007).  Of these 25 neurons, ~ 11 

participate in pyloric rhythm generation which controls the filtering of food in the 

crustacean stomach while the others participate in the gastric mill rhythm which controls 
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the chewing of food in the stomach.  The pyloric network is the faster of the two circuits 

(~1 Hz cycle frequency), pacemaker driven and is simpler than the gastric mill network 

which is significantly slower (~0.1 Hz cycle frequency) and is network  driven (Nusbaum 

and Beenhakker, 2002).  When isolated, the central pattern generators of the stomatogastric 

nervous system can generate fictive motor activity which can be recorded through 

extracellular motor nerve recordings and intracellular soma recordings. 

The pyloric network can be reduced further to its core circuit.  The core pyloric 

network is composed of the anterior burster (AB) which is the pacemaker neuron, the two 

pyloric dilator neurons (PD) which are electrically coupled to the AB neuron, the lateral 

pyloric (LP) neuron and the pyloric neurons (PY).  The AB and PD neurons taken together 

are considered the pacemaker group while the LP and PY neurons do not have intrinsic 

oscillatory behavior and are considered follower neurons.  All of the chemical synapses in 

this circuit are inhibitory and the sole feedback from the follower neurons to the pacemaker 

group comes from the chemical synapse from the LP neuron to the PD neuron.  When 

recorded experimentally, extracellularly or intracellularly, the core pyloric network 

neurons generate rhythmic tri-phasic activity.  The onset of pacemaker activity signals the 

start of a cycle of activity.  While the pacemaker neurons are firing, the follow neurons are 

inhibited via the chemical synapses from the pacemaker neurons.  Following the 

termination of pacemaker activity, the follower neurons LP and PY are able to fire in 

sequence, completing one cycle of activity (Figure 1.1).  
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1.2 Neuromodulation of the Pyloric Network 
 

While the pyloric circuit is pacemaker driven and can generate activity in the absence of 

sensory input, it requires neuromodulators to function.  Neuromodulators are distinct from 

neurotransmitters and represent a class of neuroactive substance which operate on a slower 

time scale compared to classical neurotransmitters and signal through G-protein coupled 

receptors.  When deprived of neuromodulators via experimental perturbation, the pyloric 

rhythm either stops completely or generates slow or disrupted activity (Hamood et al., 

2015).  In the stomatogastric nervous system approximately 100 distinct neuromodulators 

have been detected (Ma et al., 2009; Christie et al., 2010; Chen et al., 2014) though that 

number is likely higher.   

 

Figure 1.1 The stomatogastric nervous system and the pyloric circuit.   
(A) Schematic of the stomatogastric nervous system (STNS) which contains the 
paired commissural ganglia (CoGs), the unpaired esophageal ganglion (OG), and 
the stomatogastric ganglion (STG).  The STG contains two central pattern 
generating circuits, the pyloric network and the gastric mill network.   
(B) Connectivity diagram of the core pyloric neurons of the pyloric network.   
(C) Intracellular soma and extracellular motor nerve recordings of the PD, LP 
and PY neurons of the core pyloric network.   

Source : A and B adapted from (Daur et al., 2016). 
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The majority of the neuromodulators which influence the pyloric network can be 

broadly divided into two classes: neuropeptides and amines.  Both neuropeptides and 

amines can be released by anterior ganglia in the stomatogastric nervous system and 

released into the hemolymph as neurohormones to modulate the activity of the neurons in 

the STG, though their mechanisms of modulation are distinct (Marder, 2012).   

Neuropeptides, once bound to their receptors, have convergent cellular actions.  

Following receptor binding, each neuropeptide converges to activate the modulator 

activated inward current (IMI), a mixed cation inward current that is calcium dependent 

(Golowasch and Marder, 1992b; Swensen and Marder, 2000).  Although each neuropeptide 

converges to the same point cellularly, at the circuit level their actions diverge where 

distinct neuropeptides target distinct subsets of pyloric neurons (Swensen and Marder, 

2001).  This divergence in circuit activity helps to explain the apparent redundancy of their 

cellular convergence.   

Unlike the relatively simple actions of the neuropeptides, the actions of amines on 

the neurons of the pyloric network are far more complex.  Amines, such as dopamine, have 

cell type specific divergent actions cellularly.  For example, dopamine can bind to distinct 

receptor subtypes on two different neurons.  Even though dopamine is targeting both of 

these neurons, the cellular consequences of dopamine binding will be different.  Countering 

the cellular level divergence of dopamine, at the circuit level, dopamine’s actions are 

convergent (Figure 1.2).  Even though dopamine will differentially affect each neuron in 

the circuit, all neurons have receptors for dopamine (Harris-Warrick and Johnson, 2010).  

Of the amines, dopamine is the best studied, but the general principal of divergent cellular 

and convergent circuit likely extends to other amines such as serotonin and octopamine 
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which also modify the activity pattern of the pyloric network (Flamm and Harris-Warrick, 

1986a, b).  

 

 
1.3 The Necessity of Flexible Outputs and the Role of Neuromodulators 

Regardless of the particular cellular or synaptic properties of central pattern generating 

circuits, a central pattern generating circuit is a collection of neurons and synaptic 

connections which are fixed and generate a pattern of activity.  While we generalized these 

activities as respiration or locomotion and often think of them singularly, respiration, for 

example, is not a single pattern of activity (Viemari and Tryba, 2009).  Because of the 

inflexibility in the composition of the circuit and the importance of the behaviors which 

are generated by these circuits, these circuits need to be able to modify the properties of 

their constituents to elicit distinct activity patterns.   

Neuromodulators are thought to provide central pattern generating circuits the 

ability to reconfigure their circuits to generate distinct patterns of activity.  In what is 

widely termed network output flexibility, a large number of neuromodulators which act 

distinctly can transform a static circuit into one which is capable of generating a wide range 

 
Figure 1.2 Convergent and divergent actions of neuromodulators.  Across distinct 
cell types, neuropeptides have the same cellular action, convergence to activate the 
modulator activated inward current IMI while monoamines such as dopamine have cell 
type specific cellular actions due to differences in receptor subtype.   
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of activity patterns which could signal for distinct behavioral outputs (Stein, 2009; Harris-

Warrick, 2011).  Extending this idea, if individual neuromodulators can generate distinct 

activity profiles which signal for distinct behavioral outputs, distinct combinations of 

neuromodulators should also provide flexibility to the network output and signal for 

distinct co-modulator based network outputs. 

The flexibility of the pyloric network output across species under distinct 

modulatory conditions, both peptides and amines, has been shown (Flamm and Harris-

Warrick, 1986b; Weimann et al., 1991; Weimann et al., 1993; Weimann et al., 1997; 

Swensen and Marder, 2000; Thirumalai and Marder, 2002; Goaillard et al., 2004; Haddad 

and Marder, 2018; Rosenbaum and Marder, 2018) though the effects of co-modulation on 

the network output are less understood.  There are two common themes to these works: 1. 

the generation of qualitatively different rhythmic outputs in the presence of distinct 

neuromodulators and 2. some quantification demonstrating the effect of the 

neuromodulator on some aspect of network activity with respect to a baseline state.   

The most commonly quantified attributes of activity are cycle frequency, phase, 

spike number and spike frequency.  These can be generally thought of as attributes of 

excitability.  If only the core pyloric network neurons of PD, LP and PY are considered, 

these four attributes have 12 individual parameters of activity.  When quantified with 

respect to a baseline condition, often times the experimentally elicited decentralized state 

where the descending modulatory inputs from the upper end ganglia are removed, there are 

statistical differences when evaluated with parametric statistics such as t-tests or ANOVAs.  

When paired with a qualitative assessment, these results are often interpreted as 
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demonstrating the ability of individual neuromodulators to generate distinct network 

outputs.  There are inherent issues with these approaches though.   

While a neuromodulator elicited network output may be statistically different from 

a baseline state, there have been very few studies that have tried to quantify how different 

two neuromodulator elicited network outputs are from each other (Swensen and Marder, 

2001; Thirumalai and Marder, 2002).  The second inherent issue with these previous works 

is the statistical approach to quantifying how different one network output is from another.  

The phase, spike number and spike frequency attributes of excitability are comprised of 

five and three parameters each, respectively.  When statistically tested, however, each 

parameter is considered individually.  The issue with statistically testing individual 

parameters within one attribute of excitability is the dependence of each parameter within 

an attribute.  The onset and offset phases of each neuron in the core pyloric network, for 

example, are determined in part by the synaptic connections among the three neurons, but 

when statistically tested they are treated as though they are independent.  Outside of the 

statistical issues, these approaches only consider one parameter or one attribute of 

excitability as a proxy for the network output when in reality, the pyloric network output 

is a compilation of all of these individual parameters and outputs.   

 

1.4 A New Approach to Fully Quantify Difference 

To address the issues previously mentioned we took a new approach to quantifying the 

pyloric network output in the crab Cancer borealis under distinct neuromodulator 

conditions.  Instead of considering each parameter of the phase attribute, for example, 

individually, we combined all five parameters of the phase attribute together to create 
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distinct 5-dimensional vectors for each modulatory condition.  The difference between two 

modulatory conditions can be quantified with these five dimensional vectors using the 

Euclidean distance measurement.  The Euclidean distance is the sum of differences 

between each parameter in the attribute.  This collapses, in this example, a 5-dimensional 

difference into a single number which can be interpreted intuitively.  Two vectors which 

are identical in each parameter will have a Euclidean distance of zero and any deviation 

from zero represents a degree of difference.  To statistically test whether the distance 

between two modulatory conditions is sufficient to consider them different, we used a 

modified version of a multi-variate permutation test (Anderson, 2001; Nichols and Holmes, 

2002).  Unlike the multivariate analysis of variance (MANOVA), the multi-variate 

permutation test is non-parametric statistical test and does not force us to make any 

assumption about the underlying structure of our data, namely that they are normally 

distributed and are equally variant.    

 

1.5 Questions Addressed in this Dissertation 

In this dissertation we used the pyloric network output of the crab C. borealis to ask a set 

of related questions about whether distinct neuromodulator elicited network outputs are in 

fact different from each other and if they are different, how different are they? 

In Chapter 2 we ask whether the individually applied neuropeptides proctolin, 

CCAP and RPCH generate distinct patterns of activity using the cycle frequency, phase, 

spike number and spike frequency attributes as a proxy for network output activity.  We 

quantify the exact degree of difference between these neuropeptides in each n-dimensional 

attribute individually as well as in a combined 12-dimensional network output space. 
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In Chapter 3 we build on the work quantifying differences across individual 

neuropeptides and ask whether distinct combinations of neuropeptides generate distinct 

network outputs and whether those co-modulated network outputs are distinct from their 

constituent neuromodulators.  We use the 12-dimensional network output space to quantify 

the degree of difference between these co-modulated network outputs.  We asked this 

question using pairs of co-modulators (proctolin + CCAP, CCAP + RPCH, RPCH + 

proctolin) as well as triplet combinations of co-modulators (proctolin + CCAP + RPCH 

and CCAP + proctolin + oxotremorine).   

In Chapter 4 we explore the effects of dopamine, octopamine and serotonin on the 

pyloric network output and statistically test whether distinct amines generate statistically 

different outputs.  Unlike peptides which have been widely characterized at the network, 

cellular and synaptic levels in the crab pyloric circuit, the effects of amines are largely 

unknown.  We quantify the effects of dopamine and octopamine on both the full pyloric 

network output using the excitability metrics as well their effects on the PD neuron’s slow 

wave oscillation and spiking behavior. 

In Chapter 5 we explore the consequences of peptide and amine co-modulation on 

the attributes of excitability and PD’s individual activity.  Though both peptides and amines 

exist in this system, there has yet to be any qualitative or quantitative description of their 

combined effects.  We combine the peptides CCAP and RPCH with either dopamine, 

octopamine or serotonin to statistically test, across these six distinct combinations, how 

different peptide and amine co-modulated outputs are from each other.   
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CHAPTER 2 

INDIVIDUAL PEPTIDE MODULATION GENERATES BOTH FLEXIBLE AND 
CONSISTENT PYLORIC NETWORK OUTPUTS 

 

2.1 Introduction 

Neuromodulators are ubiquitous and help to shape fundamental behaviors such as feeding 

(Blitz et al., 1999; Nusbaum and Beenhakker, 2002; Jing et al., 2007; Eriksson et al., 2017), 

respiration (Pena and Ramirez, 2002, 2004; Viemari and Ramirez, 2006), locomotion 

(Sawin et al., 2000; Gabriel et al., 2009) and behavioral states such as sleep and attention 

(Noudoost and Moore, 2011; Griffith, 2013).  In some cases, the number of 

neuromodulators identified in a system can seem disproportionate to its size or function.  

The stomatogastric nervous system in crustaceans, for example, has >100 identified 

peptide neuromodulators (Ma et al., 2009; Christie et al., 2010; Chen et al., 2014) and the 

genome of the small nematode C.elegans encodes for > 200 peptides (Bargmann, 2012).  

At first pass, the large number of neuromodulators in these small circuits seems puzzling 

but can be understood in the context of network output flexibility.   

Owing to the small number of neurons and synapses in these circuits, the ability to 

modify intrinsic and synaptic properties to ultimately alter an output is crucial.  The idea 

that individual modulators transform static networks into flexible entities capable of 

generating behaviorally relevant and distinct outputs is well documented (Katz, 1995; 

Nusbaum and Beenhakker, 2002; Viemari and Tryba, 2009; Harris-Warrick, 2011; Miles 

and Sillar, 2011; McCormick and Nusbaum, 2014).  This is most apparent when looking 

at recordings during ongoing activity (Marder and Weimann, 1992; Swensen and Marder, 

2001; Lane et al., 2018).  The outputs look different under distinct modulatory conditions, 



 

11 
 

so we assume that individual neuromodulators are in fact generating distinct activity 

patterns.   

When a population is considered, approaches to quantifying the effects of a 

neuromodulator rely on isolating a single, often multi-dimensional, attribute, plotting those 

data as individual bar plots and performing a basic parametric statistic such as an ANOVA 

or a t-test.  When evaluated in this way, the most salient feature or features of a modulated 

output can be found (Dickinson et al., 2001; Goaillard et al., 2004; Lane et al., 2018).  

While useful, the determination of salient features can only state particular places within a 

multi-dimensional attribute where outputs are different but cannot provide a measure of 

how different two outputs are from each other when an attribute is considered holistically.  

Additionally, while we hold the belief that different neuromodulators generate 

distinct activity profiles, there have been very few studies that have tried to quantify the 

difference between two modulated states (Swensen and Marder, 2001; Thirumalai and 

Marder, 2002; Lane et al., 2018).  Almost exclusively, the comparison is made with respect 

to a baseline state.  What is missing from our understanding of how neuromodulators act 

on a network output is a rigorous comparison across modulators and a fully quantitative 

metric of difference which preserves the inherently multi-dimensional nature of these data.  

This would allow us to make an unambiguous statement not only about whether one 

network output is statistically different from another, but also allows us to state the exact 

degree of difference between these outputs.  Here we quantify the effects of three distinct 

neuropeptides on four attributes of excitability which represent a proxy of the pyloric 

network output.  By taking a new approach to the quantification and statistical testing of 
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these data we not only ask whether one neuropeptide elicited network output is different 

from another but also how different they are. 

 

2.2 Materials and Methods 

Animals.  All experiments were performed on male Cancer borealis crab obtained from 

local fish markets and maintained in recirculating saltwater tanks at 12°C.  Crabs were 

anesthetized in ice for ~30 minutes prior to dissection.  The dissection of the stomatogastric 

nervous system (STNS) was performed according to standard procedure and the isolated 

nervous system was pinned down on Sylgard coated petri dishes (Selverston et al., 1976).   

Electrophysiology.  During experiments, the stomatogastric ganglion (STG) was 

continuously superfused with Cancer borealis saline composed of 11 mM KCl, 440 mM 

NaCl, 13 mM CaCl2, 26 mM MgCl2, 11.2 mM Trizma base and 5.1 mM maleic acid with 

pH of 7.4.  Superfused saline was maintained at 11-13°C and to facilitate modulator 

application, a large petroleum jelly well was made around the STG.  Extracellular 

recordings were made by electrically isolating motor nerves of interest with small 

petroleum jelly wells.  Stainless steel electrodes were then place both inside and outside of 

the well to record activity and the signals were amplified with differential AC amplifiers 

(A-M systems).  Intracellular recordings were performed on the desheathed ganglion using 

sharp microelectrodes with resistance of 20-30 MΩ.  Electrodes were filled with a 0.6M 

K2SO4 and 20mM KCl solution and mounted on Scientifica motorized microelectrode 

manipulators.  Neurons of interest were identified by their stereotyped waveforms along 

with matching the intracellular activity pattern to the extracellular motor nerve recordings.  

All intracellular recordings were obtained in current clamp with Axoclamp 900A and 2B 
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intracellular amplifiers (Molecular Devices).  Both intracellular and extracellular activity 

was recorded using a Micro1401 digitizer and Spike2 data acquisition software (Cambridge 

Electronic Design).   

The pyloric network and attribute extraction.  The STNS contains four ganglia: the 

paired commissural ganglia (CoGs), the unpaired esophageal ganglion (OG), and the STG 

(Figure 2.1 A).  The STG contains two distinct but overlapping central pattern generating 

circuits, the pyloric network and the gastric mill network.  The pyloric network is made up 

of approximately 11 neurons and the pyloric dilator (PD), lateral pyloric (LP) and pyloric 

(PY) neurons form the core pyloric network.  The two PD neurons are electrically coupled 

to the anterior burster (AB) neuron and taken together form the pacemaker group.  While 

the pacemaker neurons are active, they inhibit both the LP and PY neurons.  Following 

inhibition, the LP and PY neurons fire in sequence to generate a tri-phasic activity pattern.  

In addition to intracellular soma recordings, the activity of the PD and PY neurons can be 

measured by recording the pyloric dilator nerve (pdn) and pyloric nerve (pyn) 

extracellularly while the activity of the LP neuron can be measured extracellularly on the 

lateral ventricular nerve (lvn) (Figure 2.1 B).   

All initial attribute extraction was done in Spike2 with custom written scripts.  

Measurements for the phase and cycle frequency attributes were obtained from the 

extracellular motor nerve recordings.  The cycle frequency is the reciprocal of the cycle 

period which is defined as the time from the onset of PD bursting in one cycle to the next 

onset of PD bursting.  There are five phases of activity which characterize the three core 

pyloric neurons in the pyloric network.  The individual phases were calculated as the delay 

to each neurons burst onset or offset (latency) with respect to PD burst start divided by the 
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cycle period.  The number of spikes and intraburst spike frequency measurements were 

obtained from the intracellular soma recordings for the PD and PY neurons and from both 

intracellular and extracellular recordings for the LP neuron.  The intraburst spike frequency 

was calculated as the number of spikes per burst minus 1 divided by the duration of the 

burst and is referred to as spike frequency (Figure 2.1 B).   
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Modulators and experimental protocol.  To block descending modulatory inputs from 

upper end ganglia (decentralization) the stomatogastric nerve (stn) was blocked with a 10-

7 M TTX (Biotium) + 750 mM sucrose (Sigma) solution.  Proctolin (RS synthesis) and 

CCAP (Bachem) were initially dissolved in distilled water as a stock solution at 10-3M, 

 

Figure 2.1 The pyloric circuit and excitability attribute extraction.   
(A) Schematic of the stomatogastric nervous system (STNS).  The STNS is 
composed of four sets of ganglia: the paired commissural ganglia (CoGs), the 
unpaired esophageal ganglion (OG), and the stomatogastric ganglion (STG).  To 
record activity from the motor nerves within the STG, the STG can be desheathed 
and the individual motor neurons impaled with sharp microelectrodes.   
(B) Schematic of the core pyloric neurons.  The core pyloric circuit, one of the 
central pattern generating circuits in the STG, is made up of the pacemaker group, 
the anterior burster (AB) and two pyloric dilator (PD) neurons.  These neurons, 
when active, inhibit the activity of the two follower neurons, the lateral pyloric 
(LP) and pyloric (PY) neurons.  Following inhibition, these follower neurons 
rebound to fire sequentially generating the tri-phasic motor pattern of PD-LP-PY 
activity.  The activity of the core pyloric network can be recorded via intracellular 
soma recordings or extracellularly with motor nerve recordings.  PD neuron 
activity can be recorded from the pyloric dilator nerve (pdn) motor nerve, LP 
activity can be recorded from the lateral ventricular nerve (lvn) nerve and PY 
activity can be recorded from the pyloric nerve (pyn).  With a combination of 
intracellular and extracellular recordings, attributes describing the pyloric 
network’s activity can be extracted.  These attributes include the cycle period or 
frequency, the phases, the number of spikes per burst and the intraburst spike 
frequency. 
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aliquoted and held at -20°C until needed.  RPCH (Bachem) was dissolved in DMSO 

(Sigma) to a stock solution concentration of 10-3M, aliquoted and stored at -20°C until 

needed.  Final dilution of modulators to the experimental concentration of 10-6 M occurred 

immediately before application in chilled Cancer borealis saline.  Modulators were bath 

applied via peristaltic pump for 5 minutes and when multiple modulators were applied to 

the same preparation, each modulator was washed out for a minimum of 30 minutes.   

Sample size for each condition (N): 43 intact, 46 decentralized, 15 proctolin, 18 CCAP, 19 

RPCH. 

Statistics: Basic statistical analysis was performed using SigmaPlot (SigmaStat).  One or 

two way ANOVA were performed along with post-hoc Holm–Sidak pairwise comparisons.  

Statistical significance is noted as follows: * p < 0.05, ** p < 0.01, *** p < 0.001.  See 

Table A.1 for complete statistical results.  The Euclidean distance and principle component 

analysis were performed using Matlab (Mathworks) built in functions.  The multi-variate 

permutation test was performed using custom written scripts in Matlab.   

Euclidean distance and multi-variate permutation test calculation: The Euclidean 

distance is a pairwise distance measurement between two conditions.  It was calculated by 

taking the difference of each parameter within a multi-dimensional attribute under two test 

conditions.  The Euclidean distance in the phase attribute (Δ ϕ) is a  

5-dimensional difference calculated by taking the difference between the PD off, LP on, 

LP off, PY on and PY off phase vectors between each test conditions.  The Euclidean 

distances in the spike number attribute (Δ #spikes) and spike frequency attribute (Δ Fspk) 

are 3-dimensional differences calculated by taking the difference between the PD, LP and 

PY spike number or spike frequency vectors between two test conditions.  The Euclidean 
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distance in the network output space (Δ z-score) is a 12-dimensional difference calculated 

by first combining the four attributes of activity into condition specific vectors.  All vectors 

across the five conditions evaluated were combined and z-score standardized.   Pairwise 

distances were then calculated using the z-scored vectors.  All distance values reported are 

means from individual distance measurements between single vectors. 

The multi-variate permutation test used here is a modified version of a permutation 

test and uses the Euclidean distance measurements as a test statistic (Anderson, 2001; 

Nichols and Holmes, 2002).  Following the calculation of the mean Euclidean distance 

value between two conditions, the vectors from both test conditions were combined and 

then permuted by column with replacement (np) to create a single matrix which holds all 

possible combinations of values.  Following this, vectors from the permuted matrix were 

randomly reassigned into two new matrices of the same size as the initial condition 

matrices.  The Euclidean distance measurements were calculated on the two new permuted 

matrices in the same way as the non-permuted data, each vector against all other vectors.  

Following that, the mean Euclidean distance was calculated.  The permuted Euclidean 

distance calculation was performed a total of 9,999 times.   

The single Euclidean distance measurement from the non-permuted data and the 

9,999 permuted Euclidean distance measurements were combined to form a 10,000 x 1 

matrix and ranked in descending order.  The index corresponding to the Euclidean distance 

measurement of the non-permuted data was divided by 10,000 to provide the p-value.  The 

determination of statistical difference was made with a 0.05 alpha value.  Statistical 

significance is noted as follows: * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Machine Learning.  The machine learning implementation, methods and results sections 

were performed and written by Dr. Anna C. Schneider. 

In order to see whether our findings were affected by the particular methodology 

we had used and by the specific attributes we had chosen for circuit activity, we also 

analyzed our datasets using supervised machine learning algorithms.  We used two 

different supervised machine learning approaches.  For the first approach, we used a pattern 

recognition network that was trained and tested on the exact same data as for the Euclidean 

distance analysis.  This method allowed for an objective comparison of our distance metric 

without changing the input data.  In the second approach, we used a minimally analyzed 

dataset based on the raw measurements of spike times of circuit neurons as the input for 

the time series classification algorithm.  In this dataset, all circuit activity that included 

periodic activity of the PD neuron was included, even if there was no triphasic pyloric 

rhythm such as when the follower neurons were silent or aperiodic.  

All networks were created using Matlab (Deep Learning Toolbox version 14.2; 

Parallel Computing Toolbox version 7.4) with default settings, unless otherwise noted, and 

custom written functions for data preprocessing.  

The training outcome partially depends on the initial values of the network 

parameters.  In addition, our available datasets are relatively small.  Therefore, we used a 

bootstrapping approach to sample the distribution of network accuracy based on network 

initialization and dataset splitting in training and test data.  For each experimental condition 

(intact, decentralized, proctolin, CCAP, RPCH) the corresponding dataset was randomly 

split into 70% training data and 30% test data.  We then randomly initialized 50 networks, 

trained them, and kept the most accurate one.  On the next run, we again split the dataset 
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randomly into training and test data, randomly initialized 50 networks, and kept the most 

accurate network of that run.  We repeated this process for 100 runs, ending up with 100 

networks of varying accuracy.  We then classified the test data with the corresponding 

networks and calculated the percentage of correct and false positive classifications across 

the 100 networks for each modulatory condition. 

Pattern recognition.  The shallow pattern recognition network was created with the 

Matlab function “patternnet”.  It consists of one input layer, one hidden layer with 50 units, 

and one output layer.  Of the training data, 70% was used for the actual network training, 

the other 30% were used for validation.  We used the same dataset as for the vector length 

analysis.  After splitting and bootstrapping the dataset, the networks were tested with a 

total of 1300 intact, 1400 decentralized, 400 proctolin, 600 CCAP, and 600 RPCH. 

Time series classification.  The core pyloric rhythm consists of the sequential bursting of 

three types of neurons.  For the pattern recognition network, we had to choose and extract 

attributes from the raw data that were available in all experimental conditions.  In this 

second machine learning approach, we wanted to use the information of the sequential 

bursting to classify the data with a deep network suitable for time series classification.  

This network consisted of the following layers: A sequence input layer with three channels 

(PD, LP, PY), a bi-directional long short-term memory layer with 50 hidden units and the 

‘OutputMode’ set to ‘last’, a fully connected layer with five channels (one for each 

experimental condition), a softmax layer, and the classification layer.  In contrast to 

Matlab’s default settings, we used the Adam optimizer with a denominator offset of 10-6, 

set the mini-batch size to accommodate all input data in one batch, allowed a maximum of 
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1000 epochs for training, validated the network at every other iteration with the test data 

and set the patience of validation stopping to 25.  

We preprocessed the raw data in the following way to compress the data and obtain 

uniform input matrices: We took 30 seconds of data from each experiment and condition 

24 intact, 24 decentralized, 11 proctolin, 12 CCAP, 9 RPCH; some experiments had 

sequential application of modulators after a thorough wash with normal saline.  In these 30 

seconds, we identified pyloric cycles from the beginning of one PD burst to the next.  Each 

cycle was divided into 20 bins, and we calculated the average spike number for PD, LP 

and PY per bin across the number of cycles present in the 30 seconds of data.  

While the binning has the advantage that the inputs are the same size for all experiments, 

regardless of the cycle frequency, the important information of cycle frequency is not 

included.  Therefore, we z-scored each individual cycle frequency based on the 

decentralized cycle frequencies and added the z-score to each bin of an individual 

experiment.  We used all of the training data for training and the test data for validation.  

After splitting and bootstrapping the dataset, the networks were tested with 700 intact, 700 

decentralized, 300 proctolin, 400 CCAP, and 300 RPCH experiments. 

 

2.3 Results 

Neuromodulators transform a single circuit into visually distinct outputs.  The PD, LP 

and PY neurons form the core pyloric network within the stomatogastric nervous system.  

These neurons are also individually targeted by peptide modulators, albeit to varying 

degrees (Swensen and Marder, 2001).  Mechanistically, peptides in this system have 

convergent cellular actions, targeting the modulator activated inward current (IMI) through 
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GPCR signaling and divergent circuit actions (Golowasch and Marder, 1992b; Swensen 

and Marder, 2000, 2001).  These previous works, highlighting the differential modulation 

and cellular and circuit actions of these peptides, aids in our understanding of how multiple 

outputs could be generated given a single set of neurons and connections.  Previous work 

has evaluated the effect of applying individual neuropeptides during ongoing activity 

(Marder and Weimann, 1992; Weimann et al., 1993).  When qualified, under distinct 

modulatory conditions, these outputs appear to differ (Figure 2.2 A). 

To quantify the degree of difference between these peptide outputs, we chose four 

attributes of excitability: cycle frequency, phase, spike number and spike frequency.  These 

attributes were chosen because they have been widely used to describe the effects of 

neuropeptides on the pyloric network.   

Proctolin targets each of the core pyloric neurons and due to proctolin’s ubiquitous 

actions, we expect the responses of proctolin to be different than the responses of CCAP 

or RPCH in these attributes.  Because CCAP and RPCH target the same subset of neurons 

in the pyloric network, any differences found could be attributed to a difference in peptide 

receptor number on the neurons they target or an effect on the synapses.  The mRNA copy 

number of CCAP receptors among the core pyloric neurons has been previously quantified 

(Garcia et al., 2015) but is not known for RPCH.  Additionally, we expect the decentralized 

response in these attributes to be different from both the intact and peptide modulated 

conditions.  The intact state is one that is multiply modulated where it is assumed that IMI 

is active in all pyloric neurons.  Because proctolin activates IMI in each of the core pyloric 

neurons, proctolin may be able to recapitulate the intact state while we expect the intact 

responses across these attributes to be distinct from those of CCAP or RPCH.   
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There are no statistical differences across peptides in the cycle frequency attribute.  

Under intact conditions, the pyloric network cycles at ~ 1 to 2 Hz and once decentralized, 

the cycle frequency drops.  The application of neuropeptides has been shown to restore the 

cycle frequency, but the degree of change is state dependent (Nusbaum and Marder, 1989; 

Weimann et al., 1997).   In these data, when the preparations were decentralized there was 

a significant drop in cycle frequency compared to the intact.  Neuropeptide application, 

however, did not restore the cycle frequency to its initial intact state and all peptide 

conditions were statistically different from the intact condition.  While not restored to the 

intact state, the pyloric cycle frequency with proctolin or RPCH was statistically different 

compared to the decentralized, but CCAP was not statistically different from decentralized.  

Additionally, the cycle frequency of the CCAP preparations was statistically different than 

the RPCH preparations (One way ANOVA: F(4,136) = 101.308, p < 0.001) (Figure 2.2 B).   

There are no statistical differences across peptides in the phase attribute.  The phases 

of the three pyloric neurons are influenced by both the inhibitory synapses between the 

neurons as well as intrinsic currents, specifically the A-type potassium current and the 

hyperpolarized activated inward current.  Once decentralized, the duty cycle of PD was 

reduced and LP activity was weakened, advancing its off phase.  As a consequence of LP’s 

activity weakening, the onset of PY activity advanced.  Following decentralization, 

application of proctolin, CCAP or RPCH shifted the phase relationships of the three 

neurons back towards the intact state.  When statistically tested there was one difference 

between intact and CCAP in the LP on phase and differences between the decentralized 

and peptide conditions in the LP off and PY on phases (Two way ANOVA interaction: 

F(16,680) = 15.639, p < 0.001).   
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Between the three peptides there were small differences in their specific phase 

responses though none were statistically meaningful.  The duty cycle of PD was shortened 

compared to proctolin or RPCH and the onset of LP activity was also slightly advanced 

whereas the phase responses of both proctolin and RPCH were similar.  Both the shortening 

of PD duty cycle and LP on phase advance with CCAP compared to proctolin have been 

reported previously (Swensen and Marder, 2001) (Figure 2.2 C). 

Peptide responses can be separated in LP spike number but not PD or PY spike 

number.  All three peptides used target the LP neuron but only proctolin targets the PD 

and PY neurons.  Because the peptides activate an inward current, they act to enhance the 

excitability of the neurons they target.  It has been previously shown that both proctolin 

and CCAP increase LP spike number, though the effect of CCAP application is greater.  

Additionally, proctolin increases the number of PD and PY spikes, although this was 

evaluated with extracellular recordings and included spikes from multiple neurons 

(Swensen and Marder, 2001).   

Quantification of our data indicated similar trends compared to the results of 

previous studies.  In the PD spike number parameter, proctolin increased the mean spike 

number compared to CCAP or RPCH although this was not statistically significant.  

Additionally, there were no statistical differences between the intact and the peptide 

modulated states, although the intact response was statistically different from 

decentralized.  In LP spike number, CCAP had the largest effect and was statistically 

different from both proctolin and RPCH, while the proctolin and RPCH responses were 

not statistically different from each other.  The intact and decentralized conditions were 

both statistically different from each peptide as well in LP spike number.  Lastly, proctolin 
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enhanced PY spiking compared to CCAP or RPCH and was statistically different from 

both.  The intact PY spike number response was also statistically different from the 

decentralized, proctolin, and RPCH responses but not the CCAP response.  Additionally, 

the decentralized response was statistically different from both the CCAP and RPCH 

responses but not the proctolin response (Two way ANOVA interaction: F(8,408) = 26.097, 

p < 0.001) (Figure 2.2 D).   
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Figure 2.2: The cellular targets of neuropeptides in the core pyloric circuit and the  
qualitative and quantitative responses to individual neuropeptide application.  (A) The 
cellular targets and responses of individual neuropeptides application to the pyloric circuit.  
(B)  Cycle frequency response across intact, decentralized and three neuropeptide 
conditions.  Bars represent mean cycle frequency responses and points represent 
individual animal responses.  (C) Phase responses of the PD, LP and PY responses during 
the intact, decentralized and neuropeptide conditions.  Bars represent mean phase on and 
off values.  Filled in circles represent individual animal phase on values and empty circles 
represent individual animal phase off values.  (D) Spike number responses of the PD, LP 
and PY neurons across distinct neuromodulatory conditions.  Bars represent mean spike 
number responses across the five modulatory conditions while the individual points 
represent individual animal responses.  (E) Spike frequency responses of the PD, LP and 
PY neurons.  Bars represent mean spike frequency responses across all modulatory 
conditions and individual points represent individual animal responses. 
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Peptide responses can be separated in the PD and PY spike frequency attributes. 

Spike frequency is related to spike number attribute and is the ratio of the number of spikes 

to burst duration.  The pyloric network, when decentralized, not only slows down but the 

individual neurons within the network also show a reduction in burst frequency.  

Neuropeptide application acts to shorten the duration of bursting for each neuron thereby 

increasing each neurons spike frequency.  Because spike frequency is a ratio, there can be 

changes in frequency without a change in the number of spikes and may allow for 

separation between peptide conditions which were not different in spike number. 

When quantified, both the intact and decentralized responses were statistically 

different from all peptide conditions in PD spike frequency.  All three peptide conditions 

were also statistically different from each other.  In LP spike frequency, the intact response 

was statistically different from the decentralized response and RPCH but not proctolin or 

CCAP while the decentralized was statistically different from all three peptide conditions.  

There were also no statistical differences between the peptide conditions.  Lastly, in PY 

spike frequency, the intact response was statistically different from the decentralized 

response and all three peptide conditions and the decentralized was statistically different 

from proctolin.  Additionally, proctolin was statistically different from CCAP (Two way 

ANOVA interaction: F(8,408) = 6.388, p < 0.001) (Figure 2.2 E). 

Individual attribute statistical testing is necessary but not sufficient to quantify 

differences across distinct neuromodulatory conditions.  When these metrics of 

excitability were evaluated individually, there were differences across the neuropeptide 

conditions and differences between the modulated states and the decentralized matching 

our initial expectations.   Additionally, there were several differences between the intact 
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responses across these attributes and the responses of CCAP and RPCH but a reduced 

number of differences between intact and proctolin.  Taken together, these results suggest 

that the actions of individual peptides on these attributes of excitability are distinct and 

application of proctolin to the pyloric network may recapitulate the intact network output.  

While these individual attributes and statistical tests allow us to highlight specific 

parameters where the actions of individual peptides are distinct, there are inherent problems 

with this approach.  

The first problem is the interpretation of what individual differences within an 

attribute mean when the entire attribute is considered holistically.  The phase attribute, for 

example, is 5-dimensional.  Differences in individual phases between two conditions 

allows us to say specifically where in the 5-dimensional attribute differences are found.  

This is not equivalent to saying one condition is statistically different from another in the 

phase attribute though because we are not considering all five dimensions together.  The 

second issue is with the statistical tests used.  Individual statistical tests, such as ANOVA’s, 

assume independence across the parameters within an attribute however the activity of the 

PD, LP and PY neurons are not independent.   

To make unambiguous statements about differences across conditions in a multi-

dimensional attribute, we need to preserve the multi-dimensional nature of these attributes.  

