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ABSTRACT

OPTIMIZATION OPPORTUNITIES IN HUMAN IN THE LOOP
COMPUTATIONAL PARADIGM

by
Dong Wei

An emerging trend is to leverage human capabilities in the computational loop at

different capacities, ranging from tapping knowledge from a richly heterogeneous pool

of knowledge resident in the general population to soliciting expert opinions. These

practices are, in general, termed human-in-the-loop (HITL) computations.

A HITL process requires holistic treatment and optimization from multiple

standpoints considering all stakeholders: a. applications, b. platforms, c. humans. In

application-centric optimization, the factors of interest usually are latency (how long

it takes for a set of tasks to finish), cost (the monetary or computational expenses

incurred in the process), and quality of the completed tasks. Platform-centric

optimization studies throughput, or revenue maximization, while human-centric

optimization deals with the characteristics of the human workers, referred to as human

factors, such as their skill improvement and learning, to name a few. Finally, fairness

and ethical consideration are also of utmost importance in these processes.

This dissertation aims to design solutions for each of the aforementioned

stakeholders. The first contribution of this dissertation is the study of recommending

deployment strategies for applications consistent with task requesters’ deployment

parameters. From the worker’s standpoint, this dissertation focuses on investigating

online group formation where members seek to increase their learning potential

via collaboration. Finally, it studies how to consolidate preferences from different

workers/applications in a fair manner, such that the final order is both consistent

with individual preferences and complies with a group fairness criteria.



The technical contributions of this dissertation are to rigorously study these

problems from theoretical standpoints, present principled algorithms with theoretical

guarantees, and conduct extensive experimental analysis using large-scale real-world

datasets to demonstrate their effectiveness and scalability.



OPTIMIZATION OPPORTUNITIES IN HUMAN IN THE LOOP
COMPUTATIONAL PARADIGM

by
Dong Wei

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

May 2022



Copyright © 2022 by Dong Wei

ALL RIGHTS RESERVED



APPROVAL PAGE

OPTIMIZATION OPPORTUNITIES IN HUMAN IN THE LOOP
COMPUTATIONAL PARADIGM

Dong Wei

Dr. Senjuti Basu Roy, Dissertation Advisor Date
Associate Professor, Computer Science, NJIT

Dr. Chase Wu, Committee Member Date
Professor, Computer Science, NJIT

Dr. Yiannis Koutis, Committee Member Date
Associate Professor, Computer Science, NJIT

Dr. Pan Xu, Committee Member Date
Assistant Professor, Computer Science, NJIT

Dr. Sihem Amer-Yahia, Committee Member Date
Research Director, Centre National de Recherche Scientifique, FRANCE



BIOGRAPHICAL SKETCH

Author: Dong Wei

Degree: Doctor of Philosophy

Date: May 2022

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science

New Jersey Institute of Technology, Newark, NJ, 2022

• Master of Science in Information Science
University of Pittsburgh, Pittsburgh, PA, 2016

• Bachelor of Engineering in Transportation
Central South University, Changsha, China, 2014

Major: Computer Science

Presentations and Publications:

Dong Wei, Md Mouinul Islam, Baruch Schieber, and Senjuti Basu Roy,
“Rank Aggregation with Proportionate Fairness” Proceedings of the 2022
International Conference on Management of Data (SIGMOD’ 22), ACM.

Dong Wei, Ioannis Koutis, and Senjuti Basu Roy, “Peer Learning Through Targeted
Dynamic Groups Formation” 2021 IEEE 37th International Conference on
Data Engineering (ICDE’ 21), IEEE.

Dong Wei, Senjuti Basu Roy, and Sihem Amer-Yahia, “Recommending Deployment
Strategies for Collaborative Tasks” Proceedings of the 2020 International
Conference on Management of Data (SIGMOD’ 20), ACM.

Dong Wei, Senjuti Basu Roy, and Sihem Amer-Yahia, “Task Deployment
Recommendation with Worker Availability” 2020 IEEE 36th International
Conference on Data Engineering (ICDE’ 20), IEEE.

iv



To my beloved family

v



ACKNOWLEDGMENT

I am extremely grateful for the chance I have had at NJIT over the past five years,

during which I have gotten great instruction, formed lifelong friendships, and pursued

my goals freely. First and foremost, I would like to express my deepest gratitude to

my advisor, Dr. Senjuti Basu Roy for her invaluable inspiration, encouragement, and

supervision along the way during the course of my PhD degree.

I would express my sincere thanks to my dissertation committee members:

Dr. Sihem Amer-Yahia, Dr. Chase Wu, Dr. Yiannis Koutis, and Dr. Pan Xu. I

am truly honored to have them in my dissertation committee.

I would also like to express my sincere gratitudes to Dr. Sihem Amer-Yahia,

Dr. Yiannis Koutis, Dr. Schieber Baruch for their guidance. I would like to

thank Dr. Sihem Amer-Yahia who provided me with many examples of finding and

formalizing a good human-in-the-loop problem and how to construct a research paper

based on these problems. I am grateful to Dr. Yiannis Koutis uses his brilliant graph

theory knowledge and math intuition that helped me design solutions for the dynamic

group formation problem. Finally, I would like to thank Dr. Schieber Baruch for his

valuable guidance on my research. I would also like to thank all my collaborators

who are part of this thesis: Dr. Sihem Amer-Yahia, Dr. Yiannis Koutis, Dr. Schieber

Baruch, Dr. Mohammadreza Esfandiari (Payam), Mr. Md Mouinul Islam.

I would like to extend my sincere thanks to the Department of Computer Science

and to the National Science Foundation #1942913. It would be impossible for me to

complete my Ph.D. degree without their generous support.

I also wish to thank the Big Data Analytics Lab (BDaL) and my lab members,

Dr. Mohammadreza Esfandiari (Payam), Mrs. Sepideh Nikookar, Mr. Md Mouinul

Islam, Ms. Mahsa Asadi and Mr. Md Rakibul Hasan, for their support, help, and

research collaboration.

vi



From the bottom of my heart I would like to say big thank you for all the

friends and peers I have met at NJIT for the thoughts we exchanged, the discussions

we had, and the days and nights we fought together. An incomplete list includes

Dr. Mohammadreza Esfandiari (Payam), Mr. Songlin He, Dr. Wuji Liu, Dr. Huiyan

Cao, Mr. Yucong Shen, Mr. Yufei Zhang, Mr. Shibo Yao, and more.

Last but not least, I would like to express my deepest love to my parents, 魏碧

海，王文玲. They have always been encouraging and supporting me to achieve my

dream.

vii



TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Background and Motivations . . . . . . . . . . . . . . . . . . . 1

1.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 OPTIMIZING PEER LEARNING IN ONLINE GROUPS
WITH AFFINITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Modeling and Problem Definition . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Optimizing Learning Potential . . . . . . . . . . . . . . . . . . 16

2.3.2 Optimizing Affinity . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 Optimizing Affinity with Learning Potential as a Constraint . . 21

2.4 Constrained Optimization . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Algorithm for AffC LpD . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Algorithm for AffC LpA . . . . . . . . . . . . . . . . . . . . 25

2.4.3 Algorithms for AffD Lp-* . . . . . . . . . . . . . . . . . . . . 26

2.5 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Real Data Experiments . . . . . . . . . . . . . . . . . . . . . . 27

2.5.2 Synthetic Experiments Setup . . . . . . . . . . . . . . . . . . . 29

2.5.3 Quality Experiments (Synthetic) . . . . . . . . . . . . . . . . . 34

2.5.4 Scalability Experiments (Synthetic) . . . . . . . . . . . . . . . 35

2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

viii



TABLE OF CONTENTS
(Continued)

Chapter Page

3 TASK DEPLOYMENT RECOMMENDATION
WITH WORKER AVAILABILITY . . . . . . . . . . . . . . . . . . . . . 40

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Data Model and Problem . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Batch Deployment Recommendation . . . . . . . . . . . . . . . . . . 45

3.3.1 Computing Workforce Requirement per Deployment . . . . . . 46

3.3.2 Optimization-Guided Batch Deployment . . . . . . . . . . . . 46

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Batch Deployment Recommendation . . . . . . . . . . . . . . . 49

3.4.2 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 PEER LEARNING THROUGH TARGETED DYNAMIC GROUPS
FORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Novelty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.2 Practical Motivation . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.3 Technical Contributions . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Model and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Algorithms and Running Time . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 DyGroups-Star . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.2 DyGroups-Clique . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 DyGroups-Star . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.2 DyGroups-Clique . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.3 DyGroups-Star for Two Groups . . . . . . . . . . . . . . . . . 67

4.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 75

ix



TABLE OF CONTENTS
(Continued)

Chapter Page

4.5.1 Human Subjects Experiments . . . . . . . . . . . . . . . . . . 75

4.5.2 Synthetic Data Experiments . . . . . . . . . . . . . . . . . . . 77

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.7 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 87

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 RECOMMENDING DEPLOYMENT STRATEGIES FOR COLLABORATIVE
TASKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Framework and Problem . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.2 Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.3 Problem Definitions . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Deployment Recommendation . . . . . . . . . . . . . . . . . . . . . . 99

5.3.1 Deployment Strategy Modeling . . . . . . . . . . . . . . . . . . 101

5.3.2 Workforce Requirement Computation . . . . . . . . . . . . . . 101

5.3.3 Optimization-Guided Batch Deployment . . . . . . . . . . . . 103

5.4 ADPaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.1 Algorithm ADPaR-Exact . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5.1 Real Data Experiments . . . . . . . . . . . . . . . . . . . . . . 113

5.5.2 Synthetic Experiments . . . . . . . . . . . . . . . . . . . . . . 117

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 RANK AGGREGATION WITH PROPORTIONATE FAIRNESS . . . . . 131

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

x



TABLE OF CONTENTS
(Continued)

Chapter Page

6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2 Preliminaries and Formalism . . . . . . . . . . . . . . . . . . . . . . . 136

6.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 139

6.3 Related Work and Comparison . . . . . . . . . . . . . . . . . . . . . . 140

6.3.1 Fair Ranking Solutions . . . . . . . . . . . . . . . . . . . . . . 142

6.4 Individual p-fairness (IPF) . . . . . . . . . . . . . . . . . . . . . . . . 145

6.4.1 BinaryIPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.4.2 MultiValuedIPF . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.5 Rank Aggregation Subject to p-fairness (RAPF) . . . . . . . . . . . . 154

6.5.1 Randomized Algorithm . . . . . . . . . . . . . . . . . . . . . . 154

6.5.2 Deterministic Algorithm . . . . . . . . . . . . . . . . . . . . . 156

6.6 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . . . 158

6.6.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . 158

6.6.2 Implemented Algorithms . . . . . . . . . . . . . . . . . . . . . 160

6.6.3 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . 161

6.6.4 Quality Experiments . . . . . . . . . . . . . . . . . . . . . . . 162

6.6.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.6.6 Scalability Experiment . . . . . . . . . . . . . . . . . . . . . . 168

6.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 168

7 SATISFYING COMPLEX TOP-K FAIRNESS CONSTRAINTS
BY PREFERENCE SUBSTITUTIONS . . . . . . . . . . . . . . . . . . 171

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.2 Data Model & Problem Definitions . . . . . . . . . . . . . . . . . . . 173

7.2.1 A Toy Running Example . . . . . . . . . . . . . . . . . . . . . 173

7.2.2 Problem Definitions . . . . . . . . . . . . . . . . . . . . . . . . 176

xi



TABLE OF CONTENTS
(Continued)

Chapter Page

7.3 Single Protected Attribute . . . . . . . . . . . . . . . . . . . . . . . . 178

7.3.1 Binary Protected Attribute . . . . . . . . . . . . . . . . . . . . 179

7.3.2 Subroutine FindBallotSubB . . . . . . . . . . . . . . . . . . 181

7.3.3 Multi-valued Protected Attribute . . . . . . . . . . . . . . . . . 187

7.4 Multiple Protected Attributes . . . . . . . . . . . . . . . . . . . . . . 189

7.4.1 Constant Number of Attribute Configurations . . . . . . . . . 189

7.4.2 The 3 Attribute Case . . . . . . . . . . . . . . . . . . . . . . . 191

7.4.3 Hardness of the 2 Attribute Case . . . . . . . . . . . . . . . . . 191

7.4.4 Approximating the Margin in the 2 Attribute Case . . . . . . . 191

7.5 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . . . 196

7.5.1 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . 196

7.5.2 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . 198

7.5.3 Quality Experiments Results . . . . . . . . . . . . . . . . . . . 199

7.5.4 Scalability Results . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

8 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . 209

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

8.2.1 Recommending Deployment Strategies for Considering Worker
Availability as a Probability Density Function . . . . . . . . 211

8.2.2 Fair Task Assignment in HITL . . . . . . . . . . . . . . . . . . 212

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

xii



LIST OF TABLES

Table Page

2.1 Partial Affinity Table for Example 1 . . . . . . . . . . . . . . . . . . . . 11

2.2 Static Peer Learning NP-Hard Problems and Technical Results . . . . . 15

2.3 Approximation Factors of GrAff*-Lp* Algorithms . . . . . . . . . . . 33

3.1 Deployment Requests and Strategies . . . . . . . . . . . . . . . . . . . . 43

5.1 Deployment Requests and Strategies . . . . . . . . . . . . . . . . . . . . 94

5.2 Matrix M in ADPaR-Exact . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 Step 1 of ADPaR-Exact . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Step 2 of ADPaR-Exact . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5 Step 3 of ADPaR-Exact . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6 α, β Estimation in Real Experiments . . . . . . . . . . . . . . . . . . . . 119

6.1 Original Ranks Provided by four Members . . . . . . . . . . . . . . . . . 133

6.2 Summary of Technical Results . . . . . . . . . . . . . . . . . . . . . . . 135

6.3 Important Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.4 Rank Aggregation Results of Comparable Methods Using Section 6.1.1 Example

Considering Gender as the Protected Attribute . . . . . . . . . . . . . . . 140

6.5 Protected Attribute Values . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.6 Real World Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.7 Approximation Factors of the Algorithms for IPF/RAPF . . . . . . . . . 165

6.8 Case Study Results on MovieLens Dataset . . . . . . . . . . . . . . . . . 166

7.1 Summary of Technical Results . . . . . . . . . . . . . . . . . . . . . . . 174

7.2 12 Voters, 6 Candidates, and a Voting Outcome . . . . . . . . . . . . . . 174

7.3 Fairness Constraints in Top-4 Results of Running Example . . . . . . . . 175

7.4 Table of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.5 Real World Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

xiii



LIST OF FIGURES

Figure Page

2.1 Visual depiction of learning potential . . . . . . . . . . . . . . . . . . . . 8

2.2 Visual depiction of affinities. . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Upper bound of approximation factor. . . . . . . . . . . . . . . . . . . . 24

2.4 Skill improvement with and w/o affinity in LpD (a) and LpA (b). . . . 28

2.5 A sample worker interaction. . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 AFF-* LP-* values varying n for Normal distribution. . . . . . . . . . . 30

2.7 AFF-* LP-* values varying n for Zipf distribution. . . . . . . . . . . . . 32

2.8 AFF-* LP-* values varying k for Normal distribution. . . . . . . . . . . 34

2.9 AFF-* LP-* values varying k for Zipf distribution. . . . . . . . . . . . . 36

2.10 Results of scalability experiment. . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Deployment Strategy Examples. . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Objective Function for Throughput when Varying k. . . . . . . . . . . . 50

3.3 Objective Function and Approximation Factor for Payoff when Varying k. 51

3.4 Running time for Batch Deployment Varying m. . . . . . . . . . . . . . 51

4.1 Experiment-1: Learning gain across rounds. . . . . . . . . . . . . . . . . 78

4.2 Linear fit to learning gain. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Experiment-1: Worker retention. . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Results of Experiment-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Aggregate Learning gain - varying n. . . . . . . . . . . . . . . . . . . . . 80

4.6 Aggregate Learning gain - varying k. . . . . . . . . . . . . . . . . . . . . 81

4.7 Aggregate Learning gain - varying α. . . . . . . . . . . . . . . . . . . . . 81

4.8 Aggregate Learning gain - varying r. . . . . . . . . . . . . . . . . . . . . 82

4.9 Aggregate Learning gain - varying r. . . . . . . . . . . . . . . . . . . . . 82

4.10 Learning gain relative to Random-Assignment. . . . . . . . . . . . . . 83

4.11 Inequality relative to Random-Assignment. . . . . . . . . . . . . . . . 84

xiv



LIST OF FIGURES
(Continued)

Figure Page

4.12 Running time (in micro sec), Star, log-Normal. . . . . . . . . . . . . . . 85

4.13 Running time (in micro sec), Clique log-normal. . . . . . . . . . . . . . . 85

5.1 StratRec framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Deployment strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Computing workforce requirement. . . . . . . . . . . . . . . . . . . . . . 103

5.4 ADPaR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Translation: original texts and translation. . . . . . . . . . . . . . . . . . 114

5.6 Text Creation: two samples on Robert Mueller report. . . . . . . . . . . 115

5.7 Worker availability estimation. . . . . . . . . . . . . . . . . . . . . . . . 115

5.8 Relationship between deployment parameters and worker availability. . . 118

5.9 Percentage of satisfied requests before invoking ADPaR. . . . . . . . . . 121

5.10 Objective function for throughput. . . . . . . . . . . . . . . . . . . . . . 123

5.11 Objective function and approximation factor for payoff. . . . . . . . . . 124

5.12 Quality experiments for ADPaR. . . . . . . . . . . . . . . . . . . . . . . 125

5.13 Results of scalability experiments. . . . . . . . . . . . . . . . . . . . . . 126

6.1 Percentage of positions satisfying p-fairness (IPF). . . . . . . . . . . . . 162

6.2 Percentage of groups satisfying p-fairness (IPF). . . . . . . . . . . . . . 163

6.3 Kendall-Tau distance for IPF algorithms. . . . . . . . . . . . . . . . . . 163

6.4 Varying δ analysis IPF. . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.5 Running time analysis of IPF. . . . . . . . . . . . . . . . . . . . . . . . 164

6.6 % of positions satisfying p-fairness (RAPF). . . . . . . . . . . . . . . . 164

6.7 Kemeny Distance RAPF. . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.8 Running time analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.9 Varying δ analysis RAPF. . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.1 Results for MFBinaryS. . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.2 Results for MFMultiS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

xv



LIST OF FIGURES
(Continued)

Figure Page

7.3 Results for MFMulti2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.4 Results for MFMulti3+. . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.5 Running time for MFBinaryS, MFMultiS. . . . . . . . . . . . . . . . 201

7.6 Running time for MFMulti2. . . . . . . . . . . . . . . . . . . . . . . . 202

7.7 Varying distribution MFBinaryS, MFMultiS. . . . . . . . . . . . . . 202

7.8 Running time for MFMulti3+ . . . . . . . . . . . . . . . . . . . . . . . 202

xvi



CHAPTER 1

INTRODUCTION

1.1 Overview

“Human-in-the-loop” is a computational paradigm that is introduced for a plethora

of compelling applications that benefit both from human cognition and machine

intelligence [10,11,143]. An emerging trend there is to leverage human capabilities in

the computational loop at different capacities, ranging from tapping knowledge from a

richly heterogeneous pool of knowledge resident in the general population, to soliciting

opinion from experts. These practices are in general termed as human-in-the-loop

(HITL) computations [57, 68, 93, 97–99]. The human in the loop problems range

from simpler ones, such as, sorting [97], filtering, sentiment analysis [102], top-k

ranking [120], entity recognition, to more complex ones, like, task planning [132],

feature engineering [16], or human machine decision making. A HITL process

requires holistic treatment and optimization from multiple standpoints considering

all stakeholders: a. applications, b. platforms, c. humans. In application-centric

optimization, the factors of interest usually are latency (how long does it take for

a set of tasks to finish), cost (the monetary or computational expenses incurred the

process), and quality of the completed tasks. Platform-centric optimization studies

throughput, or revenue maximization. On the contrary, human centric optimization

deals with the characteristics of the human workers, referred to as human factors,

such as, their skill improvement and learning, to name a few. Finally Fairness and

ethical consideration are also of utmost importance in these processes.

1.1.1 Background and Motivations

Existing HITL systems tend to push humans further in the loop and largely ignore

their role and contribution to the ecosystem. Human workers are mere agents and are
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used to pursue broader computational goals. Bringing humans back to the frontier

of HITL will improve their quality of life, ensure better work performance, and in

turn, improve the computational goals. In fact, the existing literature on HITL

computation has a clear bifurcation. The computational world of research has mostly

focused on treating humans as agents [97, 107]. Contrarily, psychologists and social

scientists have acknowledged and reasoned about the necessity to incorporate human

characteristics in the computational loop but treat these problems mostly empirically,

and their contributions are limited to field study and laboratory experiments [15].

Clearly, there is a need about designing quantitative models and algorithms that

recognize and capture human characteristics and study optimization in the HITL

process. Combining these two aspects is the broader goal of this dissertation.

1.1.2 Contributions

This dissertation makes several non-trivial contributions in human-in-the-loop compu-

tational paradigm.

It begins by discussing how to aid workers in improving their skill through

on-job collaboration. In Chapter 2, it studies how to improve learning of workers

while they are collaborating with machines and with each other on online platforms.