This requires a new approach to the quantification and statistical testing of these data.  

Therefore, we used Euclidean distance measurements to quantify the exact distance 

between two conditions in an n-dimensional space and a multi-variate permutation test to 

statistically test whether the distance measured was large enough to consider two 

conditions statistically different from one another.  The Euclidean distance allows for the 
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maintenance of an attribute’s n-dimensional nature while the multi-variate permutation test 

is non-parametric and does not make any assumptions about the normality or independence 

of the data.   

The phase attribute cannot distinguish across individual peptides or between peptides 

and the intact state but can distinguish between peptide elicited and decentralized 

outputs.  Specific differences in the phases between a modulated condition and the 

decentralized state have been widely reported along with a small number of studies 

evaluating how different one modulated output is from another in phase (Weimann et al., 

1997; Swensen and Marder, 2001; Thirumalai and Marder, 2002; Goaillard et al., 2004).  

While these previous studies highlight specific phases that are different between two 

conditions, there has not been a fully quantified measure of difference between modulated 

conditions in phase.  Here we quantify the degree of difference in the 5-dimensional phase 

output across neuropeptide conditions, between the intact state and modulated states and 

the decentralized and modulated states. 

To visualize these data, the 5-dimensional phase attribute can be represented in a 

lower dimensional space by plotting 3-dimesional permutations of the phases.  In the first 

permutation of LP on, LP off and PY on, when all five conditions were plotted together 

and only the means were considered, there was a clear shift from the intact state to the 

decentralized.  When the neuropeptides were reintroduced, there was a shift back towards 

the intact state with the proctolin output moving closest (Figure 2.3 A).   

While plotting the mean coordinates of all five conditions together provided an 

outline of how these modulated conditions shift in phase, only evaluating the mean distance 

between the conditions fails to provide the context of whether that distance is statistically 
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meaningful.  To visualize the distribution in phase of these modulated conditions, all 

individual data points were plotted and fit with a convex hull.   

When all five conditions were plotted together in the LP on, LP off and PY on phase 

space and fit with a convex hill, there was overlap between the peptide modulated states 

and the intact.  In this permutation, the distribution of the proctolin outputs occupied a 

space within the intact distribution while the decentralized outputs occupied a distinct area 

in the phase space.  There was overlap between the modulated outputs and the decentralized 

responses as well, though this overlap was confined to one tail of the decentralized 

distribution.  When only the modulators were considered in the LP on, LP off and PY on 

phase space, there was overlap between the distributions of all of them (Figure 2.3 A). 
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The means in the second permutation of PD off, LP off and PY off showed a similar 

trajectory for the intact, decentralized and peptide modulated outputs previously visualized.  

Starting in the intact state, decentralization moved the mean phase response to a distinct 

space and the reintroduction of peptide modulators shifted the means back towards the 

intact with proctolin shifting closest (Figure 2.3 B).  When the distributions were 

considered, all three peptide modulators shared space with the intact distribution, with the 

proctolin outputs sharing the most.  The decentralized distribution also overlapped with the 

peptide modulated distributions, but like the previous permutation, this overlap was 

 

Figure 2.3 Quantification of five dimensional phase difference across distinct modulatory 
conditions.  (A) The effect of peptide neuromodulation on the 3-dimensional phase 
permutation of LP on, LP off and PY on.  The intact, decentralized and three peptide 
responses in the reduced phase space plotted as either means, as individual animal 
responses fit with a convex hull or when only the individual neuropeptide responses are 
considered (B) The effect of peptide neuromodulation on the 3-dimensional phase 
permutation of PD off, LP off and PY off.  The effects of neuropeptide modulation relative 
to each other and the intact and decentralized baseline conditions on the phase attribute 
when only the means are considered, when all five conditions are plotted as individual 
animal responses and fit with a convex hull or when only the modulated conditions are 
considered.  (C) Euclidean distance measurement and statistical result in the 5-
dimensional phase space.   
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confined to one tail of the distribution.  When only the peptide modulators were considered, 

there was overlap between the three distributions however the proctolin distribution 

projected away from the CCAP and RPCH distributions along the axis of PD off.  

While we were limited visually to three dimensions, the mean Euclidean distances 

and p-values reported reflect the evaluation of the full 5-dimensional attribute.  In the 5-

dimensional phase space, the mean decentralized phase response was statistically different 

from the intact as well as the three peptide conditions.  The mean phase responses of the 

three peptides were not statistically different from each other and no peptide response was 

statistically different from the intact (Figure 2.3 C).  The mean Euclidean distance between 

the intact and proctolin was also the smallest measured.  This indicated that in the 5-

dimensional phase space, the intact and proctolin distributions were closest to each other 

and consequently the most similar.   

Quantifying the effects of peptides on the spike number and spike frequency 

attributes.  As with phase, the effects of peptide neuromodulators on the number of spikes 

and spike frequency have been widely reported.  Once decentralized, the number of spikes 

for the PD and LP neurons drops but increases for the PY neuron.  Spike frequency also 

drops for all neurons following decentralization.  The three peptides used here have been 

shown to strongly enhance the number of LP spikes and the LP spike frequency while 

proctolin has also been shown to enhance bursting in the PD and PY neurons (Nusbaum 

and Marder, 1988; Weimann et al., 1997; Dickinson et al., 2001; Swensen and Marder, 

2001).  While the effects of peptide modulators on a decentralized preparation on spike 

number and frequency have been reported, there have been fewer studies quantifying the 
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effect of peptide application with respect to the intact condition or across peptide 

conditions. 

Spike number can distinguish peptide outputs from each other and from both 

baseline conditions.  When the mean coordinates for all five conditions were plotted 

together in the 3-dimensional spike number space, the mean decentralized values shifted 

away from the intact like the phase response.  When the neuropeptides were reintroduced, 

the mean values for all three peptides shifted away from the decentralized state, most 

notably along the LP spike number axis.  Unlike in phase, however, the peptide modulators 

did not cluster around intact condition and were more distinguished (Figure 2.4 A).  This 

was most notable for CCAP, which enhanced LP spiking, and proctolin, which enhanced 

PY spiking, compared to the intact.  There was also more separation among the three 

peptide conditions, with CCAP enhancing the number of LP spikes compared to proctolin 

or RPCH and proctolin enhancing the number of PY spikes compared to CCAP or RPCH.   

When the distributions were plotted, the intact, proctolin and RPCH distributions 

overlapped with the decentralized, though the overlap was limited.  The intact distribution 

also overlapped with the three peptide modulated conditions thought the overlap between 

CCAP and intact was limited.  When only the neuropeptide distributions were plotted, the 

three conditions overlapped though there were distinguishing features among them.  CCAP 

enhanced the number of LP spikes beyond that of proctolin or RPCH while proctolin 

enhanced the number of PD and PY spikes compared to CCAP.  The distribution of RPCH 

however bisected the distributions of both CCAP and proctolin (Figure 2.4 A).   
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When quantified and statistically tested in the 3-dimensional spike number space, 

the decentralized spike number response was statistically different from the intact and the 

three neuropeptide conditions.  The intact spike number response was statistically different 

from both the CCAP and RPCH responses but not proctolin and the distance between the 

intact and proctolin distributions was the smallest.  This indicated that the intact and 

proctolin responses were most similar in this space.  Across the peptide conditions, the 

CCAP spike number response was statistically different from the proctolin response, but 

 

Figure 2.4 Quantification of three dimensional spike number and frequency differences 
across distinct modulatory conditions.  (A) Visualization of the intact, decentralized and 
three neuropeptide responses in the 3-dimensional spike number space.  The intact, 
decentralized and three peptide responses visualized as means, distributions or only the 
peptide responses visualized as distribution.  (B) Euclidean distance quantification and 
statistical testing of difference across distinct modulatory conditions in the 3-
dimensional spike number space.  (C) Visualization of the intact, decentralized and three 
neuropeptide responses in the 3-dimensional spike frequency space.  The intact, 
decentralized and three peptide responses visualized as means, distributions or only the 
peptide responses visualized as distribution.  (D) Euclidean distance quantification and 
statistical testing of difference across distinct modulatory conditions in the 3-
dimensional spike frequency space. 
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neither the CCAP nor proctolin spike number responses were statistically different from 

RPCH (Figure 2.4 B).   

Spike frequency cannot distinguish peptide outputs from each other but can 

distinguish peptide outputs from both baseline conditions.  Similar to the effect with 

phase and spike number, the process of decentralization shifted the mean spike frequency 

values to a new space compared to intact.  The subsequent addition of neuropeptides then 

shifted the mean spike frequency responses away from the decentralized albeit to different 

degrees.  In all three cases, the mean LP spike frequency was enhanced compared to 

decentralized however only proctolin increased the mean PD and PY spike frequencies 

compared to decentralized (Figure 2.4 C).   

The mean proctolin response best recapitulated the intact response though the 

response of proctolin along the axes of PD and PY spike frequency was attenuated 

compared to intact.  This attenuation of PD and PY activity was also apparent when the 

mean values for CCAP or RPCH were compared to the intact.  Among the three 

neuropeptide conditions, the CCAP and RPCH mean spike frequency responses were 

similar along the axes of LP and PY spike frequency but diverged along the axis of PD 

spike frequency.  Proctolin enhanced the LP spike frequency comparably to the other two 

neuropeptide conditions but also enhanced PD and PY spike frequency, causing the mean 

proctolin response to diverge along those two axes compared to CCAP and RPCH (Figure 

2.4 C).  

When the distributions of all five conditions were plotted together, the intact and 

decentralized distributions shared minimal overlap.  The distributions for the three 

neuropeptide conditions overlapped with the intact distribution though the CCAP 
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distribution did so minimally.  The three peptide distributions also overlapped with the 

decentralized distribution though the overlap was confined to one tail.  When only the 

peptide distributions were considered, the CCAP and proctolin distributions were the most 

distinct, diverging along the PD and PY spike frequency axes while the RPCH distribution 

overlapped with both proctolin and CCAP (Figure 2.4 C).    

When quantified, the decentralized response in spike frequency space was 

statistically different from the intact, proctolin, CCAP and RPCH responses while the intact 

spike frequency response was statistically different from the CCAP and RPCH responses 

but not the proctolin response.  Across the peptide conditions, there were no statistical 

differences with the distance between the CCAP and RPCH distributions being the smallest 

(Figure 2.4 D).   

Redundancies and dependencies across the chosen metrics of excitability.  Quantifying 

the effects of a neuropeptide on the pyloric network output requires the extraction of 

attributes from both the intracellular and extracellular recordings.  In total, there are 22 

possible attributes that could be used to quantify a neuropeptides effect on the network 

output.  Due to the derived nature of some of these measurements, using all of them would 

include redundant information and some attributes have been shown to have strong 

correlations. 

It has been previously shown in the intact preparation that the delay to burst onset 

and offset of the pyloric neurons, the latencies, scale with cycle period while the phases of 

each neuron do not scale with cycle frequency (Bucher et al., 2005; Goaillard et al., 2009).  

This scaling makes latency an unreliable measure because any change in burst onset or 

offset could be explained by a change in how fast the network is cycling.  It is not known, 
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however, if neuropeptide modulated latencies also scale with cycle period while the phases 

remain consistent across cycle frequency.  When the latencies of the PD, LP and PY 

neurons following proctolin, CCAP or RPCH application were plotted, the modulated 

latencies scaled with cycle period while the phases did not scale with cycle frequency 

(Figure 2.5 A).   

 

 

Figure 2.5 Correlations across the attributes of excitability.  (A) Latencies under 
modulated conditions scale with cycle period while phases do not scale with cycle 
frequency.  The decentralized latencies do not scale as well with cycle period compared 
to the modulated conditions but the decentralized phases scale better with cycle 
frequency with the exception of PY off latency and phase.  (B) The number of spikes 
per burst of each core pyloric neuron is weakly correlated with cycle period.  (C) The 
spike frequencies of the core pyloric neurons show correlations with cycle frequency.  



 

37 
 

It is also not known whether the decentralized latencies and phases scale or remain 

constant across cycle period or frequency.  When plotted, the decentralized latencies did 

not scale appreciably with cycle period like the intact or peptide conditions did, with the 

exception of the burst offset of PY.  The decentralized phases did, however, scale better 

with cycle frequency unlike the intact or peptide responses, with the exception of PY off 

phase.  While not tested directly, a linear relationship between frequency and phase has 

been shown previously during pyloric network recovery following decentralization (Luther 

et al., 2003) though it is not clear why this occurs (Figure 2.5 A). 

When the number of spikes per burst for each condition was plotted against cycle 

period across all three neurons, there were correlations particularly between number of PD 

spikes and cycle period (Figure 2.5 B).  This indicated that any difference in spike number 

across conditions was influenced but not solely due to a change in period across conditions.  

Correlations were also found between spike frequency and cycle frequency (Figure 2.5 C). 

Multi-dimensional quantification preserves apparent differences while additional 

differences emerge.  Evaluating individual attributes of a network output, either with 

traditional plots and statistics or, more holistically in a multi-dimensional space, can 

identify individual places in the network output where there are differences.  However, a 

network output is not the result of a singular parameter or attribute, it is the combination 

of all attributes working in conjunction.  Additionally, knowing the degree of 

interdependence across the attributes previously evaluated undermines any conclusion of 

difference that may have been drawn.  To fully address whether one neuropeptide elicited 

pattern is quantitatively different from another and to resolve any issues of 

interdependency, all four attributes need to be considered together. 
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The 5-dimensional phase, 3-dimensional spike number, 3-dimensional spike 

frequency and the unidimensional cycle frequency attributes were combined into condition 

specific 12-dimensional network output vectors.  Due to differences in units across the four 

attributes, all 12-dimensional vectors were z-score standardized prior to Euclidean distance 

calculation and statistical testing (Figure 2.6 A).   

When statistically tested in the 12-dimensional z-scored network output space, the 

decentralized network outputs were statistically different from the intact, proctolin, CCAP 

and RPCH network outputs.  The intact network outputs were also statistically different 

from all three peptide conditions.  Across the neuropeptides, the proctolin network outputs 

were statistically different from both the CCAP and RPCH network outputs but the CCAP 

and RPCH network outputs were not statistically different from each other.  The mean 

distance between the CCAP and RPCH network outputs was also the smallest, indicating 

their closeness in this space (Figure 2.6 B). 

The 12-dimensional space was visualized using the scores in the first three principal 

components following principal component analysis (PCA).  When the mean PCA scores 

for each condition were plotted in the first three principal components, there was clear 

separation between the intact and decentralized mean scores.  With proctolin application, 

the mean PCA scores shifted back towards the intact mean.  There was also a shift away 

from the decentralized with CCAP and RPCH application though these two conditions did 

not cluster around the intact or proctolin mean values (Figure 2.6 C).    

To visually see what a change in each of the three principal components meant to 

the pyloric network output, a reference tri-phasic rhythm was created based on the intact 

condition.  The reference rhythm values for the 12 parameters were scaled based on the 
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coefficients from the principal component analysis.  The scaled intact parameters values in 

the first three principal components were then plotted.  This visualization allowed us to see 

which parameters of the network output were strongly influencing the first three principal 

components.   

In each individual PC space, the reference rhythm was shifted by two standard 

deviations in both directions along the PC axis (Figure 2.6 D).  When the reference rhythm 

was shifted in PC 1, the largest change seen was in cycle frequency with secondary effects 

in PY spike number and LP spike frequency.  In PC 2, the largest change seen was in LP 

spike number.  In PC 3, the changes were more subtle, with small changes in PY spike 

frequency but an opposite effect of cycle frequency seen in PC 1.   
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Pattern recognition and time series machine learning classification.  The previous 

analyses of the pyloric rhythm depend on which attributes were chosen and could be 

extracted from the raw data by the experimenter.  In this study, we only included 

experiments with triphasic rhythms present in all modulatory conditions.  However, 

individual or even all neurons may stop spiking upon decentralization and/or rhythms can 

become irregular.  Therefore, we took a machine learning approach to 1) try to replicate 

key results of the Euclidean distance and permutation analysis with the already existing 

 

Figure 2.6 Differences in the 12D pyloric network output across neuropeptide 
conditions.  (A) Z-scores for all condition in each of the 12 parameters which were 
statistically tested.  The black lines represent the mean z-score value.  (B) Euclidean 
distance quantification and statistical testing of difference across all modulatory 
conditions in the 12-dimensional network output space.  (C) Mean scores of all five 
conditions in a reduced 3-dimensional principal component space.  (D) A reference 
intact rhythm shifted along the axes of the first three principal components.  An intact 
rhythm was generated with the raw values for each of the 12 network output parameters.  
Those values were transformed using the coefficients from the principal component 
analysis and then plotted.  The transformations of that rhythm within two standard 
deviations are equivalent to moving along the axes of each principal component  
from C. 
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features, and 2) use minimally processed data that only required a rhythmically active PD 

neuron to define cycle period and relative spike times (phases) of the follower neurons.  

While it would have been possible for this second approach to use unprocessed data, i.e., 

the raw voltage measurements, the preprocessing compressed the data and minimized 

computation time. 

Pattern recognition network.  For the first step, we used the existing 12-D data matrix as 

input to a shallow network for pattern recognition (Figure 2.7 A).  After training and 

bootstrapping, the average accuracy for the 100 pattern recognition algorithms was 82.7% 

(range: 72.1% - 93.1%).  Intact and decentralized experiments were correctly classified in 

91.6% and 94.3% of the two conditions, respectively.  Correct classification for proctolin 

experiments was 64.5%.  Proctolin was mostly misclassified as intact (12.6%) or RPCH 

(14.0%).  Correct classification for CCAP experiments was 73.3%.  CCAP was mostly 

misclassified as RPCH (13.5%).  Correct classification for RPCH experiments was 57.8%.  

RPCH was mostly misclassified as CCAP (20.3%).  Overall, these results match the 

observation of the Euclidean distance and multi-variate permutation test in that intact and 

decentralized states are different from the modulated states, and that RPCH experiments 

share features with CCAP experiments (Figure 2.7 B). 

Time series classification network.  The pattern recognition network has only one input 

layer, which constrains the inputs to a vector of preselected features that largely loses the 

temporal relationships between multiple neurons.  This requires that the experimenter 

chooses and measures the same features in each experimental condition.  Therefore, 

analysis is limited to experiments that fit the input template; in the case of this study the 

fully triphasic pyloric rhythm.  However, perturbations, such as the removal of 
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neuromodulators, can have disruptive effects on that rhythm, and the selection of features 

gives rise to the possibility of missing information.  Hence, we wanted to work with 

minimally processed data (Figure 2.7 C) and used distinct but overlapping experiments for 

a second machine learning approach using a deep bi-directional long short-term memory 

network for time series classification with one input layer per neuron (3 input layers total) 

(Figure 2.7 D). 

In each experiment, we separated each cycle into 20 bins and averaged the number 

of spikes per bin per neuron across all cycles for each condition (Figure 2.7 C, left y-axis).  

This preserves the overall spike structure while keeping the time steps limited to 20 bins to 

reduce computational time.  Furthermore, neurons that fall silent during some experimental 

conditions can be included as empty (= 0) bins.  

After training and bootstrapping, the average accuracy for the 100 time series 

classification algorithms was 68.3% (range: 54.2.1% - 79.2%), much lower than that of the 

pattern recognition network.  Intact and decentralized experiments were correctly classified 

in 86.0% and 83.3% of the two conditions, respectively.  While 73.5% of CCAP 

experiments were correctly classified, the majority of proctolin (27.7% correct) and RPCH 

(25.7% correct) experiments were misclassified.  The most common misclassification of 

proctolin was as decentralized (39.0%) or intact (17.0%), and RPCH as intact (45.3%) or 

CCAP (25.7%) (Figure 2.7 E).  Overall, this algorithm was able to differentiate between 

unmodulated and modulated conditions, however, it largely failed to correctly classify 

pyloric activity in the presence of a single neuromodulator.  

Removing neuromodulatory input to the STG can lead to dramatic changes in the 

rhythmic activity; most commonly observed is a decrease in cycle frequency (Hamood et 
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al., 2015).  Application of neuromodulators can, at least partially, restore rhythmic activity 

and increase cycle frequency.  While we could obtain the same input structure for all 

experiments with our minimal preprocessing, information about cycle frequencies was lost 

in this process.  Therefore, to include a measure of cycle frequency, we added the z-scored 

cycle frequency, based on the distribution of decentralized cycle frequencies, as offset to 

each bin (Figure 2.7 C, right y-axis).  

After training and bootstrapping with these data, the average accuracy for the 100 

time series classification algorithms increased to 75.5% (range: 58.3% - 87.5%).  Correct 

classification of intact experiments increased to 97.0%.  Furthermore, intact experiments 

were never misclassified as RPCH and < 1% as CCAP.  Consistent with this result, CCAP 

and RPCH were never misclassified as intact, indicating that there are differences between 

the intact network activity, which is most likely influenced by multiple neuromodulators 

of unknown concentrations at any given time, and the network activity that is generated 

when single neuromodulators are applied individually.  Adding the z-scored cycle 

frequency increased the correct classification of proctolin to 44.0%.  However, a large 

proportion of proctolin data was still misclassified as decentralized (31.7%) or intact 

(12.7%).  CCAP and RPCH were correctly classified in 64.8% and 56.7% of cases, 

respectively.  Most commonly, CCAP was misclassified as RPCH (17.5%), and RPCH as 

CCAP (35.0%) (Figure 2.7 F).  With the exception of proctolin, the general results from 

Euclidean distance and pattern recognition classification are comparable with the results 

obtained from the time series classification. 
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Figure 2.7 Rhythm classification with machine learning.  (A) Schematic representation 
of a shallow pattern recognition network with one input layer (multicolored circle), one 
hidden layer (black circle), and output layer (colored circles).  (B) Transition matrix 
between the true (known) modulatory conditions and the conditions predicted by the 
pattern recognition network.  Dot sizes at the nodes scale with the probability across the 
whole dataset.  Hatched circles along the diagonal represent 100% of each true class, 
Numbers in the circles represent the percentage of correct classification for each 
modulatory condition.  (C) Spike raster of three pyloric neurons (top) that was 
normalized to cycle period on a cycle-by-cycle basis.  These were used to create 
histograms of the average spike count per bin per cycle (bottom, left y-axis), which was 
offset by the z-scored cycle period for that experiment (right y-axis).  These histogram 
data were used as input for a time series classification network.  (D) Schematic 
representation of a deep time series classification network with one input layer per 
neuron (multicolored circles), multiple hidden layers for feature extraction and 
classification (black circles), and output layer (colored circles).  (E) Transition matrix 
between the true modulatory conditions and the conditions predicted by the time series 
classification network for the histograms without the z-scored cycle frequency.  (F) 
Transition matrix between the true modulatory conditions and the conditions predicted 
by the time series classification network for the histograms with the added z-scored cycle 
frequency. 
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2.4 Discussion 

The hypothesis that individual neuromodulators generate distinct patterns of activity 

provides a solution as to how network output flexibility could be achieved in central pattern 

generating circuits (Marder and Weimann, 1992; Marder and Thirumalai, 2002).  Given 

different circumstances or needs, an animal must have the flexibility to change the behavior 

governed by a static neural network.  With recordings of the same activity pattern under 

distinct modulatory conditions and traditional quantifications, these outputs do appear 

different in both form and presumably function.  However, due to the complex nature of 

the activity being quantified, the previously utilized statistics could only make statements 

about differences in individual parameters, not across n-dimensional attributes or the 

network output.  Therefore, the true degree of difference, or lack thereof, could not be 

determined.  By taking a new approach to the analysis of four attributes of excitability, we 

sought not only to ask whether one output is different from another but went further to 

address: if they are different, how different are they? 

Modulated phase outputs are not different.  The first metric evaluated was the phase 

response across the individual neuropeptides and between the neuropeptides and the 

baseline conditions of intact and decentralized.  When traditionally quantified with phase 

plots there were statistical difference between the modulated conditions and the 

decentralized but there no statistical differences across the peptide conditions and a single 

difference between CCAP and intact.  The differences between the decentralized and 

modulated phases were not surprising but the lack of differences across the peptide 

conditions were.  The only other direct peptide comparison in phase showed a statistical 

difference between proctolin and CCAP in the phases of PD off and PY off (Swensen and 
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Marder, 2001) however those differences were not replicated here, though the duty cycle 

of PD with CCAP is reduced compared to proctolin.  This is mostly likely due to the 

difference in concentration of CCAP used. 

The lack of differences in phase across the intact and peptide conditions can be 

understood by evaluating the slope of the fit line after plotting the latencies of each neuron 

against cycle period.  The latencies under each modulated condition scale with the same 

slope meaning that each modulated condition is having the same effect.  A mechanistic 

explanation for the similar activity of the modulated conditions in phase is the similar 

activation of IMI in the AB neuron.  The AB neuron is the main pacemaker of the pyloric 

network and each of the three neuropeptides target this neuron.  While we do not know the 

composition of the neuromodulatory environment in the intact animal, it is likely that 

neuropeptides are present and sufficiently activating this neuron.  We are currently testing 

the hypothesis that IMI activation in the pacemaker is sufficient to maintain phase across 

distinct neuromodulatory conditions while IMI activation in the follower neurons LP and 

PY will not affect the phase attribute but instead modulates each follower neurons 

excitability.  Neuropeptides operate unidirectionally, converging to activate IMI, and do not 

modulate other intrinsic currents like the A-type potassium current and the hyperpolarized 

activated inward current, which are known to influence the phasing of the pyloric neuron 

(Harris-Warrick et al., 1995a; Harris-Warrick et al., 1995b).  It is this unidirectional action 

by neuropeptides which may prevent differences in phase while monoamines like 

dopamine do modulate these currents and may allow the phases to shift in a statistically 

meaningful manner.   
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Spike number reveals small differences within and across peptides and baseline 

conditions.  In the 3-dimensional spike number attribute the only statistical difference 

across the peptide conditions was between proctolin and CCAP.  This difference arose from 

the distinct actions of proctolin in the PY neuron and the distinct actions of CCAP in the 

LP neuron.   

Underlying a change in spike number is the activation of IMI following peptide 

receptor binding.  It has been previously shown that the PD and PY neurons do not express 

CCAP receptor mRNA and IMI is not activated in these neurons during CCAP application 

(Swensen and Marder, 2001; Garcia et al., 2015).  Of the pyloric neurons which do express 

CCAP receptor mRNA, the LP neuron had the highest expression level.  Additionally, 

CCAP maximally elicited IMI in LP with 10-6 M while the same concentration of proctolin 

did not (Garcia et al., 2015).  While we do not know the expression levels of proctolin 

receptors in any pyloric neurons, proctolin has been shown to activate IMI in the PD, LP 

and PY neurons and increases PD and PY spike number (Swensen and Marder, 2001).  

These differences in IMI activation in response to CCAP or proctolin application in the three 

pyloric neurons is sufficient to explain the individual differences found and the statistical 

difference in the combined 3-dimensional spike number space. 

Like proctolin, the expression levels of RPCH receptors are not known in pyloric 

neurons however RPCH was shown to only activate IMI in the AB and LP neurons.  These 

are the same pyloric neuron targets of CCAP.  While the RPCH elicited increase in LP 

spike number was statistically lower than the CCAP mediated increase, the lack of 

difference between CCAP and RPCH in PD and PY spike number is sufficient to explain 

the lack of difference between them in the combined 3-dimensional space.   
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While RPCH targets the same pyloric neurons as CCAP, when quantified, the spike 

number responses in the 3-dimensional space with RPCH and proctolin were not 

statistically different.  Within the individual neurons, there was a single statistical 

difference between RPCH and proctolin, in PY spike number.  While both peptides activate 

IMI in LP and increase its excitability, they do so similarly which could suggest a similar 

number of proctolin and RPCH receptors on the LP neuron.  This is in contrast to the more 

profound effect of CCAP application.  Taken together, the single statistical difference in 

the number of PY spikes and the similar increase in excitability of the LP neuron was not 

sufficient to statistically differentiate the RPCH and proctolin responses.   

All of the modulated conditions were statistically different from the decentralized 

response in the 3-dimensional spike number space which was not surprising.  The 

decentralized state is one which lacks the influence of neuromodulators.  Unlike the 

decentralized response, the intact spike number response was not statistically different 

from proctolin but was statistically different from both CCAP and RPCH.  The simplest 

explanation for this is the known neuron targets for each of the three peptides.  Both CCAP 

and RPCH only target a subset of neurons in the circuit while proctolin targets almost all 

of them.  While we do not know what the modulatory environment is for the intact 

preparation, peptides are present (Chen et al., 2014).  This distinct targeting of pyloric 

neurons by CCAP and RPCH compared to the multiply modulated intact state explains the 

difference found while the similarity in targeting between proctolin and intact explains the 

lack of difference found. 

Spike frequency reveals no differences across peptides but reveals differences from 

baseline conditions.  The differences and lack of differences across the five conditions in 
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spike number space were largely preserved in spike frequency space.  When quantified the 

intact, proctolin, CCAP and RPCH spike frequency responses were all statistically different 

from the decentralized response.  The intact spike frequency response was also statistically 

different from the CCAP and RPCH spike frequency responses but not different from the 

proctolin response.   

Interestingly, the statistical difference between proctolin and CCAP in spike 

number space was lost in spike frequency space.  The intraburst spike frequency is the ratio 

of the number of spikes per burst and the burst duration.  For the proctolin and CCAP spike 

number responses, the largest individual difference was in LP spike number but when 

evaluated as individual parameters, there was no difference in LP spike frequency between 

proctolin and CCAP.  This indicates that the duration of the LP burst with CCAP is 

extending compared to proctolin.  While there were individual differences between 

proctolin and CCAP in PD and PY spike frequency, their distributions overlapped more in 

spike frequency space compared to spike number space.  The loss of LP spike frequency 

difference and the increase in PD and PY spike frequency overlap is sufficient to explain 

the lack of difference found.   

The lack of difference between the spike frequency responses of CCAP and RPCH, 

however, is not surprising.  In the 3-dimensional spike number space, these outputs were 

not different statistically though there was an increase in mean LP spike number with 

CCAP compared to RPCH.  The reduction in LP spike frequency with CCAP, indicating a 

change in burst duration, coupled with no statistical differences in PY or PD spike 

frequency makes the lack of overall statistical difference in the 3-dimensional space 

reasonable.  The lack of difference between RPCH and proctolin in spike frequency space 
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is also not surprising given the large amount of overlap between them in all three 

dimensions.     

Why do differences or the lack of differences emerge in the 12D space?  While 

evaluating individual attributes of the network output provides insight as to where a 

particular peptide modulators effects are strongest, a network output is not the result of a 

single attribute.  Our expectation was that these individual peptide responses were 

different, but the exact degree of difference was not known.  Additionally, we expected the 

decentralized network outputs to be distinct from the network outputs of individually 

applied peptides and the intact to be different from minimally the CCAP and RPCH 

network outputs.  To fully quantify how different one peptide elicited network output was 

from another, a profile of each modulators effects on the network output was constructed 

and tested.   

The four attributes of excitability chosen for this analysis are a proxy for the entire 

network output but are also meaningful features that the animal may use to discriminate 

between patterns and generate specific behaviors.  By combining these features and 

building condition specific network output profiles for each peptide we found that only the 

proctolin network outputs were distinct, they were distinguishable from the CCAP network 

outputs as well as the RPCH network outputs.  Additionally, the proctolin network outputs 

could be distinguished from the decentralized and intact states in the combined space 

though in almost all of the individual attributes, the proctolin outputs were not different 

from the intact.   

The emergence of difference between the proctolin and intact network outputs came 

from the inclusion of the cycle frequency attribute.  In these data, the proctolin cycle 
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frequency was statistically slower than the intact and this was sufficient to render these 

outputs distinct in the network output space.  This highlights the importance of evaluating 

a multitude of attributes in the same space.   

Like the emergence of statistical difference between the intact and proctolin 

network outputs, the lack of difference between the CCAP and RPCH network outputs was 

also surprising and unexpected.  When the attributes of excitability were evaluated 

individually there was a single difference in cycle frequency and when evaluated in the 12-

dimensional network output space, the CCAP and RPCH network outputs were not 

statistically different.  While they both activate IMI in the same subset of pyloric neurons, 

each of the levels underlying a network output including but not limited to the intrinsic 

currents are subject to neuromodulation (Marder and Thirumalai, 2002; Katz and Calin-

Jageman, 2009; Nadim and Bucher, 2014).  For these modulator outputs to not be different 

they could either bridge those levels in the same way or find different solutions to end up 

at the same output.   

Caveats to the detection of difference in the network output space.  There are two 

caveats to the detection of differences or the lack of differences in this 12-dimensional 

network output space.  One is the experimental approach.  Traditionally, experiments in 

this system use bath application of neuromodulators.  This results in the exposure of the 

entire network to a neuromodulator.  Bath application is a simpler experimental approach 

which allows for insights into the general principals of peptide neuromodulation.  

Biologically, however, the circuit is likely experiencing more precise effect of 

neuropeptides.  The presence of peptidases and targeted local release of neuromodulators 

to particular subsets of neurons within the circuit allows for a high degree of fine tuning of 
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what an output could be (Blitz and Nusbaum, 1999; Nusbaum, 2002).  This fine tuning 

could allow for distinct and obvious differences between neuropeptide outputs which were 

not captured here.  The second caveat is the choice of attributes.  While the quantification 

of multiple attributes together is an improvement over the previous approaches to 

quantification, we are only sampling from a portion of the available attributes which 

describe the output of the pyloric network.  While we did not find differences in the 

network output between CCAP and RPCH with these attributes, these outputs may still be 

quantitatively distinct from one another but in attributes that we did not evaluate such as 

the structure of the burst or cycle to cycle variability.    

Two different approaches for distinguishing neuropeptide elicited pyloric network 

outputs reach the same conclusion.  The results from the Euclidean distance and multi-

variate permutation testing indicated that a proctolin network output was statistically 

distinct from a CCAP and RPCH network output but the network outputs of CCAP and 

RPCH were not distinguishable statistically.  This assessment came after the extraction of 

four specific attributes and explicit testing for statistical difference between two conditions.  

One possibility was that the statistical power of our initial approach was not high enough 

to find statistical differences across these distinct conditions.  Additionally, because we 

were intentionally choosing the attributes we evaluated, we may have biased our data set.  

Therefore, we also tested our data using two distinct machine learning approaches.  While 

the Euclidean distance/multi-variate permutation test and machine learning approaches 

were complementary, they also addressed distinct questions.  In the Euclidean distance 

approach, we asked statistically how different two conditions were while with the machine 

learning approach we asked, given a pattern of activity, how accurately can it be classified?    
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The main conclusions from both machine learning approaches were that a CCAP 

network output, when misclassified, is often mistaken for an RPCH network output and 

vice versa and that cycle frequency represents an important attribute for classification.  

When the cycle frequency was included in the time series classification network, the 

accuracy of classification was improved across all conditions, most notably with proctolin 

and RPCH.  Both of these conclusions match the main results from the Euclidean distance 

and multi-variate permutation test approach.   

There are caveats with using machine learning on these data, most apparent is the 

sample size.  Data sets for machine learning classification typically are larger than the data 

set used here which may have contributed to accuracy issues.  Additionally, the sample 

sizes for each condition were unbalanced specifically with respect to the peptide conditions 

which may have also contributed to accuracy issues.  Taken together, both approaches 

reach the same conclusion: individual peptide modulated network outputs are difficult to 

distinguish.   

How different is different enough and does it matter?  By taking a new approach to the 

analysis of these network outputs we found differences across peptide elicited network 

outputs which support the hypothesis of network output flexibility but also a lack of 

difference which challenges this hypothesis.  The natural extension of these results is: what 

do these differences mean outside of what we evaluate in an experimental setting?   

This preparation can generate fictive motor activity in a petri dish which we use as 

a proxy for what the fully intact animal is experiencing, and it is tempting to bridge these 

levels to make higher order statements about what a particular output pattern may mean 

(Marder and Bucher, 2001; Carandini, 2012; Gao and Ganguli, 2015).  However, the results 
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here do not necessarily translate downstream to the level of the neuromuscular junction or 

ultimately behavior (Feldman and Kam, 2015).  The differences we report here may not be 

different enough to matter to the animal in a behavioral sense.   

The functional consequences of peptide neuromodulation, at least measured 

experimentally, are largely protective or stabilizing in nature.  This ranges from the 

regulation or stabilization of the cycle frequency (Nusbaum and Marder, 1989; Dickinson 

et al., 2001) to robustness in the face of temperature perturbation (Haddad and Marder, 

2018) and maintenance of ionic current correlations (Khorkova and Golowasch, 2007).  

The hallmark of peptide application though is the generation of a reliable tri-phasic output 

where one did not previously exist or was significantly slower or less functional.  It may 

be that the large number of neuropeptides available simply generate a functional tri-phasic 

rhythm which is good enough.   

The fact that neuropeptides, signaling through G-protein coupled receptors, 

converge cellularly allows for multiple solutions to the same problem to ensure that a 

needed behavior can persist regardless of the flux in the neuromodulatory environment 

(Kitano, 2004).  It could be that the functioning animal only cares that a tri-phasic rhythm, 

which fits into some expected range of parameter boundaries, is present rather than the 

statistical nuances reported here.  In the behaving animal, the pyloric network acts to 

control the pylorus to filter food (Selverston, 2017).  From the perspective of the animal, it 

may evaluate these differentially single modulated outputs as all being good enough to 

accomplish the behavior needed.  Additionally, neuromodulators like dopamine have more 

complex and cell type specific effects compared to neuropeptides in the pyloric network 

(Flamm and Harris-Warrick, 1986b, a; Harris-Warrick and Johnson, 2010).  It may be that 
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the peptides are necessary to generate a baseline tri-phasic rhythm while neuromodulators 

with more complex actions can generate network outputs which are distinct to the animal.   

On the other hand, the neuromuscular junction and muscle may care a great deal 

about these differences.  These peptide modulators could, in a way, be fine tuning specific 

features of the network output to allow for differentiation (Brezina, 2010).  It has recently 

been shown that two distinct muscles innervated by the same pyloric nerve respond 

differently to changes in spike number, burst frequency and burst duration (Daur et al., 

2021).  While we consider differences evaluated that meet a certain p-value to be 

meaningful, the intact animal may respond to more subtle changes.  It may be that effective 

communication of the need for a proctolin output would require an obvious change in spike 

number to ensure that downstream from the circuit, a proctolin message does not get 

mistaken for a CCAP message.  Instead of a large and obvious change, the distinguishing 

of a proctolin rhythm from an RPCH rhythm might be more subtle and require smaller 

differences across a larger number of parameters in different attributes while CCAP and 

RPCH could be degenerate peptides that can substitute for one another.  At this point 

though, we do not appreciably understand the coding and decoding mechanisms which 

transform an activity pattern into a behavioral output to know which of these possibilities 

is occurring.  

  



 

56 
 

CHAPTER 3 

CONVERGENT PEPTIDE CO-MODULATION PROMOTES CONSISTENCY 
OVER FLEXIBILITY IN THE PYLORIC NETWORK OUTPUT 

 

3.1 Introduction 

In Chapter 2 we sought to fully quantify the degree of statistical difference between 

individual peptide elicited network outputs.  The result of that quantification showed that 

when the four chosen attributes of excitability were tested holistically, the proctolin 

network outputs were statistically different from the CCAP network outputs and the RPCH 

network outputs.  However, the CCAP elicited network outputs were not statistically 

different from the RPCH network outputs.  These results indicated that there was a degree 

of flexibility within the circuit to generate distinct outputs but that individually applied 

neuropeptides do not guarantee a flexible network output.  It is unlikely, though, that any 

circuit is under the effects of only a single neuromodulator (Marder, 2012).   

Unlike single peptide neuromodulators, the effects of peptide co-modulation on a 

network output are less understood.  Co-modulation can occur through the release of 

different neuroactive substances from distinct vesicles like dense core vesicles for 

neuropeptides and small, clear synaptic vesicles for small molecule transmitters or two or 

more neuroactive substances can be co-localized within the same vesicle (Vaaga et al., 

2014; Svensson et al., 2019).  Additionally, co-modulator interactions can occur through 

multiple circulating hormones and/or intrinsically released neuromodulators (Christie et 

al., 1995; Swensen and Marder, 2001).  Regardless of the mechanism of release or 

interaction, co-modulation is likely the dominant influence on every aspect of a network 

output.   
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The large number of neuromodulators present in many small circuits is rationalized 

through the context of network output flexibility and the need for static circuits to generate 

multiple patterns of activity to meet different behavioral needs (Doi and Ramirez, 2008; 

Stein, 2009; Marder, 2012; McCormick and Nusbaum, 2014).  From this perspective, a 

large number of individual neuromodulators would allow for an even larger number of co-

modulator combinations leading to a seemingly endless number of distinct network 

outputs.   

Trying to predict the outcome of co-modulation at any level is complicated due to 

the large number of ways that neuromodulators can interact with each other.  The simplest 

type of interaction is a linear one where the individual effects of each modulator sum 

together when co-applied.  While this can happen (Li et al., 2018) there are mechanisms 

which result in non-linear interactions between two or more modulators.  In some cases, 

the combination of modulators modify a common target in a way which is distinct from 

the actions of either constituent (Dickinson et al., 1997; Thirumalai and Marder, 2002; 

Brezina et al., 2003; Brezina, 2010; Brewer et al., 2019).  In other cases, the presence of 

one neuroactive substance can directly affect the actions of another (Matsumoto et al., 

1999; Djokaj et al., 2001; Doyon et al., 2013).  The potential for non-linear interactions at 

each level that underlies a network output makes predicting the outcome of co-modulation 

challenging.  While non-linear interactions suggest the generation of distinct network 

outputs, flexibility, may not be the only outcome of interactions across all types of 

neuromodulators.   
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If we consider co-modulation in terms of neuropeptides, an alternative hypothesis 

for co-modulation of the network output is a reduction in flexibility.  Neuropeptides in the 

stomatogastric nervous system have convergent cellular actions, targeting the modulator 

activated inward current (IMI), but divergent circuit actions where each modulator targets 

distinct yet overlapping subsets of neurons in the circuit (Golowasch and Marder, 1992b; 

Swensen and Marder, 2000, 2001).   

Despite the non-linearities that may be present, particularly at the intrinsic current 

level, if convergence is the dominant consequence of neuropeptide interactions, then co-

modulation may reduce network output flexibility in favor of an increase in consistency.  

Flexibility in this context means that network outputs are different from each other in the 

presence of different combinations of neuromodulators or that distinct combinations allow 

for precise fine tuning of the network output.  Consistency means that network outputs are 

similar to each other despite the presence of different combinations of neuromodulators 

and that the identity of any particular neuromodulator becomes less important the more 

neuromodulators present.  

Mechanistically, the combination of multiple peptides together could lead to more 

consistent activation of the entire circuit due to the overlapping of their individual 

modulator cellular targets.  A more consistent activation of the entire circuit could then 

lead to a reduction in flexibility between distinct pairs of co-modulators in their network 

outputs.  If co-modulated outputs are not different from each other, this would add to the 

idea that neuropeptides function largely to produce a tri-phasic rhythm and individual 

neuromodulators may be able to substitute for one another in a co-modulated situation to 

maintain necessary behavior. 
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Here we quantify how different three distinct peptide co-modulatory pairs and two 

distinct peptide co-modulatory triplets are in their network outputs to test the hypothesis 

that convergent peptide co-modulation promotes consistency, not flexibility, at the level of 

the network output.     

 

3.2 Materials and Methods 

The animals, electrophysiological approach, attribute extraction, primary statistics, 

Euclidean distance and multi-variate permutation test calculation were the same as reported 

in Chapter 2.  See Table A.2 for paired peptide co-modulation statistical tests and results 

and Table A.3 for triplet peptide co-modulation statistical results and results. 

Modulators and experimental protocol: The stomatogastric nervous system was 

decentralized by blocking the stomatogastric nerve with a 10-7 M TTX (Biotium) + 750 

mM sucrose (Sigma) solution.  Proctolin (RS synthesis), CCAP (Bachem) and RPCH 

(Bachem) were diluted, aliquoted and stored as previously mentioned until needed.  Final 

dilution of co-modulator pairs or triplets to the experimental concentration of 10-6 M 

occurred immediately before application in chilled Cancer borealis saline.  For all co-

modulator experiments, the total concentration of peptide used was 10-6 M and each 

combination of peptides was bath applied via peristaltic pump for 5 minutes.  In the cases 

of repeated application of co-modulators to the same preparation, the first application was 

washed out in chilled Cancer borealis saline for a minimum of 45 minutes.   

N for paired peptide co-modulation: 27 intact, 28 decentralized, 11 proctolin + CCAP, 

11 CCAP + RPCH, 11 RPCH + proctolin.   
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N for triplet peptide co-modulation: 10 intact, 5 decentralized, 5 proctolin + CCAP + 

RPCH, 5 CCAP + proctolin + oxotremorine.   

N for constituent versus co-modulator condition analysis: 80 intact, 79 decentralized, 

15 proctolin, 18 CCAP, 19 RPCH, 11 proctolin + CCAP, 11 CCAP + RPCH, 11 RPCH + 

proctolin, 5 proctolin + CCAP + RPCH, 5 CCAP +proctolin + oxotremorine.  Individual 

peptide responses in the 12 parameters of excitability were the same as reported in  

Chapter 2.   

 

3.3 Results 

Paired peptide co-modulation reduces differences in four attributes of pyloric 

network excitability.  While there are limited reports examining qualitative and 

quantitative differences on individual attributes of a network output under co-modulatory 

conditions (Blitz et al., 1999; Thirumalai and Marder, 2002; Lane et al., 2018), there has 

yet to be a full qualitative and quantitative description of the effects of peptide co-

modulation on the pyloric network output  To first test the hypothesis that convergent co-

modulation promotes consistency in the network output, we qualified and quantified the 

effects of three peptide co-modulator pairs on four attributes of excitability in the pyloric 

network.  The three individual peptide neuromodulators used for the single peptide 

comparison previously were combined to form three distinct co-modulator pairs.  These 

pairs were proctolin + CCAP, CCAP + RPCH, and RPCH + proctolin.   

When the network outputs were qualified during ongoing activity, there was a clear 

shift in activity and appearance between the intact and decentralized states.  Following 

decentralized, the distinct peptide co-modulator network outputs appeared similar (Figure 
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3.1 A).  To quantify the degree of apparent similarity between the co-modulated conditions 

we evaluated the effects of each condition on the pyloric network cycle frequency, the 

phase responses, the number of spikes per burst and the spike frequency.   

We expected differences between the co-modulated network outputs and the 

decentralized outputs in each of these attributes when quantified, as well as differences 

between the intact and decentralized states.  Based on our hypothesis, we do not expect 

 

Figure 3.1 Qualitative and quantitative response of the core pyloric neurons to paired 
peptide co-modulation.  (A) The qualitative response of the core pyloric neurons to  
10-6 M total concentration paired peptide application.  (B) Cycle frequency response 
across intact, decentralized and three paired peptide conditions.  Bars represent mean 
cycle frequency responses and points represent individual animal responses.  (C) Phase 
responses of the PD, LP and PY responses under intact, decentralized and paired peptide 
conditions.  Bars represent mean phase on and off values.  Filled in circles represent 
individual animal phase on values and empty circles represent individual animal phase 
off values.  (D) Spike number responses of the core pyloric neurons under intact, 
decentralized and paired peptide conditions.  Bars represent mean spike number 
responses across the five modulatory conditions while the individual points represent 
individual animal responses.  (E) Spike frequency responses of the core pyloric neurons 
under intact, decentralized and paired peptide conditions.  Bars represent mean spike 
frequency responses across all modulatory conditions and individual points represent 
individual animal responses.   
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differences between the co-modulated network outputs in any of these individual attributes.  

Additionally, if the combination of two peptides sufficiently targets the pyloric circuit, then 

we would also expect to see no differences between the co-modulated and the intact 

responses across these attributes.   

Cycle frequency.  In the cycle frequency attribute, the intact response was statistically 

faster compared to the decentralized and co-modulated responses.  The decentralized 

response was also statistically slower than the CCAP + RPCH and RPCH + proctolin 

responses however there were no statistical differences between the co-modulated cycle 

frequency responses (One way ANOVA: F(4,83) = 41.429, p < 0.001) (Figure 3.1 B). 

Phase.  In the phase of PD off, the intact response was statistically larger than the 

decentralized.  There were no statistical differences across any condition in the phase of 

LP on while the decentralized off phase of LP was statistically different compared to all 

modulated conditions.  The decentralized response was also statistically different 

compared to all modulated conditions in the on phase of PY but there were no statistical 

differences in the PY off phase (Two way ANOVA interaction: F(16,415) = 6.118, p < 0.001) 

(Figure 3.1 C).   

Spike number.  In the PD spike number parameter, there were no statistical difference 

across any condition.  In LP spike number the decentralized response was statistically 

lower compared to all the modulated conditions and the intact response was statistically 

lower than all three co-modulated responses.  Lastly in PY spike number, the decentralized 

response was statistically higher than the CCAP + RPCH response but there were no 

statistical differences between any modulated state (Two way ANOVA interaction:  

F(8,249) = 11.916, p < 0.001) (Figure 3.1 D). 
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Spike frequency.  In PD spike frequency, the intact response was statistically higher 

compared to the decentralized and all three co-modulated conditions.  The decentralized 

response was statistically lower than the proctolin + CCAP and RPCH + proctolin 

responses but not different from the CCAP + RPCH response.  Additionally, the CCAP + 

RPCH response was statistically lower than the proctolin + CCAP and RPCH + proctolin 

responses.  In LP spike frequency, the decentralized response was statistically lower than 

all modulated conditions, but there were no differences across the modulated conditions.  

Lastly in PY spike frequency, the intact response was statistically higher than the 

decentralized, CCAP + RPCH and RPCH + proctolin responses.  The decentralized 

response was also statistically lower than the proctolin + CCAP and RPCH + proctolin 

responses but not statistically different from the CCAP + RPCH responses.  There were 

also no statistical differences between the three co-modulated responses (Two way 

ANOVA interaction: F(8,249) = 2.815, p = 0.005) (Figure 3.1 E). 

The co-modulator peptide pairs are not different in the combined 12D network output 

space but are different compared to the intact state.  We expected differences across 

the attributes of excitability between the decentralized and co-modulator pairs, however, 

the lack of differences across the three co-modulator pairs suggested that convergent co-

modulation is promoting consistency in the network output.  However, we cannot make a 

reasoned quantitative assessment about the network output by looking at the attributes 

individually.  Due to the dependences both within and across attributes, we cannot evaluate 

each attribute individually.  Therefore, we quantified how different one co-modulated 

output was from another in the 12-dimensional network output space.  The complete 12-
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dimensional matrix with all five conditions was z-score standardized prior to quantification 

and statistical testing (Figure 3.2 A) and visualized in a reduced principal component space.   

When the z-scores were quantified and statistically tested in the 12-dimensional 

space, the peptide co-modulator pairs were not statistically different from each other.  The 

proctolin + CCAP versus RPCH + proctolin comparison also resulted in the smallest 

distance measurement, indicating their closeness in this space.  Compared to the intact 

state, the peptide co-modulator pairs were all statistically different.  Compared to the 

decentralized state, however, the co-modulator pairs were not statistically different (Figure 

3.2 B).   

 

Figure 3.2 Quantification and statistical testing of difference between paired co-
modulated network outputs.  (A) All 12 parameters from all five test conditions were 
initially combined and z-score standardized.  Magenta lines represent the mean z-score 
value.  (B) Euclidean distance measurement between each pairwise comparison and 
determination of statistical significance in the 12-dimensional space.   
(C) Visualization of the mean network output space across all five conditions in a 
reduced 3-dimensional principal component space.  (D) Visualization of the network 
output distributions of all five conditions in the reduced principal component space.   
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To visualize these data, we used principal component analysis and plotted the 

scores for each condition in the first three principal components as means as well as 

distributions which were fit with a convex hull.  In the reduced principal component space, 

when only the means were considered, there was a clear separation between the intact and 

decentralized conditions with the peptide co-modulation pairs occupying the space in 

between (Figure 3.2 C).  The separation of the intact and decentralized conditions along 

with the closeness of the co-modulated peptide means was also seen when the distributions 

were plotted (Figure 3.2 D).   Here the distributions of the three peptide pairs overlapped 

with the RPCH + proctolin distribution bisecting the proctolin + CCAP and CCAP + RPCH 

distributions.  All three co-modulator distributions also overlapped with the decentralized 

and intact distributions, occupying the space in between them.   

Triplet co-modulation further reduces differences in the four metrics of excitability.  

The results with the paired peptide co-modulators suggested that peptide co-modulation 

was promoting consistency in the network output over flexibility.  There was a single 

statistical difference in PD spike frequency across the three peptide pairs tested but no 

statistical differences between any pair when quantified in the network output space.  While 

the peptide co-modulators were not different from each other, the network outputs of the 

co-modulator pairs were all statistically different from the intact.  We next wanted to ask 

whether combining three modulators together would further reduce the degree of difference 

between these co-modulated outputs and whether combinations of three modulators could 

recapitulate the multiply modulated intact network output.  Two modulator triplets were 

used in this evaluation: proctolin + CCAP + RPCH and CCAP + proctolin + oxotremorine.  

Oxotremorine, a muscarinic agonist, also activates IMI (Rosenbaum and Marder, 2018). 
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When qualified, the network output of CCAP + proctolin + oxotremorine appears 

similar to the network output of proctolin + CCAP + RPCH and both triplet network 

outputs qualitatively recapitulate the intact network output (Figure 3.3 A).  As expected, 

there was also a clear qualitative difference between the modulated states and the 

decentralized.   

 

 

Figure 3.3 Qualitative and quantitative response of the core pyloric neurons to triplet 
co-modulation.  (A) The qualitative response of the core pyloric neurons to  
10-6 M total concentration triplet co-modulator application.  (B) Cycle frequency 
response across intact, decentralized and triplet co-modulator conditions.  Bars represent 
mean cycle frequency responses and points represent individual animal responses.  (C) 
Phase responses of the PD, LP and PY responses under intact, decentralized and triplet 
co-modulator conditions.  Bars represent mean phase on and off values.  Filled in circles 
represent individual animal phase on values and empty circles represent individual 
animal phase off values.  (D) Spike number responses of the core pyloric neurons under 
intact, decentralized and triplet co-modulator conditions.  Bars represent mean spike 
number responses across the five modulatory conditions while the individual points 
represent individual animal responses.  (E) Spike frequency responses of the core pyloric 
neurons under intact, decentralized and triplet co-modulator conditions.  Bars represent 
mean spike frequency responses across all modulatory conditions and individual points 
represent individual animal responses.   
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From the qualitative result we expected no differences between the triplet 

modulated states in any attribute and limited to no difference between the triplet modulated 

states and the intact.  We did, however, expect differences between the modulated states 

and the decentralized state.   

Cycle frequency.  In the cycle frequency attribute, the intact response was statistically 

faster compared to the decentralized and CCAP + proctolin + oxotremorine response but 

there were no statistical differences between the decentralized and peptide triplet responses 

and no statistical differences between the peptide modulated responses themselves (One 

way ANOVA on ranks: H(3) = 19.715, p < 0.001) (Figure 3.3 B). 

Phase.  There were no statistical differences in the phases of PD off or LP on.  In the off 

phase of LP, the decentralized response was statistically different from the intact and both 

triple peptides.  In the PY on phase, the intact response was statistically different from the 

proctolin + CCAP + RPCH triplet and the decentralized response was statistically different 

both triple peptide response.  Lastly there were no statistical differences in the off phase of 

PY (Two way ANOVA interaction: F(12,105) = 2.925, p = 0.002) (Figure 3.3C).   

Spike number.  There were no statistical differences in the PD spike number parameter.  

In the LP spike number parameter, the intact response was statistically lower than either 

triplet peptide combination and the decentralized response was statistically lower than the 

intact and both triplet peptide combinations.  There were also no statistical differences in 

the PY spike number response (Two way ANOVA interaction: F(6,63) = 5.756, p < 0.001) 

(Figure 3.3 D). 

Spike frequency.  A two way ANOVA with neuron type and modulator condition as 

factors did not reveal an interaction between these factors (Two way ANOVA  
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Factor = neuron type: F(2,63) = 0.859, p = 0.429, Two way ANOVA Factor = modulatory 

condition: F(3,63) = 20.865, p < 0.001, Two way ANOVA Interaction: F(6,63) = 0.869, p = 

0.523) but revealed a statistically significant effect of modulatory condition.  Across the 

three neuron types in spike frequency, the intact response was statistically higher than the 

CCAP + proctolin + oxotremorine triplet but not the proctolin + CCAP + RPCH triplet.  

The decentralized response was also statistically lower than the intact and both triplet 

combinations (Figure 3.3 E). 

The triplet co-modulators are not different in the combined 12D network output 

space and are not different from the intact condition.  The lack of individual differences 

between the two triple modulator combinations suggested a further promotion of 

consistency in the pyloric network output while the network outputs were still different 

from the intact across some individual parameters.  To fully quantify whether the two triplet 

modulator network outputs were holistically different from one another as well as the 

degree of difference between each triplet and the intact, we evaluated their z-scored 

differences in the 12-dimensional network output space (Figure 3.4 A) and visualized the 

distance in a reduced principal component space. 

When quantified and statistically tested in the 12-dimensional space, the triplet of  

proctolin + CCAP + RPCH was not statistically different from the triplet of CCAP + 

proctolin + oxotremorine.  The distance between the pair of triplets in the 12-dimensional 

space was not reduced in all cases, however, compared to paired co-modulator evaluations.  

This indicated that the combination of three modulators does not necessarily make the 

network output more similar compared to a combination of two peptides at the same total 

concentration.  Interestingly, both triplets were not statistically different from the intact 



 

69 
 

condition but were different compared to the decentralized network output (Figure 3.4 B).  

This contrasted with the result from both the single modulators and peptide co-modulator 

pairs and suggested that the presence of three or more peptides was sufficient to capture 

the activity of the intact preparation though there are caveats to that suggestion.   

When the mean scores were visualized in the reduced principal component space, 

the separation between the intact and decentralized responses was apparent.  Following 

triplet modulator application, the mean scores for both combinations shifted away similarly 

from the decentralized mean towards the intact mean (Figure 3.4 C).  When the individual 

 

Figure 3.4 Quantification and statistical testing of difference between triplet  
co-modulated network outputs.  (A) All 12 parameters from the intact, decentralized and 
two triplet conditions were combined and z-score standardized prior to statistical testing.  
Magenta lines represent the mean z-score values.  (B) Euclidean distance measurement 
between each pairwise comparison and determination of statistical significance in the 
12-dimensional space.  (C) Visualization of the mean network output space across all 
four conditions in a reduced 3-dimensional principal component space.  (D) 
Visualization of the network output distributions of all four conditions in the reduced 
principal component space.   
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observations were plotted and fit with a convex hull, the separation between the intact and 

decentralized responses seen with the means was recapitulated.  These two conditions 

occupied distinct areas in the principal component space.  The distributions of both triplet 

combinations, while not overlapping (Figure 3.4 D), were close to one another and were 

close to the intact distribution as well.       

Are co-modulated network outputs distinct from their constituent neuromodulator 

network outputs?  In the combined network output space, the co-modulator peptide pairs 

were not statistically different from each other nor were the co-modulator triplets.  While 

these results suggest a convergence in the network output and a loss of flexibility, it is not 

known whether the co-modulated peptide outputs are different from the outputs of their 

constituent neuromodulators.   

It has been previously shown that the individual effects of two peptides, RPCH and 

Cab-TRP, on the phases of the pyloric network of the American lobster, Homarus 

americanus, differ significantly.  The co-applied rhythm, however, also differs 

significantly from either of the rhythms generated by its constituent neuromodulators 

(Thirumalai and Marder, 2002).  The interplay of both peptides here creates a new niche in 

the network output space that is distinct from the single modulator conditions.  This has 

also been shown in the prefrontal cortex with serotonin and dopamine, where changes in 

cortical neuron excitability during co-modulator application were distinct from changes 

during individual modulator application (Di Pietro and Seamans, 2011).  While the co-

modulated conditions considered here converge to the same network output space, 

rendering them not statistically different, the newly defined co-modulated network output 
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space may be distinct from the individual peptide output space.  In this way, both flexibility 

and consistency can play distinct roles in transforming the network output.   

To address this question, we statistically tested the 12-dimensional network outputs 

of each co-modulator peptide pair and triplet against the network outputs of each of their 

constituent peptides.  We did not evaluate the effects of oxotremorine singularly therefore 

the triplet of CCAP + proctolin + oxotremorine was only compared to the network outputs 

of CCAP and proctolin.  Before statistical testing all experiments from the single, co-

modulator pairs and co-modulator triplets were combined, and z-score standardized.  The 

z-scored 12-dimensional vectors were used to evaluated difference and the distributions 

were visualized by plotting the scores of each condition in the first three principal 

components and fitting the observations with a convex hull. 

Co-modulator peptide pairs are not different from their constituent modulators in 

network output space.  When the distribution of the proctolin + CCAP network outputs 

were plotted with the distributions of both constituent neuropeptides, the co-modulated 

network outputs bisected the individual neuropeptide distributions (Figure 3.5 A).  The 

distribution of the CCAP + RPCH network outputs and RPCH + proctolin network outputs 

also bisected the individual distributions of their constituent neuromodulators (Figure 3.5 

B and C).  When statistically tested, there were no differences between any constituent and 

co-modulated network output in the 12-dimensional network output space (Figure 3.5 D).   
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The individual CCAP network output is statistically different from both the  

proctolin + CCAP + RPCH and CCAP + proctolin + oxotremorine network outputs. 

Lastly, each modulator triplet was statistically tested against its constituent modulators.  

When the individual distributions of proctolin, CCAP and RPCH were plotted with the 

distribution of the proctolin + CCAP + RPCH triplet, the triplet network outputs intersected 

 

Figure 3.5 Visualization of constituent and paired peptide co-modulated network outputs 
in principal component space.  All data from the single modulator, paired peptide co-
modulator and triplet peptide co-modulator conditions, including all intact and 
decentralized were initially combined and z-score standardized.  Following 
standardization, principal component analysis was run and the scores were plotted and 
fit with convex hulls.  To facilitate the visualization of the modulated distributions, the 
distributions of the intact and decentralized are not shown.  (A) Individual distributions 
of proctolin, CCAP and the merged distributions of both constituent peptide modulators 
and proctolin + CCAP.  (B) Individual distributions of CCAP, RPCH and the merged 
distributions of both constituent peptide modulators and CCAP + RPCH.  (C) Individual 
distributions of RPCH, proctolin and the merged distributions of both constituent peptide 
modulators and RPCH + proctolin.  (D) Euclidean distance measurement between each 
constituent peptide modulator and co-modulated condition and determination of 
statistical significance in the 12-dimensional network output space. 
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the three constituent network outputs (Figure 3.6 A).   When the network outputs of both 

proctolin and RPCH were tested against the proctolin + CCAP + RPCH triplet, neither 

were statistically different.  The CCAP network output, however, was statistically different 

from the triplet network output and had the largest mean distance out of the three individual 

peptides tested (Figure 3.6 C).  When the individual proctolin and CCAP distributions were 

plotted with the CCAP + proctolin + oxotremorine distribution, the triplet distribution also 

overlapped with both constituents (Figure 3.6 B).  When statistically tested, the proctolin 

network outputs were not different compared to the triplet network outputs.  The CCAP 

network outputs, however, were statistically different from the triplet network outputs and 

resulted in a larger distance value compared to proctolin (Figure 3.6 C).   
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3.4 Discussion 

Convergent co-modulation with peptide pairs promotes consistency over flexibility at 

the level of the network output.  There are two general possibilities for the network output 

under co-modulatory conditions with two peptides: an increase in flexibility leading to 

distinct co-modulator network outputs or an increase in consistency leading to co-

modulator network outputs that are not distinct from each other.  When the co-modulator 

pairs were evaluated within the individual metrics of excitability, the number of differences 

decreased when compared to number of differences across the single modulator responses.  

The simplest explanation for this decrease in difference is a more complete and consistent 

 

Figure 3.6 Visualization of constituent and triplet modulator co-modulated network 
outputs in principal component space.  Scores from principal component analysis were 
obtained from description in Figure 3.5.  (A) Individual distributions of proctolin, 
CCAP, RPCH and the merged distributions of the three constituent peptide modulators 
and the proctolin + CCAP + RPCH triplet.  (B) Individual distributions of CCAP, 
proctolin and the merged distributions of both constituent peptide modulators and the 
CCAP + proctolin + oxotremorine triplet.  (C) Euclidean distance measurement 
between each constituent peptide modulator and the triplet co-modulated conditions 
and determination of statistical significance in the 12-dimensional network output 
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activation of the circuit components which generate these outputs.  This decreases the 

importance of the individual peptide’s identity.   

Each neuropeptide targets a distinct but overlapping set of neurons in the circuit, 

leading to the differences seen when those single modulator outputs are evaluated 

quantitively.  Proctolin in the pyloric network targets all neurons in the circuit while CCAP 

and RPCH target the same subset of neurons (Swensen and Marder, 2001).  In this analysis, 

the peptide pairs of proctolin + CCAP and RPCH + proctolin were not statistically different 

in any individual attribute and were not statistically different in the 12-dimensional 

network output space.  With these two pairs of co-modulators, we are combining the 

complete activation of the circuit by proctolin, adding one of two additional peptides which 

were not different individually and applying each modulator at half of the concentration 

used to evaluate its individual effects.  The reduction in concentration reduces any 

signature effect, like CCAP’s strong enhancement of LP spiking (Weimann et al., 1997).  

These three factors combined lead to a more blended effect and a lack of statistical 

difference.  This, however, does not fully explain the result when both proctolin containing 

pairs were tested against the CCAP + RPCH pair. 

The CCAP + RPCH pair was the only one to have any statistical difference across 

the co-modulator conditions, in PD spike frequency.  While not activating the whole 

circuit, the lack of individual differences between both proctolin containing pairs and the 

CCAP + RPCH pair could be due to the lower concentration of proctolin used.  While 

proctolin was present, it was used at a half saturating concentration.  It may be that the 

circuit components targeted by proctolin alone, the PD and PY neurons, were not 

sufficiently activated.  This reduced influence of proctolin may not have been enough to 
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allow for any proctolin specific differences to emerge which lead to a more consistent level 

of excitability across all pairs.  Additionally, when visualized in the reduced principal 

component space, the co-modulated pairs also appear to be more tightly clustered 

compared to the single modulators.  This suggests that not only are the network outputs 

across distinct co-modulator conditions becoming more consistent but the response to 

distinct co-modulator application across animals is becoming more consistent.    

Convergent co-modulation with peptide pairs is not different from the decentralized 

state but is different from the intact.  The co-modulated pairs evaluated here were not 

different from the decentralized network outputs when quantified in the 12-dimensional 

network output space which was surprising.  Decentralization can produce a wide range of 

effects from no perceptible difference in network activity to a complete loss of activity 

(Hamood et al., 2015).  In these co-modulator experiments, the decentralization process 

did not consistently result in substantial differences to the network output.  Despite the 

individual statistical differences found throughout the individual parameters, the 

inconsistent decentralization process resulted in a large degree of overlap between the 

decentralized distributions and the paired peptide co-modulation distributions.  The lack of 

statistical difference in the 12-dimensional space is a direct result of this overlap.   

The intact state is often imagined as a state with any number of individual 

modulators present leading to complete activation of the circuit across animals.  One 

possibility of paired co-modulation, at least with the pairs containing proctolin, is the 

generation of a pattern that replicates the activity profile of the intact state.  When 

evaluated, however, these peptide pairs were still statistically different from the intact.  
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This indicates that two peptides alone, even at a combined saturating concentration, is not 

sufficient to mimic the complex neuromodulatory environment of the intact circuit output.   

Convergent triplet co-modulation further promotes consistency at the level of the 

network output.  To test whether the pyloric network output could be pushed into a state 

that is even more consistent across peptide co-modulatory conditions we evaluated how 

different two triplet combinations were.  Across the individual attributes as well as in the 

combined 12-dimensional space, there were no differences between the sets of triplet co-

modulators.  There were also no statistical differences in the 12-dimensional network 

output space between the two triplets and the intact network outputs.  This suggests that 

combining three modulators does allow the network to reach a state where there are no 

individual statistical differences, further reducing the importance of peptide identity, and 

that combinations of three peptides can replicate the intact state.  However, there are 

caveats to these suggestions.   

The first caveat is the sample size.  Compared to the analysis with both the single 

peptide modulators and the co-modulator pairs, the number of animals tested was lower.  

The lower sample size here could be masking differences that would be revealed with a 

larger sample size.  The second caveat is the number and composition of triplets used.  In 

previous analyses, three different groups were evaluated.  Due to issues obtaining reliable 

peptides we could not test whether an additional triplet combination resulted in the same 

degree of similarity reported here.  Additionally, a triplet should be tested which does not 

share a peptide with another combination.  This would act as a control to ensure that the 

results seen here are not just a result of proctolin and/or CCAP being present.   
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Paired peptide co-modulation does not result in a new niche within the network 

output space.  The co-modulated peptide pairs not being statistically different from each 

other suggests a mechanism of consistency over flexibility with respect to the network 

output.  A role for flexibility could still exist in terms of distinct niches in network output 

space when moving from single to co-modulation.  There is evidence of this in the 

stomatogastric nervous system although in a different species (Thirumalai and Marder, 

2002).  In this previously published work, the individually applied peptides generated non-

triphasic rhythms but the combined effected restored the full rhythm in the American 

lobster, Homarus americanus.  This suggests the idea that the sum of two peptides is greater 

than the individual effects and each peptide elicited output, whether single or co-

modulated, occupies a distinct place in network output space.   

The result with single versus paired co-modulators here does not support that 

suggestion.  Here, the paired co-modulated outputs were not statistically different from any 

of their constituent neuromodulators.  This suggests instead that paired peptide co-

modulation at this concentration acts to average out the individual effects of each peptide 

to generate a blended network output.  This can be seen clearly with the sequential PCA’s 

where the co-modulated outputs occupied the space directly in between the individual 

peptide distributions.  The difference in result between the previously published work and 

this current work could come from a difference in species, a difference in the approach to 

analysis or a combination of both.   

CCAP’s dominating effects on the network output distinguish it from both triplet co-

modulated network outputs.  Unlike the co-modulator pairs, both modulator triplets were 

statistically different from the individual CCAP network outputs but not from proctolin or 
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RPCH.  In visualizing the distributions of the first triplet of proctolin + CCAP + RPCH 

and each of the constituents, there is clear overlap between the triplet and the proctolin and 

RPCH distributions.  The distribution of CCAP, however, occupies a more distinct space 

particularly along the axes of PC 2 and PC 3.  Unlike proctolin or RPCH, CCAP does have 

a signature effect when applied at a high concentration, highly exciting the LP neuron.  The 

difference found between the proctolin + CCAP + RPCH triplet and CCAP on its own 

could be from the difference in concentration used.   The individual CCAP observations 

were recorded at a concentration of 10-6 M, whereas the triplet observations were recorded 

using a total concentration of 10-6 M.  Reducing the CCAP concentration by 1/3 in the 

triplet case could sufficiently dampen CCAP’s strong effect in LP spike number leading to 

the difference found.  Additionally, the difference found could be a result of a large sample 

size for the CCAP distribution and a low sample size for the proctolin + CCAP + RPCH 

triplet.   

The same result was seen with the CCAP + proctolin + oxotremorine triplet.  It is 

likely that the difference found with this triplet and CCAP is a result of the concentration 

difference and a smaller sample size for the triplet condition.  Additionally, the individual 

effects of oxotremorine are missing.  Oxotremorine is known to strongly activate the 

pyloric network following decentralization and is thought to be similar to proctolin in terms 

of its receptor distribution across the core pyloric neurons (Haddad and Marder, 2018; 

Rosenbaum and Marder, 2018).  Qualitatively and to some extent quantitatively, the effects 

of oxotremorine on the network output are also similar to proctolin however in these 

previous studies, oxotremorine was applied at 10-5 M concentration.  The concentration of 

oxotremorine used in this current work was lower therefore, it is hard to assume whether 
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individually applied oxotremorine would result in a new niche like CCAP or occupy the 

same general space as proctolin.  However, given the similarity in network output 

generation compared to proctolin, a first pass assumption would be that it occupies a similar 

space to proctolin and would not be statistically different from the CCAP + proctolin + 

oxotremorine triplet.   

Is it possible to make the circuit flexible?  Central pattern generating circuits underly 

many important rhythmic motor behaviors which are fundamental to survival (Dickinson, 

2006).  With the static nature of these circuits, the necessity to generate distinct patterns of 

activity is thought to be facilitated by the presence of neuromodulators and it is highly 

unlikely that any circuit will be singularly modulated.  The idea of network output 

flexibility suggests that a large population of individual neuromodulators can combine to 

form an even larger number of co-modulator combinations.  Each of these combinations 

could then generate distinct patterns of activity.   

While combinations of co-modulators with distinct cellular actions may generate 

distinct patterns, the convergent cellular mechanism of neuropeptides in the neurons of the 

pyloric network suggests an alternative possibility.  Because the actions of peptides are 

convergent and consequently unidirectional, combining multiple peptides may instead 

generate more consistent network outputs as opposed to distinct and flexible ones.   

The results presented here evaluating the effects of peptide co-modulation on the 

pyloric network output support the hypothesis that convergent co-modulation promotes 

consistency in the network output as opposed to flexibility.  Co-modulation with 

neuropeptides in the pyloric network may function as a stabilizing feature to provide the 

circuit with multiple ways to achieve the same goal (Kitano, 2004).  The requirement for 
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stable function over flexibility is not isolated to the pyloric circuit (Beliez et al., 2014) and 

may serve as a general principal for central pattern generators.  While network output 

flexibility under co-modulatory conditions is lost in terms of the generation of distinct 

outputs, it could be look at as a different form of flexibility afforded to the circuit.  

Flexibility here comes from the ability to combine different combinations of peptides and 

still generate meaningful and functional outputs (Werner and Mitterauer, 2013).   