It enables powerful and effective ways to improve individuals’ knowledge and promote

learning, such as MovieLens, Quora, and Coursera. Online group formation has been

studied where members seek to increase their learning potential via collaboration. We

capture two common learning models: LpA where each member learns from all higher

skilled ones, and LpD where the least skilled member learns from the most skilled

one. We formulate the problem of forming groups with the purpose of optimizing

peer learning under different affinity structures: AFFD where group affinity is the

smallest between all members, and AFFC where group affinity is the smallest between

a designated member (e.g., the least skilled or the most skilled) and all others. This
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gives rise to multiple variants of a multi-objective optimization problem. We propose

principled modeling of these problems and investigate theoretical and algorithmic

challenges. We first present hardness results, and demonstrate the Lp∗, AFF∗

problems are NP-Complete. Then, we develop computationally efficient algorithms

with constant approximation factors. Our real-data experiments demonstrate with

statistical significance that forming groups considering affinity improves learning. Our

extensive synthetic experiments demonstrate the qualitative and scalability aspects

of our solutions.

In Chapter 4, as the follow-up work of the previous peer learning project [61],

we study the dynamic version of peer learning problems. Imagine a peer learning

scenario in a physical classroom or on an online learning platform. Separating the

participants into equal-sized groups for homework assignments or projects is common

practice to ensure a relatively similar workload among students, while enabling

effective interaction among the peers. However, in the case when there is a series

of homework assignments or group projects, fixed groups may not be optimal. In

this paper we initiate a dynamic variant of the problem that, unlike previous works,

allows the change of group composition over time while still targeting to maximize

the aggregated knowledge level. The problem is studied in a principled way, using

a realistic learning gain function and for two different interaction modes among the

group members (similar to LpA and LpD in [61]).

On the algorithmic side, we presentDyGroups, a generic algorithmic framework

that is greedy in nature and highly scalable. We then introduce an optimal solution

for a special case of DyGroups with non-trivial derivation. We demonstrate the

different aspects of problem and how other methods lead to sub-optimal. Our detailed

real and synthetic experiment results manifest our proposed model indeed improves

the actual learning gains of individual and worker retention.
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In Chapter 5, we focus on the trend of aiding requesters in deploying tasks

on crowdsourcing platforms. We initiate the study of recommending deployment

strategies to task requesters that are consistent with deployment parameters they

desire: a lower-bound on the quality of the crowd contribution, an upper-bound on

the latency of task completion, and an upper-bound on the cost incurred by paying

workers. A deployment strategy is a choice of value for three dimensions: Structure

(whether to solicit the workforce sequentially or simultaneously), Organization (to

organize it collaboratively or independently), and Style (to rely solely on the crowd or

to combine it with machine algorithms). We propose StratRec, an optimization-driven

middle layer that recommends deployment strategies and alternative deployment

parameters to requesters by addressing multi-faceted modeling and computational

challenges by accounting for worker availability. We develop computationally efficient

algorithms to recommend deployments that maximize task throughput and pay-off,

as well as develop ADPaR to recommend alternative deployment. Our solutions

are grounded in discrete optimization, and computational geometric techniques that

produce results with theoretical guarantees. We present extensive experiments

through multiple deployments with real workers in Amazon Mechanical Turk, and

conduct synthetic experiments to validate the qualitative and scalability aspects of

StratRec.

In Chapter 6, this dissertation contributes to rank aggregation with propor-

tionate fairness. In this work we revisit some concepts in resource allocation to

model a notion of fairness, namely proportionate fairness or p-fairness to ensure

proportionate representation of every group based on a protected attribute in every

position of the aggregated ranked order [26, 134]. Given multiple individual rank

orders over a set of candidates or items, where the candidates belong to multiple

(non-binary) protected groups, rank aggregation under p-fairness (RAPF in short) is

designed to produce an aggregated ranked order that minimizes disagreements among

4



the individual rankings and ensures that the accumulated number of representation

of each group in the aggregated ranking is proportionate to their representation

in the original data for every position in the aggregated rank. We revisit the

p-fair rank aggregation considering a popular rank aggregation objective, namely

the Kemeny optimal aggregation. We observe that RAPF is NP-hard. We present a

randomized computational framework RandAlgRAPF that is highly scalable and

a deterministic computational framework AlgRAPF that produce a solution for

RAPF. Both algorithms rely on producing a p-fair Kemeny optimized ranking for

an individual ranking - we refer to this problem as Individual p-Fairness or IPF

in short. We make several non-trivial algorithmic contributions: (i) we prove that

when the group protected attribute is binary, IPF could be solved exactly using a

greedy technique; (ii) when the group protected attribute is non-binary, solving IPF

in non-trivial; (iii) we present two algorithmic frameworks RandAlgRAPF and

AlgRAPF and show that they produce an α+2 approximation factor, if IPF can be

solved with approximation factor α; (iv) We present two different solutions for IPF,

ExactMultiValuedIPF is optimal (i.e., α = 1) and ApproxMultiValuedIPF

admits 2 approximation factor respectively, leading to 3 and 4 approximation factors

for the RAPF problem. We run extensive experiments using multiple real world and

large scale synthetic datasets and compare our proposed solutions against multiple

state-of-the-art related works to demonstrate the effectiveness and efficiency of our

studied problem and proposed solution.

In Chapter 7, we discuss the margin finding problem under single ballot

substitutions with considering various protected group attribute settings to promote

fairness. The goal in this work is to optimize preference substitution (minimize the

number of single ballot substitutions) to satisfy complex top-k fairness constraints.

We formalize several margin finding problems via single ballot (preference) substi-

tutions considering complex fairness constraints: (i) In MFBinaryS, proportionate
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representation is required over a single binary protected attribute, such as male

and female of the protected attribute gender; (ii) In MFMultiS, it is defined

over a single multi-valued protected attribute, such as, race that contains more

than 2 different values; (iii) Contrarily, in MFMulti2, proportionate representation

is required over two different protected attributes, such as gender and race; and

finally, (iv) in MFMulti3+, we study the margin finding problem via preference

substitutions considering three or more protected attributes, such as, race, gender,

and ethnicity. Then, we study the defined problems theoretically and make principled

algorithmic contributions. We prove that both MFBinaryS and MFMultiS are

computationally easy. Next, we consider MFMulti2 and MFMulti3+ in which

two or more attributes are involved in defining fairness requirement. To the best of

our knowledge we are the first to study these problems rigorously from computational

standpoint. we prove that the decision version of MFMulti2is (weakly) NP-hard

by reducing the well known NP-hard Partition problem to our problem. On the

other hand, for MFMulti3+, we prove that the satisfiability problem itself is

(strongly) NP-hard through a reduction from the three-dimensional matching (3DM).

We conduct rigorous large scale experiments involving three real world (involving

election and movie applications) and one synthetic datasets and compare multiple

state-of-the-art solutions [66, 129] after appropriate adaptation.

We note that there are many interesting ongoing and future research directions

that one could explore. As an example, what if we can not precisely inquiry the

worker availability for deployment strategy recommendation? How to guarantee the

fairness of task assignment for workers in HILT? These are discussed in length in

Chapter 8.
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CHAPTER 2

OPTIMIZING PEER LEARNING IN ONLINE GROUPS
WITH AFFINITIES

2.1 Introduction

The emergence of platforms that support online networked technologies has changed

the way we communicate, collaborate, and learn things together. Existing works have

focused on how to identify and rank groups and communities [40], how to efficiently

form a set of groups to optimize different group recommendation semantics [123], or

form groups for task assignment [14,15,28,88,116]. The effect of online collaboration

however goes beyond, as it enables powerful and versatile strategies to improve

knowledge of individuals and promote learning. For example, online critiquing

communities,1 social Q&A sites,2 and crowdsourcing platforms3 investigate how

collaboration can promote knowledge and skill improvement of individuals. Learning

potential, is a key reason behind effective collaboration. It has been shown that the

increase in learning one expects from collaboration yields fruitful coordination and

higher quality contributions [3, 4]. For instance, in online fan-fiction communities,

informal mentoring improves people’s writing skills [62]. In this paper, we propose

to explore how affinity between group members improves peer learning and address

modeling, theoretical, and algorithmic challenges. To the best of our knowledge,

our work is the first to examine algorithmic group formation with affinities for peer

learning.

Group formation in online communities has been studied primarily in the

context of task assignment [14, 15, 28, 88, 116]. The problem is often stated as: given

a set of individuals and tasks, form a set of groups for the tasks that optimize some

1https://movielens.org/ Retrieved on May/01/2019
2http://quora.com/ Retrieved on May/01/2019
3https://www.figure-eight.com/ Retrieved on May/01/2019
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aggregated utility subject to constraints such as group size, maximum workload etc.

Utility can be aggregated in different ways: the sum of individual skills, their product,

etc [15]. Group formation is combinatorial in nature and proposed algorithms solve

the problem under different constraints and utility definitions (e.g., [88]). Unlike these

problems, we study how to form groups with the goal of maximizing peer learning

under different affinities.

Our first contribution is to present principled models to formalize peer learning

and affinity structures. We assume that a peer can only learn from another peer if

the skill of the latter is strictly higher than the skill of the former [4]. The learning

potential of a peer from a more skilled peer can then naturally be defined as the skill

difference between the latter and the former [3,4]. The learning potential of the latter

from the former is null. We use that to formulate two common learning models (see

picture below): LpA where each member learns from all higher skilled ones, and LpD

where the least skilled member (resp., the most skilled) learns from (resp. teaches to)

all others.

LpA: members learn from LpD: the least skilled member

higher-skilled ones learns from the most skilled one

Figure 2.1 Visual depiction of learning potential
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Affinity, on the other hand, depends on the application and can be expressed

using common socio-demographic attributes or more generally, using models that

capture psychological traits. We study our two learning models in conjunction with

two common affinity structures (see picture below): AffD where group affinity is

the smallest between all members, and AffC where group affinity is the smallest

between a designated member (e.g., the least skilled or the most skilled) and all others.

We investigate these two affinity scenarios through fact-checking and fact-learning

applications.

AffD: smallest affinity between AffC: smallest affinity

all pairs between one member and others

Figure 2.2 Visual depiction of affinities.

Our second contribution is to study the formalized models systematically and

present our theoretical findings. In its general form, our problem formulation is a

bi-objective optimization, with the goal to build k equi-sized groups over a set of

n members that maximize both learning potential and affinity. Interestingly, we

prove that no variant of optimizing learning potential alone is hard to solve (LpD

and LpA), however, the problems become NP-hard when affinity and group size

constraints are considered. Therefore, our solution first finds k groups that yield

the highest possible learning potential value and then transforms our two-objective

problem into a constrained optimization that looks for k groups that optimize affinity,

with that learning potential value as a constraint.
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Our third contribution is algorithmic. We present a suite of scalable algorithms

that form groups to maximize learning potential and optimize affinity within constant

approximation factors. To attain their approximation guarantees, these algorithms

assume that affinity satisfies triangle inequality [88]. Many similarity/distance

measures such as Jaccard distance and edit distance are known to satisfy metric

properties and these properties are usually assumed to design algorithms with

guarantees [88]. Our technical contributions are summarized in Table 2.2.

This chapter is organized as follows. Our model and problem are provided in

Section 2.2. Section 2.3 discusses various optimization problems: optimizing learning

potential alone, optimizing affinity alone, and combining the two. Section 2.4 contains

our algorithms. Real and simulated experiments are reported in Section 2.5. The

related work and conclusion are given in Sections 2.6 and 2.7.

2.2 Modeling and Problem Definition

We present our models following which we define the problems we tackle in this work.

Example 1. We have a set of fact-checking tasks to be completed by 12 individuals

with varying skills. We design questions to compute one skill per individual (e.g., on

the British royal wedding) and obtain the skill values: {2, 3, 1, 5, 6, 4, 9, 8, 10, 12, 14, 17}.

Each pair of individuals has an affinity that reflects how effectively they can collaborate

based on their socio-demographics. Therefore, there are
(
12
2

)
pairs of affinities forming

a complete graph. We show a subset of that graph in Table 2.1 where each worker is

identified by her skill. Our goal is to divide the workers into 3 equi-sized groups of 4

members each.

2.2.1 Modeling

Group. A group is a set of individuals who will complete a task together. The

group size is constant throughout task completion.
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Table 2.1 Partial Affinity Table for Example 1

member 2 3 1 5 6 4 9 8 10 12 14 17

2 - 20 - - - - 3 - - - 11 17

3 20 - 13 - - - 17 - - - 11 4

1 - 13 - - - - 10 - - - 14 21

. . .

17 17 4 21 - - - - - - - 6 -

Skill. Each individual has an approximated skill reflecting an ability to perform

a task. We obtain skills from standard tests and questionnaires to assess expertise

level. Other approaches such as inferring skills from completed tasks [115], are also

possible.

Affinity. Between every pair of individuals working on a task, affinity captures

how well they get along. We express affinity as a similarity measure (higher values

are better). We assume affinity satisfies triangle inequality [88]. Group affinity is the

aggregation of affinities between its members.

Learning Potential. We define the learning potential between two individuals

as the difference between their skill values. The learning potential is not a metric since

for the person with the higher skill value, we set it to 0 [3,4]. The learning potential

for a group is the sum of learning potentials of its members.

We have a set of n individuals who are working on a collaborative task. Each wi

has a skill value ws
i ∈ R ≥ 0 representing an ability to complete a task. Our goal is to

group them into k equi-sized groups such that the aggregated learning potential and

affinity of the groups are maximized. Before formalizing the problem, we investigate

variants of learning potential and affinity.
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Learning Potential Models Intuitively, the higher the learning potential of a

group, the more likely its members will learn from each other. We examine two

definitions.

Learning Potential - Diameter. We define LpD as the difference in

skills between the most skilled and the least skilled members. This reflects that for

a group, we are interested in maximizing the highest learning potential of the least

skilled individual in that group.

LpD(g) = max
wi∈g

(ws
i )−min

wj∈g
(ws

j) (2.1)

In Example 1, if we create the following three groups (we use a member’s skill

to represent her). G = {g1 = (2, 3, 1, 5), g2 = (6, 4, 9, 8), g3 = (10, 12, 14, 17)} then,

LpD(g1) = 5 − 1 = 4, LpD(g2) = 9 − 4 = 5, and LpD(g3) = 17 − 10 = 7. The

aggregated learning potential of the grouping G is 16.

Learning Potential - All. We define LpA as the sum of differences between

each member’s skill and that of all other members with higher skills.

LpA(g) =
∑
wi∈g

∑
(wj∈g,s.t.ws

i<ws
j )

(ws
j − ws

i ) (2.2)

Given the previous grouping, we can compute G = {g1 = (2, 3, 1, 5), g2 =

(6, 4, 9, 8), g3 = (10, 12, 14, 17)}, LpA(g1) = |1 − 2| + |1 − 3| + |1 − 5| + |2 − 3| +

|2 − 5| + |3 − 5| = 13, LpA(g2) = 17, and LpA(g3) = 23. The aggregated learning

potential of the grouping under LpA is 53.

Affinity Models It is important to look at the effect of affinity on learning

since members with higher affinities are likely to learn better from each other and

12



collaborate more effectively [62,108,116]. We examine two affinity variants.

Affinity - Diameter. We can formalize affinity as a complete graphG = (V,E)

where V is the set of n individuals and E contains weighted edges that correspond

to the affinity between every pair of them. In this case, affinity satisfies triangle

inequality. We refer to this case as AffD and define the affinity of a group as the

minimum pairwise affinity of all its members as follows:

AffD(g) = min
wi,wj∈g

aff (wi, wj) (2.3)

According to Example 1, if g = {2, 12, 14} then

AffD(g) = min{aff (2, 12), aff (2, 14), aff (12, 14)}, i.e., 4.

Affinity - Center. Affinity can also be defined based on the relationship

between one member and all others. We refer to that as AffC and capture it as a

graph G = (V,E) where edges are defined between one designated member wD and

all others.

AffC(g) = min
wD,wj∈g

aff (wD, wj) (2.4)

AffC captures the cases where the designated member is the least skilled or

the most skilled. Similarly to AffD, in Example 1, if g = {2, 12, 14} and the group

center is 14 then

AffC(g) = min{aff (2, 14), aff (12, 14)} which corresponds to

aff (12, 14) = 6.

For instance, when the task is collaborative fact-checking (e.g., check facts

related to the British royal wedding), LpA reflects that each group member will

learn from other members with higher skills and AffD captures agreement between
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the most two disagreeing members in the group. When LpA is combined with AffC,

we can capture a task such as text editing where group members collaborate to correct

grammar and spelling mistakes in text. In that case, one can intuitively assume that

each group member will learn from other members with higher skills and that everyone

must have affinity with the highest skilled member. Another example, AffD LpD

captures a task where group members are asked to produce facts they believe to be

true. In that case, the least skilled member learns from all others and all get along

when stating facts.

2.2.2 Problem Definition

Given a set W = {w1, ..., wn} of individuals with their corresponding skill values

ws
i , our goal is to form a grouping G that contains k equi-sized groups g1, g2, ..., gk

that maximizes two objective functions, aggregated learning potential and aggregated

affinity. More formally:

maximize
G

k∑
i=1

LP(gi),
k∑

i=1

Aff (gi)

s.t. |G| = k, |gi| =
n

k

(2.5)

where LP(gi) (resp. Aff (gi)) refers to any of the learning potential (resp.

affinity) definitions in Section 2.2.1.

Since the two objectives are incompatible with one another, our problem

qualifies as multi-objective. Upon examining the learning potential expressions, we

notice that these are polynomial time solvable problems, simply because the primary

operation that these problems require is sorting. We present exact algorithms for

the two learning potential problems in Section 2.3.1. The complexity of our problem

lies within the affinity structure and the group size constraint. One way to solve our
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Table 2.2 Static Peer Learning NP-Hard Problems and Technical Results

Problem Algo. Approx. Time

(AffC LpD) GrAffC-LpD exact LpD, 3 AffC O(klogn+ nlogk)

(AffC LpA) GrAffC-LpA exact LpD, 3 AffD O(nlogn)

(AffD LpD) GrAffD-LpD exact LpA, 6 AffC O(klogn+ nlogk)

(AffD LpA) GrAffD-LpA exact LpA, 6 AffD O(nlogn)

bi-objective optimization problem is therefore to transform it into a single-objective

problem with constraints. We can rewrite Equation (2.5) as follows:

maximize
G

k∑
i=1

Aff (gi)

s.t.
k∑

i=1

LP(gi) ≥ OptLP

|G| = k, |gi| =
n

k

(2.6)

where OptLP is the optimal solution for learning potential maximization.

Essentially, we are interested in finding a solution for the affinity objective on the

Pareto front, that has the highest learning potential. In Section 2.4, we present

approximation algorithms that find a feasible grouping (that maximizes learning

potential) and offer provable constant approximation for affinities.

2.3 Optimization

In this section, we first study how to optimize each of our two objectives individually,

learning potential and affinity, and in the last subsection we begin studying our bi-

objective optimizations by translating them into constrained optimization problems.

This exercise has many benefits - (a) it offers a deeper understanding of the individual
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problems and (b) it provides perspective on how to combine them and design scalable

solutions with provable guarantees (refer to Section 2.4).

2.3.1 Optimizing Learning Potential

Our algorithmic endeavor begins by first describing solutions to group formation that

maximize learning potential (LP) alone. Once we obtain the optimal LP value, we

use that as a constraint when optimizing affinity (Equation (2.6) in Section 2.2.2).

Fortunately, both LP problems are computationally tractable, and we present efficient

algorithms that form a grouping with exact solutions. While different, our algorithms

are designed in the same spirit as those designed to solve the value-based group

formation [3] and the p-percentile partitioning problem [4]. A central idea to those

algorithms is to create a grouping based on sorting group members on skill values.

Learning Potential LpD We want to form k groups that maximize the aggregated

learning potential which in LpD is the maximum pairwise skill difference (Equation (2.4)).

LpD of a group is always determined by a single pair of its members, the least skilled

and the most skilled ones. Therefore, if we have to form a single group, we just need

to select the most and least skilled members and make them part of that group. The

other members in the group could be any as their participation does not increase or

decrease the LpD value. This seemingly simple logic sufficiently extends to forming

k groups. To form k groups, we need to find two buckets with a total of 2k people,

the most skilled bucket containing the k highest skilled workers (the i-worker in that

bucket is referred to as ws.high
i ), and the least skilled bucket containing the k least

skilled workers (the i-worker in that bucket is referred to as ws.low
i ). We can then

form k pairs by grouping one member in the least skilled bucket with one in the most

skilled bucket and placing them in the same group. The remaining n − 2k workers

can be distributed arbitrarily across the k groups, while keeping the group size the

same (pseudo-code in Algorithm 1).
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Applied to Example 1, this is akin to forming the least skilled bucket with

participants of skill values {1, 2, 3}, the most skilled one with values {12, 14, 17}, and

forming three pairs, each one representing a group of size 2, by pairing members

across the buckets. We can state the following theorem:

Theorem 1. Any pairing across the least skilled and most skilled buckets produces
the optimal aggregated value for LpD.

Proof. (sketch) Consider the set of k least skilled members and k most skilled
members. It is easy to see that changing the assignment of the least skilled members
would not change the overall sum of the skill difference. LpD of the grouping is:

OPTLpD = (ws.high
1 − ws.low

1 ) + (ws.high
2 − ws.low

2 )+

. . .+ (ws.high
k − ws.low

k )

Indeed, any possible grouping across the buckets over these 2k members will not affect
the sum, and thus the LpD value.

Based on Theorem 1, we can state that multiple groupings maximize the LpD

value. This corollary is important, because it provides intuition on the challenges

that arise when combining affinity with learning potential.

Corollary 1.1. There are k!×(n−2k)!

(n/k−2)!k
possible groupings to maximize LpD.

Proof. The members in the highest and the lowest skilled buckets could be paired in k!
groupings. The remaining (n−2k) members are to be placed over (n/k−2) positions

in each group, and a total over k groups. This gives rise to k!×(n−2k)!

(n/k−2)!k
groupings.