The largest caveat to this finding, however, is the use of bath application to elicit a 

network output.  Practically, this approach is much simpler but may not recapitulate what 

the intact animal is experiencing (Blitz et al., 1999).  Additionally, the co-applied peptides 

used here combined both intrinsically released neuromodulators as well as ones that exist 

as circulating hormones.  It is likely that these two classes of neuropeptide are released or 

circulate at different concentrations that the ones used here, particularly with CCAP 

(Weimann et al., 1997).  The generation of distinct co-modulated peptide outputs may be 

achieved by adjusting the concentrations of both or all three peptides used to mimic more 

closely those of the intact animal, however, at this point we do not know what those 

concentrations are.  Additionally, circulating neuromodulators have the ability to influence 

multiple aspects of a system whereas neuronally released neuromodulators, restricted by 

peptidases for example, may only influence a local neighborhood (Katz and Frost, 1996; 

Wood and Nusbaum, 2002).  Knowing where each neuromodulator exerts its influences 

may uncover distinct actions on the circuit underlying a network output and consequently 

a difference in that network output. 
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CHAPTER 4 

DISTINCT MONOAMINES DIFFERENTIALLY MODULATE ASPECTS OF 
THE PYLORIC NETWORK OUTPUT 

 
 

4.1 Introduction 
 

Monoamines such as dopamine and serotonin are pervasive in all systems and act to 

influence behavioral states such as sleep and wakefulness (Brown et al., 2012), locomotion 

(Gabriel et al., 2009; Brown et al., 2012; Slawinska et al., 2014), respiration (Viemari and 

Tryba, 2009), reward (Grace et al., 2007; Vaaga et al., 2014) and psychiatric disorders 

(Conio et al., 2020).  Octopamine, also a monoamine, is derived from the same precursor 

as dopamine (Cole et al., 2005) and is structurally similar to noradrenaline in vertebrate 

systems (Roeder, 1999).  Octopamine is a prevalent modulator in invertebrate systems and, 

like dopamine and serotonin, influences behaviors such as learning (Sabandal et al., 2020), 

locomotion, muscle contraction and modulation of the neuromuscular junction (Djokaj et 

al., 2001; Selcho et al., 2012; Ormerod et al., 2013).   

In the stomatogastric nervous system, dopamine, octopamine and serotonin can 

reach the stomatogastric ganglion in multiple ways.  Octopamine is released from 

descending modulatory inputs but does not circulate as a hormone (Barker et al., 1979).  

Dopamine can be released via descending modulatory inputs from upper end ganglia 

(Barker et al., 1979) or circulate as a neurohormone (Clark et al., 2008).  Serotonin can be 

locally released via ascending sensory inputs as well as circulate hormonally (Beltz et al., 

1984; Katz et al., 1989).  Neurohormones typically circulate at much lower concentrations 

than locally released neuromodulators.  This affords amines that operate in both domains 

a wide range of concentrations where they can exert influence.   



 

83 
 

Neuromodulators in the stomatogastric nervous system can be broadly divided into 

two classes: those with convergent cellular effects but divergent circuit effects and those 

with divergent cellular effects but convergent circuit effects.  Neuropeptides converge 

cellularly to target a single inward current in distinct subsets of neurons.   Amines, however, 

divergent cellularly to affect multiple currents within each neuron but converge by 

targeting most or all neurons within the circuit.  It has been shown previously that all 

neurons in the pyloric network in the spiny lobster Panulirus interruptus respond to 

dopamine, octopamine and a subset of neurons respond to serotonin application (Flamm 

and Harris-Warrick, 1986a).   Cellularly, dopamine and octopamine modulate a substantial 

number of intrinsic currents and synapses in a cell type specific manner which is receptor 

subtype mediated (Zhang and Harris-Warrick, 1994; Peck et al., 2001; Peck et al., 2006; 

Harris-Warrick and Johnson, 2010; Zhang et al., 2010; Johnson et al., 2011).    

The effects of amine application in the crab Cancer borealis, however, are far less 

understood.  Their cellular actions have not been investigated but their effects on the 

pyloric network output have been qualified and minimally quantified.   What has been 

reported is a loss of rhythmic activity with dopamine application (Marder and Weimann, 

1992), a variable version of the triphasic rhythm with serotonin application (Haddad and 

Marder, 2018) and a fully tri-phasic activity pattern following octopamine application 

(Goaillard et al., 2004). 

Despite the caveats when quantifying the effects of single and co-applied peptides, 

flexibility does not appear to be the default effect of individual peptide neuromodulation 

and is lost with peptide co-modulation.  The inflexibility with peptides is likely due to their 

convergence to a target which can only operate unidirectionally.  If the activation of only 
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the modulator activated inward current (IMI) is driving these peptide network outputs 

towards an inflexible state, the presence of an amine which does not act unidirectionally 

cellularly could allow for greater flexibility in pyloric network output. 

Here we quantify the effects of three amines, dopamine, octopamine and serotonin, 

on the pyloric network output of the crab C. borealis.  This will serve as the first fully 

quantitative description of these amines on this species pyloric network output.  

Additionally, this will allow for the continued testing of the network output flexibility 

hypothesis with a different class of neuromodulator and provide a baseline expectation as 

to the consequences of amine and peptide co-modulation.   

 

4.2 Materials and Methods 

Methods.  The animals, electrophysiological approach, excitability attribute extraction, 

Euclidean distance and multi-variate permutation test calculation were the same as reported 

in Chapter 2. 

Statistical evaluation.  All initial statistical tests were performed in SigmaPlot.  All 

statistical tests performed were one way ANOVAs except for the slow wave oscillation 

analyses which were either t-tests or paired t-tests.  In all cases, following one way 

ANOVA testing, a Holm-Sidak post hoc test was performed.  If the data initially failed a 

test for normality or equal variance, a one way ANOVA on ranks was performed.  If the 

slow wave oscillation data initially failed a test for normality or equal variance a Mann-

Whitney Rank Sum Test was performed instead of a t-test.  Table A.4 summarizes all 

statistical tests and results for the excitability attribute analysis.  Table A.5 summarizes all 
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statistical tests and results for the slow wave oscillation analysis.  Statistical significance 

was determined as follows: * p < 0.05, ** p < 0.01, *** p < 0.001. 

Modulators and experimental protocol: The preparation was decentralized by blocking 

the stomatogastric nerve (STN) with a 10-7 M TTX (Biotium) + 750 mM sucrose (Sigma) 

solution.  Dopamine hydrochloride (Sigma) was prepared right before application by 

dissolving in distilled water to an initial concentration of 10-2 M.  Dopamine was further 

diluted to the experimental concentration of 10-6 M in chilled Cancer borealis saline.  

Dopamine is highly light sensitive and care was taken to minimize exposure to light.  

CCAP (Bachem), serotonin hydrochloride (Sigma) and octopamine hydrochloride (Sigma) 

were diluted with distilled water, initially aliquoted to a concentration of 10-3 M and stored 

until needed.  Final dilution of CCAP, serotonin and octopamine to the experimental 

concentration of 10-6 M occurred immediately before application in chilled Cancer borealis 

saline.  Each neuromodulator was bath applied via peristaltic pump for 5 minutes.  In cases 

of repeated application of amine, the first application was washed out in chilled Cancer 

borealis saline for a minimum of 30 minutes.   

Slow wave oscillation parameter extraction.  All Matlab code for the extraction of the 

slow wave oscillation attributes was written by Omar Itani. 

All parameter extraction and analysis for the slow wave oscillation analysis of PD 

was performed in Matlab with custom written scripts.  The attributes extracted and 

quantified were the amplitude, half-width, spike prominence, inter-spike interval, area of 

synaptic input from the LP neuron to the PD neuron and the trough voltage (see Figure 4.4 

A).  A minimum of 15 cycles of activity were analyzed and the individual points plotted 

represent the mean for each animal.   
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Briefly, the amplitude of the slow wave oscillation was measured by low pass 

filtering the PD waveform to remove the spikes and the smoothed peak voltage was 

subtracted from the trough voltage.  The half width was calculated by initially finding the 

half prominence of the oscillation amplitude.  From the half prominence voltage, the start 

and end of the oscillation in time was determined by when the rising or falling slopes of 

the oscillation crossed the half prominence voltage.  The half width reported was the 

difference of the end and start times.  The spike prominences were determined by signal 

detection.  The reported mean value for each animal was the mean spike prominence for 

all spikes detected across all cycles analyzed.  The mean inter-spike interval was calculated 

by taking the difference in time between each spike detected and then averaging all inter-

spike intervals across all cycles of activity.  The mean synaptic area was calculated by 

initially taking the start of the presynaptic neuron’s burst in time (the LP neuron) and 

finding the voltage of the postsynaptic neuron (the PD neuron) at that time.  This voltage 

represented the threshold of synaptic area.  The area of the trough under that threshold 

voltage was then calculated.  Lastly the trough voltage was extracted from the amplitude 

measurement.   

N for excitability bar plots.  Intact: 29 phase and cycle frequency, 24 spike number and 

spike frequency.  Decentralized: 33 phase and cycle frequency, 28 spike number and spike 

frequency.  Modulators: 8 dopamine, 4 octopamine, 5 serotonin (only for phase and cycle 

frequency analysis) and 18 CCAP.  Serotonin was only evaluated with extracellular 

recordings and was not included in the 12-dimensional analysis.  Serotonin’s intact and 

decentralized values were included only for the individual phase and cycle frequency 

analyses.  The CCAP experiments were the same used in Chapter 2. 
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N for 12-dimensional network output analysis:  24 intact, 28 decentralized, 8 dopamine, 

4 octopamine, 18 CCAP.   

N for PD slow wave oscillation analysis not including paired trough analysis:  8 

decentralized, 8 dopamine.   

N for paired PD trough analysis:  7 decentralized and dopamine.  In one experiment there 

was no quantifiable decentralized response forcing the exclusion of the dopamine response 

from the paired trough analysis.   

 

4.3 Results 

Dopamine network outputs recapitulate the decentralized state whereas octopamine 

and serotonin generate network outputs which resemble a peptide modulated state.  

The effects of dopamine, octopamine and serotonin on the core pyloric neurons in crab are 

not well described.  What has been reported is a loss of tri-phasic activity under dopamine 

conditions, a retention of tri-phasic activity under octopamine conditions and a highly 

variable response to serotonin.  Though acting as a starting point, the effects of dopamine 

and octopamine have not been thoroughly quantified for all neurons of the core pyloric 

network using both intracellular and extracellular recordings.  Therefore, we sought to both 

qualify and quantify the effects of these amines on the same attributes of excitability 

evaluated under the peptide conditions.  The serotonin experiments only used extracellular 

recordings and could not be included in the quantitative description outside of cycle 

frequency and phase.  We included the effects of CCAP as well to test whether a peptide 

elicited network output differs from an amine generate network output, given their distinct 

cellular mechanisms.   
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The effects of CCAP on the network output were evaluated in Chapter 2, therefore 

we have an expectation as to its actions.  It is more difficult to have an expectation as to 

the effects of the amines on these attributes of excitability.  At a minimum we expect 

differences in phase between the amine responses and the intact and CCAP responses.  

From the hypothesis presented in Chapter 2, the intact and CCAP phase responses are not 

statistically different due to IMI activation solely in the pacemaker neuron.  Neuropeptides 

do not modulate other intrinsic currents like the A-type potassium current or the 

hyperpolarized activated inward current (h current), both of which can shift the phase 

responses of the pyloric neurons, but dopamine does (Harris-Warrick et al., 1995a; Harris-

Warrick et al., 1995b).  If we assume a similar modulation of these currents by dopamine 

in the pyloric neurons of C. borealis then we would expect differences in phase between 

dopamine, CCAP and the intact state.  It is not known whether octopamine and serotonin 

also modulate the A-type potassium current and h current but if they do, there should be a 

statistical difference in phase between octopamine, serotonin and the intact and CCAP. 

Qualitatively, dopamine, octopamine and serotonin generated tri-phasic activity 

though the activity profile of dopamine resembled the decentralized state while octopamine 

and serotonin’s activity profile resembled that of the reference peptide CCAP or the intact 

state (Figure 4.1 A).  When quantified, there were no differences between the decentralized 

state, the three amines and CCAP in the cycle frequency attribute, though all were different 

from the intact (One way ANOVA: F(5,91) = 47.527, p < 0.001) (Figure 4.1 B).   

In the phase attribute, the decentralized and CCAP responses were statistically 

different from both the intact and dopamine responses in PD off (One way ANOVA on 

ranks: H(5) = 27.758, p < 0.001).  In the LP on phase only CCAP was statistically different 
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from serotonin (One way ANOVA on ranks: H(5) = 21.067, p < 0.001).  In LP off, the 

decentralized response was statistically different from serotonin and CCAP (One way 

ANOVA on ranks: H(3) = 47.362 p < 0.001).  In the PY on phase, the decentralized response 

was statistically different from the intact and CCAP conditions (One way ANOVA:  

F(5,91) = 7.852, p < 0.001)  while there were no statistical differences in PY off phase (One 

way ANOVA on ranks: H(5) = 5.844, p = 0.322).  Interestingly, the three amines themselves 

were not statistically different from each other in any phase (Figure 4.1 C).   

In PD spike number, the intact responses were statistically larger than the 

decentralized or CCAP responses (One way ANOVA on ranks: H(4) = 14.095, p = 0.007).  

In LP spike number, the CCAP responses were statistically higher from all other conditions 

and the intact response was statistically larger than the decentralized and dopamine 

responses (One way ANOVA: F(4,69) = 45.824, p < 0.001).  In PY spike number the only 

statistical difference was between the decentralized response and the octopamine and 

CCAP responses (One way ANOVA on ranks: H(4) = 16.574, p = 0.002) (Figure 4.1 D).   

Lastly, the intact response was statistically different from all conditions except 

octopamine in PD spike frequency (One way ANOVA on ranks: H(4) = 43.076, p < 0.001).  

In LP spike frequency, the intact response was statistically different from all conditions 

except CCAP and CCAP was statistically different from the decentralized, dopamine and 

octopamine responses (One way ANOVA: F(4,77) = 41.932, p < 0.001).  In PY spike 

frequency, the intact response was statistically different from all other responses (One way 

ANOVA on ranks: H(4) = 48.209, p < 0.001)  (Figure 4.1 E).  Like with cycle frequency, 

phase and spike number, there were no statistical differences across the individual amine 

responses. 
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Dopamine is not different from decentralized or octopamine in the combined 12D 

space but is different from a peptide response.  The qualitative observation that 

dopamine’s activity profile matches the decentralized activity profile while octopamine’s 

matches to different degrees intact and CCAP is supported quantitatively in the attributes 

of excitability.  Due to the dependencies across these attributes, individual statistical tests 

are not sufficient to assess the actual degree of difference across these modulatory states.  

We, therefore, combined all 12 parameters of activity across the four attributes of 

 
 
Figure 4.1 Qualitative and quantitative pyloric network response to amine modulation.  
(A) Qualitative response of the core pyloric neurons under intact conditions, 
decentralized, dopamine, octopamine, serotonin and CCAP.  All modulators were 
applied at 10-6 M concentration.  (B) Cycle frequency response following distinct amine 
and peptide application.  Bars represent means and individual points represent individual 
animal responses.  (C) Phase response following distinct amine and peptide application.  
Bars represent mean phase values and individual points represent individual animal 
responses.  Closed circles indicate the phase onset of each neuron, open circles indicate 
phase offset of each neuron.  (D)  Individual pyloric neuron spike number response 
following distinct amine and peptide application.  Bars represent means, individual points 
represent individual animal responses.  (E)  Individual pyloric neuron spike frequency 
responses following distinct amine and peptide application.  Bars represent means, 
individual points represent individual animal responses.     
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excitability into condition specific vectors, z-score standardized all values (Figure 4.2 A) 

and ran the Euclidean distance and multi-variate permutation test analysis.  Because the 

serotonin experiment did not include intracellular recordings, those data were excluded 

from this analysis. 

In the 12-dimensional network output space, the intact network outputs were 

statistically different from all other conditions tested with the intact verses decentralized 

comparison having the largest distance measured, indicating the greatest difference.  The 

decentralized network outputs were not statistically different from the dopamine network 

outputs but were statistically different from the octopamine and CCAP network outputs.  

Like the intact, the CCAP network outputs were also statistically different from the 

decentralized, dopamine and octopamine network outputs while the dopamine and 

octopamine network outputs were not statistically different from each other.  The dopamine 

and octopamine comparison also resulted in the smallest distance value among all the 

comparisons in this analysis, indicating their similarity in this space (Figure 4.2 B).   

These statistical results were visualized in a reduced 3-dimensional principal 

component space.  When the mean scores were plotted, there was a clear shift in mean 

score between the intact and decentralized conditions.  When dopamine, octopamine or 

CCAP were applied, all three modulated conditions shifted away, in varying degrees, from 

the decentralized, with the dopamine response remaining the closest (Figure 4.2 C).  When 

the distributions were plotted and fit with convex hulls, the intact distribution occupied a 

distinct space from all other conditions.  The octopamine and CCAP distributions 

overlapped and both shared space with the dopamine distribution.  The dopamine 
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distribution also shared the most overlap with the decentralized distribution in the principal 

component space (Figure 4.2 D). 

Dopamine application can generate a gradient of responses in the network output 

from tri-phasic functional to non-functional or quantifiable.  Our basic assumption in 

quantifying the effect of a neuromodulator on the pyloric network output is a difference 

between each modulator’s effects and the baseline decentralized state.  When statistically 

tested, either as individual attributes or in the combined 12-dimensional network output 

space, there were no differences between dopamine and decentralized.  This would suggest 

that dopamine has no effect on the pyloric network output.   

 
Figure 4.2 Euclidean distance measurements and statistical testing of the 12D network 
outputs across distinct modulatory conditions.  (A) Z-scored values for all conditions 
tested.  Magenta line represents the z-score mean.  (B)  Euclidean distance measurements 
between all pairwise comparisons.  (C)  Projection of the 12-dimensional network outputs 
means in the first three principal components.  (D)  Projection of 12-dimensional network 
outputs distributions in the same principal component space as the means.  Each individual 
point represents an individual animal.  All distributions were fit with a convex hull.  
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Unlike the peptides or octopamine, the application of dopamine to the pyloric 

network generated inconsistent responses.  While some dopamine elicited rhythms were 

tri-phasic, others were either abnormal looking or showed a complete loss of tri-phasic 

activity (Figure 4.3 A-B).  These abnormal or non-functional rhythms were the direct result 

of dopamine application because full tri-phasic activity resumed once dopamine was 

washed out.  Unlike dopamine, octopamine never resulted in a non-functional network 

output.  Because of the requirement of tri-phasic activity for the multi-variate statistical 

analysis, we could not include those abnormal or non-functional dopamine responses.  By 

losing those dopamine network outputs, we were not able to fully profile the effects of 

dopamine on the pyloric network and were intentionally testing rhythms generated from 

only a subset of dopamine’s network output space.   
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The quantification of PD’s slow wave oscillation and spiking attributes allows for an 

emergence of differences between decentralized and dopamine.  The example traces of 

both the abnormal and non-functional dopamine network outputs indicated that dopamine 

did have an effect on the pyloric network, but its effects were not always quantifiable with 

our previous approach.  Outside of dopamine inconsistent effects on the excitability 

attributes evaluated, when quantifiable, dopamine application often resulted in changes to 

the slow wave oscillations of the pyloric neurons.    

Dopamine modulates potassium, calcium, leak and synaptic currents in the pyloric 

neurons in P. interruptus (Harris-Warrick et al., 1995b; Kloppenburg et al., 1999; Peck et 

 
 
Figure 4.3 Abnormal and non-functional dopamine elicited pyloric network outputs.  
(A)  Following decentralization, 10-6 M dopamine application resulted in an abnormal 
pyloric network output.  Notably, dopamine application resulted in a loss of stereotyped 
oscillatory activity of the PD and LP neurons.  Activity was restored following a wash 
in saline and 10-6 M octopamine application resulted in quantifiable tri-phasic activity.  
(B)  In a separate experiment, 10-6 M dopamine application resulted in a loss of pyloric 
activity.  In addition to a loss of oscillatory activity, the PD neuron tonically fired, the 
PY neuron stopped firing completely and the extracellular recording showed no 
rhythmicity.  A normal pyloric network was restored following a wash in saline and 
octopamine generated a quantifiable tri-phasic pyloric network output.  
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al., 2001; Harris-Warrick and Johnson, 2010) and presumably does so in the pyloric 

neurons of C. borealis.  These currents help to shape aspects of the underlying slow wave 

oscillation such as the inter-spike interval and half width.  Conversely and importantly, 

peptides do not modulate these intrinsic currents.   

Therefore, we quantified the effects of dopamine on attributes of PD’s slow wave 

oscillation and spiking behavior not captured with the previous analysis (Figure 4.4 A).  

The choice to use PD came from its role as part of the pacemaker ensemble, its simpler 

waveform compared to LP and PD does not typically lose all activity under decentralized 

and dopamine conditions like the PY neuron.  It may be that dopamine’s effect can be 

differentiated from decentralized outside of the four attributes of excitability evaluated 

previously.   

 
 
Figure 4.4 Quantification and statistical testing of the PD neuron’s slow wave oscillation 
(SWO) and spiking attributes.  (A) Attributes extracted from the PD waveform.  (Bi – 
Bvi) Individual attributes of PD’s activity under decentralized or dopamine conditions.  
Magenta line represents the mean, and each individual point represents an individual 
animal’s response.  For the trough voltage analysis, each animal’s modulated response 
was paired with its initial decentralized state. 



 

96 
 

Amplitude of PD’s slow wave oscillation.  It has previously been shown that the negative 

slope region of IMI, which can be approximated as a linear leak conductance, is sufficient 

to restore oscillations in the PD neuron during ongoing activity in the absence of 

neuropeptides (Zhao et al., 2010).   Dopamine modulates leak current in the anterior burster 

(AB) in P. interruptus (Harris-Warrick and Johnson, 2010) but it is unknown if dopamine 

modulates leak current in the PD neuron of C. borealis.    

When quantified, the amplitude of PD’s slow wave oscillation following dopamine 

application was not statistically lower compared to the decentralized, though there was a 

decrease in the mean value (two tailed t-test: t= 1.223, p = 0.243) (Figure 4.4 Bi).   

Mean spike prominence.  The height of the action potentials riding on top of the slow 

wave oscillation is related to the concentration of sodium.  In P. interruptus dopamine 

modulates the persistent sodium current in the AB neuron which is electrically coupled to 

the PD neuron and makes up the pacemaker group (Harris-Warrick and Johnson, 2010).  

We therefore wanted to quantify whether dopamine or octopamine application modulated 

this attribute via a presumed modulation of sodium current in the pacemaker group.  When 

statistically tested, there were no differences between any condition in mean spike 

prominence (two tailed t-test: t= -0.732, p = 0.477) (Figure 4.4 Bii).   

PD’s slow wave oscillation half width.  The half width of the slow wave oscillation is 

dependent on both calcium currents for the depolarizing portion of the oscillation and 

calcium dependent potassium currents for the termination of the oscillation (Franklin et al., 

2010).   In P. interruptus dopamine decreases calcium currents in the PD neuron while 

increasing the calcium dependent potassium current (Johnson et al., 2003; Harris-Warrick 

and Johnson, 2010).  The effect of this modulation would be a reduction in the PD’s half 



 

97 
 

width compared to an unmodulated state.  When quantified, there was no statistical 

difference between the decentralized and dopamine responses (Mann-Whitney Rank Sum 

Test: U = 12.00, p = 0.072) (Figure 4.4 Biii). 

PD’s inter-spike interval.  Spiking activity, including the inter-spike interval, is a form of 

communication and information (Stein et al., 2005) and distinct alteration to spiking 

activity under specific modulatory conditions may signal to downstream areas the need for 

a particular behavior.  The minimum inter-spike interval is limited by the refractory period 

but changes in potassium currents can alter the inter-spike interval (Zakharov et al., 2016; 

Ha and Cheong, 2017).  In the cases where PD fired only a single spike per cycle or was 

not spiking, the inter-spike interval was 0 for that animal.  There was a statistical difference 

in inter-spike interval between the dopamine response and decentralized (two tailed t-test: 

t= -3.197, p = 0.007) (Figure 4.4 Biv).   

LP to PD mean synaptic area.  The LP neuron provides the sole feedback via chemical 

synapse to the pacemaker group and this synapse is modulated by dopamine in P. 

interruptus (Johnson and Harris-Warrick, 1997; Ayali et al., 1998) though it is not known 

if dopamine modulates this synapse in C.borealis.  When statistically tested, the dopamine 

response was not statistically different from the decentralized responses (Mann-Whitney 

Rank Sum Test: U = 17.50, p = 0.232) (Figure 4.4 Bv).   

PD’s Trough voltage.  The voltage at the trough of an oscillation is primarily dependent 

on synaptic strength.  The LP to PD synapse is glutamatergic and has a reversal potential 

of approximately -70 mV (Goaillard et al., 2009).  Therefore, if a modulator was 

strengthening the synapse between the LP and PD neurons, the trough voltage of PD would 

shift towards the reversal potential of the synapse.  In addition to being dependent on the 
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properties of the synapse, the measured trough voltage is also dependent on the impalement 

of the neuron.  Therefore, the modulated responses were paired with their initial 

decentralized state and statistically tested with paired t-tests.  When statistically tested, 

there was no significant change in the trough voltage in the presence of dopamine (two 

tailed paired t-test: t = -1.106 , p = 0.311) and its respective decentralized state (Figure 4.4 

Bvi). 

4.4 Discussion 

The pyloric network output is a result of the combined effects of neuropeptides and amines.  

While the effects of peptides have been well described and quantified, the effects of amines 

have not been widely studied.  We were interested in exploring the effects of amines on 

the pyloric network output for two primary reasons: to fully qualify and quantify the effects 

of amines on the C. borealis pyloric network which have not been reported and to test the 

hypothesis that non IMI activating neuromodulators also generate distinct network outputs. 

Here we show the first fully quantitative exploration of the effects of dopamine and 

octopamine in this system in four metrics of excitability as well as in PD’s slow wave 

oscillation.  We also show, briefly, the effects, of serotonin on two attributes of the network 

output.   

When tri-phasic, dopamine recapitulates a decentralized network output while 

octopamine generates peptide like behavior.  The effects of amines have been explored 

widely in the spiny lobster P. interruptus, with the effects of dopamine being best 

characterized.  Not only has the effect on the network output been qualified (Flamm and 

Harris-Warrick, 1986b) but the intrinsic currents which are modified by dopamine (Harris-

Warrick and Johnson, 2010) and the receptor subtypes which mediate this modulation have 
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been characterized (Clark et al., 2008; Oginsky et al., 2010; Zhang et al., 2010).  The effects 

of serotonin application have also been reported along with the identification of two 

serotonin receptors (Clark et al., 2004; Spitzer et al., 2008).  Unlike dopamine and 

serotonin, the cellular mechanism of octopamine signaling is not known in P. interruptus 

but octopamine receptors in other species such as D. melanogaster are similar to vertebrate 

adrenergic receptors (Evans and Maqueira, 2005; Perez, 2006; Farooqui, 2012).    

Conversely, the effects of these amines have not been well characterized in the 

pyloric network of the Jonah crab C. borealis outside of a qualitative assessment of both 

dopamine and serotonins actions and a qualitative and minimally quantitative assessment 

of octopamine’s actions.  These works showed a loss of functional activity with 10-6 M 

dopamine application (Marder and Weimann, 1992), a functional network output which 

strongly activates the pacemaker and the PY neurons without strong activation of the LP 

neuron with 10-4 M octopamine application (Goaillard et al., 2004) and a variable but 

sometimes functional network output with 10-5 M serotonin (Haddad and Marder, 2018) 

but irregular pyloric neuron activity with 10-4 M serotonin application in a related crab 

species (Beltz et al., 1984).   

The lack of information regarding receptor subtype, cellular targets and a difference 

in concentration used between those previous works and this current work, which used    

10-6 M amine application, makes predicting the consequence of amine modulation of the 

pyloric network output challenging.  However, we can use those works as a starting point.  

Keeping the concentration of amine used here in mind, we would expect to see a similar 

loss of functional activity with dopamine application, a functional output with octopamine 

but with less robust pacemaker and PY activity and limited LP activity and a tri-phasic 
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serotonin network output if the higher concentration used is leading to the inconsistency in 

output previously reported.  Additionally, the concentrations used here, while lower, are 

not biologically unrealistic.  It is likely that the concentrations used previously are far 

higher than what would be found in the fully intact animal.   

When evaluated qualitatively, the dopamine elicited network output appears similar 

to the decentralized baseline state whereas the octopamine network output resembles a 

peptide or intact baseline state.  For octopamine, the results presented here met our 

expectations while the network responses following dopamine were somewhat contrary to 

our expectation.  Important to note though was the state of the network before the 

application of these modulators.   

In the previous work examining the effects of dopamine on the network output, the 

decentralized state before dopamine application was quiescent.  In the example traces used 

here, the state of the network before amine application was slow but still functional.  The 

response to decentralization today is distinct from the response in the past and preparations 

rarely cease activity and instead slow down and/or have a loss of LP activity.  The effect 

of neuromodulators is highly state dependent (Nusbaum and Marder, 1989).  This departure 

from the traditional response to decentralization may explain why these recordings did not 

consistently match the expectations we had for the dopamine response.   

With serotonin, the previous work in C. borealis reported a highly variable 

responses to 10-5 M application.  However, when qualified at 11°C, similar to the 

temperature used in these experiments, a fully functional tri-phasic rhythm was generated 

in the majority of cases (Haddad and Marder, 2018).  While there was a degree of 

variability in those responses, other published work which used a higher concentration of 
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serotonin reported a loss of consistent tri-phasic activity in a related crab species (Beltz et 

al., 1984).  Taken together, the highly variable response to serotonin appears to be both a 

function of temperature as well as concentration.  Here, the expectation for serotonin 

application at lower concentration and at a more typical experimental temperature was met.  

Quantitively, dopamine’s modulation of the four metrics of excitability is not different 

from the decentralized response while octopamine generates a potentially unique 

pattern of activity.  When quantified with traditional statistics there were a number of 

differences between the intact state and the amines and peptide used which was not 

unexpected.  The intact state is a multiply modulated one so it was not surprising that a 

single amine or peptide could not replicate it.  Primarily, these differences were found in 

the cycle frequency and spike frequency attributes.  What was surprising though was 

octopamine’s response in phase compared to the intact state.  Out of the three amines tested, 

octopamine most closely replicated the intact phase response though we do not know how 

octopamine modulates this circuit cellularly.   

Unlike the intact state, there were fewer quantitative differences between the amine 

modulated states and the decentralized.  The primary differences between decentralized 

and dopamine, serotonin and octopamine responses were the PD off and LP off phases and 

PY spike number respectively.  The lack of additional statistical differences in the phase 

and spiking attributes between the amine modulated conditions and the decentralized state 

could be due to an insufficient concentration of amine used.  The effects of amines have 

been shown to be highly concentration dependent (Flamm and Harris-Warrick, 1986b) 

though the statistically significant effects in the PD off phase and PY spike number 
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attributes by dopamine and octopamine suggest that at 10-6 M concentration these amines 

did have some effect.   

Among the modulators, there were statistical differences between the amine 

responses and CCAP in the phases of PD off, LP on, LP spike number and LP spike 

frequency.  CCAP, through IMI activation, is known to have profound effects on LP spike 

number and frequency (Weimann et al., 1997) while the effects of dopamine and 

octopamine are limited in these parameters and do not differ from the decentralized.  The 

differences in phase between the peptide and amine modulated states are more interesting 

though.   

The hypothesis presented in Chapter 2 suggests that phase maintenance with 

peptide application is a direct result of IMI activation in the AB neuron while IMI activation 

in the follower neurons only modulates individual parameters of excitability like spike 

number and frequency.  This hypothesis explains the lack of differences between the intact 

and CCAP states in the phase attribute.  Additionally, peptides do not modulate intrinsic 

currents like the A-type potassium current or the h current which can advance or delay 

phase, but dopamine does in P. interruptus (Harris-Warrick et al., 1995a; Harris-Warrick 

et al., 1995b; Martinez et al., 2019).  We do not know if dopamine similarly modulates 

these currents in the pyloric neurons of C. borealis and we do not know the cellular effects 

of serotonin or octopamine modulation.  However, the phase shifts presented here suggest 

that these amines may be modulating these currents and possibly in conjunction with the 

synaptic currents to shift the phases of the pyloric neurons in ways that are not possible 

with peptides.   
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It was surprising that there were no statistical differences between dopamine and 

octopamine, though the mean values of several of the parameters were different between 

them.  This is likely related to the sample size of octopamine, and differences between 

these two amine states may become statistically meaningful with additional experiments.  

Additionally, because the effects of amines are concentration dependent (Flamm and 

Harris-Warrick, 1986b), the lack of differences across the amine network outputs would 

likely change if they were applied at a higher concentration.  Using the results presented 

here, as well as what has been previously published, we would expect an abnormal and 

potential loss of tri-phasic activity with a higher concentration of serotonin, a complete loss 

of tri-phasic activity with a higher concentration of dopamine but a retention of functional 

activity with higher octopamine concentration.  While these network outputs would be 

qualitatively distinct, it is unclear how those activity patterns could be quantified and tested 

against each other.   

In the 12D network output space dopamine does not positively modulate the 

excitability metrics but octopamine may be acting as a bridge across distinct 

conditions.  Due to the dependent nature of these attributes, evaluating them holistically 

in a combined 12-dimensional space is necessary.  When the intact network outputs were 

tested against the decentralized and modulator network outputs, the intact was statistically 

different from all.  This matches our expectation from the individual attribute 

quantifications.  What was surprising was octopamine’s closeness in both distance as well 

as mean principal component score to the intact.  While not able to completely replicate 

the intact state, an octopamine modulated pyloric network output can generate a rhythm 

which is more similar to the intact state than a peptide.  This consistent generation of tri-
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phasic activity by octopamine provides the network with an opportunity to generate what 

we would consider functional activity without solely relying on IMI activation via 

neuropeptides. 

When the modulated states were tested against the decentralized, both CCAP and 

octopamine were statistically different.  This was not surprising for CCAP and indicated 

that, despite the small number of individual statistical differences between decentralized 

and octopamine, an octopamine network output is a distinct state.  The dopamine network 

outputs, however, were not statistically different from the decentralized network outputs.  

From the qualification and quantification of dopamine’s effects on the pyloric network this 

result was not surprising.  This would also suggest that dopamine had no effect on the 

network output, though from what was reported here, dopamine’s actions are more 

complex than what was quantified in that analysis. 

From the qualitative assessment as well as the statistical analyses, it was apparent 

that dopamine did not function like a peptide in this system.  When the network outputs of 

dopamine and CCAP were statistically tested in the 12-dimensional network output space, 

they were different.  The CCAP network output response was also statistically different 

than octopamine.  Unlike the result with dopamine, the statistical difference between 

CCAP and octopamine represented flexibility, distinct cellular mechanisms which generate 

tri-phasic pyloric activity.  The lack of statistical difference in the 12-dimensional space 

between dopamine and octopamine was surprising, though, like the lack of statistical 

differences when the attributes were evaluated individually, this is likely due to the low 

sample size of octopamine.    
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A general principal that can be taken from the results comparing the network 

outputs between amines and CCAP is that neuromodulation in the pyloric network is not 

unidirectional.  The action of applying any single neuromodulator, whether peptide or 

monoamine, does not automatically push the network into an excitable state and can instead 

result in a gradient of effects.  Dopamine application, when a tri-phasic rhythm is 

maintained, can minimally alter the phases of the pyloric network but not do much else.  

Dopamine can also completely disrupt or shut down the rhythm.  Octopamine, on the other 

hand, functions as an intermediary modulator, one whose actions are distinct, functional 

but not hyperexcitable.   

The highly restrictive nature of the 12D excitability analysis intentionally excludes 

experiments with strong dopamine responses.  Dopamine application to the pyloric 

network was unpredictable.  In total, 20 experiments were done using dopamine, however 

six of those experiments were not usable due to a complete loss of functional activity.  In 

addition to a complete loss of functional activity, the requirement of simultaneous 

intracellular recordings of the PD and PY neurons forced the exclusion of six additional 

experiments.  Intracellularly recorded PD and PY activity is necessary because these 

neurons exist in multiple copies in the ganglion and their activity can summate.  This makes 

extracting reliable spike number or frequency information from extracellular recordings 

difficult.  In three experiments which were excluded because a PD or PY neuron could not 

be recorded intracellularly, a clear effect of dopamine was present.   

This intentional exclusion of experiments creates a very narrow window into the 

wider range of outputs dopamine can generate.  With this approach, we are intentionally 

reducing the possibly of finding differences between the dopamine and decentralized and 
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dopamine and octopamine network outputs.  The only dopamine experiments which could 

be used had to meet the most minimal requirement, which was tri-phasic activity.   Because 

of that, it is not surprising that the dopamine results that we quantified were not different 

from the decentralized network outputs because the decentralized state is the most 

minimally active state.   

This variable response to dopamine application is likely a result of concentration 

used and the state of the network before dopamine application.  It is possible that 10-6 M 

represents a threshold concentration where anything below that will consistently generate 

a quantifiable tri-phasic rhythm, likely one that is not different from the decentralized state, 

and anything higher will result in a completely disrupted and not quantifiable rhythm.  