Lemma 1. Computing one optimal grouping for LpD takes O(n+ klogn).

Proof. If we maintain a bottom-up heap like data structure, finding the top-k and
bottom-k members (based on skills) will take O(n+ klogn) time.

Learning Potential LpA The LpA of a group is the sum of skill differences

between every member with every other more skilled member (Equation 2.3). The

LpA of a set of k groups is the sum over the LpA of each group. What becomes
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Algorithm 1 Algorithm to maximize LpD

input: set of workers W , k

output: a grouping G, OPTLpD

procedure LpD(W,k)

OPTLpD← 0

create highest and lowest skill buckets with k workers each

G ← a set of k empty groups

for i in (1, ..., k) do

pick wm ∈ most skilled and wl ∈ least skilled

gi ← {wm, wl}

W ← W \ {wl, wm}

OPTLpD← OPTLpD+ (ws
m − ws

l )

end for

while W is not empty do

Assign wi ∈ W in gi, s.t gi ≤ n/k.

end while

end procedure
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intuitively apparent is that if one has to form one group to maximize LpA, one should

always group the most skilled member with the remaining less skilled ones. This logic

extends to creating k groups by sorting members on skills (in increasing or decreasing

order), and creating n/k buckets, each with k members. To form a group of size n/k,

we choose a member from each bucket and repeat this process k times.

Using Example 1, this is akin to sorting the skills of the participants and forming

a total of four buckets:

{1, 2, 3}, {4, 5, 6}, {8, 9, 10}, {12, 14, 17}

We form the first group by arbitrarily selecting one member from each of these 4

buckets, for example, those with skills {1, 4, 8, 12}. Then we repeat the process twice

to get the two other groups, e.g., {2, 5, 9, 14} and {3, 6, 10, 17}.

This algorithm turns out to be optimal - moreover, just like for LpD, all possible

groupings across n/k buckets are permissible and will produce the same optimal LpA

value.

Theorem 2. Any grouping across the n/k buckets produces the optimal aggregated
value for LpA.

Proof. The proof is very similar to the proof of LpD. Consider a grouping that we
get by running the above algorithm. We sort the members based on their skill values
and we create x buckets. The first k workers will go into the first bucket and so
on. We create a group by choosing 1 member of each bucket. After k iterations,
we obtain our grouping. Without loss of generality, assume that the highest skilled
member of group i has the skill value of Si and the other members have sji where j
denotes the bucket that this member has been chosen from. Consider the grouping
G = {g1 = (S1, s

1
1, s

2
1), g2 = (S2, s

1
2, s

2
2), . . . , gk = (Sk, s

1
k, s

2
k)}. We can show that

swapping two members from the same bucket will not change the LpA optimal value.
Without loss of generality, consider a new grouping G′ where the position of sji and
sji′ is swapped. Now consider the LpA value for G and G′. We can show that the
difference between these two scores is 0. This holds when we pick the lowest skilled
member.

LP(G) =
k∑

i=1

x−1∑
j=1

(Si − sji ) (2.7)
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In the Equation (2.7), the only difference between G and G′ is in group i and i′. More
accurately, we need to show that (Si − sji ) + (Si′ − sji′) in the grouping G is equal to
(Si − sji′) + (Si′ − sji ). It’s easy to see that these two are identical hence the proof.

Corollary 2.1. There are k!n/k possible groupings for LpA.

Proof. Since we have n/k buckets with k members each, we have k! ways of choosing
a member for every group. This results in k!n/k different groupings.

Lemma 2. Computing one optimal grouping for LpA takes O(nlogn).

Proof. The algorithm is dominated by the sorting time over n members, which is
O(nlogn).

2.3.2 Optimizing Affinity

Since we express affinity as similarity, optimizing it amounts to minimizing distance.

AffC takes the affinity graph over n members and a subset of k members as centers

(teachers) as input, and intends to partition the remaining n−k members into k equi-

sized groups such that the sum of the radii (maximum distance between the center

and a member in each group) is minimized. AffD, on the other hand, only takes

the affinity graph over n members and k to partition the members into k equi-size

groups, such that, the sum of the diameters (diameter of a group is the maximum

pairwise distance in the group) of the grouping is minimized. We first present some

theoretical results on the hardness of these two problems.

Even though it intuitively appears that AffC is an easier problem than AffD,

both problems are NP-hard. The hardness of AffC is due to the group size

constraint.

Theorem 3. The decision version of the AffC problem in NP-Complete.

Proof. (sketch) It is easy to see that the problem is in NP. To prove the NP-hardness,
the reduction is straightforward (there is a one-to-one correspondence) if we consider
the uniform p-centered min-max partition problem as the source problem, which is
proved to be NP-hard [89] for general graphs. We omit the rest of the details for
brevity.
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Theorem 4. The decision version of the AffD problem is NP-Complete.

Proof. For simplicity, we consider a simpler scenario, where affinity (distance) is
binary - 0/1.

For this binary scenario, the decision version of the Affinity-All problem is as
follows: given a set of n members, is there a grouping of k equal sized groups, such
that the sum of diameters of the grouping is k?

It is easy to see that the problem is in NP. To prove NP-hardness, we use the
well-known exact cover by 3-Sets (X3C) for reduction. The decision version of X3C is
as follows: given a finite set X with |X| = 3q elements and a collection C of 3-element
subsets of X, does C contain an exact cover for X, that is, a sub-collection C ′ ⊆ C,
where C ′ contains exactly q subsets, such that every element of X occurs in exactly
one member of C ′?

Given an instance of X3C, we reduce it to an instance of AffD in the following
way: Each element in X is a member. Therefore, the total number of members
n = 3q. The affinity graph is a weighted complete graph among the n members
and it involves adding edge weights between every pair of members. Each subset of 3
elements in C represents 3 members in this graph, and the edge weights between them
gets the value 1. This is a polynomial time operation and the number of operations
involved in this is the size of C. After that, we need to resolve all the edge weights
that are across the subsets. For that, we start considering all the triangles with some
unresolved edge weights.

There are three possible scenarios to handle in this process: (1) all 3 edges
unresolved, (2) 2 edges unresolved, (3) 1 edge unresolved. For the first case, we can
safely add the weight of 0 to each of such edge (this happens when the subsets are
fully disjoint). For the second scenario (this happens when 2 nodes in the triangle
are part of the same subset but the third node is part of a different subset), one of
the unresolved edges gets 1 and the other gets 0. Finally, for the third scenario (this
happens when one member in the triangle is part of both subsets), the unresolved
edge gets a 0. We note that this step is again fully polynomial and takes at most
O
(
n
3

)
time. After completing this step, we will have assigned all the edge weights in

the affinity graph. It could be shown that the affinity graph constructed this way
satisfies triangle inequality.

After that, we set k = q. Now, the reduction is complete. Notice that X3C
≤P AffD. There exists a solution to the X3C problem if and only if a solution to
our instance of AffD problem exists with the total diameter value q (or k). This
completes the proof.

2.3.3 Optimizing Affinity with Learning Potential as a Constraint

Finally, we turn our attention to studying the four constrained optimization problems,

with the objective to optimize affinity, while satisfying the learning potential value

obtained from the algorithms in Section 2.3.1. Since affinity is modeled as a distance,
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our goal is to minimize that distance, considering the underlying affinity structure.

Recall that LpD and LpA are polynomial-time problems and that we presented exact

solutions for both in the previous section. To ease exposition, we will henceforth call

the optimal values obtained for the LP problems as Lp-* (it is either LpD or LpA).

Our focus now is to study how to optimize Aff-* (AffC or AffD), with Lp-* as

constraints.

Theorem 5. The decision versions of Aff-* Lp-* problems are NP-Complete.

Proof. (sketch): Since the AffC and AffD problems are individually NP-hard, the
hardness remains true when the LP constraints are added. We omit the details for
brevity.

Our technical deep dive into these four problems is described in Section 2.4.

We develop greedy algorithms that are extremely lean in computational time with

constant approximation factors. Table 2.2 summarizes the 4 problem variants and

our technical results.

2.4 Constrained Optimization

We now present a suite of algorithms with theoretical guarantees to solve the four

different variants of optimizing affinity with learning potential as a constraint. As

our problems are NP-hard, we develop approximation algorithms that are scalable

and bear theoretical guarantees.

Our algorithms are greedy and use the following intuition: Lp-* problems are

first solved and these solutions produce an intermediate grouping that has the optimal

LP values. Our algorithms start from these solutions and greedily choose the rest of

the members to output the final grouping that is guaranteed to have optimal LP

values and provable constant approximation factors for affinity.
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2.4.1 Algorithm for AffC LpD

Our discussion of LpD in Section 2.3.1 stated that only 2k members (k most skilled

and k least skilled) are needed to produce the optimal grouping. Our proposed

Algorithm GrAffC-LpD starts from there (recall Algorithm 1) - that is, it first

identifies the 2k members which will guarantee the optimal LpD value (thereby

satisfying the constraint of the optimization problem). These outputs are referred to

as boundary members. That means, 2 members in each group are decided by now and

a total of 2k members are decided for the grouping. In each group, the highest skilled

member is the teacher and acts as the center for that group since AffC is formalized

as the maximum distance between that member and anyone else in the group. The

rest of the grouping is performed in a greedy manner. For the remaining n − 2k

members, all we have to do is assign them to their respective closest center. Since

each group has a size constraint, this greedy assignment may lead to sub-optimality -

since for a member wi, the group with the closest distance between its center and wi

may have reached its size and wi may need to be assigned to a group such that the

distance between wi and its center ci is larger (potentially worsening theAffC value).

But as we shall prove later, this greedy assignment cannot be arbitrarily worse, since

affinity between members satisfies triangle inequality (pseudo-code in Algorithm 2).

Going back to Example 1, based on GrAffC-LpD, initially we will have the

following partial grouping : g1 = {1, 12}, g2 = {2, 17}, g3 = {3, 14}. After that,

Algorithm GrAffC-LpD greedily adds 2 more members in each group that are not

yet part of any group. For example, for g1, it will add the member who has the

highest affinity with 12 and the process will repeat.

Theorem 6. Algorithm GrAffC-LpD accepts a 3 approximation factor to optimize
AffC.

Proof. (sketch) Without loss of generality, let us assume a worst case scenario of 3
groups as shown in Figure 2.3, where members p1, p2, p3 dictate the AffC score of
these three groups that are centered around c2,c3,c1, respectively. Because of the
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Algorithm 2 Algorithm GrAffC-LpD

input: a set W of n participants, k groups

output: a grouping G

B = Call LpD(W,k)

C = the k highest skilled members in B that are k centers

Assign wi ∈ {W −B} to the closest center cj s.t., |gj| ≤ n/k

greedy assignment, p1 is assigned to the center c2, p2 is assigned to c3, but at the
end because of the size constraints p3 gets a really bad assignment of c1. Distance
between p1 and c2, i.e., d(p1, c2) = α1, similarly d(p2, c3) = α2, and d(p3, c1) = α3.
The optimal assignment would have given rise to a different assignment though (as
shown in the dotted line), where p1 ∈ c1, p2 ∈ c2, p3 ∈ c3. d(p1, c1) = β1, d(p2, c2) = β2,
and d(p3, c3) = β3. Let OPT denote the optimum AffC value, such that OPT =
β1 + β2 + β3. Of course, α1 + α2 + α3 ≥ β1 + β2 + β3. But it is easy to notice that

α3 ≤ (α1 + β1 + α2 + β2 + β3) (2.8)

α3 ≤ (2β1 + 2β2 + β3) (2.9)

Because of the triangle inequality, this is indeed true, α1 + β1 ≤ 2β1 (because
α1 ≤ β1 what the greedy algorithm GrAffC-LpD will ensure. Therefore, we can
write that,

α1 + α2 + α3 ≤ (3β1 + 3β2 + β3) (2.10)

≤ 3(β1 + β2 + β3) (2.11)

≤ 3×OPT (2.12)

It is easy to notice that this argument easily extends to an arbitrary number of
groups. Hence the proof.

c1

c2
c3

a1 a2

a3

b1 b2 b3

p1 p2
p3

𝛼1 + 𝛼2 + 𝛼3 ≥ 𝛽1 + 𝛽2 + 𝛽3
𝛼1 ≤ 𝛽1, 𝛼2 ≤ 𝛽2, 𝛼3 ≥ 𝛽1, 𝛼3 ≥ 𝛽2, 𝛼3 ≥ 𝛽3

Figure 2.3 Upper bound of approximation factor.

Corollary 6.1. Running time of GrAffC-LpD is O(klogn+ nlogk)
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Proof. Finding the boundaries takes O(klogn) time. For the remaining n − 2k
members, we maintain a logk size heap and perform min heap operation over them.
This results in O(klogn+ nlogk) running time.

2.4.2 Algorithm for AffC LpA

The idea of this greedy algorithmGrAffC-LpA is similar to the previous one, that is

start with the partial grouping that LpA returns. However, unlike LpD, LpA creates

a set of n/k buckets (or partitions) (see Section 2.3.1) that dictate that forming an

intra-partition group is forbidden, and any possible inter-partition groups will result

in the same optimal LpA value. In fact, as Corollary 2.1 suggests, there are (k!)n/k

possible groupings that yield the optimal LpA value. The challenge is to find one

grouping that optimizes affinity.

GrAffC-LpA begins by invoking the LpA procedure to compute n/k buckets

that are sorted in increasing order of skills. It selects the teachers as the k members in

the last buckets (they are the centers and they have the k highest skills). After that,

GrAffC-LpA operates in a greedy fashion. For the remaining n − k members, it

follow a similar approach as Algorithm GrAffC-LpD. At each iteration, it chooses

a member from the bucket and assigns it to the closest center. In Example 1, we

create a total of 4 buckets:

{1, 2, 3}, {4, 5, 6}, {8, 9, 10}, {12, 14, 17}

Next, we assign each high skilled member in the last bucket to a group and consider

them as centers. As an example, g1 = {12}, g2 = {14}, and g3 = {17}. Next, for the

members of the first bucket, based on their affinities, 1 is assigned to g1, 2 to g3, and

3 to g2. The process continues until all the buckets are empty.

Since each group has a size constraint, this greedy assignment may lead to

sub-optimality - as it happened in GrAffC-LpD. However, this greedy assignment

25



cannot be arbitrarily worse, because affinity between members satisfies triangle

inequality.

Theorem 7. Algorithm GrAffC-LpA accepts a 3 approximation factor for AffC.

Proof. The proof is very similar to the proof given for GrAffC-LpD. We omit the
details for brevity.

Corollary 7.1. Running time of Algorithm GrAffC-LpA is O(nlogn).

Proof. Sorting the skill values takes O(nlogn), dictating the complexity of this
algorithm. The rest of the algorithm takes O(nlogk) running time, akin to what
is described in Corollary 6.1 - but sorting dominates the overall running time.

2.4.3 Algorithms for AffD Lp-*

There is an interesting relationship between AffC and AffD that merits further

delineation. In the AffC problem, we want to minimize the distance from a center

to the farthest member in the group (i.e., minimizing the radii). In AffD, we do not

have any member as the center, rather we are interested to form groups to minimize

the maximum distance (i.e., the diameter). The next theorem states that any solution

for the former problem is a solution for the latter that is at most 2 times worse. Based

on that, the greedy algorithms in Sections 2.4.1 and 2.4.2 could be used to solve

AffD,Lp-* problems. We refer to these algorithms asGrAffD-LpD andGrAffD-

LpA, respectively for the AffD LpD and AffD LpA problems. GrAffD-LpD

is identical to GrAffC-LpD, and GrAffD-LpA is identical to GrAffC-LpA

operationally. Their respective running times are the same as their counterparts.

Theorem 8. Any solution for AffC gives a 2 approximate solution for AffD.

Proof. (sketch:) Consider a solution to AffC. Consider that for a group gi, the
distance from the center ci to the farthest member is αi. Assume that wi is the
member with this distance equal to αi. Based on the triangle inequality, we can
easily show that in the worst case, there is another member wj ∈ gi where d(wi, wj) <
d(wi, ci)+d(wj, ci) < 2×αi. Hence, any algorithm that solvesAffC also solvesAffD
with a 2 approximation factor.
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Corollary 8.1. Algorithms GrAffD-LpD and GrAffD-LpA have a 6 approxi-
mation factor for AffD.

Proof. (sketch): Proofs are direct derivatives of Theorem 8.

2.5 Experimental Evaluations

Our experimental effort goes in two directions. In Section 2.5.1, we involve actual

human workers and collaborative tasks. In the remaining three subsections, we

describe synthetic data experiments.

2.5.1 Real Data Experiments

These experiments examine if affinity brings added utility in peer learning. They

are designed for collaborative fact-checking and fact-learning and involve Amazon

Mechanical Turk (AMT) workers in three stages: 1) pre-task skill assessment, 2) task

completion in a group, and 3) post-task completion skill assessment.

Experimental setup and design. One of our fact-checking tasks is about the

British royal family. These experiments are run in three different stages. We first run a

pre-task skill test to assess the skills of each worker using eight true/false questions for

which we know the true answer. We set questionnaires for that purpose. Next stage,

we set up a collaborative document that contains five facts about the royal family and

where workers in the same group can collaborate, comment, and edit. Workers are

asked to discuss if these facts are true, and provide further evidence that support their

answer. Finally, each worker takes a post-task completion skill test that is again 8

true/false questions on the royal family. We also explicitly ask each worker what they

have learned by completing that task. We design similar studies for fact-learning,

where workers have to actually propose facts with supporting evidence. To keep this

experiment tractable, we form groups of size 3 and run 3 different samples of the

same experiment. This also allows us to analyze results with statistical significance.
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Figure 2.4 Skill improvement with and w/o affinity in LpD (a) and LpA (b).

We pay each worker $2, if all three stages are completed. Each experiment must run

over a window of 24 hours to account for differences in time.

Affinity calculation. For simplicity, we capture affinity as the Euclidean

distance between their socio-demographic data (specifically, age, country, education)

obtained from AMT. There exists other sophisticated measures such as MBTI tests

for project-based learning [108]. We nevertheless note that the simple measures that

we have used have been shown to be useful affinity indicators [116].

Evaluation criteria. In order to evaluate the effectiveness of affinity in peer

learning, we measure the difference between each member’s skills before and after

task completion, and refer to that as skill improvement. We also measure the average

number of comments in each group and the quality of contributions. These two

criteria help us interpret worker engagement and skill improvement.

Summary of results. We compare with and without affinity counterparts for

each problem variant (e.g., AffC LpD with LpD). Our results confirm that affinity

improves learning potential substantially with statistical significance. Figure 2.4(a)

contains the average skill improvement comparison of LpD with and without affinity

and shows the important role of affinity. This is consistent with LpA (Figure 2.4(b)).

28



We also observe that LpA has higher improvements, possibly because facts have many

facets that one learns from more skillfull peers. Additionally, Figure 2.5 presents two

sample interactions between two workers during task completion. In the first question,

Worker 2 provides a new piece of information about the Queen, which is set as one

of the questions in the post-task skill assessment. This additional information helps

Worker 1 improve her skill during post-task assessment.

The Queen does not need a passport to 
travel 

True or False ?

• Worker 1: True. All British Passports are 
issued in the Name of Her Majesty, The 
Queen.

• Worker 2 : I found an article which agrees 
with your findings. Fun fact: she also 
doesn’t need a driver’s license or a 
license plate on her car.

Members of the royal family have to 
accept absolutely all gifts.

• Worker 1 : (Mostly false; Large true in 
practice.) While I couldn’t find any law 
requiring the Royals to accept all gifts. 

• Worker 2 : I found an article which says 
they make a list of all gifts they receive 
throughout the year and release it 
publicly. In addition, they donate many of 
their gifts.

Figure 2.5 A sample worker interaction.

Finally, we anecdotally observe that higher learning potential yields higher

quality task outcomes. On average, quality (computed as the average number of

facts correctly identified by the groups), is higher for groups built with affinity (4.3

facts out of 5 are correct), compared to their counterparts built without affinity (3.9

out of 5).

2.5.2 Synthetic Experiments Setup

These experiments evaluate the qualitative guarantees and the scalability of our

algorithms. All algorithms are implemented in Python 3.6 using Intel Core i7 4GHz
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Figure 2.6 AFF-* LP-* values varying n for Normal distribution.

CPU and 16GB of memory and Windows operating system. All numbers are averages

of 10 runs.

Implemented Algorithms. The closest works to ours [3,4] do not consider affinity

and cannot be used for synthetic data experiments. Hence, we implement three

additional baselines:

Optimal. An Integer Linear Programming (ILP) algorithm that produces

optimal values for Aff-* Lp-*. We use the PuLP library to build the ILP model
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and formalize the ILP solution using the below formulation.

optimize
G

k∑
i=1

Aff-*(gi)

s.t.
k∑

i=1

LP(gi) ≥ Lp-*

Aff-*(gi) =
n∑

j=1

n∑
m=1

xi,j ∗ xi,m ∗ Aff(wj, wm),∀i = 1 . . . k

n∑
j=1

xi,j = n/k, ∀i = 1 . . . k

xi,j = 0/1 (i = 1...k & j = 1 . . . n)

The rationale behind implementing ILP is to demonstrate that the theoretical

approximation factors of our algorithms hold in practice. Since ILP is NP-hard, the

algorithm does not terminate beyond k = 3 and n = 50.

Baseline-1 (clustering-based). This baseline is motivated by the popular

k-means algorithm. It starts with a random grouping and greedily swaps members

across groups as long as that improves affinity, while satisfying group size. Once the

grouping converges based on affinity, we check if it satisfies the optimum learning

potential value (which could be derived efficiently in polynomial time). If not, we

perform another set of swaps to move members across the groups until we find a

grouping that reaches the optimal learning value.

Baseline-2. This is a simpler and efficient baseline. It first solves the learning

potential problem and finds the seed members in each group that dictate the optimal

learning value. The rest of the members are assigned randomly to groups by

considering group size.

These solutions are compared with 4 of our algorithms GrAffC-LpD,

GrAffC-LpA, GrAffD-LpD, GrAffD-LpA (refer to Section 2.4, whenever

applicable).

31



Optimal
GrAffC-LpD

Baseline-1
Baseline-2

A
ff
in
it
y
	v
al
u
e

0
500
1000
1500
2000
2500

No	of	Workers
50 100 200 500 1000

(a) AffC LpD

Optimal
GrAffC-LpA

Baseline-1
Baseline-2

A
ff
in
it
y
	v
al
u
e

0

500

1000

1500

2000

No	of	Workers
50 100 200 500 1000

(b) AffC LpA

Optimal
GrAffD-LpD

Baseline-1
Baseline-2

A
ff
in
it
y
	v
al
u
e

0
500
1000
1500
2000
2500

No	of	Workers
50 100 200 500 1000

(c) AffD LpD

Optimal
GrAffD-LpA

Baseline-1
Baseline-2

A
ff
in
it
y
	v
al
u
e

0
500
1000
1500
2000
2500

No	of	Workers
50 100 200 500 1000

(d) AffD LpA

Figure 2.7 AFF-* LP-* values varying n for Zipf distribution.
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Experimental Setup. We simulate a group of workers with two functions that

capture the relationship between skill and affinity. Specifically, there are two random

number generators, one produces the skill of each member and the other generates

pairwise affinities that satisfy triangle inequality.

We consider two skill and affinity distributions: (a) Normal, where the mean

and standard deviations are set to µ = 100, σ = 20, respectively; (b) Zipf, where the

value of the exponent α is set to 1.5.

Parameters: We vary n (the total number of individuals), k (the number of

groups), and the skill and affinity distributions.

Summary of Results.

• Our algorithms exhibit tighter approximation factors than the bounds we
proved. Our algorithms also outperform the two baselines.

• The approximation factors of the algorithms with a Normal skill distribution
are better than Zipf.

• All algorithms are highly scalable considering up to 106 members and 160 groups
and only take seconds to run.

Table 2.3 Approximation Factors of GrAff*-Lp* Algorithms

Algo. Parameters App. Factor

(GrAffC-LpD)
[n = 15, k = 3] 1.13(0.12)

[n = 50, k = 3] 1.23(0.02)

(GrAffC-LpA)
[n = 15, k = 3] 1.04(0.07)

[n = 50, k = 3] 1.02(0.03)

(GrAffD-LpD)
[n = 15, k = 3] 1.21(0.14)

[n = 50, k = 3] 1.31(0.04)

(GrAffD-LpA)
[n = 15, k = 3] 1.18(0.11)

[n = 50, k = 3] 1.19(0.12)
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Figure 2.8 AFF-* LP-* values varying k for Normal distribution.

2.5.3 Quality Experiments (Synthetic)

We assess quality by measuring the approximation factor and the objective function

value. Both of these are described considering affinity, per our problem definition.

LP values are always optimal (as the algorithms for LP are exact) and we skip those

details for brevity.

Default parameter setting. Unless otherwise stated, k is set to 25 and n to

1000.

Comparison against ILP: Table 2.3 presents the approximation factor of the

4 algorithms on a small dataset generated from Normal Distribution. For all the 4

algorithms, the approximation factor in practice is very tight and the deviation is

always between 1 and 2.

Varying n : Figure 2.6 reports the results of varying n for Normal distribution.

Of course, ILP does not scale beyond n = 50, but it is easy to notice that for all the
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cases we could compare, our greedy solutions attain a very tight approximation factor

(close to 1.5). Figure 2.7 shows the affinity values for Zipf distribution. Similar

observations hold. Our proposed algorithms perform significantly better. There

are two interesting observations in both Figures 2.6 and 2.7. Firstly, the grouping

generated by our algorithm attains smaller objective value as the number of workers

grow. Secondly, for Normally distributed data, we observe a consistent growth of

objective value as the number of workers increases. This is not the case for the Zipfian

distributed data. We conjecture that this is caused by the skew in the values generated

from the Zipfian distribution. Some values are very large and others are vary small.

Another important factor is that the data sampled from a Zipfian distribution consists

of mostly duplicate values.

Varying k : Figures 2.8 and 2.9 present the results of varying k for Normal

and Zipf distributions. The ILP for k = 5 is ran on n = 50. Our presented algorithms

consistently outperform the other baselines. We observe that the change in k affects

the objective value significantly more than change in the number of workers (n). We

believe this is because larger k signifies more centers to assign workers to. Remember

in Algorithm 2, we need to assign workers to the closest center. This means for larger

values of k, we would diverge from the optimal solution easier. In fact, k impacts our

algorithm more than n.

2.5.4 Scalability Experiments (Synthetic)

We measure running times and compare with Baseline-1. We exclude ILP since it

does not scale, and Baseline-2 since it produces inferior objective values. Running

time is reported in seconds.

Default parameter settings. We found that Normal and Zipf skill distri-

butions have identical running times for each variant of Aff-* Lp-* problems. We

also note that, as proved in Section 2.4.3, the running time of AffD is identical to
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Figure 2.9 AFF-* LP-* values varying k for Zipf distribution.
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Figure 2.10 Results of scalability experiment.

that of AffC, considering their respective Lp-* counterparts. Therefore, we only

present results for Aff-* LpD and Aff-* LpA. We vary n and k with defaults set

to n = 100000 and k = 5.

Results. Figure 2.10 presents results. Our algorithms are highly scalable and

take seconds only. The algorithms run linearly with varying n and k which confirms

our theoretical analysis.

2.6 Related Work

Our work studies computational aspects and relates to team formation and computer-

supported learning.

Team formation was first studied to form a single group with one objective

and later a 2-approximation algorithm was proposed for bi-criteria team formation in

social networks [88]. In [14,15], Anagnostopoulos et al. propose online algorithms for
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the balanced social task assignment problem. Capacitated assignment was studied

in a follow up work [94]. Generalized density sub-graph algorithms were later

proposed [118]. [28, 116] study the problem of forming teams for task assignment

considering affinity. In [123], the hardness of forming groups to optimize group

satisfaction is studied under different group satisfaction semantics.

Unlike ours, none of these works study the problem of peer learning, hence their

proposed modeling and algorithmic solutions do not apply.

Computer-Supported Collaborative Learning (CSCL). Social science

has a long history of studying non-computational aspects of computer-supported

collaborative learning [51,54]. With the development of online educational platforms

(such as, Massive Open Online Courses or MOOCs), several parameters were

identified for building effective teams: (1) individual and group learning and social

goals, (2) interaction processes and feedbacks [128], (3) roles that determine the nature

and group idiosyncrasy [54].

To the best of our knowledge, the closest to our work are [2–4], where

quantitative models are proposed to promote group-based learning, albeit without

affinity.

Our work is grounded in social science and takes a computational approach to

the design of scalable solutions with guarantees.

2.7 Conclusion

We examine online group formation where members seek to increase their learning

potential via task completion with two learning models and affinity structures. We

formalize the problem of forming a set of k groups with the purpose of optimizing

peer learning under different affinity structures and propose constrained optimization

formulations. We show the hardness of our problems and develop 4 scalable algorithms
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with constant approximation factors. Our experiments with real workers demonstrate

that considering affinity structures drastically improves learning potential, and our

synthetic data experiments corroborate the qualitative and scalablity aspects of our

algorithms.
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CHAPTER 3

TASK DEPLOYMENT RECOMMENDATION
WITH WORKER AVAILABILITY

3.1 Introduction

In crowdsourcing, task deployment is an important process that requesters undertake

with very little help. Task deployment requires to specify not only the tasks, but

also identify appropriate deployment strategies. A strategy involves the interplay

of three dimensions: Structure (whether to solicit the workforce sequentially or

simultaneously), Organization (to organize it collaboratively or independently), and

Style (to rely on the crowd alone or on a combination of crowd and machine

algorithms). A strategy needs to be commensurate to deployment parameters that

are typically provided as thresholds on quality (lower-bound), latency (upper-bound),

and budget (upper-bound). For example, for a sentence translation task, a task

designer wants the translated sentences to be at least 80% as good as the work of

a domain expert, in a span of at most two days, and at a maximum cost of 100$.

Till date, the burden is entirely on requesters to design deployment strategies that

are consistent with desired deployment parameters. Our effort in this chapter is to

present a formalism and a computationally efficient algorithm to assist requesters by

recommending k strategies that best achieve the desired deployment parameters.

A recent work [35] has empirically investigated the deployment of text creation

tasks in Amazon Mechanical Turk (AMT). The authors validated the effectiveness

of different strategies for different types of tasks such as text summarization and

text translation, and provided empirical evidence for the need to guide requesters

in choosing the right strategy. In this work, we propose to automate this strategy

recommendation process. This is particularly challenging because the estimation of

the cost, quality and latency of a strategy must account for worker availability on the
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platform. Our contributions are: we express deployment strategies as a function of

worker availability, we formalize optimization problems to enable recommendation to

a batch of requests, present principled algorithms, and validate them experimentally.

We propose BatchStrat that consumes a batch of deployment requests, coming

from different requesters and recommends strategies to them to optimize different

goals. BatchStrat studies these incoming requests to obtain best deployment strategies

given worker availability. If the platform does not have enough workers for all requests,

it triages them by optimizing platform-centric goals, i.e., to maximize throughput or

pay-off.

3.2 Data Model and Problem

Deployment Strategies: A deployment strategy [81] instantiates three dimensions:

Structure (sequential or simultaneous), Organization (collaborative or independent),

and Style (crowd-only or crowd and algorithms). We rely on common deployment

strategies [35, 81] and refer to them as S. Figure 3.1 enlists some strategies that

are suitable for text translation tasks (from English to French in this example).

For instance, SEQ-IND-CRO in Figure 3.1(a) dictates that workers complete tasks

sequentially (SEQ), independently (IND) and with no help from algorithms (CRO). In

SIM-COL-CRO (Figure 3.1(b)), workers are solicited in parallel (SIM) to complete a

task collaboratively (COL) and with no help from algorithms (CRO). The last strategy

SIM-IND-HYB dictates a hybrid work style (HYB) where workers are combined with

algorithms, for instance with Google Translate. We assume that for a given platform,

the set of strategies is given and bounded by |S|.

Deployment Parameters: A deployment request d has three parameters,

d.cost, d.quality, and d.latency. Using Example 2, the minimum quality of request

is 40%, the latency 2 days, and the budget $100. These thresholds are referred to

as deployment parameters. The goal is find one or more strategies (notationally k, a
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(a) SEQ-IND-CRO (b) SIM-COL-CRO

(c) SIM-IND-CRO (d) SIM-IND-HYB

Figure 3.1 Deployment Strategy Examples.

small integer) for each d, such that, for each strategy s, when d is deployed using s,

it satisfies the deployment parameters.

Worker Availability: Worker availability/ available workforce W is a value

in [0, 1] which represents the proportion of workers who are available to undertake a

task deployed by a requester within the specified time d.latency.

Modeling Strategy Parameters: The deployment recommendation process

must be capable to estimate the parameters of a strategy s (cost, quality, latency if s

is used to deploy d) to check if it is suitable for a deployment d. Since the deployed

tasks are to be done by workers who are available and qualified to undertake the
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Table 3.1 Deployment Requests and Strategies

Quality Cost Latency

d1 0.4 0.17 0.28

d2 0.8 0.2 0.28

d3 0.7 0.83 0.28

s1 0.5 0.25 0.28

s2 0.75 0.33 0.28

s3 0.8 0.5 0.14

s4 0.88 0.58 0.14

deployed tasks, the estimated strategy parameters, i.e., (estimated) quality, cost and

latency of a strategy is a function of worker availability and task type.

Example 2. Assume there are 3 (m = 3) task deployment requests for different types

of text editing tasks. Requester-1 d1 is interested in deploying sentence translation

tasks for 2 days (out of 7 days), at a cost up to $100 (out of $600 max), and expects

the quality of the translation to reach at least 40% of domain expert quality. Table 3.1

presents all 3 deployment requests after normalization between [0−1]. For the purpose

of this example, we assume worker availability W to be 0.8 for the next 7 days and

set k = 3.

For the purpose of illustration, S consists of the set of 4 deployment strategies,

as shown in Figure 3.1: SIM-COL-CRO, SEQ-IND-CRO, SIM-IND-CRO, SIM-IND-

HYB. To ease understanding, we name them as s1, s2, s3, s4, respectively. s1 costs

$150 and takes 2 days (out of 7 days) and ensures at least a 50% quality. s2, s3, s4

have corresponding parameters. Strategy parameters are normalized and presented in

the last column of Table 3.1.
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Problem 1. Batch Deployment Recommendation: Given an optimization goal

F , a set S of strategies, a batch of m deployment requests from different requesters,

where the i-th task deployment di is associated with parameters di.quality, di.cost

and di.latency, and worker availability W , distribute W among these requests by

recommending k strategies for each request such that F is optimized as follows:

Maximize F =
∑

fi

s.t.
∑

w⃗i ≤W AND

di is successful

(3.1)

fi is the optimization value of deployment di and w⃗i is the workforce required to

successfully recommend k strategies it. A deployment request di is successful, if for

each of the k strategies in the recommended set of strategies Si
d, the following three

criteria are met: s.cost ≤ di.cost, s.latency ≤ di.latency and s.quality ≥ di.quality.

Using Example 2, d3 is successful for k = 3, as it will return S3
d = {s2, s3, s4},

such that d3.cost ≥ s4.cost ≥ s3.cost ≥ s2.cost and d3.latency ≥ s4.latency ≥

s3.latency ≥ s2.latency and d3.quality ≤ s4.quality ≤ s3.quality ≤ s2.quality,

because it could be deployed with the available workforce W = 0.8.

In this work, F is designed to maximize one of two different platform centric-

goals: task throughput and pay-off.

• Throughput: It maximizes the total number of successful strategy recommen-
dations without exceeding W . Formally speaking,
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Maximize

m∑
i=1

xi

s.t.
∑

xi × w⃗i ≤W

xi =



1 di.cost ≤ sj .cost AND

di.latency ≤ sj .latency AND

di.quality ≥ sj .quality AND

|Si
d| = k, ∀i = 1..m, j = 1, . . . , |S|

0 otherwise

(3.2)

• Pay-off: It maximizes di.cost, if di is a successful deployment request without
exceeding W . The rest of the formulation is akin to Equation 3.2.

3.3 Batch Deployment Recommendation

Before getting into the details, we provide an abstraction which serves the purpose

of designing BatchStrat, our proposed solution: given m deployment requests and W

workforce availability, Problem 1 could be modeled in the form of a two dimensional

matrix W , where there are |S| columns that map to available deployment strategies

and m rows of different deployment requests.

A particular cell wij ∈ W corresponds to how much workforce is needed to

deploy request i with strategy j. The challenge, however, is that each d has three

different requirements of quality, cost, and latency. Therefore, it has to estimate

workforce requirement per (deployment, strategy) pair first. That constitutes

step-1 of BatchStrat. Once for every (i, j), a (deployment, strategy) workforce

requirement wi,j is computed, step-2 estimates the aggregated workforce requirement

per deployment, since it has to recommend k different strategies to each deployment.

To do that, it aggregates over each deployment request and produces a vector W⃗ of

length m that estimates the workforce requirement for each strategy to be deployed

successfully, meeting the quality, cost, latency thresholds as well as k. Finally, step-3

invokes an optimizer that determines how to allocate the available workforceW among
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competing deployment requests to optimize different platform-centric goals. The

pseudo-code of BatchStrat is presented in Algorithm 3. We now present the details.

3.3.1 Computing Workforce Requirement per Deployment

Given W , for each deployment request di and strategy sj, the workforce requirement

is the maximum of workforce requirement to satisfy the quality, cost, and latency

threshold. However, to find k strategies for a deployment di, we turn our attention

back to matrix W again and investigate how to compute workforce requirement for

all k strategies for di.

The objective here is to produce a vector W⃗ of length m, where the i-th value

represents the aggregated workforce requirement for request di. To understand how

to compute W⃗ , we need to consider the sum-case: where the task designer intends to

perform the deployment using all k strategies, in which case, the minimum workforce

(wi) needed to satisfy cardinality constraint ki is Σk
y=1wiy (where wiy is the y-th

smallest workforce value in row i of matrixW ; and themax-case: where the designer

intends to only deploy one of the k strategies, in which case, wi = wiy, (where wiy is

the k-th smallest workforce value in row i of matrix W).

Running Time: The running time of computing the aggregated workforce

requirement of the i-th deployment request is |S| k log|S|, if we use min-heaps to

retrieve the k smallest numbers. The overall running time is again O(m× k log|S|).

3.3.2 Optimization-Guided Batch Deployment

Since W is limited, it may not be possible to successfully satisfy all deployment

requests in a single batch. This requires distributing W judiciously among

competing deployment requests and satisfying the ones that maximize platform-

centric optimization goals, i.e., throughput or pay-off.
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At this point, a keen reader may notice that the batch deployment problem

bears resemblance to a well-known discrete optimization problem that falls into the

general category of assignment problems, specifically, Knapsack-type of problems [70].

The objective is to maximize a goal (in this case, throughput or pay-off), subject to

the capacity constraint of worker availability W . In fact, depending on the nature

of the problem, the optimization-guided batch deployment problem could become

intractable.

Intuitively, when the objective is only to maximize throughput (i.e., the number

of satisfied deployment requests), the problem is polynomial-time solvable. However,

when there is an additional dimension, such as pay-off, the problem becomes NP-hard

problem, as we shall prove next.

Theorem 9. The decision version of the Pay-Off maximization problem is NP-

Complete.

Proof. (sketch): An instance of the famous 0/1 Knapsack problem could be reduced

to the decision version of the Pay-off Maximization problem.

Our solution bears similarity to the greedy algorithm of the Knapsack problem [78].

The objective is to sort the deployment strategies in non-increasing order of fi
w⃗i
.

The algorithm greedily adds deployments based on this sorted order until it hits

a deployment di that can no longer be satisfied by W , that is, Σx=1..idi > W .

At that step, it chooses the best of {d1, d2, di−1} and di and the process continues

until no further deployment requests could be satisfied for W (lines 4-8 in Algorithm

BatchStrat).

Running Time: This step is dominated by the sorting time of the deployment

requests, which is O(m log m).

Maximizing Throughput When task throughput is maximized, the objective

function F is computed simply by counting the number of deployment requests that
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Algorithm 3 Algorithm BatchStrat
1: Input: m deployment requests, S, objective function F , available workforce W

2: Output: recommendations for a subset of deployment requests.

3: Compute Workforce Requirement Matrix W

4: Compute Workforce Requirement per Deployment Vector W⃗

5: Compute the objective function value fi of each deployment request di

6: Sort the deployment strategies in non-increasing order of fi
w⃗i

7: Greedily add deployments until we hit di, such that Σx=1..idi > W

8: Pick the better of {d1, d2, di−1} and di

are satisfied. Therefore, fi, the objective function value of deployment di is the same

for all the deployment requests and is 1. Our solution, BatchStrat-ThroughPut, sorts

the deployment requests in increasing order of workforce requirement w⃗i to make 1
w⃗i

non-increasing. Other than that, the rest of the algorithm remains unchanged.

Theorem 10. Algorithm BatchStrat-ThroughPut gives an exact solution to the

problem.

Maximizing Pay-Off Unlike throughput, when pay-off is maximized, there is

an additional dimension involved that is different potentially for each deployment

request. fi for deployment request di is computed using di.cost, the amount of

payment deployment di is willing to expend. Other than that, the rest of the algorithm

remains unchanged.

Theorem 11. Algorithm BatchStrat-PayOff has a 1/2-approximation factor.

Proof. (sketch): The proof directly follows from [91].
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3.4 Experiments

3.4.1 Batch Deployment Recommendation

We compare differnet algorithms. All algorithms are implemented in Python 3.6 on

Ubuntu 18.10. Intel Core i9 3.6 GHz CPU, 16GB of memory.

Brute Force: An exhaustive algorithm which compares all possible combinations of

deployment requests and returns the one that optimizes the objective function.

BaselineG: This algorithm sorts the deployment requests in decreasing order of fi
w⃗i

and greedily selects requests until worker availability W is exhausted.

BatchStrat: Our proposed solution described in Section 3.3.

Observation 1: Our solution BatchStrat returns exact answers for throughput

optimization, and the approximation factor for pay-off maximization is always above

90%, significantly surpassing its theoretical approximation factor of 1/2.

Observation 2: Our solution BatchStrat is highly scalable and takes less than

a second to handle millions of strategies, and hundreds of deployment requests, and

k.

3.4.2 Quality

Goal: We aim to validatedow does BatchStrat fare to optimize different platform-

centric goals?

Strategy Generation: The dimension values of a strategy are generated

considering uniform and normal distributions. For the normal distribution, the mean

and standard deviation are set to 0.75 and 0.1, respectively. We randomly pick the

value from 0.5 to 1 for the uniform distribution.

Worker Availability: For a strategy, we assume there is a linear relationship

between parameters and Worker Availability. We generate the slope uniformly from

an interval [0.5, 1]. Then, we set intercept = 1−slope to make sure that the estimated
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worker availabilityW is within [0, 1]. These numbers are generated in consistence with

our real data experiments.

Deployment Parameters: Once W is estimated, the quality, latency, and

cost - i.e., the deployment parameters, are generated in the interval [0.625, 1]. For

each experiment, 10 deployment parameters are generated, and an average of 10 runs

is presented in the results.