Additionally, the state of the decentralized network likely plays a large role in dictating the 

type of dopamine output generated.  If decentralization results in a quiescent activity 

pattern, 10-6 M dopamine application can result in a non-quantifiable rhythm while 

dopamine will have little effect on a decentralized rhythm which is still cycling.  Taken 

together, the multiple types of activity that dopamine can generate, both quantifiable and 

not quantifiable, suggest minimally that dopamine is not positively modulating the 

attributes of excitability. 

Dopamine can be distinguished from the decentralized state in the inter-spike interval 

attribute.  Exploring the effects of dopamine and octopamine on the attributes of 

excitability was a reasonable place to start qualifying and quantifying their effects on the 

pyloric circuit of C. borealis.  Given the vast amount of literature describing their effects 

in lobster and the limited literature in crab, at a minimum, we would have expected some 

change in the excitability attributes under these amine conditions.  While there were some 
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statistical differences with octopamine application, there were no differences qualitatively 

or quantitatively between dopamine and the decentralized state.  This was surprising, but 

in evaluating the wide range of effects of dopamine, it was clear that focusing only on 

excitability attributes and using a rigorous and restrictive analytical approach would not 

allow the diverse nature of dopamine to present itself.    

When looking at the example dopamine recordings, both the functional and 

abnormal, what stands out are the changes in waveform of each of the pyloric neurons.  

Based on this qualitative observation, we explored how dopamine was modulating 

attributes of the underlying slow wave oscillation in the PD neuron.   

The attributes of the slow wave oscillation that we evaluated are largely under the 

control of potassium, calcium and leak currents, all of which have been reported to be 

modulated by dopamine in pyloric neurons (Harris-Warrick and Johnson, 2010).  While 

suggestive, the results presented here are not intended as a proposal of any mechanism for 

dopamine modulation.  Instead, the differences in these attributes of the slow wave 

oscillation may serve as a starting point to further explore how these amines may be 

modulating these intrinsic currents leading to the modulation of the slow wave oscillation 

attributes reported here.    

The effects of dopamine on aspects of PD’s slow wave oscillation including trough 

potential, amplitude and spike prominence have been previously described (Flamm and 

Harris-Warrick, 1986b).  This current work evaluated the same attributes which had been 

previously reported in addition to the inter-spike interval, half width and LP to PD mean 

synaptic area to capture more holistically where these amines may be exerting an effect.   
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Amplitude.  When quantified and statistically tested, the dopamine oscillation amplitude 

was not statistically smaller compared to the decentralized but there was a reduction in the 

mean value.  Because a reduction of leak current can recapitulate the effects of peptide 

activated IMI (Zhao et al., 2010), these results suggest that dopamine may be reducing the 

amplitude of oscillation by increasing the amount of leak current.  We only included the 

dopamine experiments which were used in the 12-dimensional analysis so a difference 

between decentralized and dopamine may become apparent with an increase in sample 

size.   

Mean spike prominence.  Any increase in spike prominence could suggest a modulation 

of sodium current by either dopamine.  When statistically tested, there was no difference 

between dopamine and decentralized.  This result suggests that either dopamine is not 

modulating this current at this concentration.   

Half width.  Underlying the half with of the oscillation are calcium currents which initiate 

the oscillation and calcium dependent potassium currents which terminate the oscillation.  

When plotted as individual experimental means, there was a single dopamine response 

which had a significantly higher half width value and is likely an outlier.  When statistically 

tested, the effect of dopamine was not statistically different compared to decentralized.     

When dopamine application results in a loss of tri-phasic activity, there is no 

appreciable PD neuron oscillation meaning there is no measurable half width.  While 

dopamine may be modulating these currents in the PD neuron, its effect could only be seen 

if there was still a baseline level of activity.  How dopamine is modulating these currents 

and under what conditions an increase in half width or a loss of rhythmic activity leading 
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to a loss of measurable half width occurs is beyond the scope of this work but leaves many 

future directions to explore.   

Inter-spike interval.  The inter-spike interval is shaped by two main factors, the refractory 

period as well as potassium currents, specifically the A-type potassium current (Falk et al., 

2003).  The calcium dependent potassium current can also contribute to a change in inter-

spike interval during spike frequency adaptation (Ha and Cheong, 2017).  While not direct, 

any statistical increase in this attribute by a modulator would suggest a modulation of these 

currents in the crab PD neuron.   

When plotted as individual animal means, the dopamine responses were highly 

distributed compared to the decentralized responses.  When statistically tested, there was a 

significant difference between the dopamine response and decentralized.  This result with 

dopamine suggests a modulation of the A-type potassium current.  While the calcium 

dependent potassium current may also be playing a role, these neurons were not spiking 

rapidly so spike frequency adaptation is not likely to be a mechanism here.  A higher 

concentration of dopamine would likely increase the consistency in response across 

animals though the effect of a higher concentration would be different than the results 

presented here.  When dopamine application results in a complete loss of rhythmic activity, 

the PD neuron often fires only a single spike per burst.  This would consistently result in 

an inter-spike interval of 0.   

Mean synaptic area.  The effect of dopamine was not statistically different compared to 

the decentralized state in the synaptic area attribute.  Dopamine reportedly enhances the 

LP to PD synapse in spiny lobster and although not statistically meaningful, there was an 

increase in the mean synaptic area when dopamine is compared to the decentralized.  This 
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may suggest a potential enhancement of this synapse which is obscured by the variable 

dopamine response.  An increase in concentration may reduce the degree of variability but 

would not lead to statistical difference between decentralized and dopamine. 

This assessment comes from the qualitative observation of the range of outputs 

dopamine can generate.  When dopamine application results in a loss of rhythmic activity, 

the LP neuron either stops spiking completely or fires tonically and its oscillatory activity 

becomes significantly dampened (see Figure 4.3 B).  Both the spike mediated and graded 

components of this synapse are subject to neuromodulation (Zhao et al., 2011) and when 

dopamine application results in a loss of functional activity, the synaptic input is effectively 

non-existent.  This outcome is similar to decentralization and most of the dopamine 

observations are clustered in the same range of values as the decentralized.   

There are a few observations that show an enhancement of this synapse.  One 

possibility for this mixed response is a differential effect of dopamine on the spike 

mediated and graded components of this synapse.  It has been previously reported that 

dopamine differentially modulates the spike mediated and graded components of the LP to 

PD synapse (Ayali et al., 1998).  Here dopamine reduced the LP to PD spike mediated 

component of the synapse by reducing the input resistance in the PD neuron.  The graded 

component of this synapse, however, was enhanced by dopamine application (Johnson et 

al., 1995).  If dopamine also differentially modulates the two components of this synapse 

in crab, it is possible that the state of the LP neuron before dopamine application could 

result in an enhancement of this synapse if, for example, LP was not spiking but regularly 

oscillating.  Additionally, an incomplete inhibition of PD activity with no or limited 

decrease in input resistance could result in an overall enhancement of this synapse.   
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Paired trough voltage.  The LP to PD synapse is glutamatergic with a reversal potential 

of about -70 mV.  A strongly enhanced modulated synapse will move the trough voltage 

towards its reversal potential whereas a weakly nor non-existent modulated synapse would 

result in no change compared to the baseline decentralized state.  When quantified, the 

trough voltage following dopamine application was not statistically different compared to 

the decentralized but in many cases was unpredictable.   

The response to dopamine application in this attribute lead to a depolarization of 

the trough, a hyperpolarization or in some cases no appreciable change.  Because of the 

inconsistency in response, it is hard to make any statement about what may be happening 

with dopamine application and this attribute.   

From the synaptic area comparison, dopamine may not modulate this synapse or 

may have state dependent effects.  Statistically, though, the decentralized and dopamine 

responses were not different.  Outside of the synaptic influence, intrinsic currents may also 

be playing a role in setting the trough voltage, specifically the hyperpolarized activated 

inward current.  This current is most strongly activated at highly hyperpolarized potentials, 

is subject to modulation by amines in pyloric neurons and can contribute to setting the 

membrane potential (Golowasch and Marder, 1992a; Lupica et al., 2001; Peck et al., 2006).  

Considering the membrane potential at the trough, other intrinsic currents are likely not 

participating in the shaping of this attribute.  The caveat to this is the low level of h current 

in PD neurons (Temporal et al., 2012).  The h current is also temperature sensitive where 

the amount measured can increase significantly at elevated temperatures (Peck et al., 2006).  

At the temperature used in these experiments, it is unlikely that the h current was 
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contributing largely.  It still remains possible though that dopamine is modulating this 

current, leading to the slight depolarization of the trough voltage of PD. 

Balancing flexibility and function in pyloric network output.  Our initial expectation 

was that the application of distinct amines would generate distinct pyloric network outputs, 

adding another layer to the idea of network output flexibility.  This is the same expectation 

that we had when applying individual peptide neuromodulators to the pyloric network.  

Unlike the results with the peptide modulated network outputs, there were no statistical 

differences between any amine in any attributes evaluated here.  If only the statistical 

results are considered, it would suggest that network output flexibility is not achievable 

with amine application.   

The general idea of network output flexibility is the generation of identifiable 

network outputs with distinct neuromodulator application.  While the results presented here 

do not support that, distinct network outputs would likely be generated with an increase in 

amine concentration.  However, these distinct network outputs may or may not be 

quantifiable in the excitability or slow wave oscillation spaces.  From a functional 

perspective though, the generation of qualitatively and quantitatively distinct amine 

network outputs with increased concentration may not be meaningful or functional to the 

intact animal.  While quantitative nuances in tri-phasic activity have been shown to elicit 

distinct muscle responses downstream from the ganglion (Daur et al., 2021), it is unlikely 

that a dopamine elicited rhythm which has lost all tri-phasic activity would signal for any 

meaningful behavior.  This brings up an important distinction between the need to generate 

flexible outputs and the need to generate functional outputs.  Distinct network outputs can 
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easily be elicited but distinct experimentally generated network outputs are not necessarily 

meaningful to the behaving animal.   

While not distinct on their own, a more robust or obvious effect of these amines 

may be found when they are combined with other modulators, specifically neuropeptides.  

The presence of peptides, which are functionally excitatory, can provide a different canvas 

for the amines to act on compared to the canvas provided here which was the decentralized 

state.  Given how important the state of the network is for evaluating a modulator’s action, 

it would be particularly interesting to evaluate how a seemingly non-functional amine 

responds when the network is shifted towards a more functional and excitatory starting 

point.   

 

 

 

 

 

 

 

 

 

 

 

 

 



 

114 
 

CHAPTER 5 

PEPTIDE AND AMINE CO-MODULATION DOES NOT RESTORE 
FLEXIBILITY TO THE PYLORIC NETWORK OUTPUT 

 

5.1 Introduction 

From the previous analyses, the neuropeptides present in the stomatogastric nervous 

system strongly modulate attributes related to excitability.  Octopamine, an amine, also 

functions in this space while dopamine does not positively modulate these attributes when 

quantifiable and can be strongly inhibitory.  While not investigated completely, serotonin 

may also function in a space similar to octopamine, where it provides the network another 

solution to generate functional activity.   

Like the peptides, however, evaluating the effects of dopamine, octopamine or 

serotonin on their own is necessary but not sufficient to understand how these 

neuromodulators are shaping the network output.  It is unlikely that any one amine will be 

acting in isolation.  In particular, it is unlikely that any single amine will be operating in a 

space which is not influenced by the presence of peptides.   

Complements of neuroactive substances can be co-localized at shared synaptic 

terminals and may package into the same vesicle or occupy distinct vesicles, as in the case 

of small molecule transmitters and neuropeptides.  Classic small molecule transmission 

can act locally while neuropeptides can diffuse to modulate targets away from the local 

release at anatomical synapses, acting in a volume transmission capacity.  In complex 

circuits, these types of release can act together to generate outputs which are distinct from 

either neuromodulator acting individually (Fuxe et al., 2010).  Co-transmitters can 

modulate their own release or the release of their co-localized modulator partners 
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(Malcangio and Bowery, 1999; Salio et al., 2006) and can also act separately to suppress 

or promote distinct patterns of activity (Blitz and Nusbaum, 1997, 1999).   

Distinct neuromodulators can also interact and influence each other’s individual 

actions outside of a co-transmission capacity.  In the stomatogastric nervous system, 

neuromodulators such as dopamine can be released into the hemolymph in addition to 

directed release into the ganglion (Marder, 2012).  These circulating neuromodulators 

operate in the nanomolar range and have been thought to set a baseline modulatory tone 

(Rodgers et al., 2011).  Another opportunity for circuit flexibility arises from the interaction 

of an endogenously released neuromodulator into a space that is already under nanomolar 

modulatory influence.  It is reasonable to assume that the circuit outputs achieved in the 

presence of either a sufficiently concentrated endogenously released modulator or 

nanomolar concentration circulating modulator will be different than a circuit output 

achieved in the presence of both.  A low-level modulatory tone may also represent a 

priming effect.  It is known that the effects of neuromodulators are state dependent and the 

presence of a circulating modulator at lower concentration may act to prime the circuit to 

respond in a particular way when an additional modulator is introduced (Nusbaum and 

Marder, 1989; Dickinson et al., 1997; Svensson et al., 2001) 

Neuromodulators signal through G-protein coupled receptors and these receptors 

have multi-step second messenger systems (Lopez and Brown, 1992).  Multiple 

neuromodulators acting on the same neuron, whether it be in a divergent manner where 

each neuromodulator signals through a distinct G-protein mediated signaling cascade or a 

convergent manner where both neuromodulators signal through presumably the same G-

protein, can result in cross-talk (Ramirez et al., 2012).  In mouse taste cells, increased 
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cAMP levels have been linked to an increase in calcium indicating an interaction between 

protein kinase A and protein kinase C, the downstream effectors of Gs and Gq receptor 

activation (Roberts et al., 2009).  Cross-talk between Gi and Gs G proteins in the rat 

amygdala has also been reported with the point of interaction occurring downstream from 

cAMP production (Wang et al., 1999).  In rat hippocampus, GABAB and cannabinoid CB1 

receptors are both coupled to Gi G-proteins and act to inhibit each other’s signaling (Cinar 

et al., 2008).  The ultimate consequence of cross-talk between pathways is a modification 

of output which cannot be recapitulated by the activation of only one signaling pathway.   

In the stomatogastric nervous system, the consequences of co-modulation with 

neuropeptides has been investigated at the level of intrinsic and synaptic currents in the PD 

and LP neurons of the pyloric network (Li et al., 2018).  Peptides all converge to target the 

same effector, though the intracellular signaling pathway mediating this is not known.  

When quantified, the effect of peptide co-modulation is sub-linear at the intrinsic current 

level but additive at the synaptic current level.  This indicates, at the intrinsic current level, 

a point of interaction within the activated signaling pathways which is mutually inhibitory 

and distinct from the type of interaction mediating the change in synaptic current.  The 

consequences of co-modulation with two amines is not known in the pyloric network, 

though the cell type receptor identities and signaling pathways for dopamine and serotonin 

are known, at least in part, and cross-talk between these signaling pathways is likely.   

These distinct classes of neuromodulators, the convergent peptides and divergent 

amines, are likely interacting with each other in the stomatogastric nervous system but we 

do not know the consequences of this interaction.  Therefore, we combined dopamine, 

octopamine or serotonin with either crustacean cardioactive peptide (CCAP) or red 
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pigment concentrating hormone (RPCH), both peptides, and evaluated their combined 

effects on the pyloric network output.  We specifically chose CCAP and RPCH because of 

their high degree of similarity when evaluated individually but, while not statistically 

different, were not identical.  This inflexibility represents an interesting place to test 

whether their network outputs can be separated from each other in the presence of an amine.  

If not, then the assessment that they are degenerate neuropeptides from Chapter 2 may still 

hold.   

This work represents the first quantitative and qualitative exploration of the effects 

of peptide and amine co-modulation and allows for a number of first pass questions to be 

tested.  In particular, we can test again the idea of network output flexibility.  With peptide 

co-modulation, combining multiple peptides together decreased flexibility in the type of 

pyloric network output that could be generated due to IMI convergence.  While a loss of 

one type of flexibility, the pyloric network also gained flexibility by having multiple 

solutions which could generate the same output.  Unlike the peptides which function 

unidirectionally, the amines can effect multiple opposing currents at the same time.  The 

combination of a unidirectional peptide with a bidirectional amine may allow the network 

output to move into novel spaces which were not accessible with only peptides.   

Here we test whether dopamine, octopamine and serotonin contribute to shaping 

the network output when combined with a peptide and whether distinct combinations of 

peptides and amines regain flexibility in the network output that was lost with peptide co-

modulation.   
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5.2 Materials and Methods 

The animals, electrophysiological approach, excitability attribute extraction, Euclidean 

distance and multi-variate permutation test calculation were the same as reported in 

Chapter 2.   

Modulators and experimental protocol: The preparation was decentralized by blocking 

the STN with a 10-7 M TTX (Biotium) + 750 mM sucrose (Sigma) solution.  Dopamine 

hydrochloride (Sigma) was prepared right before application by dissolving in distilled 

water to an initial concentration of 10-2 M.  Care was taken to avoid unnecessary exposure 

to light.  CCAP (Bachem), RPCH (Bachem), serotonin hydrochloride (Sigma) and 

octopamine hydrochloride (Sigma) were diluted with distilled water and initially aliquoted 

to a concentration of 10-3 M and stored until needed.  Final dilution of CCAP or RPCH + 

dopamine, CCAP or RPCH + octopamine and CCAP or RPCH + serotonin occurred 

immediately before application in chilled Cancer borealis saline.  Each co-modulator pair 

was prepared at 10-6 M total concentration.   

Initially, either CCAP or RPCH was applied to the preparation at 10-6 M for 5 

minutes via peristaltic pump.  Following the initial peptide application, the peptide + amine 

combination was immediately applied for 5 minutes.  In cases of repeated application, the 

first co-modulator application was washed out in chilled 10-6 M peptide for a minimum of 

30 minutes.   

N for excitability attribute comparison.  CCAP/CCAP + dopamine = 9, RPCH/RPCH + 

dopamine = 9, CCAP/CCAP + serotonin = 6, RPCH/RPCH + serotonin = 4, CCAP/CCAP 

+ octopamine = 7 and RPCH/RPCH + octopamine = 5.   
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Statistical evaluation: All initial statistical tests were either paired t-tests or One Way 

ANOVA’s and were performed in SigmaPlot.  For the One Way ANOVA tests, if the data 

failed a test for normality or variance, a One Way ANOVA on ranks was performed 

instead.  In all cases a post hoc test was performed following the initial ANOVA test.  Table 

A.6 summarizes all ANOVA statistical tests for Figure 5.8.  Statistical significance was 

determined as follows: * p < 0.05, ** p < 0.01, *** p < 0.001. 

 

5.3 Results 

Building on the previous work evaluating the effects of single peptide and amine 

neuromodulators on the pyloric network output, we next asked the consequences of 

combining individual peptides and amines together on the network output.  We first wanted 

to ask whether the presence of an amine had a qualitative or quantitative effect compared 

to a singularly applied peptide response.  Therefore, we qualified the effects of each co-

modulated network output with respect to its peptide constituent and quantified their effects 

on the four attributes of activity previously evaluated.   

Because the full effects of both CCAP and RPCH were previously shown in 

Chapter 2, we did not quantify the effects of either the peptide or the peptide and amine 

co-modulated conditions with respect to either the intact or decentralized baseline state.  In 

Chapter 2, both peptides positively modulated the cycle frequency, spike number and spike 

frequency attributes whereas in Chapter 4, dopamine and octopamine had limited to no 

effect on these attributes.  Because of that, we do not expect the presence of any amine to 

have any appreciable effect in those attributes compared to the peptide alone. 
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It is more difficult to form an expectation for the phase attribute.  The hypothesis 

presented in Chapter 2 suggests that the neuropeptides maintain phase through activation 

of IMI in the pacemaker neuron and any activation of IMI in the follower neurons can 

modulate aspects of that neuron’s excitability, spike number and frequency, but do not 

modulate phase.  The amines, however, presumably modulate intrinsic currents such as the 

A-type potassium current and h current.  Both of these currents are known to modulate the 

phasing of the pyloric neurons in the spiny lobster.  By combining these two classes of 

modulator together, it is unclear if the presence of the peptide through IMI activation in the 

pacemaker will dominate and maintain the phase of these neurons in the co-modulated 

condition or if the presence of the amine will dominate and shift the phases relative to the 

peptide control.   

Co-application of CCAP and dopamine does result in statistical differences in phase, 

spike number and spike frequency compared to CCAP.  When evaluated qualitatively, 

the addition of dopamine did not generate an appreciably distinct rhythm compared to 

CCAP alone outside of a decrease in both LP and PY spiking activity (Figure 5.1 A).   

Because there was a slight change in some of the attributes of activity when 

qualified, we quantified the effect of CCAP + dopamine co-modulation on the cycle 

frequency, phases, spike number and spike frequency parameters of the pyloric network.    

When quantified, there were no statistical differences between CCAP and CCAP + 

dopamine in cycle frequency (Figure 5.1 B).  In phase, there was a statistical difference 

between CCAP and CCAP + dopamine in the PD off phase (paired t-test: t8 = -3.075, p-

value = 0.015) and the LP on phase (paired t-test: t8 = -2.370, p-value = 0.045) (Figure 5.1 

C).  There were also statistical differences in the PY spike number parameter (paired t-test: 
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t8 = 3.663, p-value = 0.006) (Figure 5.1 D), PD spike frequency (paired t-test: t8 = 3.966, 

p-value = 0.0041) and PY spike frequency (paired t-test: t8 = 8.504, p-value = <0.001) 

(Figure 5.1 E).   

Co-application of RPCH and dopamine does result in  statistical differences in phase, 

spike number and spike frequency compared to RPCH.  When evaluated qualitatively, 

the activity of the PD and LP neurons with RPCH + dopamine looked qualitatively similar 

to the RPCH elicited activity.  The PY neuron, however, did appear to change qualitatively.  

In the presence of the co-modulated condition, there was an apparent change in the duration 

 
 
Figure 5.1 Qualitative and quantitative response of the core pyloric neurons to 
CCAP and CCAP + dopamine co-modulator application.  (A) Example trace of 
pyloric network response to sequential application of CCAP and CCAP + 
dopamine.  (B) Quantitative response in cycle frequency to CCAP and CCAP + 
dopamine application.  Bars represent means, individual points represent individual 
animal responses.  Color of bars and filled points indicates the peptide used and 
outline of bars and points represent amine used.  (C) Quantitative response in phase 
to CCAP and CCAP + dopamine application.  Color of bars and filled points 
indicates the peptide used and outline of bars and points represent amine used.  The 
filled circles indicate the off phase of each neuron while the filled diamonds 
indicate the on phase of each neuron.  (D) Quantitative response in spike number 
to CCAP and CCAP + dopamine application.  Bars and points are the same as 
described in B.  (E) Quantitative response in spike frequency to CCAP and CCAP 
+ dopamine application.  Bars and points are the same as described in B.   
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of PY bursting and a decrease in the spiking activity with no apparent change to any of the 

pyloric waveforms (Figure 5.2 A).  When the cycle frequency was quantified, there was no 

statistical difference (Figure 5.2 B).  In phase, the RPCH + dopamine co-modulated 

condition was statistically different from RPCH in the phase of PD off (Wilcox Signed 

Rank Test: Z = 2.66, p-value = 0.004), LP on (paired t-test: t8 = 2.55, p-value = 0.033) and 

PY on (paired t-test: t8 = -3.067, p-value = 0.015) (Figure 5.2 C).  In the spike number 

attribute, the LP (paired t-test: t8 = 2.376, p-value = 0.045) and PY (Wilcox Signed Rank 

Test: Z = -2.547, p-value = 0.008) spike numbers under the co-modulated condition were 

statistically lower compared to the RPCH response alone (Figure 5.2 D).  Lastly, in spike 

frequency, the RPCH + dopamine response was statistically lower compared to the RPCH 

response in PY spike frequency (paired t-test: t8 = 3.363, p-value = 0.010) (Figure 5.2 E).  
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Co-application of peptide and dopamine does not generate a distinct network output 

in the 12D network output space compared to the individual peptides.  In the six 

peptide and amine comparisons, the co-modulated network outputs with dopamine had a 

number of statistical differences compared to their peptide constituents.  We therefore 

asked whether the CCAP network outputs were statistically different from the CCAP + 

dopamine network outputs and whether the RPCH network outputs were statistically 

different from the RPCH + dopamine network outputs in the 12-dimensional network 

output space.  To do this, we combined the network outputs of CCAP, RPCH, CCAP + 

 
 
Figure 5.2 Qualitative and quantitative response of the core pyloric neurons to 
RPCH and RPCH + dopamine co-modulator application.  (A) Example trace of 
pyloric network response to sequential application of RPCH and RPCH + 
dopamine.  (B) Quantitative response in cycle frequency to RPCH and RPCH + 
dopamine application.  Bars represent means, individual points represent individual 
animal responses.  Color of bars and filled points indicates the peptide used and 
outline of bars and points represent amine used.  (C) Quantitative response in phase 
to RPCH and RPCH + dopamine application.  Color of bars and filled points 
indicates the peptide used and outline of bars and points represent amine used.  The 
filled circles indicate the off phase of each neuron while the filled diamonds 
indicate the on phase of each neuron.  (D) Quantitative response in spike number 
to RPCH and RPCH + dopamine application.  Bars and points are the same as 
described in B.  (E) Quantitative response in spike frequency to RPCH and RPCH 
+ dopamine application.  Bars and points are the same as described in B.   
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dopamine and RPCH + dopamine and z-score standardized them (Figure 5.3 A) before 

running the Euclidean distance and multi-variate permutation test.   

 When quantified, there was no statistical difference between the CCAP and CCAP 

+ dopamine network outputs or between the RPCH and RPCH + dopamine network outputs 

(Figure 5.3 B), though the distance between RPCH and RPCH + dopamine was smaller 

indicating more similarity.  We then visualized the network outputs of all four conditions 

in a reduced principal component space (Figure 5.3 C).  In this space, there was a large 

amount of overlap between each co-modulated condition and its peptide constituent, 

leading to the lack of difference detected when quantified.  

 

 

 
 
Figure 5.3 12D statistical testing of difference between CCAP versus CCAP + 
dopamine and RPCH versus RPCH+ dopamine network outputs.  (A) Euclidean 
distance measurements and statistical assessment of difference between each 
peptide and peptide and amine co-modulated network output.  The outline of each 
individual point represents the presence of dopamine while the fill represents the 
peptide used.  (B) Euclidean distance measurements and statistical assessment 
between each individual peptide and its co-modulated network outputs.  (C) 
Projection of all observations from all conditions in a 3-dimensional principal 
component space.  Each distribution of scores was fit with a convex hull.   
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Co-application of CCAP and serotonin does result in statistical differences in cycle 

frequency and the PY on phase compared to CCAP.  When qualified, there was no 

obvious difference between the CCAP elicited network output and the co-applied CCAP + 

serotonin network output (Figure 5.4 A).  When quantified, the co-applied CCAP + 

serotonin cycle frequency was statistically higher compared to CCAP alone (paired t-test: 

t5 = -3.369, p-value = 0.02) (Figure 5.4 B).  In the phase attribute, the phase onset of PY 

was statistically delayed under the co-modulated condition compared to the peptide alone 

(paired t-test: t5 = -2.607, p-value = 0.047) but there were no other differences in phase 

(Figure 5.4 C).  Additionally, there were no differences between the single peptide and co-

modulated responses in the spike number or spike frequency attributes (Figure 5.4 D and 

E).   
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Co-application of RPCH and serotonin does not result in any statistical differences in 

the four attributes quantified compared to RPCH alone.  Qualitatively, the only 

apparent difference between the RPCH elicited network output and the RPCH + serotonin 

network output was a change in the spiking behavior of the LP neuron (Figure 5.5 A).  

When quantified, however, there were no statistical differences across any of the attributes 

evaluated (Figure 5.5 B-E).   

 

 
 
Figure 5.4 Qualitative and quantitative response of the core pyloric neurons to 
CCAP and CCAP + serotonin co-modulator application.  (A) Example trace of 
pyloric network response to sequential application of CCAP and CCAP + 
serotonin.  (B) Quantitative response in cycle frequency to CCAP and CCAP + 
serotonin application.  Bars represent means, individual points represent individual 
animal responses.  Color of bars and filled points indicates the peptide used and 
outline of bars and points represent amine used.  (C) Quantitative response in phase 
to CCAP and CCAP + serotonin application.  Color of bars and filled points 
indicates the peptide used and outline of bars and points represent amine used.  The 
filled circles indicate the off phase of each neuron while the filled diamonds 
indicate the on phase of each neuron.  (D) Quantitative response in spike number 
to CCAP and CCAP + serotonin application.  Bars and points are the same as 
described in B.  (E) Quantitative response in spike frequency to CCAP and CCAP 
+ serotonin application.  Bars and points are the same as described in B.   
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Co-application of CCAP and octopamine does result in statistical differences in cycle 

frequency and LP spike number compared to CCAP.  There were no apparent 

differences between the CCAP elicited network output and the CCAP + octopamine 

network output.  Out of the three amines tested, octopamine appeared to have the smallest 

effect and the CCAP + octopamine network output appeared to completely mirror the 

individual CCAP effect on the network output (Figure 5.6 A).   

 

 
 
Figure 5.5 Qualitative and quantitative response of the core pyloric neurons to 
RPCH and RPCH + serotonin co-modulator application.  (A) Example trace of 
pyloric network response to sequential application of RPCH and RPCH + 
serotonin.  (B) Quantitative response in cycle frequency to RPCH and RPCH + 
serotonin application.  Bars represent means, individual points represent individual 
animal responses.  Color of bars and filled points indicates the peptide used and 
outline of bars and points represent amine used.  (C) Quantitative response in phase 
to RPCH and RPCH + serotonin application.  Color of bars and filled points 
indicates the peptide used and outline of bars and points represent amine used.  The 
filled circles indicate the off phase of each neuron while the filled diamonds 
indicate the on phase of each neuron.  (D) Quantitative response in spike number 
to RPCH and RPCH + serotonin application.  Bars and points are the same as 
described in B.  (E) Quantitative response in spike frequency to RPCH and RPCH 
+ serotonin application.  Bars and points are the same as described in B.   
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When quantified, the effect of CCAP + octopamine was statistically different from the 

CCAP response in cycle frequency (paired t-test: t6 = -2.544, p-value = 0.043) (Figure 5.6 

B).  In the phase attribute, there were no statistical differences between CCAP and CCAP 

+ octopamine (Figure 5.6 C).  In the spike number attribute, the CCAP + octopamine 

response was statistically different from CCAP in PD spike number (paired t-test: t6 = -

3.678, p-value = 0.010) (Figure 5.6 D) and in LP spike number (Wilcox Signed Rank Test: 

Z = -2.028, p-value = 0.047) (Figure 5.6 E). 

 
 
Figure 5.6 Qualitative and quantitative response of the core pyloric neurons to 
CCAP and CCAP + octopamine co-modulator application.  (A) Example trace of 
pyloric network response to sequential application of CCAP and CCAP + 
octopamine.  (B) Quantitative response in cycle frequency to CCAP and CCAP + 
octopamine application.  Bars represent means, individual points represent 
individual animal responses.  Color of bars and filled points indicates the peptide 
used and outline of bars and points represent amine used.  (C) Quantitative response 
in phase to CCAP and CCAP + octopamine application.  Color of bars and filled 
points indicates the peptide used and outline of bars and points represent amine 
used.  The filled circles indicate the off phase of each neuron while the filled 
diamonds indicate the on phase of each neuron.  (D) Quantitative response in spike 
number to CCAP and CCAP + octopamine application.  Bars and points are the 
same as described in B.  (E) Quantitative response in spike frequency to CCAP and 
CCAP + octopamine application.  Bars and points are the same as described in B.   
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Co-application of RPCH and octopamine does not result in a qualitatively or 

quantitatively distinct network output compared to RPCH.  Lastly, we qualified and 

quantified the effects of RPCH and RPCH + octopamine.  When qualified, there was no 

apparent difference between the individual peptide elicited response and the co-applied 

RPCH + octopamine response (Figure 5.7 A).  When quantified, there were no statistical 

differences between RPCH and RPCH + octopamine in the four attributes evaluated 

(Figure 5.7 B-E).     

 
 
Figure 5.7 Qualitative and quantitative response of the core pyloric neurons to 
RPCH and RPCH + octopamine co-modulator application.  (A) Example trace of 
pyloric network response to sequential application of RPCH and RPCH + 
octopamine.  (B) Quantitative response in cycle frequency to RPCH and RPCH + 
octopamine application.  Bars represent means, individual points represent 
individual animal responses.  Color of bars and filled points indicates the peptide 
used and outline of bars and points represent amine used.  (C) Quantitative response 
in phase to RPCH and RPCH + octopamine application.  Color of bars and filled 
points indicates the peptide used and outline of bars and points represent amine 
used. The filled circles indicate the off phase of each neuron while the filled 
diamonds indicate the on phase of each neuron.  (D) Quantitative response in spike 
number to RPCH and RPCH + octopamine application.  Bars and points are the 
same as described in B.  (E) Quantitative response in spike frequency to RPCH and 
RPCH + octopamine application.  Bars and points are the same as described in B.   
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Distinct combinations of peptides and amines are quantitatively distinct from each 

other across the four attributes of excitability.  Lastly, we wanted to quantify whether 

distinct combination of peptide and amines were distinct from each other across the four 

attributes of excitability.  When evaluated individually, there were differences between 

individual co-modulated pairs and their peptide constituents and it is likely that each 

individual amine is signaling through its own distinct cellular pathway.  Therefore, it is 

possible that when the co-modulated conditions are compared to each other, there will be 

differences in their actions across these attributes.    

 We can combine the results from the previous three chapters to form a set of 

expectations for this analysis.  In Chapter 2 the CCAP and RPCH cycle frequency 

responses were statistically different but in Chapter 4 there were no statistical differences 

between the three amines tested.  Therefore, we do not expect a difference between the co-

modulated pairs which share the same peptide but there may be differences across co-

modulated pairs which differ in their peptide.   

The spike number and spike frequency attributes were strongly modulated by the 

individual peptides in Chapter 2 and the CCAP and RPCH responses were statistically 

different in LP spike number and PD spike frequency.  Dopamine did not modulate these 

attributes when quantifiable and octopamine did not appreciably modulate these attributes 

outside of a statistical decrease in PY spike number in Chapter 4.  Therefore, it is possible 

that the co-modulated pairs with CCAP may be different in some parameters of the spike 

number and frequency attributes compared to the RPCH co-modulated pairs.  Additionally, 

the presence of octopamine may inhibit the spiking activity of the PY neuron when 
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combined with either peptide allowing the pairs with octopamine to be differentiated from 

the dopamine and serotonin co-modulated pairs.  

The expectation with phase is unclear for the same reason as previously mentioned.  

Because the amines used here presumably modulate the intrinsic currents which can shift 

the phases of the pyloric neurons, it is possible that their effects will dominate over the 

activation of IMI in the pacemaker neuron by the peptides.  If the presence of the amines 

dominates over the peptides in this attribute, it is unlikely that all three amines would be 

modulating these currents in the same way, leading to potential differences across the 

distinct co-modulated conditions.   

We also tested each peptide and amine co-modulated pair against the intact and 

decentralized conditions.  Our expectation in all cases is that there will be differences 

across the four attributes between the co-modulated pairs and the baseline states.   

Cycle frequency.  In the cycle frequency attribute, the intact response was statistically 

different from all other conditions tested while the decentralized response was statistically 

different from all co-modulated conditions which contained RPCH.  Across the co-

modulators, the CCAP + dopamine response was statistically different from the RPCH + 

dopamine and RPCH + octopamine responses (One way ANOVA: F(7,86) = 41.34, p < 

0.001) (Figure 5.8 A).   

Phase.  In the phase attribute the decentralized response in PD off was statistically different 

than the intact, CCAP + dopamine and RPCH + dopamine while RPCH + dopamine was 

statistically different from CCAP + serotonin and CCAP + octopamine (One way ANOVA: 

F(7,86) = 6.718, p < 0.001).  There were no statistical differences in the phase of LP on (One 

way ANOVA on Ranks: H = 12.383, p = 0.089) and in the phase of LP off, the 
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decentralized response was statistically different from all conditions except CCAP + 

dopamine (One way ANOVA on Ranks: H = 52.635, p <0.001).  In the PY on phase, the 

decentralized response was statistically different from the intact, all three CCAP co-

modulated pairs and RPCH + dopamine (One way ANOVA: F(7,86) = 7.003, p < 0.001) 

while there were no differences in the PY off phase (Figure 5.8 B).   

Spike number.  In the spike number attribute, a one way ANOVA on ranks indicated a 

statistical difference in PD spike number (One way ANOVA on Ranks: H = 20.822, p = 

0.004) and PY spike number (One way ANOVA on Ranks: H = 17.672, p = 0.014) but a 

post hoc analysis did not indicate any condition specific effects in either case.  In LP spike 

number, the decentralized response was statistically different compared to all other 

conditions (One way ANOVA: F(7,86) = 11.459, p < 0.001) (Figure 5.8 C).   