Figure 3.2 shows the results of throughput of BatchStrat by varying k compared

with the two baselines (the same could be observed when varying m and |S|). Figure

3.3 shows the approximation factor of BatchStrat and BaselineG. BatchStrat achieves

an approximation factor of 0.9 most of the time. For both experiments, the default

values are k = 10,m = 5, |S| = 30,W = 0.5 because brute force does not scale beyond

that.

Figure 3.2 Objective Function for Throughput when Varying k.

3.4.3 Scalability

Since the BaselineG has the same running time as BatchStrat, we only compare

Brute Force and BatchStrat. The default setting for |S|, k and W are 30, 10 and

0.75, respectively.
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Figure 3.3 Objective Function and Approximation Factor for Payoff when Varying
k.

Figure 3.4 Running time for Batch Deployment Varying m.
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Figure 3.4 shows that Brute Force takes exponential time with increasing

m, whereas BatchStrat scales linearly. Clearly BatchStrat can handle millions of

strategies, several hundreds of batches, and very large k and still takes only a few

fractions of seconds to run. It is easy to notice that the running time of this problem

only relies on the size of the batch m (or the number of deployment requests), and

not on k or S.

3.5 Future work

Our preliminary work opens up more than one research directions. First and foremost,

how to estimate worker availability for different types of tasks is a challenging problem

that requires deep investigation in its own merit. Then, an interesting open problem

is to come up with principled yet practical models to establish relationship between

deployment parameters and strategy parameters. Throughout this chapter, we have

assumed that the estimated quality, cost, and latency of a set of tasks deployed using

a strategy is a function of the task type and worker availability. However, how to

realistically model such functions or learn them from historical data for different types

of tasks remains to be a part of our ongoing investigations. Finally, an interesting

extension is to explore the recommendation of alternative deployment parameters

if a request cannot be satisfied as formulated. This would open the possibility of

recommending different deployment parameters for which k strategies are available,

thereby guiding requesters further in task deployment.
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CHAPTER 4

PEER LEARNING THROUGH TARGETED DYNAMIC GROUPS
FORMATION

4.1 Introduction

Online social networks and learning platforms enable the formation of targeted

groups for peer learning. As an example, peer learning associations1, social Q&A

sites2, even crowdsourcing platforms3 investigate how interaction between like-minded

individuals can improve knowledge and understanding on a topic, or simply promote

improved well-being of the individuals. Indeed, systematic targeted groups formation

can leverage the presence of knowledgeable individuals in order to educate group

participants on a myriad of topics, and support efforts to dispel rumors and

misinformation.

4.1.1 Novelty

The importance of targeted groups formation has been recognized in the literature.

Recent works have studied the effect of targeted one-shot groups formation to optimize

peer learning [3,61], where the objective is to form a set of groups to maximize some

type of aggregate learning. These works view groups as static, in the sense that

every individual is assumed to be a member of only one group through the end of the

process. What is not studied is the effect of time, and more concretely the potential

of allowing the formation of a targeted set of groups to be repeated a certain number

of times, as opposed to a single shot process. We hypothesize that dynamic group

formation will enable more individuals to ‘learn from the best’, can better utilize

intermediate learning gains, and has the potential to improve overall peer learning

1https://peerlearningassociation.weebly.com Retrieved on May/01/2020
2https://www.quora.com Retrieved on May/01/2020
3https://appen.com Retrieved on May/01/2020
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outcomes, both in theory and practice. Ours is the first systematic effort to model

this problem and study algorithms for it.

4.1.2 Practical Motivation

Imagine a peer learning scenario in a physical classroom or on an online learning

platform. Separating the participants into equal-size groups for homework assignments

or projects is common practice to ensure relatively similar workload among students,

while enabling effective interaction among the peers [117]. However, in the case when

there are multiple group homework assignments or projects, fixed groups may be

not optimal. Research has shown that successful groups evolve naturally [20, 135],

and that the ability of dynamically altering group composition results in groups that

persist for longer [77, 112]. This suggests that dynamic groups may offer benefits.

Going back to the classroom example, it would be intuitively better to change the

group membership of the students across the assignments so that everyone gets

the opportunity to learn from the best participants, with the hope that the total

‘educational welfare’ is maximized.

4.1.3 Technical Contributions

We undertake the first formal attempt to study dynamic group formation to optimize

peer learning. We follow previous related works [3, 5, 23, 139] and adopt common

definitions and assumptions used to quantify the single-shot group formation. We

then introduce a vast generalization and study the effect of time and how the

flexibility of changing membership and learning from others can improve the outcome.

Specifically, we make the following contributions:

(i) We initiate the study of the targeted dynamic groups formation (referred
to as Targeted Dynamic Grouping or TDG) problem. We assume that the process
consists of a predefined number of rounds (α). Each round entails a grouping of the
participants into groups of size (k), and a defined learning gain for each individual,
controlled by a linear learning gain function f . We consider two different interaction
modes of learning within each group. One induces a star, where the interaction of any
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group member is limited only to the most knowledgeable individual of that group.
The other induces a clique-like structure, where all possible pairs of within-group
interactions take place. Our goal is to find dynamic groupings that maximize the
aggregate learning gain after α rounds.

(ii) We delve into an investigation of the nuances of our proposed problem.
We present an algorithmic framework DyGroups that is greedy in nature, and
highly scalable. DyGroups runs in Θ(αn) time for both clique and star interaction
modes, where n is the number of members. The greedy approach comes with an
interesting twist. In each round, there are multiple k-groupings that maximize the
aggregate learning for that round. Among them, DyGroups selects the one that also
maximizes the variance of the participants’ skills after the round. We also present an
in-depth proof of the optimality of the proposed algorithm in a special case. We prove
that DyGroups can always find the overall optimal solution for the star interaction
structure when k = 2. However, extending the optimality proof to more general cases
(k > 2) appears to be a far more difficult and interesting problem.

(iii) We run two independent rigorous experiments on real fact-learning in
peer groups comparing multiple baseline algorithms. Specifically, we recruited
about 200 human subjects from Amazon Mechanical Turk and asked them to
learn facts about COVID-19 through peer interaction. The experimental results
corroborate two crucial hypotheses with statistical significance that are central to our
formulation and proposed solutions. First, it validates that workers’ skills improve
through peer interaction. Second, it experimentally demonstrates that changing
group composition over time is important and that DyGroups outperforms baseline
solutions. Additionally, we run large scale synthetic data experiments and implement
several baselines (along with recent related works [5, 61]) to validate the theoretical
claims and scalability aspects of our proposed solutions.

This work is organized as follows. Our model and problem formalization are

discussed in Section 4.2. Our algorithmic framework and its running time properties

are discussed in Section 4.3. Section 4.4 contains theoretical proofs of our statements.

Experiments using human subjects as well as large scale simulation studies are shown

in Section 4.5. The related work is introduced in Section 4.6. We present a discussion

and outline future works in Section 4.7, and conclude in Section 4.8.

4.2 Model and Definitions

We consider n participants who undergo a learning process in rounds, or time steps.

Before step t each participant is associated with a positive real number, quantifying

their skill level. In every round, k non-overlapping equi-sized groups are formed.
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Each participant interacts 1-on-1 only with members of their group. The learning

outcome of a 2-person interaction is determined by the learning gain function. The

total learning gain within a group is further determined by a specified interaction

mode. After one round, skill levels are updated. The process continues inductively

for α steps.

We now proceed to define the highlighted terms in the above description. We

will be using the following example to illustrate the notions.

[Toy Example]. Imagine a small number of n = 9 students taking a course

on Python Programming that comprises of α = 4 assignments during the course

of a semester. In every round we will be forming k = 3 disjoint groups of size 3.

We assume that in the beginning of the course, the skills of the students in Python

programming are as follows: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] 4.

Learning Gain Function for 2-Person Interactions. The learning outcome

for a 2-person interaction between participants i, j depend only on ∆ = |si − sj|.

Specifically, if si > sj, then after their interaction:

(i) si is unaltered, and (ii) sj is updated to sj + f(∆)

We call f(∆) the learning gain function. In the rest of this work we will work

with linear functions f(∆) = r∆, where r ∈(0,1) is a learning rate parameter that is

part of the input 5.

As the learning function involves an asymmetry between the two parts, we let

f(i→ j) denote the skill gain of person j from their interaction with person i. Note

that if the skill of i is lower than that of j, then f(i→ j) = 0.

4The distribution of the initial skill values can be arbitrary. How to estimate numerical
values for the initial skills of the individuals in a real situation is an orthogonal issue. In
our experimental evaluation, we demonstrate a realistic way of estimating their initial skills.
5The case r=1 is relatively straightforward and we omit it.
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In the Toy Example, with a learning rate or r = 0.5, a pairwise interaction

between the 3-rd and the 9-th member with skills 0.3, 0.9 respectively, s9 remains

unaltered at 0.9. On the other hand, s3 becomes 0.3 + 0.5× (0.9− 0.3) = 0.6.

Interaction Modes, Group Learning Gain. In each round, participants are

split into non-overlapping equi-sized groups. The size of the groups is fixed throughout

the α rounds. Each participant has 2-person interactions with other participants from

their group. The learning gain within the groups will be determined by the interaction

mode, which will be the same for all groups, throughout the process. We consider

two possible interactions modes:

(i) Star Mode. Every participant of the group learns from the highest-skilled

member of the group, and skill levels are updated according to the learning gain

function. Specifically if pi is ith highest-skill participant of a group x, the learning

gain of group x is

gstar(x) =
∑
pj ̸=p1

f(p1 → pj). (4.1)

In the Toy Example, assume [0.9, 0.5, 0.3] are assigned to a group and the

interaction model is star model. In this case 0.9 is unaltered in the group, and 0.5, 0.3

will both learn from 0.9 and are updated to 0.7, 0.6 after the learning, assuming a

learning rate r = 0.5. In this case the total learning gain of the group (soon to be

defined formally) is 0.5.

(ii) Clique Mode. All possible pairwise interactions take place. Suppose that pi

is the participant with the ith highest learning skill in a group x. That implies that

pi will learn and gain skill from (i− 1) persons. Then, we define the learning gain of

a group x as follows:

gcliq(x) =
∑
pi∈x

1

i− 1
(
∑
pj ̸=pi

f(pj → pi)) (4.2)
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In plain words, the total gain for pi is the average of its positive gains from 2-person

interactions within its group. The averaging operation ensures that the order of

skill levels is preserved within the group after the round, as it would be expected in

practice.

In the Toy Example, assume [0.9, 0.5, 0.3] form a group. As before, 0.9 is

unaltered. However, 0.3 learns not only from 0.9 but also from 0.5. Therefore, the

new skill value for 0.3 after learning is 0.3 + (0.5(0.5− 0.3) + 0.5(0.9− 0.3))/2 = 0.5.

Since 0.5 only learns from 0.9, the new skill value of 0.5 is 0.7 as the same in the

previous example. The overall group learning gain is 0.4.

Aggregated Learning Gain per Round. Given a grouping Gt of k groups

at round t, the aggregated learning gain of the grouping under either mode is defined

as:

LG(Gt) =
k∑

x=1

g(x). (4.3)

Problem 2. Targeted Dynamic Grouping (TDG): Given as input a set of n

individuals and their skills, an integer k representing the number of groups, and an

integer α representing the number of rounds, our goal is to compute a sequence of

groupings G1 . . . ,Gα that maximizes the aggregated learning gain over α rounds:

max
{G1...,Gα}

α∑
t=1

LG(Gt)

4.3 Algorithms and Running Time

We start with the presentation of the generic algorithmic framework DyGroups.

Then we instantiate it for the Star and Clique modes in Sections 4.3.1 and 4.3.2

respectively. To avoid disrupting the flow of ideas, we defer the formal statements

and proofs for our claims to Section 4.4.
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DyGroups is fairly simple; we take a greedy stride in solving the problem.

Since the process of forming k groups is to be repeated over α rounds, in each round

t, DyGroups calls subroutine DyGroups-Local to form a grouping Gt of k groups

so as to locally maximize LG(Gt) at round t. The new skill values become part of the

inputs for round t+1 and the process repeats. Algorithm 4 presents the pseudo-code.

Algorithm 4 DyGroups-Mode

1: input : Set S of n skills, where si is the skill of individual i, number of groups k,

learning rate r, number of rounds α.

2: output : Collection of α groupings, each consisting of k equi-sized groups, where

Gt is the grouping in round t

3: for t = 1 : α do

4: Gt = DyGroups-Mode-Local(S,k)

5: S = Update-Skills-Mode(Gt,S)

6: end for

7: return G1,G2, . . .Gα

Three remarks are in order:

• DyGroups-Mode is a generic framework in the sense that it can be instan-
tiated for different interaction modes, by instantiating the two subroutines it
calls. We will see how to do that specifically for the Star and Clique modes.

• The greedy approach is a reasonable choice in this framework. As we will
see shortly, DyGroups-Mode-Local can solve the round-local maximization
problem very efficiently in both the Star and Clique modes. It thus lends
to a highly scalable algorithm, both with respect to n and k. There is
additional theoretical support to our choice. As we shall show in Section 4.4.3,
DyGroups-Star, does produce the optimal solution for k = 2.

• The running time of routine DyGroups-Mode is clearly O(α(Tg + Tu)),
where Tg, Tu are the running times of DyGroups-Mode-Local and Update-
Skills-Mode respectively.
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We also note that storing a grouping Gt requires Ω(n) memory, and so each

round of the algorithm requires Ω(n) time. This leads to the following lower bound

on the running time of DyGroups-Mode.

Claim 1. DyGroups-Mode requires Ω(αn) time.

4.3.1 DyGroups-Star

We begin by noting that Update-Skills-Star has a very straightforward imple-

mentation. Each skill update takes O(1) time, because each participant interacts

only with the ‘teacher’ of their group. Thus the total running time is O(n).

On the other had, designing DyGroups-Star-Local is a very interesting

problem. Let us call the highest-skilled person in some group, the teacher of that

group. We first observe that the learning gain is maximized if the teachers of

the k groups are selected to be the k highest-skilled participants, and that is true

irrespectively of the split of the remaining n− k participants into the k groups. This

is due to the linearity of the learning function. The proof of this claim appears in

Section 4.4, Theorem 12.

We thus have to select from exponential number of locally optimal groupings in

each round 6. Our further insight is to select the grouping G that has the maximum

variance of skill values among the locally optimal groupings. This is done as follows.

Suppose p1, . . . , pk are the k teachers. Recall that we have to assign the other n− k

participants to a teacher. In order to do that we split them into k provisional groups

of size s = n/k− 1, solely based on their skill level: each person in provisional group

i has skill equal or higher relative to every person in group i + 1. Then we form

group i, by assigning the ith provisional group to teacher pi. The proof that this

6e.g. when k = n/2 there are (n/2)! locally optimal solutions, and when k = 2 there are(
n−2

(n−2)/2

)
locally optimal solutions.
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assignment maximizes variance appears in Section 4.4, Theorem 13. Algorithm 5

gives an implementation.

Algorithm 5 DyGroups-Star-Local

1: input: Set S of n skills, where si is the skill of individual i, number of groups k.

2: output: Grouping G consisting of k groups of size n/k.

3: X = sort(S,descending) // sorted skill values

4: Let pi be the participant with skill X[i]

5: t = k + 1; s = n/k − 1;

6: for i = 1 : k do

7: Assign ‘teacher’ pi to group gi

8: for j=1:s do

9: Assign pt to group gi

10: t = t+1

11: end for

12: end for

13: return G = {g1, g2, ..., gk}

The running time of DyGroups-Star-Local is dominated by O(n log n)

for the sorting step. It is easy to see that the remaining lines take O(n) time.

Thus, the overall running time of DyGroups-Star is O(αn log n), which notably is

independent of k.

We now illustrate our discussion using the Toy Example from Section 4.2.

We first follow a sequence of three groupings that selects an arbitrary locally optimal

grouping in each round.

Round 1: [0.9, 0.1, 0.2], [0.8, 0.3, 0.4], [0.7, 0.5, 0.6].

Updated Skills: [0.9, 0.8, 0.7, 0.65, 0.6, 0.6, 0.55, 0.55, 0.5].

Round 2: [0.9, 0.55, 0.5], [0.8, 0.6, 0.55], [0.7, 0.65, 0.6]

Updated Skills: [0.9, 0.8, 0.7, 0.675, 0.65, 0.7, 0.675, 0.725, 0.7]
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Round 3: [0.9, 0.675, 0.65], [0.8, 0.7, 0.675], [0.725, 0.7, 0.7]

Final: [0.9, 0.8, 0.725, 0.7125, 0.7125, 0.75, 0.7375, 0.7875, 0.775]

The total learning gain after 3 rounds is 2.4.

Let us now introduce how DyGroups-Star runs.

Round 1: [0.9, 0.6, 0.5], [0.8, 0.4, 3], [0.7, 0.2, 0.1]

Updated Skills: [0.9, 0.8, 0.7, 0.75, 0.7, 0.6, 0.55, 0.45, 0.4]

Round 2: [0.9, 0.7, 0.7], [0.8, 0.6, 0.55], [0.75, 0.45, 0.4]

Updated Skills:[0.9, 0.8, 0.75, 0.8, 0.8, 0.7, 0.675, 0.6, 0.575]

Round 3: [0.9, 0.8, 0.75], [0.8, 0.7, 0.675], [0.8, 0.6, 0.575]

Final: [0.9, 0.8, 0.8, 0.85, 0.825, 0.75, 0.7375, 0.70, 0.6875]

The total learning gain after 3 rounds is 2.55.

While we do not know if DyGroups-Star will in general produce the optimal

grouping sequence, we do present a proof of this fact for k = 2, in Section 4.4.3 . We

note that forming two groups is natural in applications, such as peer programming,

where one group does the programming and the other peer reviews.

Finally we would like to shortly discuss the insight that leads to the proof

for k = 2. A further inspection of the above example can reveal that the two

different sequences of groupings produce the same learning gain after the first 2

rounds. However the variance maximization policy leads to a higher 3rd-order teacher

in round 3. This availability of better teachers earlier in the process is what leads to

DyGroups-Star dominating other solutions.

4.3.2 DyGroups-Clique

Let us begin with Update-Skills-Clique. By design, in the Clique mode, every

person learns from all the higher-skilled persons in the group and so there are O(t2)

interactions, where t = n/k is the size of the group. However it is possible to calculate
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all the updated skills within the group in O(t) time, leading to an O(n) update

algorithm. We prove this fact in Section 4.4, Theorem 14.

Similarly to DyGroups-Star, DyGroups-Clique finds a grouping that

maximizes the gain for each round. This is formally stated in Theorem 14. The

Clique mode definition leads us to a different grouping algorithm, which computes

the unique grouping G = {g1, . . . , gk} with the property that the jth-ordered skill in

gi is greater than or equal to the jth-ordered skill in gi+1 for each i, j. Algorithm 6

provides an implementation.

Algorithm 6 DyGroups-Clique-Local

1: input: Set S of n skills, where si is the skill of individual i, number of groups k.

2: output: Grouping G consisting of k groups of size n/k.

3: X = sort(S,descending) // sorted skill values

4: Let pi be the participant with skill X[i]

5: t = 1; s = n/k;

6: for j = 1 : s do

7: for i = 1 : k do

8: Assign pt to group gi

9: t = t+1

10: end for

11: end for

12: return G = {g1, g2, ..., gk}

The running time of DyGroups-Star-Clique is dominated by O(n log n)

for the sorting step. It is easy to see that the remaining lines take O(n) time. Thus,

the overall running time of DyGroups-Clique is O(αn log n), which notably is

independent of k.

Let us illustrate the algorithm with Toy Example.
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Round 1: [0.9, 0.6, 0.3], [0.8, 0.5, 0.2], [0.7, 0.4, 0.1]

Updated: [0.9, 0.8, 0.75, 0.7, 0.65, 0.55, 0.525, 0.425, 0.325]

Round 2: [0.9, 0.7, 0.525], [0.8, 0.65, 0.425], [0.75, 0.55, 0.325]

Updated: [0.9, 0.8, 0.8, 0.75, 0.725, 0.6625, 0.65, 0.575, 0.4875]

Round 3: [0.9, 0.75, 0.65], [0.8, 0.725, 0.575], [0.8, 0.6625, 0.4875]

Final: [0.9, 0.825, 0.8, 0.8, 0.7625, 0.7375, 0.73125, 0.66875, 0.609375] The total learning

gain after 3 rounds is 2.334375.

4.4 Proofs

All formal statements in this Section refer back to the informal discussion in

Section 4.3.

4.4.1 DyGroups-Star

Theorem 12. Suppose S = [s1, . . . , sn] is a set of skills in descending order. Then:

(a) An optimal grouping into k equi-sized groups, i.e. a grouping that maximizes

the learning gain, must assign s1, . . . , sk to different groups. (b) Every grouping that

assigns s1, . . . , sk is optimal.

Proof. Given a group g let sg,i denote the ith highest skill in g. Also, let t = n/k

denote the size of the groups. (a) For the sake of contradiction, suppose that G is

optimal and that it does not assign s1, . . . , sk to the same group. That implies that

there are two groups g, g′ ∈ G such that sg,2 > sg′,1. Let Cg be the cumulative value

of the t−2 smallest skills in g, and let C ′
g be the cumulative value of the t−1 smallest

skills in g′. The total gain A in the given grouping is given by:

r [(sg,1 − sg,2) + ((t− 2)sg,1 − Cg) + ((t− 1)sg′,1 − Cg′)]
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We can now swap the two skills g2, g
′
1 between g and g′. In this new grouping, the

new total gain B is

r [(sg,1 − sg′,1) + ((t− 2)sg,1 − Cg) + ((t− 1)sg,2 − Cg′)]

The statement is meaningful when t > 2. Given that sg,2 > sg′,1, t > 1, we get that

B > A, which is a contradiction.