Spike frequency.  Lastly, in the spike frequency attribute, the intact response was 

statistically different from both co-modulator pairs with dopamine and CCAP + serotonin 

in the PD spike frequency parameter (One way ANOVA on Ranks: H = 57.076, p < 0.001).  

In LP spike frequency, the decentralized response was statistically different from all other 

comparisons and the intact response was statistically different compared to the CCAP + 

dopamine response (One way ANOVA: F(7,86) = 19.007, p < 0.001).  In PY spike frequency, 

the intact response was statistically different from all other conditions (One way ANOVA: 

F(7,86) = 18.262, p < 0.001).   
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Dopamine may be priming the pyloric circuit differently than a peptide.  While there 

were limited statistical differences across the peptide and amine co-modulator 

comparisons, these results suggested that the presence of an amine in combination with a 

peptide was not contributing significantly to the pyloric network output.  The design of 

these experiments utilized sequential application of neuromodulators.  In the experiments 

 
 
Figure 5.8 Quantitative response of the core pyloric neurons to peptide and amine co-
modulator application.  In all panels, the color of the bars and the fill of the individual 
points indicate the peptide used and the outline of the bars and individual points indicate 
the amine used.  (A) Cycle frequency response following peptide and amine application.  
Bars represent means and individual points represent individual animal responses.  (B) 
Phase response following peptide and amine application.  Bars represent means and 
individual points represent individual animal responses.  The filled circles indicate the 
off phase of each neuron while the filled diamonds indicate the on phase of each neuron.  
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used for this analysis, the peptide was applied first at 10-6 M concentration and then the co-

modulator pair was applied immediately after but in some experiments the order was 

reversed, and the amine was applied first.  When 10-6 M CCAP was applied first instead of 

the peptide, a quantifiable tri-phasic network output was reliably generated in all cases.  

When the same concentration of dopamine was applied first and followed with co-

application of CCAP + dopamine, a quantifiable rhythm was not always generated (Figure 

5.9 A-B).  In two experiments, an obviously perturbed rhythm was generated.  Features of 

these rhythms included a cycle period of ~10 seconds, dramatic shifts in phase between the 

LP and PY neurons where the PY neuron fired completely in LP time, and a combination 

of bursting and tonic firing of the PD neuron.  This effect was clearly a result of the 

presence of dopamine and washed out completely.  While inconsistent, this difference in 

response depending on which modulator was applied first could represent a priming effect 

of the circuit by dopamine.  Interestingly, a perturbed response never occurred when RPCH 

+ dopamine followed dopamine application.   
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5.4 Discussion 

Evaluating a network under the influence of both a peptide and an amine represents an 

interesting opportunity to both test and speculate as to the consequences of combining two 

distinct classes of neuromodulators.  From the previous chapters, we have an understanding 

about the base effects of single peptides and amines as well as co-modulation with peptides 

on the pyloric network output.  The results presented here represent the culmination of 

those works where we can test if the addition of an amine modulates an existing peptide 

elicited network output and whether network output flexibility can be regained through 

peptide and amine co-modulation.  The largest caveat to the results testing whether the 

presence of an amine modulates an existing peptide network output is the concentration of 

 
 
Figure 5.9 Perturbed response of the core pyloric neurons to CCAP and dopamine co-
modulator application when dopamine was applied first.  Each panel represents a single 
animal.  (A) Following decentralization where the pyloric rhythm ceased activity 
application of 10-6 M dopamine resulted in a loss of functional activity.  When 10-6 M 
total concentration of CCAP + dopamine was then applied, an abnormal pyloric rhythm 
was generated.  Regular pyloric activity was restored following a wash in saline.  (B) 
In a separate experiment where decentralization did not result in a loss of pyloric 
activity, application of 10-6 M dopamine resulted in a tonic activity.  When 10-6 M total 
concentration of CCAP + dopamine was then applied, an abnormal pyloric rhythm was 
generated which was distinct from the abnormal behavior in the previous panel.  This 
effect also washed out.   
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modulators used in those analyses.  The individual peptides were applied at 10-6 M 

concentration whereas the co-applied modulators were applied at a total concentration of 

10-6 M concentration.  Therefore, while we can speculate as to the actions of the amines on 

the pyloric network responses reported here, it is important to note that we cannot make a 

clear one to one comparison and any differences found may be the result of the difference 

in concentration of peptide used.     

The presence of dopamine does modulate an existing peptide network output across 

the attributes of excitability but does not persist in the 12-dimensional space.  While 

the effects of individual peptides and amines were evaluated in previous chapters, it was 

unclear if the addition of an amine would appreciably modify an existing peptide network 

output.  Therefore, as a first step, we qualified and statistically tested the four attributes of 

excitability in the presence of the peptide alone and in combination with dopamine.  When 

the CCAP elicited rhythms were tested against the CCAP + dopamine elicited rhythms, 

there were a number of statistical differences between the two.  In the phase attribute, there 

were statistical differences in the PD off phase and LP on phase where the presence of 

dopamine extended the duty cycle of PD and delayed the onset of LP phase.  In both cases, 

the presence of dopamine in this co-modulated pair recapitulated the effects of dopamine 

evaluated in isolation in Chapter 4.  In that analysis, the duty cycle of PD was statistically 

larger than CCAP and the on phase of LP was delayed, though not significantly.  The 

difference between that work and these current results is the concentration of dopamine 

used.  In the previous chapter, both dopamine and CCAP were applied at 10-6 M 

concentration.  In these results, CCAP was still applied at 10-6 M concentration, but the 
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concentration of dopamine is half of that.  Despite being at half the concentration, the 

changes in phase suggest that dopamine is having an effect at this reduced concentration.   

Across the four attributes evaluated, we expected the possibility of statistical 

differences in phase due to dopamine’s presumed modulation of intrinsic currents which 

can shift the phases which the peptides cannot do.  While suggestive, the caveat to this 

result is the concentration of dopamine used.   

In the spike number and spike frequency attributes, the co-modulated CCAP + 

dopamine response was also statistically different compared to the CCAP response in PY 

spike number, PD spike frequency and PY spike frequency.    Initially, we did not expect 

the presence of dopamine to have any effect in these attributes because when evaluated 

individually, dopamine did not modulate these attributes.  The statistical differences 

presented here may suggest that the presence of dopamine, likely signaling through D2 

receptors, in combination with CCAP is inhibiting the activity of these neurons.  An 

alternative explanation for the statistical differences between the individual peptide and the 

co-modulated condition, however, is the difference in concentration used.   

The comparison between RPCH and RPCH + dopamine also resulted in a number 

of statistical differences in phase, spike number and spike frequency.  Notably again, the 

increase in PD duty cycle and delay in LP and PY on phase in the dopamine co-modulated 

condition.  Additionally, the differences in the spike number and frequency attributes may 

also indicate an activation of D2 receptors which may be slightly inhibiting the activity of 

these neurons .  While these decreases may also reflect the reduced concentration of RPCH 

used in the co-modulated condition, out of the three co-modulated comparisons tested, the 
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pairing with dopamine was the only one where there were statistical differences in these 

attributes.   

 Due to the number of differences found when either CCAP or RPCH were tested 

against their respective dopamine co-modulated responses across the four attributes of 

excitability, we then asked whether those differences persisted in the 12-dimensional 

network output space.  Neither the CCAP network outputs nor the RPCH network outputs 

were statistically different compared to their dopamine co-modulated network outputs.  

While there were not different, when visualized in the reduced principal component space, 

the distributions of each individual peptide compared to their respective co-modulated 

distributions were not identical.  In both the CCAP and RPCH co-modulated distributions, 

there was a shift relative to the distributions of only the peptide.  This could be indicative 

of dopamine’s actions, or it could simply be due to a difference in the concentration of the 

peptide used in both cases. 

The presence of serotonin modulates some aspects of an existing CCAP network 

output but not an existing RPCH network output across the attributes of excitability.  

The effects of serotonin were briefly evaluated in Chapter 4.  In those results, the cycle 

frequency following serotonin application was slightly higher than that of CCAP but not 

statistically different and there was a significant delay in on phase of LP compared to 

CCAP.  The results presented here showed a statistical difference in cycle frequency with 

CCAP + serotonin compared to CCAP alone.  Because the concentration of peptide used 

in the co-modulated condition was half of the peptide alone, it is unlikely that the increase 

in cycle frequency was related to the presence of the peptide.  This result suggests that the 

presence of serotonin in combination with CCAP is acting to speed the pyloric rhythm up, 
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though it is marginal.  Additionally, the single statistical difference between CCAP and 

serotonin when both were evaluated individually, in LP on phase, was lost when CCAP 

was compared to the co-applied CCAP + serotonin response.  This result suggests that in 

this phase, the phase modulation by serotonin was overshadowed by the presence of CCAP.  

There was, however, a statistical difference in the on phase of PY, though the delay 

following CCAP + serotonin application was marginal.  It is likely that this statistical 

difference would be lost with an increase in sample size.   

 Our initial expectation was that the amines would have limited to no effect on the 

spike number or spike frequency attributes when combined with a peptide.  In this 

comparison, there were no statistical differences between CCAP and CCAP + serotonin.  

While we did not evaluate the effects of serotonin alone on these attributes, these results 

suggest that serotonin is having no effect at this concentration.    

 When the RPCH + serotonin co-modulated network outputs were compared to 

RPCH alone, there were no statistical differences in any attribute evaluated.  When 

qualified, the addition of serotonin did not appear to have any significant effect either with 

the exception of a change in the example LP neuron’s burst duration.  Both the qualification 

and quantification suggest that serotonin is having no effect at this concentration on an 

RPCH elicited network output.   

The presence of octopamine modulates an existing CCAP network output but not an 

existing RPCH network output across the attributes of excitability.  When qualified, 

the CCAP and CCAP + octopamine network outputs looked indistinguishable.  This was 

interesting because of the difference in concentration used for the single peptide and co-

applied condition.  This strong recapitulation of a CCAP network output by CCAP + 
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octopamine could indicate the octopamine works synergistically with CCAP to maintain 

the pyloric network output.  When qualified on its own in Chapter 4, octopamine also 

generated a pyloric network output which strongly resembled that of CCAP or the intact 

state.   

 When quantified, there was a statistical difference between CCAP and CCAP + 

octopamine in cycle frequency.  Like the increase in cycle frequency with CCAP + 

serotonin compared to CCAP alone, this increase is unlikely related to the concentration of 

peptide used.  When quantified individually in Chapter 4, the cycle frequency under 

octopamine conditions was marginally higher though not statistically higher compared to 

CCAP.  The result presented in this work suggests that the combination of CCAP and 

octopamine are working synergistically to increase the cycle frequency.   

 There were no differences in the phase attribute between CCAP and CCAP + 

octopamine.  This result is not surprising considering the lack of statistical differences 

between these two conditions in the phase attribute when evaluated individually which 

indicated that octopamine was either not modulating the intrinsic currents which could shift 

the phases or was not at a high enough concentration when evaluated individually.  In this 

current work, that concentration was halved so it is not surprising that there were no 

differences.  There were statistical differences in the PD and LP spike number parameters 

between CCAP and CCAP + octopamine, however, but both were marginal.  The 

difference in PD spike number is likely a reflection of a slight increase in mean value.  The 

difference in LP spike number likely comes from the single CCAP experiment which 

would likely be considered an outlier and shifted the mean value enough for a statistical 

difference to emerge.  We initially expected a difference in PY spike number between 
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CCAP and CCAP + octopamine due to octopamine’s inhibitory effect on the PY neuron 

when evaluated individually.  When tested though, there was no statistical difference 

between the two modulated conditions.  This may be the result of octopamine not being at 

a high enough concentration to sufficiently inhibit PY’s activity.   

 Lastly, like CCAP, the application of RPCH + octopamine strongly recapitulated 

the RPCH network output when qualified.  When statistically tested, there were no 

differences between RPCH and RPCH + octopamine.  These results indicated that 

octopamine was not contributing to shaping the pyloric network output when combined 

with RPCH.  When evaluated individually in Chapter 2, the network outputs of CCAP and 

RPCH were not statistically different, but they were not identical.  The statistical 

differences found between CCAP and CCAP + octopamine and the lack of differences 

found when octopamine was combined with RPCH may reflect the slight differences in 

each individual peptide’s response that the presence of octopamine was acting on.  This 

may be what lead to the detection of difference in some cases but not all.  This may also 

be the reason for the differences found in the CCAP + serotonin network outputs but not 

the RPCH + serotonin network outputs.   

Peptide and amine co-modulation does not restore flexibility to the pyloric network 

output.  Following our initial testing to determine if adding an amine in combination with 

a peptide had any effect on the pyloric network, we next wanted to ask whether distinct 

pyloric networks could be generated in the presence of distinct combinations of peptide 

and amine co-modulators.  It is likely that each amine is signaling through a distinct 

pathway intracellularly and there may be differences in the response of the pyloric neurons 

to the activation of an amine specific signaling pathway and IMI activation by the peptide.  



 

142 
 

We therefore wanted to ask whether the six co-modulator pairs tested individually were 

statistically different from each other.   

 In all four attributes we expected statistical differences between the co-modulators 

and the intact and decentralized states and there were differences in all four attributes 

tested.  With respect to the co-modulators themselves, there were far fewer differences.  

The CCAP + dopamine cycle frequency response was statistically lower than the RPCH + 

dopamine and RPCH + octopamine responses and the duty cycle of PD following RPCH 

+ dopamine application was statistically larger than CCAP + serotonin and CCAP + 

octopamine.   

 The statistical difference between CCAP + dopamine and RPCH + dopamine and 

octopamine in cycle frequency is likely an initial reflection of the difference in cycle 

frequency between CCAP and RPCH which may be bolstered by the presence of dopamine.  

When evaluated individually in Chapter 2, the CCAP cycle frequency was statistically 

slower compared to RPCH and in Chapter 4 the dopamine cycle frequency was slower 

compared to octopamine though not statistically.  Dopamine may be having a stronger 

effect when coupled with CCAP compared to RPCH and may be acting to further slow the 

cycle frequency compared to the RPCH co-modulated comparisons and the lack of 

statistical difference between RPCH + serotonin is likely a reflection of sample size.  

The increase in PD duty cycle following RPCH + dopamine application was 

comparable to that of CCAP + dopamine but the RPCH + dopamine experiments had a 

single point that shifted its mean further and allowed for the difference to be found.   

This increase in PD duty cycle, is interesting because this may represent 

dopamine’s influence in the RPCH + dopamine co-modulated pair.  From the previous 
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chapter evaluating the effects of single amines on the excitability attributes of the network 

output, the only statistical difference between dopamine and the decentralized and other 

modulated states was in the PD off phase.  There, the duty cycle of PD with dopamine was 

also significantly delayed compared to decentralized and CCAP.  Unlike the increase in 

PD duty cycle which was captured when dopamine was co-applied with a peptide, the 

individual action of serotonin in phase, in particular the delay in LP on phase, was not 

recapitulated when combined with either peptide.    

We initially expected a greater number of differences in phase due to the presumed 

ability of the amines to modulate intrinsic currents which can shift the phases.  The lack of 

differences found, however, could mean either that IMI activation in the pacemaker by the 

peptide is the dominant effect in controlling the phase response or that the concentration of 

amine used was not sufficient.  To distinguish between these two possibilities, these 

experiments would need to be repeated using a higher concentration of amine.   

We expected there to be no differences across the co-modulated conditions in spike 

number and spike frequency because dopamine and octopamine did not appreciably 

modulate those attributes.  The only exception being octopamine’s inhibitory effect on PY 

spike number.  When combined with a peptide, this drop may have been statistically 

significant.  When evaluated individually, however, there were no differences across the 

distinct co-modulated conditions in either spike number or frequency.   

At 10-6 M total concentration, the signaling pathways of peptides and amines do not 

appear to interact though dopamine may be priming the pyloric network output 

distinctly.  While we cannot make any absolute statements about the interactions between 

the peptides and amines at the cellular level, the lack of statistical differences between these 
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distinct pairs of co-modulators, outside of dopamine’s effect on phase and cycle frequency, 

suggests that there are no appreciable interactions between the cellular pathways of 

peptides and amine.  Dopamine, however, may be priming the pyloric network distinctly 

from the peptides. 

 In the results presented here, the peptide was always applied first before co-

application of peptide and amine.  In five additional experiments not included in these 

results where CCAP + dopamine was applied, dopamine instead was applied at 10-6 M 

concentration.  In two of those experiments an obviously perturbed rhythm was generated.  

This effect did not happen when octopamine was applied first, did not happen when CCAP 

was applied first and did not happen when RPCH was involved.   

The generation of perturbed rhythms following dopamine application only 

happened twice and this low sample size may be related to an inconsistent response of 

dopamine at 10-6 M which may resolve with higher concentration.  Because this 

phenomenon only occurred when dopamine was applied first and when dopamine 

generated a disrupted rhythm, a first pass assumption is that dopamine is priming the 

network differently compared to a peptide or octopamine.  If this type of activity is able to 

be generated more consistently, a next step could be to explore whether this network 

priming effect extends to the intrinsic currents underlying network output generation. 

A possible explanation for the difference in activity pattern between CCAP + 

dopamine and RPCH + dopamine, when dopamine was applied first, is a recruitment of the 

gastric mill rhythm.  The gastric mill rhythm is elicited by a distinct but overlapping set of 

neurons in the stomatogastric ganglion and has a cycle period of ~ 10 seconds (Nusbaum 

et al., 2001; Hooper and DiCaprio, 2004).  CCAP, in addition to activating IMI in the AB 
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and LP neurons, also activates IMI in the IC neuron which can participate in both the pyloric 

and gastric motor patterns (Weimann et al., 1991) while RPCH does not modulate the IC 

neuron.  CCAP can also directly modulate gastric mill neurons (Kirby and Nusbaum, 

2007).  It is possible that this perturbation in activity represents an enhanced gastric mill 

rhythm elicited by CCAP but made possible by an initial change in state by dopamine. 

Network output flexibility is not easy to achieve.  Taken together, these results suggest 

that the pyloric network output cannot become flexible in the presence of both a peptide 

and an amine.  It is likely that distinct network outputs, at least across different amines, can 

be achieved if the concentration of amine is increased.  Similar to the individual amine 

analysis though, the generation of distinct network outputs statistically may not be 

meaningful to the intact animal.   

Instead of obvious qualitative and quantitative differences across peptide and amine 

conditions, the slight differences which are not statistically significant may be signaling 

for distinct behavioral outputs.  Until we have a better understanding of coding and 

decoding mechanisms, we cannot know if these slight differences are meaningful and 

instead have to rely on statistical measures.  The most salient message of this work, coupled 

with the previous chapters, is that the pyloric network output is remarkable resilient to 

changes.  Despite changes in concentration and combining distinct classes of 

neuromodulators, the pyloric network is remarkably good at maintaining its output.    
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CHAPTER 6 
GENERAL DISCUSSION 

 
 

6.1 Goals 

The primary goal of this dissertation was to test under what conditions the pyloric network 

generates flexible activity or consistent activity.  This primary goal was divided into four 

aims which explored the consequences of peptide modulation, peptide co-modulation, 

amine modulation and peptide and amine co-modulation.   

Our baseline expectation for the first aim was the generation of peptide specific 

network outputs due to their divergent circuit actions on the pyloric network.  We then 

expected those peptide specific network outputs, representing network output flexibility, 

to be lost with peptide co-modulation in the second aim.  We hypothesized that the 

combination of multiple peptides, all converging to the same point cellularly and 

overlapping in their target neurons would activate the pyloric circuit more consistently.  

This would represent network output consistency instead of flexibility.   

We expected in the third aim to also generate modulator specific network outputs 

by applying individual amines to the pyloric network.  Amines, unlike peptides, do not 

converge cellularly but instead operate bidirectionally to modulate a diverse set of currents, 

often times in opposing ways within the same neuron.  Lastly, in the fourth aim, we 

expected the generation of distinct pyloric network outputs in the presence of different 

combinations of peptides and amines.  While network output flexibility was lost with 

convergent peptide co-modulation, the combination of two neuromodulators which do not 

have the same cellular mechanism could restore flexibility in the network output.   
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6.2 Main Results 

The results presented in this dissertation suggest that the generation of statistically distinct 

pyloric network outputs is possible but difficult to do.  The main findings of the four aims 

are discussed below.  

6.2.1 Chapter 2: Individual peptide modulation generates both flexible and 
consistent pyloric network outputs  
  
In Chapter 2, we sought to explore how different individually applied peptide network 

outputs were from each other, testing the most basic assumption of network output 

flexibility.  Individual peptides have convergent cellular actions and divergent circuit 

actions which strongly suggest the ability to generate distinct network outputs when 

applied individually.  While the effects of peptides have been widely studied in the pyloric 

network, there have been fewer studies quantifying how different one peptide elicited 

output was from another.  Additionally, the statistical assessments used did not consider 

the network output as a whole but instead tested for statistical differences in individual 

parameters which are highly dependent.   

The results presented here, on the one hand, do support the idea of network output 

flexibility.  When fully quantified, a proctolin network output was statistically different 

from a CCAP network output and an RPCH network output.  On the other hand, the results 

also demonstrate that the network is not as flexible in its output as we initially thought.  

Outside of the expectation of greater differences between the network outputs of proctolin 

and CCAP or RPCH, the CCAP and RPCH network outputs were not different from each 

other in any of the individual attributes or in the combined network output space.  This 

result can be understood by these two peptides targeting the same core pyloric neurons but 
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represents a place of inflexibility for the pyloric network.  It may be that these two peptides 

are degenerate and can substitute for one another.   

6.2.2 Chapter 3: Convergent peptide co-modulation promotes consistency over 
flexibility in the pyloric network output 
 
In Chapter 3, we explored the consequences of convergent co-modulation on the pyloric 

network output and sought to test another assumption about network output flexibility.  The 

specific hypothesis we tested was that convergent co-modulation promotes consistency in 

the network output and the results of this chapter support that hypothesis.  The 

neuropeptides in this circuit all converge to activate a single excitable current.  This 

unidirectional convergence bottlenecks the network output resulting in a loss of flexibility 

and a promotion of consistency.  The application of three peptides together did not further 

promote consistency in any substantial way indicating that the pyloric network output can 

lose flexibility with only two peptides.   

While the network outputs of the co-modulators were not different from each other, 

the individual peptides constituents could still occupy a distinct place in network output 

space compared to the peptide combinations.  When quantified though there was only a 

single difference between a constituent and the triplet peptide combinations, and this 

difference was likely the result of sample size and difference in concentration used.  This 

result indicates that a co-modulated network output does not shift into a new place in 

network output space but instead occupies the space in between its constituents. 
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6.2.3 Chapter 4: Distinct monoamines differentially modulate aspects of the pyloric 
network output  
  
We were next interested in evaluating the effects of amines on the pyloric network output 

with the expectation of flexibility in the network output.  Amines, unlike peptides, do not 

operate unidirectionally towards excitability, at least in various lobster species.  We 

assumed that the amines would have a similar bidirectional effect on the pyloric network 

in the crab and our expectation was the generation of amine specific network outputs.  The 

results of this chapter, however, were surprising in many ways.   

The first surprise was the vastly different activity profiles that dopamine could 

generate.  When quantifiable, a dopamine network output was not different from the 

decentralized state but when not quantifiable the effect of dopamine was complete 

disruption of the pyloric network and a loss of tri-phasic activity.  This result indicated 

minimally that dopamine, when quantifiable, does not positively modulate the attributes of 

excitability.  While there were no appreciable effects in the excitability metrics, dopamine 

application did result in changes to the slow wave oscillations of the pyloric neurons.  When 

attributes of PD’s slow wave oscillation were evaluated, differences emerged with 

dopamine application between the decentralized state, though not all were statistically 

meaningful.   

Octopamine, on the other hand, functioned mostly like a peptide in the excitability 

space and points to another area of flexibility for the pyloric network output.  A fully 

functional tri-phasic network output can be achieved outside of peptide modulation.   

The results of both dopamine and octopamine’s actions on the excitability attributes 

and dopamine’s actions on PD’s activity indicated that these two amines operate in distinct 
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spaces and that evaluating only a single group of attributes is not sufficient to capture each 

neuromodulator’s unique actions. 

6.2.4 Chapter 5: Peptide and amine co-modulation does not restore flexibility to the 
pyloric network output 
 
Lastly, we wanted to explore the consequences of peptide and amine co-modulation on the 

pyloric network.  Combining the results of the previous three chapters, that CCAP and 

RPCH elicited network outputs were not statistically different but not identical, that peptide 

co-modulation does not result in network output flexibility and that individual amines 

operate in distinct spaces, we asked whether the network output flexibility that was lost 

with peptide co-modulation could be restored with peptide and amine co-modulation. 

As a first step, we evaluated whether a peptide and amine co-modulated network 

output was statistically different from the peptide response alone.  In these evaluations, the 

only statistical differences were found between the co-modulated pairs with dopamine and 

their respective peptides.  When evaluated in the 12-dimensional network output space, 

however, the individual differences found between CCAP versus CCAP + dopamine and 

RPCH versus RPCH + dopamine did not lead a statistical difference.   

Taken together, these results suggest that dopamine’s actions are fundamentally 

distinct from octopamine and serotonin.  Additionally, even at a concentration of 5x10-7 

M, dopamine is still able to exert an effect on the pyloric network, though it is not as 

dramatic as a higher concentration can be.  Unlike dopamine, octopamine and serotonin 

may instead be acting synergistically with the peptide to bolster the peptide effect, but this 

synergistic effect may be concentration dependent where a higher concentration may shift 

the response from cooperative to disruptive, particularly with serotonin.   
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When the co-modulated conditions are tested against each other, there were a 

limited number of differences between them.  The statistical differences found were 

isolated to the cycle frequency and the PD off phase parameter.  The differences in the 

cycle frequency attribute may be related to the inherent differences in cycle frequency 

between CCAP and RPCH while the difference in the phase of PD off may be related to 

the presence of dopamine.  The phase attribute in general is an interesting attribute to 

evaluate because of the amines presumed modulation of the intrinsic currents which can 

shift the phases.  The increase in PD duty cycle with both dopamine containing co-

modulator pairs suggests that even at a reduced concentration, dopamine is still able to 

exert an effect, which may be enhanced at a higher concentration.   

 

6.3 General Conclusions 

The results presented in this dissertation represent the first fully quantitative description of 

how different two neuromodulator elicited patterns of activity are.  This was accomplished 

by taking a new approach to the quantification of difference and statistical testing, with the 

express purpose of evaluating an entire pattern of activity not just a single parameter or 

attribute.  From this quantification of difference, we could then probe the idea of network 

output flexibility.  In particular we were interested in testing whether individual 

neuromodulator elicited patterns of activity represented flexibility in the network output 

and what the consequences to network output flexibility were under distinct co-modulatory 

conditions. 

The most salient point from this collection of results is that the pyloric network 

output is remarkably resilient.  The pyloric network was presented with four distinct 
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challenges to see under which circumstances flexibility could arise.  Outside of the 

statistically distinct effects of one peptide, proctolin, and the loss of activity with dopamine, 

all other neuromodulator elicited network outputs evaluated were not statistically different 

from each other.  Additionally, when not completely disrupted like with dopamine, these 

outputs qualitatively look similar to one another.    

The lack of flexibility in the network output of a central pattern generating circuit, 

while unexpected, could act as a stabilizing mechanism.  This circuit, like other central 

pattern generating circuits, generates a fundamental pattern of activity.  It may be that these 

circuits are not able to deviate appreciably in their output under any particular 

neuromodulator condition to ensure that a functional output can always be generated.  This 

lack of flexibility, however, is a lack of flexibility from a statistical perspective in the 

particular attributes of activity we evaluated.  As much as this work is an improvement on 

the previous methods of quantifying and statistically testing difference, a network output 

is more than just the four attributes of excitability and PD’s slow wave oscillation evaluated 

here.  It may be that these individual neuromodulator network outputs, and even the co-

modulated network outputs, are in fact distinct from each other but those differences are 

held in attributes or parameters that we did not explicitly evaluate.  The dopamine result 

also highlights the necessity to explore a wide range of attributes because differences can 

arise in places not initially considered.    

  Additionally, we define difference in terms of a p-value however these network 

outputs, while not statistically different according to their p-values, were not identical.  The 

smaller changes in the network output elicited by each distinct neuromodulator and 

combination of neuromodulators may be more important downstream of the ganglion then 
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we can appreciate.  While not meaningful enough for our statistics, these smaller changes 

may be what is signaling for distinct patters of activity.  
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APPENDIX A 

STATISTICAL TABLES  
 
 
 

In Chapters 2-5 a brief statistical result was included in the text.  In Appendix A we provide 

the full statistical results for those analyses.  In all tables, df indicates degrees of freedom 

and S.E.M. indicates standard error of the mean.  If the data were not normally distributed, 

the median along with the 25th and 75th percentiles is given instead.  Number in 

parentheses below or next to each condition indicates the sample size per condition.   

In Table A.2, P & C indicates proctolin + CCAP, C & R indicates CCAP + RPCH, 

R & P indicates RPCH + proctolin.  In Table A.3, P & C & R indicates proctolin + CCAP 

+ RPCH, C & P & O indicates CCAP + proctolin + oxotremorine.  
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APPENDIX B 

MAPPING CIRCUIT DYNAMICS DURING FUNCTION AND DYSFUNCTION 
 
 
This work has been published in eLife.  Author contributions are as follows: Srinivas 

Gorur-Shandilya, Conceptualization, Data curation, Formal analysis, Investigation, 

Methodology, Software, Validation, Visualization, Writing – original draft, Writing – 

review and editing; Elizabeth M. Cronin, Investigation, Methodology,  

Writing – review and editing; Anna C. Schneider, Investigation, Methodology, Resources, 

Writing – review and editing; Sara Ann Haddad, Conceptualization, Investigation, 

Methodology, Writing – review and editing; Philipp Rosenbaum, Investigation, 

Methodology; Dirk Bucher, Project administration, Software, Supervision,  

Writing – original draft, Writing – review and editing; Farzan Nadim, Project 

administration, Supervision, Writing – original draft, Writing – review and editing; Eve 

Marder, Conceptualization, Funding acquisition, Project administration, Supervision, 

Writing – original draft, Writing – review and editing. 

 

B.1 Introduction 

Neural circuits can generate a wide variety of spiking dynamics, but must constrain their 

dynamics to function appropriately. Cortical circuits maintain irregular spiking patterns 

through a balance of excitatory and inhibitory inputs (van Vreeswijk and Sompolinsky, 

1996; Mariño et al., 2005; Brunel and Wang, 2003) and the loss of canonical dynamics is 

associated with neural diseases like channelopathies and epilepsy (Marbán, 2002; Staley, 

2015).  Preserving functional dynamics can be a challenge for neural circuits for the 

following reasons. The same spike pattern can be generated by diverse circuits with many 
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different topologies and broadly distributed synaptic and cellular parameters (Prinz et al., 

2004; Golowasch et al., 2002; Alonso and Marder, 2019; Memmesheimer and Timme, 

2006). Furthermore, neural circuits are constantly being reconfigured, with ion channel 

protein turnover, and homeostatic feedback mechanisms modifying conductance and 

synapse strengths continuously (Turrigiano et al., 1994; Turrigiano et al., 1995; O’Leary 

et al., 2014; Franci et al., 2020). The problem of maintaining functional activity patterns is 

aggravated by the fact that functional circuit dynamics tend to lie within a low-dimensional 

subspace within the high-dimensional state space: of the numerous possible solutions, only 

a few are functional and are found in animals (Cunningham and Yu, 2014; Pang et al., 

2016). How do neural circuits preserve functional dynamics despite these obstacles? 

Answering this question requires, as a prerequisite, a quantitative description of the 

dynamics of neural circuits during function and dysfunction. When rhythms are regular, 

this is relatively simple, but when rhythms become irregular, classifying them becomes 

hard (Haddad and Marder, 2018; Tang et al., 2012; Haley et al., 2018). In this article, we 

study the dynamics of a well-studied central pattern generator, the pyloric circuit in the 

stomatogastric ganglion (STG) in Cancer borealis (Marder and Bucher, 2007). The pyloric 

circuit is small, in crabs consisting of 13 neurons coupled by inhibitory and electrical 

synapses. Its topology and cellular dynamics are well understood, and the circuit generates 

a clearly defined ’functional’ collective behavior where bursts of spikes from three 

different cell types alternate rhythmically to generate a triphasic motor pattern. The 

stereotypy and periodicity of the motor pattern suggest that the baseline dynamics of the 

pyloric circuit are fundamentally low dimensional. This has allowed for the effective 

parameterization of the rhythm by a small number of ad hoc descriptors such as the burst 
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period, duty cycles, and phase of each neuron (Hartline and Maynard, 1975; Eisen and 

Marder, 1984; Miller and Selverston, 1982). 

In response to perturbations that span many cycles, pyloric circuit dynamics are not 

always periodic, and descriptors that work well to characterize the canonical rhythm are 

inadequate to describe these atypical dynamic states. Efforts to study circuit dynamics 

under these regimes, and to characterize how the circuit responds to, and recovers from 

perturbations, have been frustrated by the inability to quantitatively describe irregular and 

non-stationary dynamics (Haddad and Marder, 2018; Tang et al., 2012; Haley et al., 2018). 

In this article, we set out to address the problem of quantitatively describing neural 

circuit dynamics under a variety of conditions. We reasoned that circuit dynamics lie on 

some lower-dimensional set within the full high-dimensional space of possible dynamics, 

even when circuits exhibit atypical and nonfunctional behavior, because even circuits 

generating dysfunctional dynamics are still constrained by cellular parameters and network 

topology. We therefore set out to find and visualize this subset of spike patterns using an 

unsupervised machine learning approach to visualize patterns in the high-dimensional data 

in two dimensions. This method allows us to visualize the totality of a large and complex 

dataset of spike patterns, while being explicit about the assumptions and biases in the 

analysis. Using this method, we found nontrivial features in the distribution of the data that 

hinted at diverse, stereotyped responses to perturbations. Using this compact representation 

allowed us to efficiently manually classify these patterns and measure transitions between 

these patterns. We were thus able to characterize the diversity of circuit dynamics under 

baseline and perturbed conditions, and identify anecdotally observed atypical states within 

the full repertoire of spiking patterns for many hundreds of animals. 
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B.2 Results 

Perturbations can destabilize the triphasic pyloric rhythm.  Studies that measure the 

pyloric rhythm commonly involve recording from nerves from the STG in ex vivo 

preparations. Preparations typically also include the stomatogastric nerve (stn) that carries 

the axons of descending neuromodulatory neurons from the esophageal and commissural 

ganglia that project into the STG. Under baseline conditions (11°C, with the stn intact, 

Figure B.1a), the periodic triphasic oscillation of the pyloric circuit can be measured by 

extracellular recordings of the lateral pyloric, pyloric dilator, and pyloric nerves (lpn, pdn, 

and pyn) (Figure B.1a). Bursts of spikes from the pyloric dilator (PD) neurons on the pdn 

are followed by bursts of spikes from the lateral pyloric neuron (LP) on lpn and bursts of 

spikes from the pyloric neurons (PY) on pyn. Spikes from lateral posterior gastric (LPG) 

neurons are also found on the pyn nerve in these recordings and can be differentiated from 

PY spikes by their shape and timing (LPG is active during PD bursts). Under these control 

conditions, where the rhythm is robust and spikes from these neurons are easily identifiable 

both by their location on the nerve and their phase in the cycle, the dual problems of 

identifying spikes from raw extracellular recordings and meaningfully describing circuit 

dynamics are easily resolvable. 
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In studies that characterize the changes in circuit dynamics to prolonged 

perturbations, spike identification and circuit dynamics characterization are less 

straightforward. For example, when descending neuromodulatory projections from the stn 

are cut (i.e., when the STG is decentralized, Figure B.1b), the collective dynamics of the 

 

Figure B.1 The triphasic pyloric rhythm can become irregular and hard to characterize 
under perturbation. (a) Simplified schematic of part of the pyloric circuit (left). Filled 
circles indicate inhibitory synapses, solid lines are glutamatergic synapses, and dotted lines 
are cholinergic synapses. Resistor symbol indicates electrical coupling. The pyloric circuit 
is subject to descending neuromodulatory control from the stomatogastric nerve (stn). 
Right: simultaneous extracellular recordings from the lvn, lpn, pdn, and pyn motor nerves. 
Action potentials from lateral pyloric (LP), pyloric dilator (PD), and pyloric (PY) are 
visible on lpn, pdn, and pyn. Under these baseline conditions, PD, LP, and PY neurons 
burst in a triphasic pattern. The anterior burster (AB) neuron is an endogenous burster and 
is electrically coupled to PD neurons. (b) When the stn is cut, neuromodulatory input is 
removed and the circuit is ‘decentralized.’ In this case, the pyloric rhythm can become 
irregular and hard to characterize. In addition, spikes from multiple PY neurons can become 
harder to reliably identify on pyn. 
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pyloric circuit can become less regular. This loss of regularity is concomitant with spikes 

being harder to reliably identify in extracellular recordings. While PD and LP neuron 

spikes can still be typically easily identified on the pdn and lpn nerves (Figure B.1b), 

identifying PY on the pyn in the absence of a regular rhythm can be challenging. This 

problem is aggravated by the fact that spikes from the LPG neuron are frequently found on 

pyn, and because there are several copies of the PY neuron, whose spikes can range from 

perfect coincidence to slight offsets that can unpredictably change the amplitude and shape 

of PY spikes due to partial summation. For these reasons, some previous works studying 

the response of pyloric circuits to perturbations have consistently recorded from the lpn 

and pdn nerves, but not from the pyn (Hamood et al., 2015; Haley et al., 2018; Haddad and 

Marder, 2018; Rosenbaum and Marder, 2018). Therefore, in order to include the largest 

number of experiments in our analysis, we chose to characterize the dynamics of the LP 

and PD neurons. 

Nonlinear dimensionality reduction allows for the visualization of diverse pyloric 

circuit dynamics.  The regular pyloric rhythm involves out-of-phase bursts of spikes 

between LP and PD, and is observed under baseline conditions (Figure B.2 a1-3). 

Perturbations such as the removal of descending neuromodulatory inputs, changes in 

temperature, or changes in pH can qualitatively alter the rhythm, leading to a large variety 

of hard-to-characterize spiking patterns (Figure B.2 a4-6). Because these irregular states 

may lose the strong periodicity found in the canonical motor pattern, burst metrics such as 

burst period or phase offsets between bursts that work well to characterize the regular 

rhythm perform poorly. Efforts to characterize and quantify these atypical spike patterns 

must overcome the slow timescales in observed dynamics, the large quantity of data, and 
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irregularity and variability in observed spike trains. Previous work used ad hoc 

categorization systems to assign observations of spike trains into one of a few groups 

(Haddad and Marder, 2018; Haley et al., 2018), but these categorization methods scaled 

poorly and relied on subjective annotations. 

We sought instead to visualize the totality of pyloric circuit dynamics under all 

conditions using a method that did not rely on a priori identification of (non)canonical 

dynamic patterns. Such a data visualization method, while descriptive, would generate a 

quantitative vocabulary to catalog the diversity of spike patterns observed both when these 

patterns were regular and also when they were irregular and aperiodic, thus allowing for 

the quantitative characterization of data previously inaccessible to traditional methods 

(Börner et al., 2005; Nguyen and Holmes, 2019).  

The visualization was generated as follows: time-binned spike trains were 

converted into their equivalent interspike interval (ISI) and phase representations (Figure 

B.2 b, Materials and methods). For all analyses, we consider nonoverlapping 20 s time 

bins. We chose this time bin following inspection of circuit dynamics across many 

conditions in several animals. Because there can be an arbitrary number of spikes in a bin, 

there are an arbitrary number of ISIs and phases. This makes it challenging to find a basis 

to represent the entire dataset. Ideally, we want to represent the spike pattern in each 20 s 

bin with a point in some space of high but fixed dimensionality. To convert this into a 

vector of fixed length, we measured percentiles of ISIs and phases (Figure B.2 c). Together 

with other metrics (like ratios of ISIs, measures that capture discontinuities in ISI 

distributions, see Materials and methods for details), these percentiles were assembled into 

a fixed-length vector and each dimension was z -scored across the entire dataset (Figure 
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B.2 d). A collection of spike trains from an arbitrary number of neurons has thus been 

reduced to a matrix where each row consists of z -scored percentiles of ISIs and other 

metrics. This matrix can be visualized using a nonlinear dimensionality reduction 

technique such as t -distributed stochastic neighbor embedding (t-SNE) (Van der Maaten 

and Hinton, 2008), which can generate a two-dimensional representation of the full dataset 

(Figure B.2 e). 

In this representation, each dot corresponds to a single time bin of spike trains from 

both neurons. We found by manual inspection that spike trains that are visually similar 

(Figure B.2 a1-3) tend to occur close to each other in the embedding (Figure B.2 e1-3). 

Spike patterns that are qualitatively different from each other (Figure B.2 a4-6) tended to 

occur far from each other, often in clusters separated by regions of low data density (Figure 

B.2 e4-6, Supplementary file 1).  

How useful is such a visualization and does it represent the variation in spike 

patterns in the data in a reasonable manner? We colored each point by classically defined 

features such as the burst period or the phase (Figure B.2—figure supplement 1). We found 

that the embedding arranges data so that differences between clusters and within clusters 

had interpretable differences in various burst metrics. For example, clusters on the left edge 

of the map tended not to have defined LP phases, typically due to silent or very sparse LP 

firing (Figure B.2—figure supplement 1b). Location of data in the largest cluster was 

correlated to firing rate in the PD neuron (Figure B.2—figure supplement 1c). We observed 

that burst metrics, when they were defined, tended to vary smoothly across the map. To 

quantify this observation, we built a Delaunay triangulation (Materials and methods) on 

the embedded data and measured the triadic differences between PD burst periods and PD 
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duty cycles (Figure B.2—figure supplement 3). Triadic differences in these metrics were 

significantly smaller in the map than triadic differences in a projection of the first two 

principal components or a shuffled map (p<0.0001, Kolmogorov–Smirnv test), suggesting 

that the t-SNE cost function generates a useful embedding where spike features vary 

smoothly within clusters. Finally, to validate our approach, we generated a synthetic dataset 

with different classes of spike patterns (Materials and methods) and analyzed it similarly. 

Coloring points in the t-SNE embedding by the original class revealed that clusters in the 

t-SNE map corresponded to different classes in the synthetic data, suggesting that this 

method can identify and recover stereotyped spike patterns in neural data (Figure B.2—

figure supplement 5). 
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Figure B.2 Visualization of diverse neural circuit dynamics. (a) Examples of canonical 
(1–3) and atypical (4–6) spike patterns of pyloric dilator (PD; blue) and lateral pyloric (LP; 
red) neurons. Rasters show 10 s of data. (b–d) Schematic of data analysis pipeline. (b) 
Spike rasters in (a2) can be equivalently represented by interspike intervals (ISIs) and 
phases. 20 s bins shown. Each 20 s bin contains a variable number of spikes/ISIs. (c) 
Summary statistics of ISI and phase sets in (d), showing tenth percentiles. Using 
percentiles converts the variable length sets in (b) to vectors of fixed length. (d) z -scored 
data assembled into a single vector, together with some additional measures (Materials 
and methods). (e) Embedding of data matrix containing all vectors such as the one shown 
in (d) using t-distributed stochastic neighbor embedding (t-SNE). Each dot in this image 
corresponds to a single 20 s spike train from both LP and PD. Example spike patterns 
shown in (a) are highlighted in the map. n = 94, 844 points from N = 426 animals. In (a–
d), features derived from LP spike times are shown in red, and features derived from PD 
spike times are shown in blue. The online version of this article includes the following 
figure supplement(s) for figure B.2: Figure supplement 1. Burst metrics smoothly vary in 
map. Figure supplement 2. Principal components analysis (PCA) and k-means to find 
clusters in feature vectors. Figure supplement 3. Embedding arranges data so that 
neighbors tend to be similar. Figure supplement 4. Effect of varying perplexity in t-
distributed stochastic neighbor embedding (t-SNE) embedding. Figure supplement 5. 
Validation of method using synthetic data. 
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Visualization of Circuit Dynamics Allows Manual Labeling and Clustering of Data. 

Previous studies have shown that regular oscillatory bursting activity of the pyloric circuit 

can qualitatively change on perturbation. Circuit dynamics can be highly variable and has 

been categorized into various states such as ‘atypical firing,’ ‘LP-01 spikes,’ or ‘atypical’ 

(Haddad and Marder, 2018; Haley et al., 2018). Both the process of constructing these 

categories and the process of classifying data into these categories are typically done 

manually, and therefore requires expert knowledge that is not explicitly captured and is 

impossible to reproduce. Because the embedding distributed data into clusters, we 

hypothesized that clusters corresponded to stereotyped dynamics that were largely similar, 

and different clusters represented the qualitatively different circuit dynamics identified by 

earlier studies. 

We therefore manually inspected circuit dynamics at randomly chosen points in 

each apparent cluster and generated labels to describe the dynamics in that region (Figure 

B.3). This process colored the map and segmented it into distinct regions that broadly 

followed, and were largely determined by, the distribution of the data in the embedding 

(Figure B.3 a). Most of the data (57%) were assigned the regular label, where both PD and 

LP neurons burst regularly in alternation with at least two spikes per burst, and all identified 

regular states occurred in a single contiguous region in the map (blue). In the LP-weak- 

skipped state, PD bursts regularly, but LP does not burst every cycle, or only fires a single 

spike per burst. Irregular-bursting states showed bursting activity on both neurons, which 

were interrupted or otherwise irregular. In contrast, the irregular state showed spiking that 

was more variable and did not show strong signs of bursting at any point. LP-silent-PD-

bursting states had regular bursting on PD, with no spikes on LP, while LP-silent states 
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also had no spikes on LP, but activity on PD was more variable, and did not show regular 

bursting. 

The time evolution of the pyloric dynamics of every preparation constitutes a 

trajectory in the map, and every point in the map is therefore associated with an 

instantaneous speed of motion in the map. We hypothesized that instantaneous speed could 

vary across the map, with points labeled regular moving more slowly through the map than 

points with labels corresponding to atypical states such as irregular because regular 

rhythms would vary less over time. Consistent with this, we found that points in the regular 

cluster tended to have smaller speeds than points in other clusters (Figure B.3—figure 

supplement 1a). Speeds in the regular state were significantly lower than every other state 

except PD-silent-LP-bursting (p<0.004, permutation test), suggesting that atypical states 

were associated with increased variability in circuit dynamics (Figure B.3—figure 

supplement 1b). 

Do the clusters we see in the data, and the resultant categorization of the data, 

depend strongly on the details of the dimensionality reduction method we used (t-SNE)? 

We used an entirely different embedding algorithm (Uniform Manifold Approximation and 

Projection [uMAP], McInnes et al., 2018) to embed the feature vectors in two-dimensional 

space. The map generated by uMAP preserved the coarse feature of the t-SNE embedding, 

suggesting that the features in the map reflected the features of the distribution of the data 

more strongly than details of the dimensionality reduction method. Coloring points in the 

uMAP embedding (Figure B.3—figure supplement 3) revealed a roughly similar 
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organization of data in the embedding space, suggesting that our categorization method did 

not strongly depend on the details of the dimensionality reduction. 

Variability in Baseline Circuit Dynamics Across a Population of Wild-caught 

Animals.  Work on the pyloric circuit has used a wild-caught crustacean population. This 

uncontrolled environmental and genetic variability serves as a window into the extant 

variability of a functional neural circuit in a wild population of animals. In addition, 

experimental and computational work has shown that similar rhythms can be generated by 

a wide variety of circuit architectures and cellular parameters (Prinz et al., 2003; Hamood 

and Marder, 2014; Alonso and Marder, 2019). We therefore set out to study the variability 

 

Figure B.3 Map allows identification of distinct spiking dynamics. (a) Map of all 
pyloric dynamics in dataset where each point is colored by manually assigned labels. 
Each point corresponds to a 20 s paired spike train from lateral pyloric (LP) and 
pyloric dilator (PD) neurons. Each panel in (b) shows two randomly chosen points 
from that class. The number of points in each class is shown in parentheses above 
each panel. n = 94, 844 points from N = 426 animals. Labels are ordered by likelihood 
in the data. The online version of this article includes the following figure 
supplement(s) for figure 3: Figure supplement 1. Speed of trajectories through map. 
Figure supplement 2. Embeddings with different initializations. Figure supplement 
3. Using Uniform Manifold Approximation and Projection (uMAP) instead of t-
distributed stochastic neighbor embedding (t-SNE). 
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in baseline circuit dynamics in the 346 pyloric circuits recorded under baseline conditions 

in this dataset. 

The burst period of the pyloric circuit in the lobster can vary two- to threefold under 

baseline conditions at 11°C across animals (Bucher et al., 2005). Despite this sizable 

variation, other burst metrics, such as the phase onset of follower neurons, or the duty 

cycles of individual neurons, are tightly constrained (Bucher et al., 2005), likely related to 

the fact that these circuits are under activity-dependent feedback regulation (Turrigiano et 

al., 1995; O’Leary et al., 2014; Gorur-Shandilya et al., 2020) as they develop and grow. 

Activity-dependent regulation of diverse pyloric circuits could constrain variability in a 

single circuit across time to be smaller than variability across the population.  

To test this hypothesis, we measured a number of burst metrics such as burst period 

and the phases and duty cycles of the two neurons across these 346 preparations in baseline 

conditions (Figure B.4) when data are labeled regular because metrics are well-defined in 

this state. The mean values of each of these metrics were unimodally distributed (Figure 

B.4 a) and the coefficient of variation (CV) for all metrics was approximately 0.1 (Figure 

B.4 b). Using the mean CV in each individual as a proxy for the within-animal variability, 

and the CV of the individual means as a proxy for the across-animal variability, we found 

that every metric measured was more variable across animals than within animals (Figure 

B.4 c). Shuffling experimental labels generated null distributions for excess variability 

across animals and showed that across-animal variability was significantly greater than 

within-animal variability (Figure B.4 d, p<0.007, permutation test, Table 1). 

It is reasonable to suppose that all baseline data exist in the regular cluster. While 

most baseline data are confined to the regular cluster ( ~ 80% , Figure B.4—figure 
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supplement 1a), the remaining data, nominally recorded under baseline conditions, 

contains atypical circuit dynamics (Figure B.4—figure supplement 1b and c). What causes 

these atypical circuit dynamics in this large, unbiased survey of baseline pyloric activity? 

One possibility could be inadvertent damage to the preparation caused by dissection and 

preparation of the circuit for recording. Consistent with this, we found that the probability 

of observing regular states was significantly reduced when cells were recorded from 

intracellularly (Figure B.4—figure supplement 2), which may be due to increase in leak 

currents owing to impaling cells with sharp electrodes (Cymbalyuk et al., 2002) or due to 

cell dialysis (Hooper et al., 2015). No significant correlation was observed between sea 

surface temperatures (a proxy for environmental conditions for these wild-caught animals) 

and burst metrics (Figure B.4—figure supplement 3a–c) or the probability of observing a 

regular state (Figure B.4—figure supplement 3d). Taken together, these results underscore 

the importance of verifying that baseline or control data does not include uncontrolled 

technical variability that could mask biological effects of interest. 
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Figure B.4 Variability of burst metrics under baseline conditions. (a) Variability of 
burst metrics in pyloric dilator (PD) and lateral pyloric (LP) neurons across a 
population of wild-caught animals. Metrics are only computed under baseline 
conditions and in the regular cluster. (b) Distribution of coefficient of variation (CV) 
of metrics in each animal across all data from that animal. In (a, b), each dot is from a 
single animal, and distributions show variability across the entire population. (c) 
Across-animal variability (CV of individual means, Δ) is greater than within-animal 
variation (mean of CV in each animal, Ο) for every metric. (d) Difference between 
across-animal variability and within-animal variability (colored dots). For each metric, 
gray dots and distribution show differences between across-animal and within-animal 
variability for shuffled data. n = 18, 336 points from N = 346 animals. The online 
version of this article includes the following figure supplement(s) for figure B.4: Figure 
supplement 1. State distribution under baseline conditions. Figure supplement 2. 
Recording condition alters regular state probability. Figure supplement 3. Effect of sea 
surface temperature on baseline circuit dynamics. 
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Perturbation Modality Alters State Probability. The pyloric circuit and other circuits in 

the crab must exhibit robustness to the environmental perturbations that these animals are 

likely to encounter. Previous studies have characterized the ability of crustacean circuits to 

be robust to environmental perturbations such as pH (Haley et al., 2018; Ratliff et al., 2021; 

Qadri et al., 2007), temperature (Tang et al., 2010; Tang et al., 2012; Rinberg et al., 2013; 

Haddad and Marder, 2018; Kushinsky et al., 2019), oxygen levels (Clemens et al., 2001), 

and changes in extracellular ionic concentrations (He et al., 2020). Robustness to these 

perturbations exists up to a limit, likely reflecting the bounds of the natural variation in 

these quantities that these circuits are evolved to function in. When challenged with 

extremes of any of these perturbation modalities, the pyloric rhythm breaks down, 

displaying irregular or aberrant states, and may even cease spiking entirely. Such states are 

commonly referred to as crashes  and can have many flavors (Haddad and Marder, 2018; 

Table B.1. ANOVA Results and Power Analysis for Figure B.4 
  
ANOVA results for burst metrics in baseline conditions. For each metric, each 
animal is treated as a group and the variability (mean square difference) is compared 
within and across group. F is the ratio of across-animal to within-animal mean square 
differences. N.99 is the estimate of the sample size required to reject the null 
hypothesis with a probability of 0.99 when the alternative hypothesis is true. N = 
346 animals. 
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Tang et al., 2010; Tang et al., 2012) and involve the loss of the characteristic antiphase 

activity in the LP and PD neurons.  

It remains unclear if extreme perturbations of different modalities share common 

pathways of destabilizing and disrupting the pyloric rhythm (Ratliff et al., 2021). In 

principle, these environmental perturbations can disrupt neuron and circuit function in 

qualitatively different ways: for example, changes in extracellular potassium concentration 

can alter the reversal potential of potassium (He et al., 2020) vs. changes in temperature 

can have varied effects on the timescales and conductances of all ion channels (Tang et al., 

2010; Caplan et al., 2014). Because prior work was focused on studying the limits of 

robustness and lacked a detailed quantitative description of irregular behavior, the fine 

structure of the transition between functional dynamics and silent or ‘crashed’ states remain 

poorly characterized (Ratliff et al., 2021). We therefore set out to measure how pH, 

temperature, and extracellular potassium perturbations alter circuit state probability.  

Where in the map are data under extreme environmental perturbations? Circuit 

spike patterns under high pH (>9.5), high temperature (>25°C), and high extracellular 

potassium (2.5 × [K+] ) are distributed across a wide region of the map, spanning both 

regions in the regular cluster and other nonregular clusters (Figure B.5 a). Spike patterns 

observed under high-temperature conditions in the regular region were clustered in the 

lower extremity, in the region containing high firing rates and small burst periods of PD 

(Figure B.2—figure supplement 1), consistent with earlier studies showing that elevated 

temperatures tend to speed up the pyloric rhythm (Tang et al., 2010; Tang et al., 2012).   

Subjecting the pyloric circuit to extremes of pH, temperature, and extracellular potassium 

altered the distribution of observed states (Figure B.5 c). In all cases, the probability of 
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observing regular was significantly reduced (p<0.001, paired permutation test), and a 

variety of nonregular states were observed. We observed that high pH (>9.5) did not silence 

the preparation, but silent states were observed in low pH (<6.5), consistent with previously 

published manual annotation of this data (Haley et al., 2018). Silent states were also 

observed in 2.5 × [K+] , as reported earlier by He et al., 2020. Previous work has shown 

that the isolated pacemaker kernel (AB and PD neurons) has a stereotyped trajectory from 

bursting through tonic spiking to silence when subjected to pH perturbations (Ratliff et al., 

2021), but moves through a different trajectory (bursting to weak bursting to silence) 

during temperature perturbations. Do pathways to silent states share similarities across 

perturbation modality in intact circuits? To answer this, we plotted the probability of 

observing states conditioned on the transition to silence in low pH, high temperature, and 

2.5 × [K+] (Figure B.5 d). In the ~ 2000 transitions between states detected, we never 

observed a transition from regular to silent, suggesting that the timescales of silencing are 

slow, longer than the width of one data bin (20 s). Trajectories to silent states always 

transition through a few intermediate states such as sparse-irregular, LP-silent, or PD-silent 

(Figure B.5 d). 
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Figure B.5 Effect of three different environmental perturbations. (a) Map showing 
regions that are more likely to contain data recorded under extreme environmental 
perturbations. (b) Treemaps showing probability distributions of states under 
baseline and perturbed conditions. (c) Probability distribution of states preceding 
silent state under perturbation. pH perturbations: n = 4023 from 6 animals; [K+] 
perturbations: n = 5526 from 20 animals; temperature perturbations: n = 80, 470 from 
414 animals. The online version of this article includes the following figure 
supplement(s) for figure B.5: Figure supplement 1. Preparation-by- preparation 
response to pH perturbations. 
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Transitions Between States During Environmental Perturbations. Changes in 

temperature, pH, and [K+] have different effects on the cells in the pyloric circuit and 

therefore can destabilize the rhythm in different ways. Increasing the extracellular [K+] 

changes the reversal potential of K+ ions, altering the currents flowing through potassium 

channels, and typically depolarizes the neuron (He et al., 2020). Ion channels can be 

differentially sensitive to changes in temperature or pH, and changes in these variables can 

have complex effects on ionic currents in neurons (Tang et al., 2010; Tang et al., 2012; 

Haley et al., 2018). We therefore asked if different environmental perturbations changed 

the way in which regular rhythms destabilized. 

Our analysis mapped a time series of spike times from PD and LP neurons to a 

categorical time series of labels such as regular. We therefore could measure the transitions 

between states during different environmental perturbations (Materials and methods). We 

found that transition matrices between states shared commonalities across environmental 

perturbations (Figure B.6 a), such as likely transitions between regular and LP-weak-

skipped states. PD-silent-LP-bursting states tended to be followed by PD-silent states, in 

which the LP neuron is spiking, but not bursting regularly. The LP neuron becomes less 

regular in both transitions, contributing to the loss of regular rhythms. We never observed 

a transition from regular rhythms LP-silent or PD-silent states, suggesting slow (>20 s) 

time scales of rhythm collapse. In high pH, every transition away from the regular state 

was to the LP-weak- skipped state, hinting at increased sensitivity of the LP neuron to high 

pH. High pH perturbations also never silenced the circuit, as previously reported (Haley et 

al., 2018), and showed fewer and less varied transitions than other perturbations. Are some 

transitions over- or underrepresented in the transition matrix? To determine this, we 
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constructed a null model where transitions occurred with probabilities that scaled with the 

marginal probability of final states (Materials and methods). Transitions that occurred 

significantly more often than predicted by the null model are shown with black borders and 

those that occurred significantly less often than predicted are shown with filled circles 

(Figure B.6 a). Transitions that never occurred but occurred at significantly nonzero rates 

in the null model are indicated with diamonds. 

Earlier work has shown that transitions from regular bursting are preceded by an 

increase in variability in the voltage dynamics of bursting in PD neurons pharmacologically 

isolated from most of the pyloric circuit (Ratliff et al., 2021). Can we detect similar 

signatures of destabilization before transitions from regular states in the intact circuit? We 

measured the CV of the burst periods of PD and LP neurons in regular states just before 

transitions away from regular (Figure B.6 b). Because we restricted our measurement of 

variability to regular states, we could disambiguate true cycle-to- cycle jitter in the timing 

of bursts from the apparent variability in cycle period due to alternations between bursting 

and nonbursting dynamics. We found that transitions away from regular were correlated 

with a steady and almost monotonic increase in variability in PD and LP burst periods for 

low pH and high [K+] perturbations, but not for high pH and high-temperature perturbations 

(Spearman rank correlation test). This suggests mechanistically different underpinnings to 

the pathways of destabilization between these sets of perturbations and is consistent with 

previous work showing that robustness to perturbations in pH only moderately affects 

temperature robustness in the same neuron (Ratliff et al., 2021). 
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Figure B.6 Effect of environmental perturbations on transitions between states. 
(a) Transition matrix between states during environmental perturbations. Each 
matrix shows the conditional probability of observing the final state in the next 
time step given an observation of the initial state. Probabilities in each row sum 
to 1. Size of disc scales with probability. Discs with dark borders are transitions 
that are significantly more likely than the null model (Materials and methods). 
Dark solid discs are transitions with nonzero probability that are significantly 
less likely than in the null model. ♢ are transitions that are never observed and 
are significantly less likely than in the null model. States are ordered from 
regular to silent. (b) Coefficient of variation (CV) of burst period of pyloric 
dilator (PD) (purple) and lateral pyloric (LP) (red) vs. time before transition 
away from the regular state. ρ, p are from Spearman test (on binned data, as 
plotted) to check if variability increases significantly before transition. 
Temperature perturbations: n = 1035 transitions in 61 animals; pH 
perturbations: n = 90 transitions in 6 animals; [K+] perturbations: n = 271 
transitions in 20 animals. 
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Decentralization Elicits Variable Circuit Dynamics.  The pyloric circuit is modulated 

by a large and chemically diverse family of neuromodulators that it receives via the 

stomatogastric (stn) nerve (Marder, 2012). Decentralization, or the removal of this 

neuromodulatory input via transection and/or chemical block of the stn, has been shown to 

affect the pyloric rhythm in a number of ways (Russell, 1976). Decentralization can stop 

the rhythm temporarily, which can recover after a few days (Golowasch et al., 1999; 

Thoby-Brisson and Simmers, 1998). Decentralization slows down the pyloric rhythm 

(Eisen and Marder, 1982; Rosenbaum and Marder, 2018) and makes the rhythm more 

variable (Hamood and Marder, 2014; Hamood et al., 2015). Decentralization can evoke 

variable circuit dynamics, sometimes with slow timescales (Figure B.7— figure 

supplement 1) and can lead to changes in ion channel expression (Mizrahi et al., 2001). 

The variability in circuit dynamics elicited by decentralization and the animal-to-

animal variability in response to decentralization have made a quantitative analysis of the 

effects of decentralization difficult. We therefore set about to characterize the variable and 

invariant features of the changes in circuit spiking dynamics on removal of descending 

neuromodulation across a large ( N = 141 ) population.  

We first asked where in the map decentralized data were (Figure B.7 a). A large 

fraction ( ~ 30% ) of the data was found outside the regular cluster, suggesting the existence 

of atypical circuit dynamics on decentralization. Decentralization also changed 

probabilities of observing many states. The regular state was significantly less likely on 

decentralization, and several atypical states were significantly more likely (Figure B.7 b 

and c, Table B.2, Figure B.7—figure supplement 2). 
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 How do preparations switch between different states when decentralized? The 

transition matrix during decentralization revealed many transitions between diverse states 

(Figure B.7 d), with the most likely transitions being significantly overrepresented 

compared to the null model (p<0.05, Materials and methods). Transitions away from 

regular included significantly more likely transitions into states where one of the neurons 

was irregular such as LP-weak-skipped and PD-weak-skipped. Similar to rhythm 

destabilization in high [K+] or low pH, transitions away from regular were associated with 

a near-monotonic increase in the variability of PD and LP burst periods before the 

transitions (Figure B.7 e, ~ .8 , p<0.006, Spearman rank correlation test).  

The time series of identified states on a preparation-by-preparation basis showed 

striking variability in the responses to decentralization (Figure B.7—figure supplement 3a), 

with the probability of observing regular states decreasing immediately after 

decentralization (Figure B.7—figure supplement 3b). What causes the observed animal-to-

animal variability in circuit dynamics on decentralization? One possibility is that seasonal 

changes in environmental conditions alter the sensitivity of the pyloric circuit to 

neuromodulation. We tested this hypothesis by measuring the correlation between 

measures such as the probability of observing the regular state, the change in burst period, 

and the change in firing rate on decentralization and the sea surface temperature at the 

approximate location of these wild-caught animals (Figure B.7—figure supplement 4). 

None of these measures was significantly correlated with sea surface temperature  

(p>0.07, Spearman rank correlation test). 
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Figure B.7 Effect of decentralization. (a) Map occupancy conditional on 
decentralization. Shading shows all data, and bright colored dots indicate data 
when preparations are decentralized. (b) State probabilities before and after 
decentralization. (c) Fold change in state probabilities on decentralization. States 
marked n.s. are not significantly more or less likely after decentralization. All 
other states are (paired permutation test, p<0.00016). (a,b) n = 10, 602 points 
from N = 141 animals. (d) Transition matrix during decentralization. 
Probabilities in each row sum to 1. Size of disc scales with probability. Discs 
with dark borders are transitions that are significantly more likely than the null 
model (Materials and methods). Dark solid discs are transitions with nonzero 
probability that are significantly less likely than in the null model. ♢ are 
transitions that are never observed and are significantly less likely than in the 
null model. States are ordered from regular to silent. n = 1933 transitions. (e) 
Coefficient of variation of pyloric dilator (PD, purple) and lateral pyloric (LP; 
red) burst periods before transition away from regular states. ρ, p from Spearman 
test. n = 1332 points from N = 79 animals. The online version of this article 
includes the following figure supplement(s) for figure B.7: Figure supplement 
1. Decentralization evokes variable dynamics. Figure supplement 2. Effects of 
decentralization on state probabilities. Figure supplement 3. Time course of 
effects of decentralization. Figure supplement 4. Effects of decentralization do 
not correlate with seasonal effects. 
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Stereotyped Effects of Decentralization on Burst Metrics. Despite the animal to  

animal variation in responses to decentralization, are there stereotyped responses to 

decentralization? Decentralization removes some unknown mixture of modulators 

that are released by the stn, which can vary from animal to animal. Previous work has 

shown that decentralization typically slows down the pyloric rhythm (Eisen and Marder, 

1982; Rosenbaum and Marder, 2018) and (Figure B.8—figure supplement 1), but a finer-

grained analysis of rhythm metrics was confounded by the irregular dynamics that can arise 

when preparations are decentralized. For example, alteration between regular and atypical 

states could bias estimates of burst metrics that are not defined in atypical states. Because 

our analysis allows us to identify the subset of data where pyloric circuit dynamics are 

regular enough that burst metrics are well-defined, we measured the changes in a number 

Table B.2 State Counts Before and After Decentralization for the Data Shown in Figure 
B.7  
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of burst metrics like the burst period, duty cycle, and phases on decentralization (Figure 

B.8 a). Every metric measured was significantly changed except the phase at which LP 

bursts start (p<0.007, paired permutation test). Consistent with earlier studies, we found 

that the CV in every metric increased following decentralization (Figure B.8 b).  

What are the dynamics of changes in burst metrics on decentralization? Firing rates 

of both LP and PD neurons decreased immediately on decentralization, roughly halving 

their pre-decentralized values (Figure B.8 c). This occurred together with a doubling of PD 

burst periods (Figure B.8 d), suggesting that the entire rhythm is slowing down. 

Intriguingly, decentralization led to significant advance in the phase of LP burst ends, but 

not starts (Figure B.8 e), leading to a large decrease in the duty cycle of the LP neuron 

(Figure B.8 f) that was significantly more than the decrease in PD s duty cycle (p<10-8, 

paired t-test). 

The stereotyped slowing of the rhythm on decentralization can also be quantified 

by looking at the distribution of the data in the regular cluster before and after 

decentralization (Figure B.8—figure supplement 2). Data are concentrated in the upper-

left edge of the regular cluster when decentralized, where burst periods are large and firing 

rates low (Figure B.2—figure supplement 1a and c), suggesting that decentralization could 

elicit a more stereotyped rhythm for circuits that continue to burst regularly, because 

circuits that do so tend to share a common, slow bursting dynamics. Counterintuitively, it 

may appear that regular rhythms in baseline conditions are more variable than regular 

rhythms after decentralization. To test this hypothesis, we measured the dispersion of each 

preparation in the map (Figure B.8—figure supplement 2b) before and after 

decentralization. Dynamics before decentralization were significantly more dispersed in 
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the regular cluster than dynamics after decentralization (Figure B.8—figure supplement 

2c, p = 0.0016 , paired t-test) because they then tended to be concentrated in the upper-left 

edge of that cluster. To first approximation, our analysis shows that there are many ways 

to manifest a regular rhythm under baseline conditions, but regular rhythms on 

decentralization are typically slow, and stereotyped in comparison. 

 

 

 
 
Figure B.8 Effects of decentralization on burst metrics. (a) Change in mean burst 
metrics on decentralization. (b) Change in coefficient of variation of burst metrics on 
decentralization. In (a) and (b), each dot is a single preparation; * indicate distributions 
whose mean is significantly different from zero (p<0.007, paired permutation test). 
Firing rates (c), burst period (d), lateral pyloric (LP) phases (e), and duty cycles (f) vs. 
time since decentralization. In (c–f), thick lines indicate population means, and shading 
indicates the standard error of the mean. n = 13, 898 points from N = 141 preparations. 
The online version of this article includes the following figure supplement(s) for figure 
8: Figure supplement 1. Example rasters showing effect of decentralization. Figure 
supplement 2. Effects of decentralization on regular rhythms. 
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Neuromodulators Differentially Affect State Probabilities. The crustacean STG is 

modulated by more than 30 substances (Harris-Warrick and Marder, 1991; Marder, 2012) 

that tune neuronal properties at an intermediate timescale between feedback homeostasis 

and intrinsic cellular properties (Daur et al., 2016). Earlier work has focused on 

understanding the effect modulators have on restoring (or destabilizing) the canonical 

rhythm, in part because the restoration of regular oscillatory dynamics is a common feature 

of neuromodulator action. Other effects that neuromodulators might have on pyloric circuit 

dynamics are harder to investigate and are hindered by the difficulty in characterizing 

circuit dynamics when nonregular. Here, we set out to systematically characterize the 

effects of neuromodulators on dynamic states identified in the full space of circuit 

behaviors (Figure B.3). 

We focused our analysis on the effect of four neuromodulators: red pigment-

concentrating hormone (RPCH), proctolin, oxotremorine, and serotonin. In the 

experiments analyzed, these neuromodulators were added to decentralized preparations so 

that endogenous effects of these (and other) neuromodulators were minimized. We 

therefore first characterized the distribution of states in decentralized preparations where 

neuromodulators were subsequently added (Figure B.9 a).  

RPCH is a neuropeptide that targets a number of cells in the circuit (Nusbaum and 

Marder, 1988; Swensen and Marder, 2001) and has been shown to increase the number of 

spikes per burst in PD and LP (Dickinson et al., 2001; Thirumalai and Marder, 2002), 

though it has little effect on the pyloric period (Thirumalai et al., 2006). RPCH increased 

the probability of the regular state, suggesting stabilization of the triphasic rhythm, and 

decreased the probability of most other atypical states (Figure B.9 b, Table B.3, p<0.004, 
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paired permutation test). Consistent with earlier studies that reported that RPCH can 

activate rhythms in silent preparations (Nusbaum and Marder, 1988), the probability of 

observing the silent state was driven to 0 in the presence of RPCH, together with other 

atypical states such as LP-silent and LP-silent-PD-bursting (Figure B.9 b).  

Proctolin also targets a number of cells in the circuit (Swensen and Marder, 2001) 

and strengthens the pyloric rhythm through various mechanisms: by increasing the 

amplitude of slow oscillations in AB and LP (Hooper and Marder, 1987; Nusbaum and 

Marder, 1989), depolarizing the LP neuron (Golowasch and Marder, 1992; Turrigiano and 

Marder, 1993), and increasing the number of spikes per burst in LP and PD (Hooper and 

Marder, 1987; Marder et al., 1986; Hooper and Marder, 1984). Oxotremorine, a muscarinic 

agonist, has also been shown to enhance the robustness of the pyloric rhythm (Bal et al., 

1994; Haddad and Marder, 2018; Rosenbaum and Marder, 2018). Similar to RPCH, both 

proctolin and oxotremorine significantly increase the probability of the regular state 

(Figure B.9 b, Table B.3, p<0.004, paired permutation test), and the regular state is the only 

one significantly more likely when the neuromodulator is added. The strengthening effects 

of RPCH and oxotremorine are also manifested in the significantly lower probabilities of 

observing atypical and dysfunctional states such as silent, LP-silent, PD-silent, and sparse-

irregular (Table B.3).  

Serotonin can have variable effects on the pyloric circuit, varying from animal to 

animal, and can either speed up or slow down the rhythm (Beltz et al., 1984; Spitzer et al., 

2008). In Panularis, serotonin depolarizes LP in culture, but hyperpolarizes LP in situ, 

unlike other neuromodulators that typically have the same effect in situ and in culture 

(Turrigiano and Marder, 1993). Consistent with earlier work in C. borealis showing that 
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serotonin destabilizes the rhythm in decentralized preparations (Haddad and Marder, 

2018), we found that the probability of regular states was significantly lower on addition 

of serotonin (Figure B.9 b, Table B.3, p<0.004, paired permutation test), together with a 

significantly higher probability of atypical dysfunctional states such as LP-silent, aberrant-

spikes, PD-silent-LP-bursting, and irregular, suggesting loss of coordination between the 

many neurons in the pyloric circuit with serotonin receptors (Clark et al., 2004). 

Do these modulators share common features in how they (de)stabilize the rhythm? 

We computed the probability distribution of states conditional on transitions to the regular 

state for RPCH, proctolin, and oxotremorine, and conditional on transitions from the 

regular state for serotonin (Figure B.9 c). For all four neuromodulators, the conditional 

state distribution predominantly comprised these three states: LP-weak-skipped, irregular-

bursting, and aberrant-spikes, suggesting that trajectories of recovery or destabilization of 

the regular rhythm share common features. Serotonin destabilizes the rhythm, decreasing 

the likelihood of observing regular states, similar to environmental perturbations (Figure 

B.5) and decentralization (Figure B.7). 