(b) Suppose now that G is an arbitrary optimal grouping. Let g, g′ be two arbitrary

groups inG, and let sg,i, sg′,j two skills from g, g′ different than the top skills (i.e. i, j ̸=

1). Swapping sg,i and sg′,j between the two groups leaves the total gain invariant, as

follows from a simple application of the definition. Now if G and G ′ are two different

arbitrary optimal groupings, then they must agree on the leaders of the k groups, by

part (a). One can then apply a sequence of swaps such as the one described above, to

transform G into G ′, while leaving the gain invariant along the sequence. Therefore

the total gain of G and G ′ must be the same.

Theorem 13. The output G of DyGroups-Star-Local is the grouping of highest

variance among the groupings that maximize the learning gain on input set S.

Sketch. For the sake of contradiction suppose G ′ is another optimal grouping. Let

G ′ = {g′1, . . . , g′k}. By Theorem 12, since G ′ is optimal, the highest skills s1 ≥ . . . ≥ sk

of its groups are fixed, and they are the same in the corresponding groups of G. Since

G ≠ G ′, there must be some i > j such that g′i contains skill s
′, and g′j contains skill

s, with s < s′.

Now let G ′′ be the grouping after swapping s′ and s in G ′. By Theorem 12, the

mean skill µ is the same in G ′ and G ′′ after the update. The variance after the update

in G ′ is:

A = C + (s+ r(si − s))− µ)2 + (s′ + r(sj − s′))− µ)2
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where C is a sum of squares, each coming from one of the other n− 2 updated skill

values. Similarly the variance after the update in G ′′ is:

B = C + (s′ + r(si − s′))− µ)2 + (s+ r(sj − s))− µ)2

We can now calculate B−A, using the facts that si > sj and s < s′, and get B > A.

This is a contradiction.

4.4.2 DyGroups-Clique

Theorem 14. Update-Skills-Clique can be implemented in O(n) time.

Proof. Let t = n/k be the size of one group. We fix an arbitrary group, and assume

that the initial set of descending-sorted skills is s1, . . . , st. Now let ci =
∑i

j=1 sj.

Clearly each ci+1 can be computed from ci with one addition. Hence computing all

ci’s takes O(t) time. Let s′1, . . . , s
′
t be the updated set of skills. Clearly, we have

s′1 = s1 since the highest-skilled person does not learn from anyone in the group.

Also, for i > 1, using our definitions from Section 4.2 we have

s′i+1 = si + r(ci − isi+1)/i

Thus, having computed the ci’s, the calculation of all new skills requires O(t) time.

Doing that for k groups gives a total running time of O(n).

Theorem 15. DyGroups-Local-Clique produces a grouping that maximizes the

gain for the input set of skills.

The proof follows a similar reasoning with that of the proof of Theorem 12.

However the calculations are rather lengthy, and so we omit it due to space constraints.
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4.4.3 DyGroups-Star for Two Groups

Terminology: when we say a grouping is locally-optimal we mean that maximizes

the gain for that round only, but possibly not for the entire process. If it is not locally

optimal, then we say it is non-locally optimal.

Theorem 16. DyGroups-Star is optimal for the TDG problem when k = 2.

The proof is rather non-trivial and is presented in several steps. We first present

an equivalent yet alternative objective function of the TDG problem that is pivotal

for the proof. We then present a set of helper lemmas that are crucial and finally

prove Theorem 17.

An equivalent objective function: Let s01, ..., s
0
n be the input skill values in

decreasing order. The TDG objective is:

Maximize
α∑

t=1

LG(Gt)

Assume the skill value of a member i after α rounds is sαi , and s0i is the initial skill

value of i. Then, the objective function can be written as:

Maximize
n∑

i=1

sαi − s0i

We thus convert the input to the distance to the highest-skilled member: 0, b02, b
0
3..., b

0
n,

where b0i = s01−s0i . In the Toy Example the s1, .., s9 are [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3,

0.2, 0.1]. Therefore, b1, ..., b9 are [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8].

Therefore, the equivalent objective function of the TDG problem is

Minimize
n∑

i=1

bαi (4.4)

Assume D =
∑n

i=1 b
0
i . Since the most skilled member will always lead a group,

we can assume b0x is the teacher in the other group. In each group, there are n
2
− 1

members learning from the leader. Assume i is one of them and x is the leader in i’s
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group. The skill value s1i after one round will be:

a0i + r(a0x − a0i ). So, the skill distance b1i after this round will be:

s1 − s1i =

= s1 − s0i − r(s0x − s0i )

= b0i − r(b0i − b0x)

= (1− r)b0i + rb0x

Therefore, the aggregated skill distance after the first round will be:

∑
i∈[2,...,n]

i ̸=x

(1− r)b0i + (
n

2
− 1)rb0x + b0x

=
∑

i∈[2,...,n]
i ̸=x

(1− r)b0i + (
n

2
− 1)rb0x + (b0x − rb0x) + rb0x

=
∑

i∈[2,...,n]

(1− r)b0i +
n

2
rb0x

=(1− r)D +
n

2
rb0x

By this, we can assume bix is the teacher of the second group for the round i

(i < α) and adapt the equation above recursively. According to this, we can re-write

the objective function as:

Minimize
n

2
r

α∑
i=1

bix(1− r)α−i +D(1− r)α (4.5)

Since the second part is constant, the problem becomes to find a series of

groupings which maximize the skill value of the second teacher in the group. For

the purpose of the proof, we will stick to this alternative objective function for the

remainder of this subsection.
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Lemma 3. There exist 2
(
n−2
n
2
−1

)
local optima in each round.

Proof. According to the Star mode, the teacher of group-1 is the highest skilled

individual (s1) and the teacher of group-2 is the second highest skilled individual

(with skill s2). The assignment of the remaining individuals inside these two groups

does not interfere with the learning gain function. Since there are such 2
(
n−2
n
2
−1

)
possible

assignments. Therefore, we have 2
(
n−2
n
2
−1

)
local optimals in each round.

Lemma 4. DyGroups-Star in conjunction with DyGroups-Star-Local is not

worse than any other solutions that produce local optima in each round.

Proof. Assume X is the series of groupings that are produced by Dygroups-Star

with DyGroups-Star-Local and there is another solution X ′ that also contains

local maximum groupings but different from X. Therefore, in X ′, there must be

at least one grouping that is not present in X. For a local maximum solution, the

teacher of the second group is the second most skilled person. According to the

objective function, if X ′ is a better solution than X, X ′ should have higher second

skilled person at some rounds.

Let’s assume that such a scenario occurs in round t.This entails individual i

attains higher skill value in X ′ than in X and this skill value exceeds the second

highest skill value in round t − 1. It means either i achieves higher learning gain in

X ′ than X, or i has higher skill value in X ′ before t− 1.

In DyGroups-Star-Local, the 3rd to n
2
individuals are placed in the first

group, which ensures the largest skill increase. Therefore, the aforementioned scenario

can not happen. Thus, DyGroups-Star in conjunction with DyGroups-Star-

Local will not produce any worse objective function than any other local maximum

solution.

Theorem 17. DyGroups-Star is not worse than any other solution that contains

non-local optima.
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Proof. The overall proof consists of multiple steps. First, we assume a case when

the alternative solution with objective value X ′ contains only one non-local optima.

Then, we extend the proof to the case when the alternative solution contains multiple

(y) local solutions that are not local optima.

(Only one non-local optima:) First, let’s assume there is a solution X ′ that

contains only one non-local optimum grouping at round t (t < α). Other than that,

DyGroups-Star and this other solution both produce local optima in the first t−1

rounds. Let bt
′
i be the skill difference of the i-the member in the t-th round (recall

Equation 4.4). Let bt
′
x (x > 2) be the skill difference of the second teacher. So, the

objective function value of X ′ will be:

D(1− r)α + r
n

2
(
t−1∑
i=1

bi
′

2 (1− r)α−i + bt
′

x (1− r)α−t

+ bt+1′

2 (1− r)α−t−1 +
α∑

i=t+2

bi
′

2 (1− r)α−i)

For our solution X, the objective value is:

D(1− r)α + r
n

2
(
t−1∑
i=1

bi2(1− r)α−i + bt2(1− r)α−t

+ bt+1
2 (1− r)α−t−1 +

α∑
i=t+2

bi2(1− r)α−i)

Since bt
′
2 ≤ bt

′
x , b

t′
2 is placed in the first group t. Therefore, bt

′
2 becomes to (1−r)bt′2

after round t. Noted that, bt
′
2 ≤ bt

′
i , i ≥ 3, so (1 − r)bt−1′

2 ≤ (1 − r)bt−1′

i , i ≥ 3. That

means (1− r)bt−1′

2 is the teacher of the second group(bt+1′

2 ) of X ′ at round t+ 1.

The minimum skill difference (that is the b value where smaller is better) that

the second teacher can attain is bi
′
2 , i < t of X ′ is bi2. So, we can rewrite the objective
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value of X ′ as:

D(1− r)α + r
n

2
(
t−1∑
i=0

bi2(1− r)α−i + btx(1− r)α−t

+ bt2(1− r)α−t +
α∑

i=t+2

bi
′

2 (1− r)α−i)

Then, there are two possible cases: (Case 1:) bt2 stays as the second teacher in

X from t to α; (Case 2:) A new second teacher shows up in round u (u > t) with

bt3(1− r)u−t.

(Case 1:) The objective value of X is:

D(1− r)α + r
n

2
(
t−1∑
i=1

bi2(1− r)α−i + bt2(1− r)α−t

+ bt2(1− r)α−t−1 +
α∑

i=t+2

bt−1
2 (1− r)α−i)

(4.6)

The objective value for X ′ is:

D(1− r)α + r
n

2
(
t−1∑
i=1

bi2(1− r)α−i + btx(1− r)α−t

+ bt2(1− r)α−t +
α∑

i=t+2

bt2(1− r)α−i+1)

(4.7)

So, Equation 4.6 - Equation 4.7 is:

r
n

2
(bt2 − btx(1− r)α−t)

Since there is no position change in the second teacher, bt2 ≤ btx(1 − r)α−t.

Therefore, Equation 4.6 - Equation 4.7 ≤ 0 and proved.

(Case 2:): In this case, (1− r)u−tbt3 ≤ bt2. In addition, since there is no change

in the second teacher before round u, bt2 ≤ (1− r)u−t−1bti, i ≥ 3.
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Therefore, (1− r)bt2 ≤ (1− r)u−tbti, i ≥ 3. Overall, the objective function value of X

is:

D(1− r)α + r
n

2
(
t−1∑
i=0

bi2(1− r)α−i + bt2(1− r)α−t

+ . . .+ bt2(1− r)α−u+1 + (1− r)u−tbt3(1− r)α−u

+min(bt4(1− r)u−t+1, bt2(1− r))(1− r)α−u−1

+
α∑

i=u+2

bi2(1− r)(α−i))

Similarly, the objective value of X ′ needs to be discussed considering two cases:

The third highest skilled individual is the teacher of the second group:

D(1− r)α + r
n

2
(
t−1∑
i=0

bi2(1− r)α−i + bt3(1− r)α−t

+ bt2(1− r)α−t + . . .+ bt2(1− r)α−u+1

+min(bt4(1− r)u−t+1, bt2(1− r))(1− r)α−u−1

+
α∑

i=u+2

bi
′

2 (1− r)α−i)

We can observe that since X ′ has the same second skill value as X at the round

u + 1, and X ′ adopts the local maximum groupings after round t, so X and X ′ has

the same objective value in this case.

Any other individual with btx is the teacher of the second group:

D(1− r)α + r
n

2
(
t−1∑
i=0

bi2(1− r)α−i + btx(1− r)α−t

+ bt2(1− r)α−t + ...+ bt2(1− r)α−u+1

+min(bt3(1− r)u−t+1, bt2(1− r))(1− r)α−u−1

+
α∑

i=u+2

bi
′

2 (1− r)α−i)
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As before, X ′ is not better than X after u. In fact, it could be easily shown,

X ′ gets worse (with higher value of the objective function in Equation 4.4), as we

consider any other individuals with larger btx as the teacher.

Overall, the optimal solution that only contains one round of non-local

maximum grouping cannot achieve better objective value than ours. We can also

observe two facts, for round u > t:

• When bu
′

2 > bu2 , the objective value of X ′ is the same or worse than X (Case 1,
no swap after the round t).

• When bu
′

2 = bu2 , the objective values of two methods are equal (Case 2 after the
swap round).

Multiple y one non-local optimas: Next we prove the case when there exists

y non-local optimas in X ′. Before the second non-local maximum grouping and after

the the first non-local maximum grouping, the aforementioned two facts hold.

Assume the i-th non-local maximum grouping is adopted by X ′ at the round

ti. When bv
′

2 = bv2(t1 < v < t2), it is the exact same as the previous discussions: X ′

is not better than X before the round u2. According to the algorithm, it always put

the 3rd to n
2
members into the first group. Therefore, according to the lemma 2, this

property will hold until the next non-local maximum grouping happens in X ′.

Assume the second leader of X ′ at the round ti is b
ti
xi
, and X changes the second

leader at the round z, so bv
′

2 > bv2(t1 ≤ v ≤ z). There are y non-local maximum

groupings in X ′ before the round z. Then, the objective value of X ′ will be:

D(1− r)α + r
n

2
(

t1−1∑
i=0

bi2(1− r)α−i

+ bt1x1
(1− r)α−t1 + (1− r)bt12 (1− r)α−t1−1

+ . . .+ (1− r)bt12 (1− r)α−t2+1

+ bt2x2
(1− r)α−t2 + · · ·+ bα

′

2 )

(4.8)
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And the objective value of X is:

D(1− r)α + r
n

2
(

t1−1∑
i=0

bi2(1− r)α−i

+ bt12 (1− r)α−t1 + bt12 (1− r)α−t1−1

+ ...+ bt12 (1− r)α−t2+1

+ bt22 (1− r)α−t2 + · · ·+ bα2 )

(4.9)

Therefore, Equation 4.9 - Equation 4.8 is:

y−1∑
i=0

bt12 (1− r)α−z+i −
y∑

i=1

btixi
(1− r)α−ti (4.10)

Since our algorithm always pick the second skilled person as the leader of the

second group, bt12 ≤ bt1x1
(1− r)t2−t1−1, and bt12 ≤ bt2x2

, and so on.. Therefore, Equation

4.10 is smaller or equal to zero, and X is not worse than X ′. Overall, X is not worse

than any optimal solution that contains any non-local maximum groupings. Hence,

the proof.

Proof. (of Thorem 16) With Lemmas 3 and 4, we prove that although there exists

many local optima, DyGroups-Star in conjunction with DyGroups-Star-

Local is not worse than any other local optima solutions considering the objective

function in Equation 4.5. From Theorem 17, we prove that DyGroups-Star is

not worse than any solution that does not produce local optima. Combining these

three, we therefore prove that DyGroups-Star produces global optima for the TDG

problem.
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4.5 Experimental Evaluation

We now present our experimental evaluation of DyGroups. We perform two

experiments with human subjects and then we demonstrate the quantitative and

runtime performance of DyGroups on synthetic data.

4.5.1 Human Subjects Experiments

The main purpose of this study is to experimentally examine: a. The effectiveness of

peer learning, i.e., whether individual skills improve through interactions with peers.

b. The effectiveness of DyGroups, relative to baseline solutions.

We consider an application on learning facts from peers through targeted

dynamic groups formation.We present two experiments with human subjects. They

are similar but they have been conducted independently; also the second experiment is

more extensive. The experiments employ real workers hired on Amazon Mechanical

Turk (AMT) to learn facts related to COVID-19 from their peers.

AMT Setup: We deploy multiple-choice questions as a Human Intelligent

Task (HIT) consisting of facts and rumors about COVID-19. Those are shown to the

workers as tasks7. Workers are paid $5 if they stick with the entire learning process.

Each deployment was accessible for 24 hours and 1 hour is allotted to each worker.

Skill Assessment: Each HIT consists of 10 questions. The HIT questions also

comprise a skill assessment test; the skill of each participant is set to be equal to the

number of their correct answers, divided by 10.

7

Sample questions:
• What is the longest incubation time of COVID-19 in the record?
A. 14 days, B. 19 days, C. 20 days, D. More than 20 days

• Which action will help to prevent COVID-19?
A. Wash your hands regularly and thoroughly
B. Taking a hot bath, C. Drinking alcohol, D. None of the above
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Experiment-1. We recruit N = 64 individuals. They first undergo Pre-

Qualification: Workers are assigned individual assessment tests to estimate their

skill level. Based on the qualification outcome, we split them into two Populations

A,B each containing n = 32 participants. The split is random, under the constraint

that the two populations have very similar skill distributions, and in particular the

same average skill. Population A follows DyGroups with a learning rate of r = 0.5

and k = 4, while Population B follows a baseline solution kmeans (details in Section

4.5.2). During the learning process, each Population alternates between these two

steps: [Group-formation]: Worker groups are formed, following the respective

policy. The workers are asked to answer the questions collaboratively, by consulting

with the rest of their peers in their group. [Post-Assessment]: Another test, akin

to Pre-Qualification is performed to estimate the new skill of the individuals -

and compute the learning gain after each round. The experiment consists of α = 3

rounds.

Experiment-2. This is identical to Experiment-1 except it is conducted using

N=128, that are split into four Populations of size n = 32 following DyGroups

and the baselines kmeans, LpA and Percentile-Partitions, further discussed in

Section 4.5.2. The experiment consists of α = 2 rounds.

Parameter justification: The choice of parameters r=0.5 and k=4 in our

experiments is not arbitrary. Before running the actual experiment, we have made

several initial deployments, where we hired workers of varying expertise from AMT

and formed random groups of different size: small groups of size 2, 3, 4, 5, and

large groups of size 10, 12, 15, and let them interact across multiple rounds. We

have conducted pre-assessment and post-assessment tests on these deployments that

steered us in the choice of parameters. From these initial deployments we have learned

that for these assigned fact checking tasks, the new skill that individuals acquire

after interaction with another higher skilled peer is on average half of the difference
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of skills between between them prior to interaction. We also found that groups are

most interactive and manageable when they contain 4 − 5 people, and that worker

engagement tends to dissipate if works are asked to participate in too many rounds.

This leads us to set r = 0.5, k=4, and α=2 or 3 for the actual experiments. We also

have observed that the one day time window is good enough for each round, and the

workers do not need to spend more than one hour overall.

Summary of Results.

• Observation I. The aggregated skill improves with peer interaction (75%
confidence interval), i.e. peer learning is effective. This can be seen in
Figures 4.1 and 4.4(a) that show that the learning gain of Pre-Qualification
and Post-Assessment scores after each round.

• Observation II. DyGroups outperforms the baselines with statistical signif-
icance (Figures 4.4(a) and 4.1). Interestingly, DyGroups outperforms even
after the first round, which shows that it is very competitive even as a single-shot
group formation algorithm.

We also note two serendipitous features of DyGroups that are worth of further
investigation:

• Observation III. DyGroups has higher worker retention than other baselines
(Figures 4.3, 4.4(b)). This anecdotally indicates that under the same monetary
rewards, the rate of skill improvement may be an important factor towards
retaining participants in the process.

• Observation IV. As the amount of total skill left to be learned decreases with α,
we expect that the aggregate learning must have a negative second derivative.
However, in Figure 4.2, aggregated learning gain appears to increase linearly
in the first rounds of DyGroups. This indicates that the learning rate may
accelerate during the first rounds.

4.5.2 Synthetic Data Experiments

Experimental Setup Experiments are implemented in C++ and performed

on a machine with Intel i5 CPU and 4GB Memory. In experiments involving

randomness, we average over 10 different runs. Due to space constraints, we present

a representative subset of our results.
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Figure 4.1 Experiment-
1: Learning gain across
rounds.

Figure 4.2 Linear fit to
learning gain.

Figure 4.3 Experiment-1:
Worker retention.

Baseline Algorithms. We note that there are no prior works on the dynamic

groups formation problem. The closest related works are [5, 61], both of which focus

on the one-shot grouping problem. We thus design a range of baseline algorithms,

each employing a different grouping scheme applied for α rounds:

• Random-Assignment. Groups are selected randomly.

• Percentile-Partitions. Groups are computed using an algorithm from [5].
The algorithm involves a parameter p, which is set to 0.75, following the
discussion in [5].

• LpA. This uses an algorithm from [61].

• k-means. This is an alternative grouping heuristic that we devise as a baseline.
The algorithm picks k random participants as group ‘centers’ and assigns the
rest to their nearest group, that is not completely full.

We also implement Brute-Force, an exponential-time algorithm that solves

the TGD problem optimally. Naturally, the algorithm can be run only for very small

values of n and k, and α.

Parameters. We vary the following seven parameters: number of partipants:(n),

number of groups:(k), number of rounds:(α), interaction mode:(star/clique), distri-

bution of the initial skill values, learning rate:(r).

Distribution. We generate the initial skill values of people using the log-normal

and Zipf distributions. Both are guaranteed to produce positive skill values (unlike
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the normal distribution). We set the mean µ = e and the standard deviation σ =
√
e

for the log-normal distribution. On the other hand, the shape parameters of Zipf

distribution are set to 2.3 and 10.

Summary of results. In the immediately subsequent sections, we can see the

following.

• Section 4.5.2. DyGroups is superior compared to other baselines in terms of
improving the aggregated learning gain, under a range of parameter settings.

• Section 4.5.2. Brute-Force matches DyGroups-Star for k = 2 and small
values of α, n as predicted by our theoretical results.

• Section 4.5.2. DyGroups methods induces significant learning gains relative
to Random-Assignment.

• Section 4.5.2. DyGroups allows higher ‘inequality’ among participants relative
to Random-Assignment.

• Section 4.5.2. DyGroups is highly scalable and therefore suitable for large
scale real world applications.

Effectiveness Experiments We review experiments on the effectiveness of DyGroups.

Default Parameters. Unless otherwise noted, k = 5, n = 10000, ϵ = 0.05,

r = 0.5, α = 5, star mode, with log-normally distributed initial skills. Deciding

appropriate values for these parameters is often times application dependent. In our

synthetic data experiments, these default values are decided based on the outcome of

our real data experiments.

Varying n-[Figures 4.5(a,b)]. We record the aggregate learning gain LG

as a function of n, for both initial skill distributions. The results demonstrate

that aggregate learning gain increases with increasing n. DyGroups convincingly

outperforms all other baselines.

Varying k-[Figures 4.6(a,b)]. We record the learning gain as a function of

the group size k. DyGroups outperforms other baselines. We also notice that LG
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(a) Learning gain across rounds (b) Worker retention

Figure 4.4 Results of Experiment-2.

(a) Clique, log-Normal (b) Star, Zipf

Figure 4.5 Aggregate Learning gain - varying n.
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decreases with increasing k. This is expected since with a higher number of groups,

not all groups get to have expert peers and therefore the learning gain decreases.

(a) Star, log-Normal (b) Clique, Zipf

Figure 4.6 Aggregate Learning gain - varying k.

(a) Clique, Zipf (b) Star, log-Normal

Figure 4.7 Aggregate Learning gain - varying α.

Varying α-[Figures 4.7(a,b)]. As before, DyGroups convincingly wins. As

expected, a higher α induces a higher aggregate learning gain.

Varying r-[Figures 4.8-4.9]. We record the aggregate learning gain as a function

of the learning rate r. We can observe that DyGroups outperforms in the clique
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model for all of r values. In the special case of r = 1, by definition of the star mode, it

takes logn/k(n) rounds to make everyone reach the highest skill value for DyGroups

and LpA.

(a) Clique, Zipf (b) Star, Zipf

Figure 4.8 Aggregate Learning gain - varying r.

(a) Clique, log-Normal (b) Star, log-Normal

Figure 4.9 Aggregate Learning gain - varying r.

Star Interaction Mode with k = 2 We experimentally validate our theoretical

claim presented in Section 4.4.3. We compareBrute Force withDyGroups-Star,
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where we set α ∈ [1, 4], n ∈ {4, 6, 8} and the skill values are picked from [0, 1]

uniformly. We run 1000 different experiments with the parameters picked at random.

In all of them DyGroups-Star agrees with Brute-Force, i.e. it maximizes the

aggregate learning gain.

Learning Gain Relative to Random Groupings In Figure 4.10 we plot

the ratio of the learning gain of DyGroups methods vs that of the Random-

Assignment, as a function of α and n. Specifically, for a fixed n = 10000 we

let α range over {2, 4, 6, 8, 16, 32, 64}. For a fixed α = 10 we let n range over

{10, 102, 103, 104, 105, 106}. It can be seen that DyGroups achieve up to 30%

higher learning gain relative to random groupings over a small number of rounds.

Interestingly, DyGroups-Star is comparable to DyGroups-Clique under this

special case, and thus the simpler star mode may be a good proxy for the clique

mode.

(a) Varying α (b) Varying n

Figure 4.10 Learning gain relative to Random-Assignment.

Fairness We measure the inequality of the distribution of skills in DyGroups

vs that in Random-Assignment. For this experiment we use r = 0.1. We use
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(b) Inequality Measures

Figure 4.11 Inequality relative to Random-Assignment.

two metrics: the CV-coefficient of variation 8, and the well-known Gini coefficient

9. Inequality drops with both methods (Figure 4.11(b)), something which may be

expected due to the fact that there is an upper bound in the skill level. However, in

Figure 4.11(a) we plot the ratio of the CV and the Gini index in DyGroups-Star

and Random-Assignment. We observe that DyGroups-Star allow a higher

inequality relative to Random-Assignment in all rounds, and that the gap between

the two methods appears to be widening over time.

Running Time Experiments The running time of both DyGroups variants is

dominated by the time to sort the skill values. This leads to excellent scaling behavior,

shown in Figures 4.12 and 4.13. In practice, the time to run DyGroups is negligible.

For instance, performing 5 rounds on n = 105 participants takes 0.18 sec.

8CV is the ratio of the average by the standard deviation of skills.
9The Gini coefficient is G =

∑
i>j |si−sj |
n
∑

i |si|
, where si are skill levels.
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Figure 4.12 Running time (in micro sec), Star, log-Normal.
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Figure 4.13 Running time (in micro sec), Clique log-normal.

4.6 Related Work

We are unaware of any existing works that present models and algorithms for targeted

groups formation in multiple rounds. In this section, we present the relevant existing

works.

Groups formation: Designing quantitative models and algorithms for groups

formation to optimize learning through peer interaction is first studied by Agrawal
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et al. [3]. The authors propose learning gain models and algorithms for the one-shot

groups formation problem. Esfandiari et al. [61], adapt the learning gain functions

of [3] but also add the additional dimension of affinity to optimize peer learning.

Besides [3, 61], another of our prior works studies group formation to optimize

recommendation [123].

Related problems have been considered by the operation research community;

the problem is always formalized as an Integer Programming Problem (ILP) and often

solved using simulated annealing [29], branch-and-cut [150] or genetic algorithms

[142]. From an algorithmic standpoint, Anagnostopoulos et al. [14] present a general

framework for a task-assignment problem and a series of approximation algorithms

with theoretical guarantees. In addition, Anagnostopoulos et al. [15], study how

to form teams for a series of arriving tasks without overwhelming any expert, and

there is some communication between teams. Lappas et al. [88], introduce a team

formation problem that also involves skill requirements and communication costs.

Rangapuram et al. [119] propose approximation algorithms for solving a constrained

matching problem via the densest subgraph problem. Sanaz et al. [21, 22] solve the

non-overlapping teams formation problems. Especially in [21], the authors aim to

maximize the potential of students’ learning in online classes.

Unlike these existing works, we study peer learning in a dynamic setting where

group composition changes over time. While we adapt learning gain models of [3,61],

we note that the existing solutions do not extend to TDG.

Information Diffusion/ Gossip Propagation: TDG is in some sense

a diffusion problem: knowledge is diffused via pair-wise interactions, and the

objective is to attain the maximum possible diffusion (as measured by the total

skill) in a specified number of rounds. Diffusion problems are very well studied in

various contexts, including information diffusion maximization in social networks (e.g.

86



[73,74,125,135,138]), and gossip propagation (e.g. [92,130]). A tangential topic is the

problem of influence maximization, introduced by Kempe, Kleinberg, and Tardos [83].

However, all these works assume the presence of a graph topology or network.

Conversely, TDG assumes a fully connected underlying network, and instead asks for

a controlled utilization of its resources over time in a group-like manner.

4.7 Discussion and Future Work

We believe that our study can stimulate further research in this space, along the

following directions.

Alternative formulations. Our formulation assumes equal-size groups and

linear learning gain. These settings are directly adopted from related works [3, 5, 76,

79], including education literature. We note that DyGroups can be adapted for

the case when groups have varying sizes. Of course, more complicated models are

conceivable. A particularly interesting problem is to study settings where the learning

gain depends on additional factors that capture “intrinsic learning ability”, e.g. a

time-evolving affinity among individuals [5] that impact learning, or different learning

rates for the participants. One possible way to model the former problem is to solve a

bi-criteria optimization problem, with the goal of forming dynamic groups where both

affinity and skill evolves across rounds. Another interesting question, motivated by

Observation III in Section 4.5.1 is the impact of retention on the aggregate learning

gain. A faster overall learning gain may still higher satisfaction among participants,

and thus create a positive feedback loop.

DyGroups for more groups. Recall that we proved the optimality of

DyGroups-Star for the case k=2. Clearly, DyGroups can still be used to solve the

problem when k > 2 and we conjecture that DyGroups-Star is still optimal. That

said, the computational complexity of the problems for different interaction modes is

an open problem for larger values of k, possibly of independent theoretical interest.
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Other learning gain functions. As long as the learning gain function is

concave, DyGroups can be adapted to solve TDG. Our initial research suggests that

for non-linear concave learning gain functions, DyGroups is not optimal, thus raising

questions on the approximability of the optimal, or other theoretical guarantees.

Fairness. We have only scratched the surface with respect to fairness. We

believe that studying bi-criteria optimization problems with respect to fairness and

learning gain is an extremely interesting theoretical and practical issue, even within

the scope of relatively limited peer learning models.

4.8 Conclusion

We initiate the study of peer-learning processes in rounds. The problem is motivated

by practical considerations of groups in online social networks or offline classroom

learning. In each round, the participants are split into groups and learn from

interactions within their group. The objective is to find a sequence of groupings that

will maximize the total knowledge at the end of the process. We introduce a model and

an associated algorithmic framework DyGroups for this problem. Using the insights

we gain from our theoretical study, we design experiments with human subjects that

provide evidence corroborating our hypothesis that the choice of groupings can indeed

significantly impact the total amount of learning.
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CHAPTER 5

RECOMMENDING DEPLOYMENT STRATEGIES FOR
COLLABORATIVE TASKS

5.1 Introduction

Despite becoming a popular mean of deploying tasks, crowdsourcing offers very

little help to requesters. In particular, task deployment requires that requesters

identify appropriate deployment strategies. A strategy involves the interplay of

multiple dimensions: Structure (whether to solicit the workforce sequentially or

simultaneously), Organization (to organize it collaboratively or independently), and

Style (to rely on the crowd alone or on a combination of crowd and machine

algorithms). A strategy needs to be commensurate to deployment parameters desired

by a requester, namely, a lower-bound on quality, an upper-bound on latency, and

an upper-bound on cost. For example, for a sentence translation task, a requester

wants the translated sentences to be at least 80% as good as the work of a domain

expert, in a span of at most 2 days, and at a maximum cost of $100. Till date, the

burden is entirely on requesters to design deployment strategies that satisfy desired

parameters. Such parameters are to be estimated for each strategy. If their estimation

satisfies desired values, the strategy is deemed suitable for a task. Otherwise, the

parameters need to be revisited. Our effort in this work is to present a formalism

and computationally efficient algorithms to recommend multiple strategies (namely

k) to the requester that are commensurate to her deployment parameters, primarily

for collaborative tasks.

A recent work [35] investigated empirically the deployment of text creation

tasks in Amazon Mechanical Turk (AMT). The authors validated the effectiveness of

different strategies for different collaborative tasks, such as text summarization and

text translation, and provided evidence for the need to guide requesters in choosing
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the right strategy. In this chapter, we propose to automate strategy recommendation.

This is particularly challenging because the estimation of the cost, quality and latency

of a strategy for a given deployment request must account for many factors.We

conjecture that worker availability on the platform is a major factor to account for

in task deployment. Our contributions are: we express deployment strategies of

collaborative tasks as a function of the availability of qualified workers, we empirically

verify that conjecture, we formalize a set of problems that are related to recommending

deployment strategies, present principled algorithms, and validate them with extensive

experiments.

To realize our contributions, we develop StratRec (refer to Figure 5.1),

an optimization-driven middle layer that sits between requesters, workers, and

platforms. StratRec has two main modules: Aggregator and Alternative Parameter

Recommendation (ADPaR in short). Aggregator is responsible for recommending

k strategies to a batch of such incoming deployment requests, considering worker

availability. If the platform does not have enough qualified workers to satisfy

all requests, Aggregator triages them by optimizing platform-centric goals, i.e., to

maximize throughput or pay-off (details in Section 5.2.2). Unsatisfied requests are sent

to the Alternative Parameter Recommendation module (ADPaR), that recommends

different deployment parameters for which k strategies are available.

In principle, recommending deployment strategies involves modeling worker

availability considering their skills for the tasks that require deployment. This gives

rise to a complex function that estimates parameters (quality, latency, and cost) of a

strategy considering worker skills, task types, and worker availability. As the first ever

principled investigation of strategy recommendation in crowdsourcing, we first make

a binary match between workers’ skills and task types and then estimate strategy

parameters considering those workers’ availability. Worker availability is captured as

a probability distribution function (pdf) by leveraging historical data on a platform.
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Figure 5.1 StratRec framework.

For example, the pdf can capture that there is a 70% chance of having 7% of the

workers and a 30% chance of having 2% of the workers available who are suitable to

undertake a certain type of task. In expectation, this gives rise to 5.5% of available

workers. If a platform has 4000 total workers available to undertake a certain type of

task, that gives rise to a total of 220 available workers in an expected sense. StratRec

works with such expected values.

Contribution 1. Modeling and Formalism: We present a general

framework StratRec for modeling quality, cost, and latency of a set of collabo-

rative tasks, when deployed based on a strategy considering worker availability

(Section 5.3.1). The first problem we study is Batch Deployment Recommendation

inside to deploy a batch of tasks to maximize two different platform-centric criteria:

task throughput and pay-off. After that, unsatisfied requests are sent one by

one to the Alternative Parameter Recommendation module (ADPaR). ADPaR solves

an optimization problem that recommends alternative parameters for which k

deployment strategies exist. For instance, if a request has a very small latency

threshold that cannot be attained based on worker availability, ADPaRmay recommend

to increase the latency and cost thresholds to find k legitimate strategies. ADPaR does

not arbitrarily choose the alternative deployment parameters. It recommends those
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alternative parameters that are closest, i.e., minimizing the ℓ2 distance to the ones

specified.

Contribution 2. Algorithms: In Section 5.3, we design BatchStrat, a

unified algorithmic framework to solve the Batch Deployment Recommendation

problem. BatchStrat is greedy in nature and provides exact results for the throughput

maximization problem, and a 1/2-approximation factor for the pay-off maximization

problem (which is NP-hard). In Section 5.4, we develop ADPaR-Exact to solve ADPaR

that is geometric and exploits the fact that our objective function is monotone

(Equation 5.3). Even though the original problem is defined in a continuous space,

we present a discretized technique that is exact. ADPaR-Exact employs a sweep-line

technique [31] that gradually relaxes quality, cost, and latency, and is guaranteed to

produce the tightest alternative parameters for which k deployment strategies exist.

Contribution 3. Experiments: We conduct comprehensive real-world

deployments for text editing applications with real workers and rigorous synthetic

data experiments (Section 5.5). The former validate that worker availability varies

over time, and could be reasonably estimated through multiple real world deployments.

It also shows with statistical significance that cost, quality, latency have a linear

relationship with worker availability for text editing tasks. In Section 5.7, we discuss

how StratRec could be adapted for tasks that do not exhibit such linear relationships.

Our synthetic experiments compare our solutions with realistic baselines and validate

scalability and theoretical bounds.

5.2 Framework and Problem

Example 3. Assume there are three (m = 3) task deployment requests for different

types of collaborative text editing tasks. The first requester d1 is interested in deploying

sentence translation tasks for two days (out of seven days), at a cost up to $100 (out of

$600 max), and expects the quality of the translation to reach at least 40% of domain
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expert quality. Table 5.1 presents all three deployment requests after normalization

between [0 − 1]. For the purpose of this example, we assume worker availability is a

pdf with a 50% probability of having 700 workers and a 50% probability of having 900

workers out of 1000 suitable workers for text editing tasks available for the next seven

days. Thus, expected worker availability W is 0.8 and we set k = 3.

For the purpose of illustration, S consists of the set of four deployment

strategies, as shown in Figure 5.2: SIM-COL-CRO, SEQ-IND-CRO, SIM-IND-CRO,

SIM-IND-HYB. To ease understanding, we name them as s1, s2, s3, s4, respectively.

s1 costs $150 and takes 2 days (out of seven days) and ensures at least a 50% quality.

s2, s3, s4 have corresponding parameters. Strategy parameters are normalized and

presented in the last column of Table 5.1. StratRec intends to recommend strategies

from S to the requesters. If StratRec cannot produce k strategies for all three

requests because of limited worker availability, it selects a subset that maximizes a

platform-centric goal (throughput or pay-off) and sends the rest to ADPaR.

5.2.1 Data Model

Crowdsourcing Platforms & Tasks: A platform is designed to crowdsource tasks,

deployed by a set of requesters and undertaken by crowd workers. We consider

collaborative tasks such as sentence translation, text summarization, and puzzle

solving [114, 117]. Conceptually speaking, we do not restrict ourselves to specific

task types. In our experiments, we illustrate text editing tasks.

Tasks of the same type are usually deployed in batches (referred to as Human

Intelligence Tasks). For the rest of the work, a task refers to a batch of tasks of the

same type.

Deployment Strategies: A deployment strategy [81] instantiates three

dimensions: Structure (sequential or simultaneous), Organization (collaborative or

independent), and Style (crowd-only or crowd and algorithms). We rely on common
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deployment strategies [35,81] and refer to them as S. Figure 5.2 enlists some strategies

that are suitable for text translation tasks (from English to French in this example).

For instance, SEQ-IND-CRO in Figure 5.2(a) dictates that workers complete tasks

sequentially (SEQ), independently (IND) and with no help from algorithms (CRO). In

SIM-COL-CRO (Figure 5.2(b)), workers are solicited in parallel (SIM) to complete a

task collaboratively (COL) and with no help from algorithms (CRO). The last strategy

SIM-IND-HYB dictates a hybrid work style (HYB) where workers are combined with

algorithms, for instance with Google Translate.

Table 5.1 Deployment Requests and Strategies

Quality Cost Latency

d1 0.4 0.17 0.28

d2 0.8 0.2 0.28

d3 0.7 0.83 0.28

s1 0.5 0.25 0.28

s2 0.75 0.33 0.28

s3 0.8 0.5 0.14

s4 0.88 0.58 0.14

In principle, the number of possible strategies is infinite since a strategy can

combine structure, organization and style in any order and any number of times.

All strategies are applicable regardless of the type of collaborative task. A platform

could provide the ability to implement some strategies. For instance, communication

between workers enables SEQ while collaboration enables COL. Additionally, coordi-

nation between machines and humans may enable HYB. Therefore, strategies could

be implemented inside or outside platforms. In the latter, a platform could be used

solely for hiring workers who are then redirected to an environment where strategies
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are implemented. In all cases, we will assume that for a given platform, a set of

strategies S.

Task Requests and Deployment Parameters: A requester intends to find

one or more strategies (notationally k, a small integer) for a deployment d with

parameters on quality, cost, and latency (d.quality, d.cost, d.latency) such that, when

a task in d is deployed using strategy s ∈ S, it is estimated to achieve a crowd

contribution quality s.quality, by spending at most s.cost, and the deployment will

last at most s.latency. Using Example 3, the deployment parameters are 40% on

quality, 2 days on latency, and $100 in cost. For simplicity, these parameters are

normalized in [0− 1].

s is suitable to be recommended to d, if s.quality ≥ d.quality & s.cost ≤ d.cost

& s.latency ≤ d.latency. Therefore, we must estimate the parameters s.quality,

s.cost, s.latency for each s, for a deployment d. Estimation of these parameters

require accounting for the worker pool and their skills who are available to undertake

the tasks in d. A simple yet reasonable approach to that is to first match task types in

a deployment request with workers’ skills to select a pool of workers. Following that,

we account for worker availability from this selected pool, since the deployed tasks are

to be done by those workers. Thus, the (estimated) quality, cost and latency of a

strategy for a task is a function of worker availability, considering a selected pool of

workers who are suitable for the tasks. For simplicity of illustration, we will use the

terms estimated quality (resp., estimated cost, estimated latency) and quality (resp.,

cost, latency) interchangeably.

Worker Availability: Given a filtered pool of workers who are suitable for

a deployment, worker availability is a discrete random variable and is represented

by its corresponding distribution function (pdf), which gives the probability of the

proportion of workers who are suitable and available to undertake tasks of a certain

type within a specified time d.latency (refer to Example 3). This pdf is computed from
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historical data on workers’ arrival and departure on a platform. StratRec computes

the expected value of this pdf to represent the available workforce W , as a normalized

value in [0, 1]. In the remainder of the work, worker availability stands for worker

availability in expectation, unless otherwise specified. How to accurately estimate

worker availability is an interesting yet orthogonal problem and not our focus here.

In our real data experiments (Section 5.5.1), we describe how to compute worker

availability through multiple deployment efforts.

5.2.2 Proposed Framework

StratRec is an optimization-driven middle layer that sits between requesters, workers,

and platforms. At any time, a crowdsourcing platform has a batch of m deployment

requests each with its own parameters as defined above, coming from different

requesters. StratRec is composed of two main modules - Aggregator and Alternative

Parameter Recommendation (or ADPaR). Given a batch of m deployment requests,

let the i-th task deployment di be associated with parameters di.quality, di.cost

and di.latency. These requests, along with worker availability estimation W , once

received, are sent to the Aggregator. Aggregator is responsible to recommend strategies

to these batch of requests to optimize different goal. For that, it first consults with

the Deployment Strategy Modeling Module to obtain model parameters of different

candidate strategies. Then, it consults with the Workforce Requirement Computation

module to estimate workforce requirement to satisfy all m requests.

If the platform does not have enough available workers to satisfy all m requests

(from a filtered pool of workers who are qualified for the tasks in the requests),

Aggregator triages them to optimize platform-centric goals, namely task throughput

or pay-off1. Based on the goal, the Optimization guided batch deployment module is

then invoked to select a subset of these requests that optimizes the underlying goal

1Although, by design StratRec, is extensible to optimize other types of goals, such as worker-
centric goals, as long as the required inputs are available.
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and recommends k strategies for those requests. Each unsatisfied request di is sent

to ADPaR that recommends an alternative deployment d′i to the requester for which

there exists k deployment strategies.