Different neuromodulators activate different forms of the rhythm (Marder and 

Weimann, 1992; Marder et al., 1985; Marder, 2012), partly because different neuron types 

express different receptors to varying extents (Garcia et al., 2015). Moreover, similar 

rhythmic motor patterns can be produced by qualitatively different mechanisms, such as 

one that depends on voltage-gated sodium channel activity, and one that can persist in their 

absence (Harris-Warrick and Flamm, 1987; Epstein and Marder, 1990; Rosenbaum and 

Marder, 2018). To determine if different neuromodulators elicit regular rhythms that 

occupy different parts of the map, we plotted the location of data elicited by various 



 

193 
 

neuromodulators in the full map (Figure B.9—figure supplement 2). Regular data elicited 

by different neuromodulators tended to lie in clusters, whose distribution in the map was 

significantly different between serotonin and CCAP (Crustacean cardioactive peptide), and 

proctolin and every other neuromodulator tested (p<0.05, two-dimensional Kolmogorov–Smirnov 

test, using the method of Peacock, 1983). The differential clustering of regular states in the 

map with neuromodulator suggests that neuromodulators can elicit characteristic, distinct 

rhythms. 
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Figure B.9 Effect of bath-applied modulators. (a) State distribution in decentralized 
preparations. (b) State distribution in bath application of neuromodulators. Change 
percentages show difference in probability of regular state from decentralized to 
addition of neuromodulator. (c) Probability distribution of states conditional on 
transition to (for red pigment-concentrating hormone [RPCH], proctolin, and 
oxotremorine) or from (for serotonin) the regular state. n is the number of data points, 
and N is the number of animals. The online version of this article includes the 
following figure supplement(s) for figure B.9: Figure supplement 1. Raw traces during 
proctolin application. Figure supplement 2. Neuromodulators affect map occupancy. 
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Neuromodulators Differentially Affect Transition Between States.  RPCH, proctolin, 

and oxotremorine activate a common voltage-dependent modulatory current, IMI 

(Swensen and Marder, 2001), but can differentially affect neurons in the STG because 

different cell types express receptors to these modulators to different degrees. For example, 

RPCH activates IMI strongly in LP neurons, but the effects of oxotremorine and proctolin 

are more broadly observed in the circuit (Swensen and Marder, 2000; Swensen and Marder, 

2001). Though these three modulators strengthen the slow-wave oscillations in pyloric 

neurons, only oscillations elicited by oxotremorine and RPCH persist in tetrodotoxin, and 

proctolin rhythms do not, hinting that qualitatively different mechanisms underlie the 

generation of these seemingly similar oscillations (Rosenbaum and Marder, 2018). We 

therefore measured the transition rates between states during neuromodulator application 

to how similar or different trajectories towards recovery were. 

Table B.3 Probability Distribution of States During Modulator Application, as 
Shown in Figure B.9 
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In RPCH, proctolin, and oxotremorine application, ~100 transitions were observed 

between states (Figure B.10). Transitions could not always be predicted by a null model 

assuming that transition probabilities scaled with the conditional probability of observing 

states after a transition. For example, some transitions, such as the transition from irregular 

to regular, were never observed in RPCH, a significant deviation from the expected number 

of transitions given the likelihood of observing regular states after transitions (Materials 

and methods). Others, such as the transition LP-silent to LP-silent-PD-bursting in proctolin 

and oxotremorine, were observed at rates significantly higher than expected from the null 

model. Transitions into regular state are distributed across aberrant-spikes, LP-weak-

skipped, and irregular-bursting states for all three, but no invariant feature emerges in the 

rest of the transition matrix. 

Serotonin destabilizes the rhythm in decentralized preparations, and the transition 

matrix under serotonin reveals several features of the irregularity behavior observed under 

serotonin (Figure B.10). A number of irregular and low-firing states from silent to irregular 

never transition into the regular state, which is unlikely in the null model (p<0.05, Materials 

and methods). Transitions between pairs of states are symmetric and occur at rates 

significantly larger than in the null model, such as between LP-silent and LP-silent-PD-

bursting. Intriguingly, destabilizing transitions from regular to LP-weak- skipped, aberrant-

spikes, and irregular-bursting are observed at rates significantly higher than in the null 

model. These three abnormal states are also observed immediately preceding regular states 

in RPCH, proctolin, and oxotremorine (Figure B.9 c), suggesting that the mechanisms for 

both stabilization and destabilization of the rhythm share stereotyped trajectories. 
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Are transitions away from regular states also associated with increases in variability 

of burst periods? Similar to preparations in high [K+] and low pH, and when decentralized, 

transitions away from regular states in serotonin were associated with significantly rising 

variability in the burst periods of PD and LP neurons (Figure B.10, p<0.05, Spearman rank 

correlation test). 
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Figure B.10 Effect of red pigment-concentrating hormone (RPCH), proctolin, 
oxotremorine, and serotonin on transition probabilities. Each matrix shows the 
conditional probability of observing the final state in the next time step given an 
observation of the initial state during bath application of that neuromodulator. 
Probabilities in each row sum to 1. Size of disc scales with probability. Discs with 
dark borders are transitions that are significantly more likely than the null model 
(Materials and methods). Dark solid discs are transitions with nonzero probability that 
are significantly less likely than in the null model. ♢ are transitions that are never 
observed and are significantly less likely than in the null model. States are ordered 
from regular to silent. Bar graphics show the coefficient of variability (CV) of pyloric 
dilator (PD) and lateral pyloric (LP) burst periods before transition away from regular 
states. ρ, p from Spearman rank correlation test. RPCH: n = 148 transitions in N = 33 
animals; proctolin: n = 155 transitions in N = 59 animals; oxotremorine: n = 102 
transitions in N = 21 animals; serotonin: n = 263 transitions in N = 23 animals. Bar 
graphs show the CV of burst periods of PD and LP vs. time before a transition away 
from regular states during serotonin application. ρ, p from Spearman rank correlation 
test. 
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B.3 Discussion 
 
Advances in neural recording technology have made it possible to generate increasingly 

large datasets, and an ongoing challenge is in developing computational tools to find 

structure in the neural haystack (Pachitariu et al., 2016). Nonlinear dimensionality 

reduction algorithms such as t-SNE can create a useful representation of datasets that are 

too large to visualize in their entirety using traditional methods. We combined domain-

specific expert knowledge with an unsupervised dimensionality reduction process (t-SNE) 

by manually segmenting and labeling clusters of dynamics representing biologically 

significant behavior. This approach conferred two advantages: it allowed for a more 

accurate measure of traditional metrics such as burst phases in large datasets (Figures B.4 

and B.8), and it allowed for the analysis of irregular dynamics that are typically intractable 

with conventional analysis methods (e.g., Figure B.9), with the disadvantage of not being 

fully automated, and requiring human intervention to inspect data in the embedding and 

draw cluster boundaries. Our work hints at a possibility to characterize nonregular spike 

patterns in small neural circuits and can thus provide a deeper understanding of circuit 

activity under baseline conditions and in response to perturbations. Our approach makes 

limited assumptions of the dynamics of the circuit, yet provides a formal framework based 

on domain-specific knowledge for characterizing circuit activity. Additionally, this way of 

analyzing neural spike data can readily be adapted to other circuits and systems. 

Reliable Identification of Regular Rhythms Allows for Accurate, Interpretable 

Analysis of Rhythm Metrics. Characterizing the statistics of neural oscillations has 

several subtle challenges. For example, variations in cycle period arising from cycle to  
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cycle fluctuations are not distinguished from those arising from alteration between epochs 

of regular oscillations interrupted by spans of irregular activity where metrics like cycle 

period are undefined. One way to disambiguate the two is to construct elaborate checks to 

make sure that the spike pattern being measured meets certain criteria. However, edge cases 

abound, and this is a challenging and subjective approach. A fortuitous consequence of the 

embedding method we used is to reliably identify when rhythms were regular, and we 

found that burst metrics were well defined for this subset of data (blue region in Figure 

B.3). We were therefore able to measure the mean and variability of various burst metrics 

(Figure B.4) only in stretches of data where it made sense to do so, and thus the measured 

variability stemmed almost entirely from cycle-to-cycle variations. 

Consistent with previous studies (Bucher et al., 2005; Hamood and Marder, 2014; 

Hamood et al., 2015), our results (Figure B.4) show that within-animal variability in pyloric 

burst metrics is lower than across-animal variability. Our results are from an analysis of 

data from several experimenters from different laboratories, collected over a span of 10 

years. It is therefore an ideal dataset in which to measure variability. We find that the CV 

of all burst metrics measured is ~ 0.1 (Figure B.4 b), which can now be used as a standard 

for regular baseline pyloric oscillations. Measuring burst metrics on decentralization 

(Figure B.8) also allowed us to characterize how regular rhythms change, while still being 

recognizably regular. In addition to recapitulating well-understood phenomena such as the 

slowing down and increased variability in rhythms, we found that the phase of LP burst 

onset did not change significantly, but the phase of LP burst termination did, suggesting 

that features of the rhythm are differentially robust to the removal of neuromodulation. 
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Earlier work categorized the varied dynamics of the pyloric circuit during 

perturbations (Haddad and Marder, 2018; Haley et al., 2018; Ratliff et al., 2021). In those 

studies, categories were typically constructed by hand and were not rigorously shown to 

be mutually exclusive. Categories in this work, while manually chosen, emerge naturally 

from the distribution of the data in the reduced space (Figure B.3) and no segment of data 

can have more than one label because it can exist only at a single point in the map. For 

instance, earlier work categorized rhythms that were labeled regular into two categories, 

‘normal triphasic’ and ‘normal triphasic slow’ (Haddad and Marder, 2018), while we did 

not observe a distinctly bimodal distribution of burst periods. In contrast, the catch-all 

‘atypical firing’ state was separated here into a number of states (irregular, irregular-

bursting, sparse-irregular) that span several well-separated clusters in the map (Figure B.3). 

In summary, this work recapitulates every label constructed to categorize spike patterns 

from PD and LP neurons in earlier work, and additionally finds new spike patterns that 

were either not detected or not identified as distinct because they are hard to detect by 

manual inspection. 

Diversity and Stereotypy in Trajectories from Functional to Crash States. Are there 

preferred paths to go from regular rhythms to crash? Diversity in the solution space of 

functional circuits, and the varied effects of perturbations on these circuits, argues for an 

assortment of trajectories from functional dynamics to irregular or silent states. While 

transition matrices measured during different perturbations were varied (Figure B.6), we 

did observe universal features in transition matrices measured during environmental 

perturbations, decentralization, and addition of neuromodulators (Figures B.6, B.7 and 

B.10). The destabilizing transition from regular  LP-weak-skipped was overrepresented 
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in every transition matrix, suggesting that the weakening of the LP neuron is a crucial step 

in the trajectories towards destabilization, perhaps because there is only one copy of LP in 

the circuit. Earlier work studying trajectories of destabilization of regular bursting in the 

isolated pacemaker kernel also found a conserved motif in trajectories towards 

destabilization: from regular bursting to tonic spiking to silence in response to pH 

perturbations, and another conserved motif (bursting to weak bursting to silence) in 

response to temperature perturbations (Ratliff et al., 2021). Transitions away from regular 

rhythms were also associated with increased variability in burst periods during all 

perturbations except high temperature and low pH (Figures B.6, B.7 and B.10). An increase 

in variability in PD voltage dynamics before transitions from regular bursting has been 

observed in the isolated pacemaker kernel (Ratliff et al., 2021), similar to the effect we 

observed in the intact circuit.  

The structure of the transitions between states also hints at features of the circuit 

that are critical for rhythm (de)stabilization. Unsurprisingly, PD-silent states precede silent 

states in low pH, high temperature, and high [K+] perturbations (Figure B.6). This makes 

sense because PD cells are electrically coupled to the endogenous burster AB in the 

pacemaker kernel, and silencing the pacemaker kernel can cause the circuit to go silent. 

Though the states are determined purely from clusters in the embedding (FigureB.2), and 

thus from statistical features of spike times, some states may be identified predominantly 

with cell-specific features (e.g., LP-weak-skipped where the LP neuron fails to burst 

regularly, but the PD neurons continue to burst regularly), or with circuit-level features 

(e.g., aberrant-spikes where one or both neurons fire spikes outside the main burst, which 

may be caused by incomplete inhibition). Decentralization elicits the largest number of 
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transition types, with ~ 80% of all transition types observed, which could be a consequence 

of the complex change in the neuromodulator milieu following transection of descending 

nerves. 

Linking Circuit Output to Circuit Mechanisms. A large body of work has shown that 

there is more than one way to make a neural circuit with similar patterns of activity (Prinz 

et al., 2003; Prinz et al., 2004; Gutierrez et al., 2013). Several combinations of circuit 

parameters such as synapse strengths, ion channel conductances, and network topology can 

be found in circuits that generate similar emergent collective dynamics (Gonçalves et al., 

2020). The dimensionality of the space of neuronal and synaptic parameters in a neural 

circuit is much larger than the dimensionality of the circuit output (Marder and Bucher, 

2007). This disparity in dimensionality leads to an inherently many-to- one mapping from 

the space of circuit architecture to the space of circuit dynamics. Circuits can therefore 

exhibit ‘cryptic’ architectural variability (Haddad and Marder, 2018), where the diversity 

of topologies and neuronal parameters is masked by the relatively low- dimensional nature 

of the observed circuit outputs. However, perturbations can reveal differences between 

seemingly identical circuits. For instance, current injections in an oscillator network can 

shift phases, thus revealing connection weights between individual neurons (Timme, 

2007). This work reveals a path towards analysis that can reveal cryptic variability and 

build mechanistic links from circuit architecture to function. By characterizing the totality 

of circuit dynamics under a variety of conditions, our framework provides a way to fit 

biophysically detailed models of the pyloric circuit to diverse circuit dynamics under 

baseline conditions and perturbations. From the large diversity of neuron and circuit 

parameters that can reproduce a snapshot of activity, only a subset of models could 
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potentially recapitulate the diverse irregular behavior seen under extreme perturbations. 

Recent work that reproduced how circuits change cycle periods with temperature (Alonso 

and Marder, 2020) can be extended to find parameter sets that also generate the irregular 

states characterized in this study at the rates observed in the data. Crucially, the 

characterization of the pyloric circuit dynamics in this work can be used to rule out models 

and parameter sets that generate irregular activity that is qualitatively dissimilar to any of 

the irregular states observed in the pyloric circuit. Future experimental work can pair data 

analysis methods such as this work with quantitative measurements of cellular and circuit 

parameters using emerging techniques (Schulz et al., 2006; Schulz et al., 2007; Tobin et 

al., 2009) to find parameter sets that generate robust rhythms and irregular states. 

Applicability to Other Systems. The analysis method in this study is well-suited for large 

datasets of neural recordings from identified neurons. Data where the identity of each 

neuron is not or cannot be known, such as large-scale mammalian brain recordings, would 

require modifications to the analysis pipeline described in Figure B.2. First, it would no 

longer be possible to construct a data vector of fixed length because ordering of the 

different neurons would not be meaningful. Each data point would instead be an unordered 

set of spike times from each neuron, and a distance function that operated on spike times 

(Christen et al., 2006; Victor and Purpura, 2009; Schreiber et al., 2003; van Rossum, 2001) 

could be used to generate a distance matrix between raw data points, which would be the 

input to the embedding algorithm. In our analysis, we included features such as the ‘spike 

phase’ (Figure B.2 b and c) because the neurons in this circuit interact with one another 

strongly in each cycle of oscillations. The analysis of neural circuits that do not show such 
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strong intrinsically phase-controlled behavior could use other features more suitable to 

those systems. 

Comparison With Other Methods. Visualization and other forms of analysis of large 

neural datasets rely on dimensionality reduction (Nguyen and Holmes, 2019). Here, we 

used the t-SNE algorithm as a core method to reduce the dimensionality of the dataset and 

visualize our data. t-SNE has been widely used in the unsupervised analysis of many types 

of biological data (Berman et al., 2014; Kollmorgen et al., 2020; Chen et al.,2021; Macosko 

et al., 2015; Kobak and Berens, 2019; Leelatian et al., 2020), including neural recordings 

(Dimitriadis et al., 2018). t-SNE is a technique that allows high-dimensional data to be 

visualized in a lower-dimensional space (Van der Maaten and Hinton, 2008; Linderman 

and Steinerberger, 2019), and works by preserving pairwise distances between points in 

the high-dimensional space and the low-dimensional embedding, within a certain 

neighborhood. This feature makes t-SNE an attractive tool to try to visualize large, 

structured datasets, such as those examined in this study, because it can demonstrate how 

similar spike patterns are to each other (Dimitriadis et al., 2018). t-SNE has been shown 

rigorously to be capable of recovering well-separated data clusters (Linderman and 

Steinerberger, 2019). In our application, t-SNE generated embeddings where spike patterns 

in different regions could be described as qualitatively different. For example, spike 

patterns in the top-most cluster (colored green in Figure B.3) all had weak PD spiking, but 

regular and strong LP spiking. This was qualitatively different from the two closest clusters 

LP-weak-skipped and irregular. In regions of the map where clusters were not cleanly 

separated (e.g., in the connection between the regular and irregular-bursting clusters), 

manual inspection revealed a number of intermediate states. The clustered or not-clustered 



 

206 
 

regions of the map are therefore informative of the underlying distribution of spike patterns 

and emerge robustly from the embedding.  

t-SNE is widely used in the analysis and visualization of high-dimensional data, but 

is important to acknowledge its limitations. t-SNE can generate embeddings that appear to 

have clusters from purely randomly distributed data, can distort sizes of clusters, and can 

fail to preserve large-scale topological features of the data in some embeddings 

(Wattenberg et al., 2016). The visualization we generated was useful in that it guided 

manual clustering and made feasible a previously intractable task, that of classifying 

hundreds of hours of spike patterns from hundreds of animals.  

A variety of other dimensional reduction techniques, including multidimensional 

scaling (Cox and Cox, 2008), convolutional non-negative matrix factorization 

(Mackevicius et al., 2019) and their extensions (Williams et al., 2020), tensor component 

analysis (Williams et al., 2018), and dynamical component analysis (Clark et al., 2019), 

have been developed that aid in visualizing and analysis of large neural datasets. Methods 

based on neural networks offer powerful tools to analyze unstructured neural data by 

modeling the data with a recurrent neural net and then analyzing that model (Vyas et al., 

2020). Topological autoencoders are one such technique that combine autoencoders with 

methods from topological data analysis to produce representation in lower-dimensional 

spaces (Moor et al., 2019). These methods are similar in spirit to the analysis presented 

here, but use sophisticated neural nets whose parameters yield the lower-dimensional 

representation. Other analysis methods include SOM-VAE, which combines self-

organizing maps (SOMs) and variational auto-encoders (VAEs) (Fortuin et al., 2018) to 

analyze high-dimensional time series and find transitions between states, and deep 
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temporal clustering, which combines dimensionality reduction and temporal clustering 

(Madiraju et al., 2018). 

Technical Considerations. In this study, we have used the activity of the LP and PD 

neurons as a proxy for the pyloric circuit. However, the pyloric circuit contains other 

neurons: AB (which is electrically coupled to PD neurons), PY neurons (which are anti-

phase to both PD and LP), and VD and IC neurons. A richer description of the dynamics 

of the pyloric circuit would include spikes from these neurons, and the methods we have 

described here can be scaled up to include these neurons. It is likely that we are 

underestimating the number of states, and thus, transitions between states, because we do 

not have access to the dynamics of these neurons. Datasets that contain recordings from all 

pyloric neurons as preparations are subjected to the perturbations studied here and are not 

available for large numbers of animals. We therefore chose to focus on the functional 

antagonists LP and PD. Additionally, neurons in the pyloric circuit are coupled using 

graded synapses, and the circuit can generate coordinated activity even when spiking is 

abolished (Rosenbaum and Marder, 2018), suggesting that subthreshold oscillations may 

be an important feature we are not measuring by only recording spikes. However, the data 

required necessitates substantially harder to perform experiments because intracellular 

electrodes must be used. Furthermore, the signal to the muscles – arguably the 

physiologically and functionally relevant signal – is the spike signal, suggesting that spike 

patterns from the pyloric circuit are a useful feature to measure. 

The unit of data we operated on was a time series of spikes from the LP and PD 

neurons. In order to describe what the dynamics of these neurons is at a given point in time, 

we chose to look at a neighborhood in time. In this article, we chose 20 s nonoverlapping 
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bins, based on inspection of the data by eye. Choosing a time bin imposes certain tradeoffs 

in the analysis of time series: changes in dynamics on timescales smaller than the bin are 

counted as different states, and changes in dynamics on timescales longer than the bin size 

are counted as transitions between states. The statistics of the transitions we measure are 

therefore dependent on the bin size we chose. We note that dwell times in each state are 

almost always in excess of null model predictions generated by shuffling states (transition 

matrices in Figures B.6, B.7 and B.10), supporting the validity of our choice of 20 s bins. 

Conclusion and Outlook. Our work provides a way to characterize nonregular spike 

patterns in small neural circuits. It thus provides a bridge between experimental or 

simulation work grounded in the biophysical detail of ion channels and synaptic currents; 

and the rich body of observations of circuits under baseline and perturbed conditions. The 

methods we have employed can easily be adapted to other circuits and systems, make 

limited assumptions of the dynamics of the circuit, yet provide a robust framework on 

which to hang a large volume of previously ineffable expert domain knowledge.  

Prior to this work, crashes in the pyloric circuit and irregular dynamics in a 

normally regular circuit were difficult to characterize. We present a method to tame the 

complexity of the distribution of irregular states by exploiting the fact that pyloric 

dynamics are not unbounded even in their irregularity. By using a t-SNE in conjunction 

with manual inspection of reduced data and manual clustering, we have made this 

previously intractable problem feasible and found undiscovered spike patterns and 

transitions. Our approach was successful because we used a dataset with long recordings 

from identified neurons in a circuit that can be subjected to many different perturbations, 

which is one of the advantages of using the STG system. It will be interesting to see if this 
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can be applied to other systems with identified neurons in a functional circuit to 

characterize their function and failure modes. 

In intact pyloric circuits, and in the presence of modulatory input from the stn, 

almost all networks are ‘normal’ and exhibit regular rhythms. Decentralization can 

generate more variable dynamics, presumably because the underlying differences in 

network structure that were compensated by modulator action now manifest as different 

collective dynamics in the network. Although it may appear that modulators can have 

similar effects when added to a decentralized network, they are in fact distinguishable when 

looking at how they influence the totality of circuit dynamics, not just the regular state.  

A major unanswered question was whether crashes triggered by different 

perturbations share dynamical mechanisms and common pathways. Earlier work looking 

at a simpler subset of the pyloric circuit argued that different perturbations led to 

stereotyped but diverse transitions before crash, and we have extended this result in the 

intact circuit. We show that different perturbations can have different trajectories to crash, 

but the stereotypy observed in the simpler system was not observed, presumably due to the 

larger number of pathways accessible to the intact circuit. The new insight from this work 

stems from the fact that this is the first time transitions through multiple physiological 

conditions in so many modalities have been characterized and shows that there are many 

paths through possible circuit dynamical states from canonical states to crash. Several 

studies focus on one perturbation at a time. By studying a number of perturbations together, 

we compare responses to different kinds of perturbations on the same physiological 

network. 
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B.4 Materials and Methods 

Animals and Experimental Methods. Adult male Jonah crabs (C. borealis) were obtained 

from Commercial Lobster (Boston, MA), Seabra’s Market (Newark, NJ), and Garden Farm 

Market (Newark, NJ). Dissections were carried out as previously described (Gutierrez and 

Grashow, 2009). Decentralization was carried out either by cutting the stn or by 

additionally constructing a well on the stn and adding sucrose and TTX (tetrodotoxin) as 

described in Haddad and Marder, 2018. Temperature was controlled as described in Tang 

et al., 2010; Tang et al., 2012; Haddad and Marder, 2018. Extracellular potassium 

concentrations were varied as described in He et al., 2020. pH perturbations are described 

in Haley et al., 2018. 

Data Selection and Curation. Our goal was to include as much data as possible to create 

as complete a description of pyloric dynamics as possible. Following our strategy of 

including only the LP and PD neurons, we used every available dataset that recorded from 

these neurons from the Marder lab. We also included available datasets from the Nadim 

and Bucher labs. No dataset was explicitly excluded for reasons linked to the activity of 

the pyloric circuit in those datasets. Data where crucial metadata was not recorded (e.g., if 

the temperature of the preparation was not recorded) was excluded. Data where only lvn 

was recorded from was only included in cases of exceptional data quality, where it was 

judged that PD and LP could be reliably identified. 

Spike identification and sorting. Spikes are identified from extracellular recordings of 

motor nerves or from intracellular recordings. LP spikes were identified from intracellular 

recordings, lvn, lpn, and gpn nerves (in descending order of likelihood). PD spikes were 

identified from pdn, intracellular recordings, and lvn. We used a custom-designed spike 
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identification and sorting software (called ‘crabsort’) that we have made freely available  

https://github.com/sg-s/crabsort (Gorur-Shandilya, 2021), previously described in Powell 

et al., 2021. Spikes are identified using a fully connected neural network that learns spike 

shapes from small labeled datasets. A new network is typically initialized for every 

preparation. Predictions from the neural network also indicate the confidence of the 

network in these predictions, and uncertain predictions are inspected and labeled and the 

neural network learns from these using an active learning framework (Settles, 2009). 

Data Curation and Data Model. Each file was split into 20 s nonoverlapping bins, and 

spike times, together with metadata, were assembled into a single immutable instance of a 

custom-built class (embedding.DataStore). The data store had the following attributes: 

 Spike times containing LP and PD spike times. 

 ISIs containing ISIs and spike phases 

 Labels categorical data containing manually generated labels from Figure B.3 
 

 Metadata such as concentration of modulators, pH, temperature, whether the 
preparation was decentralized or not, etc. 

 
Using an immutable data structure, reduced risks of accidental data alteration during 

analysis. Every attribute was defined for every data point.   

Embedding. ISI and phase representation (Figure B.2 b). Each data point is a 20 s bin 

containing spike times from LP and PD neurons (Figure B.2 a). For each data point, spike 

times are converted into ISIs. A set of spike times uniquely identifies a set of (ordered) 

ISIs. The set of LP spike times generates a set of LP ISIs, and the set of PD spike times 

generates a set of PD ISIs (Figure B.2 b). 

For every spike in PD or LP, a ‘spike phase’ can be calculated as follows. Spike 

phases are not defined when either LP or PD are silent in that data point, or for LP/PD 
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spikes with no spikes from the other neuron before or after that spike. Thus, the ‘spike 

phase’ of the ith spike on neuron X w.r.t. neuron Y is given by 

 

 

 

 

where tX
i is the time of the ith spike on neuron X , tY

i,− is the time of the last spike on Y 

before tX
i, and tY

i,+ is the time of the first spike after tX
i. Note that this definition can be 

generalized to N neurons, though the number of spike phases grows combinatorially with 

N . 

Construction of vectorized data frame (Figure B.2 c and d). Each data point can contain 

an arbitrary number of spikes, and thus an arbitrary number of ISIs and spike phases. 

Ideally, each data point is a data frame of fixed length (a point in some fixed high-

dimensional space). To do so, we computed percentiles ISIs and spike phases (Figure B.2 

c). We chose 10 bins per ISI type (deciles). The end result is not strongly dependent on the 

number of bins chosen as long as there are sufficiently many bins to capture the distinctly 

bimodal distribution in ISIs during bursting. 

We included four other features to help separate spike patterns that appeared 

qualitatively different. First, firing rates of LP and PD neurons. Second, the ratios of 

second-order to first-order ISIs, defined as 
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where I(n) is the nth order set ofISIs computed as the time between n spikes. I(1) is the simple 

set of ISIs defined between subsequent spikes. This measure is included because it captures 

the difference between single spike bursts and normal bursts well. Third, the ratio between 

the largest and second-largest ISIs for each neuron. 

Finally, we also included a metric defined as follows: 

 

 

where s is a vector of sorted ISIs, and smax is the sorted ISI for which the difference between 

it and the previous sorted ISI is maximum. This metric was included as it captures to a first 

approximation how ‘burst-like’ a spike train is. Intuitively, this metric is high for spike 

trains with bimodal ISI distributions, as is the case during bursts.  

All these features were combined into a single data frame and z -scored  

(Figure B.2 d). 

In some cases, these features were not defined, for example, when there are no 

spikes on either neuron, the concepts of spike phases or ISIs are meaningless. In these 

cases, ‘filler’ values were used that were located well off the extremes of the distribution 

of the metric when defined. For example, ISIs were filled with values of 20 s (the size of 

the bin) when no spikes were observed. The overall results and shape of the embedding did 

not depend sensitively on the value of the filler values used. 
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These features were chosen to capture various modes of spiking and bursting that have 

been previously identified by manual inspection (Haddad and Marder, 2018; Tang et al., 

2012; Haley et al., 2018). Other features may be more appropriate in other systems where 

spike patterns span different axes of variability. However, we note that these features while 

being appropriate for this data were not ‘fine-tuned’ to specialize in features that are 

exclusively found in spike patterns from the pyloric circuit. For example, these features do 

not explicitly measure bursting, the dominant feature of the pyloric rhythm, but instead use 

distributions of ISIs that are sufficiently descriptive to capture the variability in bursting 

and transitions from bursting to other spiking. 

Embedding using t-SNE. So far, we have described how we converted a 20 s snippet 

containing spike times from LP and PD into a data frame (a vector). We did this for every 

20 s snippet in the dataset. Data that did not fit into any bin was discarded (e.g., data at the 

trailing end of an experiment shorter than 20 s). Thus, our entire dataset is represented by 

M × N matrix, where M is the number of features in the data frame and N is the number of 

data points.  

We used the t-SNE algorithm (Van der Maaten and Hinton, 2008) to visualize the 

vectorized data matrix in two dimensions. Our dataset contained ~ 105 points and was 

therefore too large for easy use of the original t-SNE algorithm. We used the FI-t- 

SNE approximate algorithm (Linderman et al., 2019) to generate these embeddings. We 

used a perplexity of P = 100 to generate these embeddings. Varying perplexity caused the 

embedding to change in ways consistent with what is expected for t-SNE embeddings, and 

the coarse features of the embedding did not sensitively depend on this choice of perplexity 

(Figure B.2—figure supplement 4). t-SNE is often used with random initialization, and 
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different random initializations can lead to different embeddings with clusters located at 

different positions in the map. The importance of meaningful initializations has recently 

been highlighted (Kobak and Linderman, 2021), and we used a fixed initialization where 

the x-axis corresponded to the shortest ISI in each data point and the y-axis corresponded 

to the maximum ratio of second-order to first-order ISI ratios (described above). For 

completeness, we also generated embeddings using other initializations (Figure B.3—

figure supplement 2). For both random initializations (Figure B.3—figure supplement 2a–

d) and initializations based on ISIs (Figure B.3—figure supplement 2e and f), we observed 

that regular states tended to occur in a single region, surrounded by clusters that were 

dominated by a single color corresponding to irregular states. Thus, the precise location of 

different clusters can vary with the initialization, but the overall structure of the embedding, 

and the identity of points that tend to co-occur in a cluster, does not vary substantially with 

initialization. 

Manual clustering and annotation of data. Once the feature vectors were embedded 

using t-SNE, we manually inspected these points to get a sense of the spike patterns in each 

point cloud. To do so, we built an interactive tool that visualized spike patterns that 

corresponded to each point when clicked on. Random points within regions of high density 

were sampled to check that interior points had similar spike patterns. Points were assigned 

labels by drawing boundaries around them and labeling all points within that boundary. 

Finally, we generated plots of ISIs and rasters from points in clusters to ensure that patterns 

of spiking were visually similar. 

Triangulation and triadic differences (Figure B.2—figure supplement 3). The output 

of the embedding algorithm is a set of points in two dimensions. We built a Delaunay 
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triangulation on these points. For each triangle in the triangulation, we computed the 

maximum difference between some burst metric (e.g., burst period of PD neurons) across 

the three vertices of that triangle. These triadic differences are represented colored dots, 

where the dots are located at the incenters of each triangle in the triangulation. 

Time-series analysis. 

Measuring burst metrics (Figure B.4). Burst metrics were measured following previous 

definitions (Prinz et al., 2004; Bucher et al., 2005). Briefly, bursts were identified by 

observing that ISI distributions were bimodal, with smaller ISIs corresponding to ISIs 

within a burst, and longer ISIs corresponding to inter-burst intervals. This allowed us to 

threshold ISIs, and this identifies burst starts and burst ends. From here, burst periods could 

be calculated, which allowed us to measure phases and delays relative to the start of the 

PD burst. 

Measuring transition matrices (Figures B.6, B.7 and B.10). The transition matrix is a 

square matrix of size N that describes the probability of transitioning from one to another 

of N possible states. The transition matrix we report is the right stochastic matrix, where 

rows sum to 1. Each element of the matrix Tij corresponds to the conditional probability 

that we observe state j given state . To compute this, we iterate over the sequence of states 

and compare the current state to the state in the next state. Breakpoints in the sequence are 

identified by discontinuities in the timestamps of that sequence and are ignored. We then 

zeroed the diagonal of the matrix and normalized each row by the sum.  

Measuring variability before transitions away from regular states (Figures B.6 and 

B.7). We first identified continuous segments that corresponded to uninterrupted 

recordings from the same preparation at the appropriate condition. For each segment, we 
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found all transitions away from the regular state. We therefore computed a vector as long 

as the segment containing the time to the next transition. We then collected points 

corresponding to time to next transition ranging from t = −200s to t = 0s . For each time 

bin, we measured the CV of the burst period by dividing the standard deviation of the burst 

period in that datum by the mean in that datum. 

Data visualization 

Raincloud plots (Figure B.4). Raincloud plots (Allen et al., 2019) are used to visualize a 

univariate distribution. Individual points are plotted as dots, and a shaded region indicates 

the overall shape of the distribution. This shape is obtained by estimating a kernel 

smoothing function estimate over the data. Individual points are randomly jittered along 

the vertical axis for visibility. 

Occupancy maps (Figures B.5 and B.7). To visualize where in the map data from a 

certain condition occurred, the full embedding is first plotted with colors corresponding to 

the state each point belongs to. The full dataset is made semi-transparent and plotted with 

larger dots to emphasize the data of interest. Data in the condition of interest is then plotted 

as usual. Each bright point in these plots corresponds to a 20 s snippet of data in the 

condition indicated. 

Treemaps (Figures B.7 and B.9). Treemaps (Shneiderman and Wattenberg, 2001) were 

used to visualize state probabilities in a given experimental condition. For each preparation, 

the probability of each state was computed, and the mean probability of a given state was 

computed by averaging across all preparations. Thus, each preparation contributes equally. 

The area of the region in the treemap scales with the probability of that state. 
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Transition matrices (Figures B.6, B.7 and B.10). Transition matrices were visualized as 

in Corver et al., 2021. Initial states are shown along the left edge, and final states are shown 

along the bottom edge of each matrix. Lines are colored by origin (horizontal lines) or 

destination (vertical) states. The size of each disc at the intersection of each line scales with 

the conditional probability of moving from the initial state to the final state. Note that the 

size of all discs is offset by a constant to make small discs visible. 

Statistics 

Comparing within-group to across-group variability (Figure B.4). To compare the 

variability of various burst metrics within each animal and across animals, we first 

measured the means and CVs of each burst metrics in every animal. We then used the mean 

of the coefficients of variations as a proxy for the within-animal variability and used the 

CV of the means as a proxy for the across-animal variability. Note that both measures are 

dimensionless. They can therefore be directly compared.  

To test if the within-animal variability was significantly less than the across-animal 

variability, we performed a permutation test. We shuffled the labels identifying the animal 

to which each data point belonged to and measured a new ‘within-animal’ and ‘across-

animal’ variability measure using these shuffled labels. We repeated this process 1000 

times to obtain a null distribution of differences between within- and across-animal 

variability. Identifying where in the null distribution the data occurred allowed us to 

estimate a p-value for the measured difference. For example, if the measured difference 

between within- and across-animal variability in metric X was greater than 99% of the null 

distribution obtained by shuffling labels, we conclude that the p-value is 0.01. The 
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significance level of 0.05 was divided by the number of burst metrics we tested to 

determine if any one metric was significantly more or less variable across animals. 

Measuring trends in variability in regular rhythms before transitions (Figures B.6 b, 

B.7 f and B.9 d). To determine if variability significantly increased in the 200 s preceding 

a transition away from regular, we measured the Spearman rank correlation between time 

before transition (x-axis) and mean variability. The Spearman rank correlation ρ is 1 if 

quantities monotonically increase.  

Measuring transition rate significance (Figures B.6 a, B.7 e and B.10). In the empirical 

transition matrices, certain transitions never occur, and certain transitions occur with 

relatively high probability. Each element of the transition matrix Tij corresponds to the 

conditional probability P(final|initial). Our null model assumes that transitions occur at 

random between states, and therefore the probability of observing any transition i → j 

scales with the marginal probability of observing state j after transitions. We therefore built 

a null distribution of transition rates by sampling with replacement from the marginal 

counts of states after transitions. The fraction of this null distribution that was above or 

below the empirical transition rate was interpreted to be the p-value and thus determined 

significance. 
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Code availability 

Table B.4 lists the code used in this article. The code can be downloaded by prefixing 

https://github.com/ to the project name. 
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