5.2.3 Problem Definitions

We are now ready to formalize our two problems: batch deployment recommendation

(Aggregator) and alternative parameter recommendation (ADPaR).

Problem 3. Batch Deployment Recommendation: Given an optimization goal

F , a set S of strategies, a batch of m deployment requests from different requesters,

where the i-th task deployment di is associated with parameters di.quality, di.cost

and di.latency, and worker availability W , distribute W among these requests by

recommending k strategies for each request, such that F is optimized.

The high level problem optimization problem could be formalized as:

Maximize F =
∑

fi

s.t.
∑

w⃗i ≤ W AND

di is successful

(5.1)

where fi is the optimization value of deployment di and w⃗i is the workforce

required to successfully recommend k strategies it. A deployment request di is

successful, if for each of the k strategies in the recommended set of strategies Si
d,

the following three criteria are met: s.cost ≤ di.cost, s.latency ≤ di.latency and

s.quality ≥ di.quality.

Using Example 3, d3 is successful, as it will return S3
d = {s2, s3, s4}, such that

d3.cost ≥ s4.cost ≥ s3.cost ≥ s2.cost & d3.latency ≥ s4.latency ≥ s3.latency ≥

s2.latency & d3.quality ≤ s4.quality ≤ s3.quality ≤ s2.quality, and it could be

deployed with the available workforce W = 0.8.
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In this work, F is designed to maximize one of two different platform centric-

goals: task throughput and pay-off.

Throughput maximizes the total number of successful strategy recommendations

without exceeding W . Formally speaking,

Maximize
m∑
i=1

xi

s.t.
∑

xi × w⃗i ≤ W

xi =



1 di.cost ≤ sj.cost AND

di.latency ≤ sj.latency AND

di.quality ≥ sj.quality AND

|Si
d| = k, ∀i = 1, . . . ,m; j = 1, . . . , |S|

0 otherwise

(5.2)

Pay-off maximizes di.cost, if di is a successful deployment request without

exceeding W . The rest of the formulation is akin to Equation 5.2.

Problem 4. Alternative Parameter Recommendation: Given a deployment d,

worker availability W , a set of deployment strategies S, and a cardinality constraint

k, ADPaR recommends an alternative deployment d′ and associated k strategies, such

that, the Euclidean distance (ℓ2) between d and d′ is minimized.
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Formally, our problem could be stated as a constrained optimization problem:

min (d′.cost− d.cost)2 + (d′.latency − d.latency)2

+ (d′.quality − d.quality)2

s.t.

|S|∑
j=1

xj = k

xj =



1 d′.cost ≤ sj.cost AND

d′.latency ≤ sj.latency AND

d′.quality ≥ sj.quality

0 otherwise

(5.3)

Based on Example 3, if ADPaR takes the following input values d1 : (0.4, 0.17, 0.28)

and S. For d1, the alternative recommendation should be (0.4, 0.5, 0.28) with three

strategies s1, s2, s3.

5.3 Deployment Recommendation

We describe our proposed solution for Batch Deployment Recommendation (Problem 3).

Given m requests and W , the Aggregator invokes BatchStrat, our unified solution

to solve the batch deployment recommendation problem. There are three major

steps involved. BatchStrat first obtains model parameters of a set of candidate

strategies (Section 5.3.1), then computes workforce requirement to satisfy these

requests (Section 5.3.2), and finally performs optimization to select a subset of m

deployment requests, such that different platform-centric optimization goals could be

achieved (Section 5.3.3).

We first provide an abstraction which serves the purpose of designing BatchStrat.

Given m deployment requests and W workforce availability, we intend to compute

a two dimensional matrix W , where there are |S| columns that map to available

deployment strategies and m rows of different deployment requests. Figure 5.3(a)
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(a) SEQ-IND-CRO (b) SIM-COL-CRO

(c) SIM-IND-CRO (d) SIM-IND-HYB

Figure 5.2 Deployment strategies.
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shows the matrix built for Example 3. A cell wij in this matrix estimates the workforce

required to deploy i-th request using j-th strategy. This matrixW is crucial to enable

platform centric optimization for batch deployment.

5.3.1 Deployment Strategy Modeling

BatchStrat first performs deployment strategy modeling to estimate quality, cost,

latency of a strategy s for a given deployment request d. As the first principled

solution, it models these parameters as a linear function of worker availability, from

the filtered pool of workers whose profiles match tasks in the deployment request.

However, in Section 5.7, we describe how StratRec could be adapted for tasks that do

not exhibit such linear relationships. Therefore, if d is deployed using strategy s, the

quality parameter of this deployment is modeled as:

sd.quality = αqds.(wqds) + βqds (5.4)

Our experimental evaluation (Table 5.6) in Section 5.5.1, performed on AMT

validates this linearity assumption with 90% statistical significance for two text editing

tasks.

Model parameters α and β are obtained for every s, d, and parameter

(quality, cost, latency) combination, by fitting historical data to this linear model.

Once these parameters are known, BatchStrat uses Equation 5.4 again to estimate

workforce requirement wqds to satisfy quality threshold (cost and latency like-wise)

for deployment d using strategy s. We repeat this exercise for each s ∈ S, which

comprises our set of candidate strategies for a deployment d.

5.3.2 Workforce Requirement Computation

The goal of the Workforce Requirement Computation is to estimate workforce

requirement per (deployment, strategy) pair. It performs that in two sub-steps, as
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described below.

(1) Computing Matrix W: The first step is to compute W , where wi,j

represents the workforce requirement of deploying di with strategy sj. Recall that in

Equation 5.4, as long as for a deployment di, the deployment parameters on quality,

cost, and latency, i.e., di.quality, di.cost and di.latency are known, for a strategy,

sj, we can compute wi,j, i.e., that is the minimum workforce needed to achieve

those thresholds, by considering the equality condition, i.e., sj.quality = di.quality

(similarly for cost and latency), and solving Equation 5.4 for w, with known (α, β)

values. Using Example 3, the table in Figure 5.3(a) shows the rows and columns of

matrix W and how a workforce requirement could be calculated for w11. Basically,

once we solve the workforce requirement of quality, cost, and latency(wqij, wcij, wlij),

the overall workforce requirement of deploying di using sj is the maximum over these

three requirements. Formally, they could be stated as follows:

wij = Max


di.quality = αqijwqij + βqij

di.cost = αcijwcij + βcij

di.latency = αlijwlij + βlij

Using Example 3, w11 is the maximum over {wq11, wc11, wl11}. Figure 5.3(a) shows

how w11 needs to be computed for deployment d1 and strategy s1 for the running

example.

Running Time: Running time of computing W is O(m|S|), since computing

each cell wij takes constant time.

(2) Computing Workforce Requirement per Deployment: For a

deployment request di to be successful, BatchStrat has to find k strategies, such that

each satisfies the deployment parameters. In step (2), we investigate how to make

compute workforce requirement for all k strategies, for each di. The output of this
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(a) Requirement for (d1, s1) (b) Aggregated requirement

per request (Sum)

(c) Aggregated requirement

per request (Max)

Figure 5.3 Computing workforce requirement.

step produces a vector W⃗ of length m, where the i-th value represents the aggregated

workforce requirement for request di. Computing W⃗ requires understanding of two

cases:

• Sum-case: It is possible that the task designer intends to perform the
deployment using all k strategies. Therefore, the minimum workforce (wi)
needed to satisfy cardinality constraint ki is Σk

y=1wiy (where wiy is the y-th
smallest workforce value in row i of matrix W .

• Max-case: The task designer intends to only deploy one of the k recommended
strategies - in that case, wi = wiy, (where wiy is the k-th smallest workforce
value in row i of matrix W).

Figures 5.3(b) and 5.3(c) represent how W⃗ is calculated considering sum-case and

max-case, respectively.

Running Time: The running time of computing the aggregated workforce

requirement of the i-th deployment request is O(|S|klog|S|), if we use min-heaps to

retrieve the k smallest numbers. The overall running time is again O(mk log|S|).

5.3.3 Optimization-Guided Batch Deployment

Finally, we focus on the optimization step of BatchStrat, where, given W⃗ , the objective

is to distribute the available workforce W among m deployment requests such that

it optimizes a platform-centric goal F . Since W can be limited, it may not be
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possible to successfully satisfy all deployment requests in a single batch. This requires

distributing W judiciously among competing deployment requests and satisfying the

ones that maximize platform-centric optimization goals, i.e., throughput or pay-off.

At this point, a keen reader may notice that the batch deployment problem

bears resemblance to a well-known discrete optimization problem that falls into the

general category of assignment problems, specifically, Knapsack-type of problems [70].

The objective is to maximize a goal (in this case, throughput or pay-off), subject to

the capacity constraint of worker availability W . In fact, depending on the nature

of the problem, the optimization-guided batch deployment problem could become

intractable.

Intuitively, when the objective is only to maximize throughput (i.e., the number

of satisfied deployment requests), the problem is polynomial-time solvable. However,

when there is an additional dimension, such as pay-off, the problem becomes NP-hard

problem, as we shall prove next.

Theorem 18. The Pay-Off maximization problem is NP-hard.

Proof. (sketch): To prove NP-hardness, we reduce an instance of the known

NP-hard problem 0/1 Knapsack problem [70] problem to an instance of the Pay-off

Maximization problem. Given an instance of the 0/1 Knapsack problem, an instance

of our problem could be created as follows: an item i of weight wi and value vi

represents a deployment request di with minimum workforce requirement wi and

pay-off vi. Clearly this transformation is performed in polynomial time. After that,

it is easy to notice that a solution exists for the 0/1 Knapsack problem iff the same

solution solves our Pay-Off maximization problem.

Our proposed solution bears similarity to the greedy approximation algorithm

of the Knapsack problem [78]. The objective is to sort the deployment strategies in

non-increasing order of fi
w⃗i
. The algorithm greedily adds deployments based on this
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sorted order until it hits a deployment di that can no longer be satisfied by W , that

is, Σx=1..i di > W . At that step, it chooses the better of {d1, d2, di−1} and di and

the process continues until no further deployment requests could be satisfied based

on W . Lines 4− 8 in Algorithm BatchStrat describe those steps.

Running Time: The running time of this step is dominated by the sorting

time of the deployment requests, which is O(m logm).

Algorithm 7 Algorithm BatchStrat
1: Input: m deployment requests, S, objective function F , available workforce W

2: Output: recommendations for a subset of deployment requests.

3: Estimate model parameters for each (strategy, deployment) pair.

4: Compute Workforce Requirement Matrix W

5: Compute Workforce Requirement per Deployment Vector W⃗

6: Compute the objective function value fi of each deployment request di

7: Sort the deployment strategies in non-increasing order of fi
w⃗i

8: Greedily add deployments until we hit di, such that Σx=1..i di > W

9: Pick the better of {d1, d2, di−1} and di

Maximizing Throughput When task throughput is maximized, the objective

function F is computed simply by counting the number of deployment requests

that are satisfied by the Aggregator. Therefore, fi, the objective function value

of deployment di is the same for all the deployment requests and is 1. Our

solution, BatchStrat-ThroughPut, sorts the deployment requests in increasing order

of workforce requirement w⃗i to make 1
w⃗j

non-increasing. Other than that, the rest of

the algorithm remains unchanged.

Theorem 19. Algorithm BatchStrat-ThroughPut gives an exact solution to the

problem.
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Proof. Algorithm BatchStrat-ThroughPut produces a solution by selecting a subset

of deployment requests. According to the algorithm, the minimum workforce

requirement of any request in this selected set is less or equal to any other requests

that are not selected by BatchStrat-ThroughPut. Hence, there is no way to add a

deployment request from the un-selected set to the selected one without exceeding

W . This means BatchStrat-ThroughPut produces an exact solution.

Maximizing Pay-Off Unlike throughput, when pay-off is maximized, there is

an additional dimension involved that is different potentially for each deployment

request. fi for deployment request di is computed using di.cost, the amount of

payment deployment di is willing to expend. Other than that, the rest of the algorithm

remains unchanged.

Theorem 20. Algorithm BatchStrat-PayOff has a 1/2-approximation factor.

Proof. (sketch): The proof directly follows from [91].

5.4 ADPaR

We discuss our solution to the ADPaR problem, that takes a deployment d and

strategy set S as inputs, and is designed to recommend alternative deployment

parameters d′ to optimize the goal stated in Equation 5.3 (Section 5.2.3), such that

d′ satisfies the cardinality constraint of d.

Going back to Example 3 with the request d2, StratRec there is no strategy that

satisfies d2 (refer to Figure 5.4(a)).

At a high level, ADPaR bears resemblance to Skyline and Skyband queries [49,

80, 111] - but as we describe in Section 5.6, there are significant differences between

these two problems - thus the former solutions do not adapt to solve ADPaR. Similarly,

ADPaR is significantly different from existing works on query refinement [13, 71, 106,

109], that we further delineate in Section 5.6.
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(a) Deployment parameters in 3-D space (b) Projection of d′ on (L, Q) plane

Figure 5.4 ADPaR.

5.4.1 Algorithm ADPaR-Exact

Our treatment is geometric and exploits the monotonicity of our objective function

(Equation 5.1 in Section 5.2.3). Even though the original problem is defined in a

continuous space, we present a discretized technique that is exact. ADPaR-Exact,

employs three sweep-lines [31], one for each parameter, quality, cost, and latency and

gradually relaxes the parameters to produce the tightest alternative parameters that

admit k strategies. By its unique design choice, ADPaR-Exact is empowered to select

the parameter that is most suitable to optimize the objective function, and hence,

produces exact solutions to ADPaR.

ADPaR-Exact has four main steps. Before getting into those details, we present

a few simplifications to the problem for the purpose of elucidation. As we have

described before, we normalize quality, cost, latency thresholds of a deployment or of

a strategy in [0, 1], and inverse quality to (1−quality). This step is just for unification,

making our treatment for all three parameters uniform inside ADPaR, where smaller

is better, and the deployment thresholds are considered as upper-bounds. With this,

each strategy is a point in a three dimensional space and a deployment parameter

(modulo its cardinality constraint) is an axis-parallel hyper-rectangle [31] in that
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space. Consider Figure 5.4(a) that shows the four strategies in Example 3 and d2 as

a hyper-rectangle.

Step-1 of ADPaR-Exact computes the relaxation (increment) that a deployment

requires to satisfy a strategy among each deployment parameter. This is akin to

computing si.cost− d2.cost (likewise for quality and latency) and when the strategy

cost is smaller than the deployment threshold, it shows no relaxation is needed -

hence we transform that to 0. The problem is studied for quality, cost, and latency

(referred to as Q, C, L) (Table 5.3). It also initializes d′ = {1, 1, 1}, the worst possible

relaxation.

Step-2 of ADPaR-Exact involves sorting the strategies based on the computed

relaxation values from step-1 in an increasing order across all parameters, as well

as keeping track of the index of the strategies and the parameters of the relaxation

values. The sorted relaxation scores are stored in list R, the corresponding I data

structure provides the strategy index, and D provides the parameter value. In other

words, R[j] represents the j-th smallest relaxation value, where I[j] represents the

index of the strategy and D[j] represents the parameter value corresponding to that.

A cursor r is initialized to the first position in R (Table 5.4). Another data structure,

a boolean matrix M of size |S|× 3 (Table 5.2) is used that keeps track of the number

of strategies that are covered by the current movement of cursor r in list R. This

matrix is initialized to 0 and the entries are updated to 1, as r advances.

Step-3 involves designing three sweep-lines along Q, C, and L (Table 5.5). A sweep

line is an imaginary vertical line which is swept across the plane rightwards. The Q

sweep-line sorts the S in C L plane in increasing order of Q (the other two works in

a similar fashion). ADPaR-Exact sweeps the line as it encounters strategies, in order

to discretize the sweep. At the beginning, each sweep-line points the k-th strategy

along Q, C, L, respectively. d′ is updated and contains the current Q, C, L value i..e,

d′.quality = Q, d′.cost = C, and d′.latency = L. Cursor r points to the smallest

108



of these three values in R. Matrix M is updated to see what parameters of which

strategies are covered so far.

Now, at step-4, ADPaR-Exact checks if the current d′ covers k strategies or not. This

involves reading through I and checking if there exists k strategies such that for each

strategy s.quality ≤ d′.quality and s.cost ≤ d′.cost and s.latency ≤ d′.latency. If

there are not k such strategies, it advances r to the next position and resets d′ =

{1, 1, 1} again.

If there are more than k strategies, the new d′, however, does not ensure that

it is the tightest one to optimize Equation 5.3. Therefore, ADPaR-Exact cannot halt.

ADPaR-Exact needs to check if there exists another d
′′
that still covers k strategies

better than d′. This can indeed happen as we are dealing with a 3-dimensional

problem and these three values in combination determine the objective function.

Now, ADPaR-Exact takes turn in considering the current values of each

parameter based on d′, and creates a projection on the corresponding 2-D plane, for

the fixed value of the third parameter. Figure 5.4(b) shows one such example in (Q,

L) plane for a fixed cost value. It then considers all strategies whose s.cost ≤ d′.cost.

After that, it finds the largest expansion among the two parameters such that this

new d
′′
covers k strategies. This gives rise to three new deployment parameters, d

′′
C ,

d
′′
Q, d

′′
L. It chooses the best of these three and updates d′. At this point it checks if

M has k strategies covered. If it does, it stops processing and returns the new d′ and

the k strategies. If it does not, it advances the cursor r to the right.

Using Example 3, the alternative parameters are (0.75, 0.5, 0.28) for d2 and

s1, s2, s3 are returned.

Lemma 5. To cover k strategies, d′ needs to be initialized at least to the kth smallest
values on each parameter.

Proof. (sketch) If s returned, the value of the alternative deployment parameters d′

should dominate this s’s parameters. Thus, to cover k strategies, d′ needs to be
initialized to the kth value for each parameter.
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Table 5.2 Matrix M in ADPaR-Exact

Cost Quality Latency

s1 0 0 1

s2 0 0 1

s3 0 0 0

s4 0 0 0

Table 5.3 Step 1 of ADPaR-Exact

Cost Quality Latency

s1 0.3 0.05 0

s2 0.05 0.13 0

s3 0 0.3 0

s4 0 0.38 0

Table 5.4 Step 2 of ADPaR-Exact

Relaxation R 0 0 0 0 0 0

Strategy Index I 1 2 3 4 3 4

Parameter D L L L L C C

Relaxation R 0.05 0.05 0.13 0.3 0.3 0.38

Strategy Index I 1 2 2 1 3 4

Parameter D Q C Q C Q Q

Lemma 6. Going by the relaxation value and parameter order of R and D, it ensures
the tightest increase in the objective function in ADPaR-Exact.

Proof. (sketch) We omit the details for brevity but state that the aforementioned
lemma could be proved through the monotonicity of the objective function in ADPaR.

Theorem 21. ADPaR-Exact produces an exact solution to the ADPaR problem.
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Table 5.5 Step 3 of ADPaR-Exact

sweep-line(Q) C,L plane 0.05 0.13 0.3 0.38

s.cost 0.3 0.05 0 0

s.latency 0 0 0 0

sweep-line(C) Q,L plane 0 0 0.05 0.3

s.quality 0.38 0.3 0.13 0.05

s.latency 0 0 0 0

sweep-line(L) C,Q plane 0 0 0 0

s.cost 0.3 0.05 0 0

s.quality 0.05 0.13 0.3 0.38

Proof. (sketch) For this, we need to prove that there is no alternative deployment
parameters d

′′
that has a smaller l2 distance than d′, returned by ADPaR-Exact, and

covers at least k strategies. We prove this by contradiction.
Assume that is indeed the case. Then there is a d

′′
whose Euclidean distance

from d is smaller than the distance between d and d′. Based on Lemma 5, it is obvious
that d′ must be greater or equal to the kth smallest values on each parameter. When
a parameter d′ needs to be updated, it must be increased to that corresponding value
of its closest strategy, i.e., update d′ based of R and D, as described in Algorithm 8.
If that was the case, then ADPaR-Exact does not make the decision to relax the next
parameter optimally. However, that is not the case, based on Lemma 6. Hence the
contradiction.

Running Time: Step-1 of Algorithm ADPaR-Exact takes O(|S|). Step-2 and

3 are dominated by sorting time, which takes O(|S| log|S|). Step-4 is the most time-

consuming and takes O(|S3|). Therefore, the overall running time of the algorithm is

cubic to the number of strategies.

5.5 Experimental Evaluation

Our efforts in the experiments are two-fold: we perform multiple real-world

deployments to estimate worker availability and demonstrate that it varies over time.
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Algorithm 8 Algorithm ADPaR-Exact for alternative deployment parameter recom-

mendation
Require: S, k, W , d, k.

1: Compute relaxation values s.quality − d.quality, s.cost − d.cost, s.latency −

d.latency, ∀s ∈ S.

2: Compute R by sorting 3|S| numbers in increasing order.

3: Compute I and D accordingly.

4: Initialize M to all 0’s and d′ = {1, 1, 1}

5: Initialize Cursor r = R[0]

6: Sort (C L) , (Q L), and (Q C) planes based on the Q, C, L sweep-lines respectively.

7: x= k-th value in ( C L), y= k-th value in ( Q L), z= k-th value in (Q C) plane

8: Update d′= {x, y, z}

9: r = minimum {x, y, z}

10: Update matrix M

11: if d′ covers ≥ k strategies then

12: Compute the best d
′′
better than d′ that covers k strategies

13: if M covers k strategies then

14: d′ = d
′′
and return

15: end if

16: if M covers < k strategies then

17: move r to the right

18: end if

19: end if

20: if d′ covers < k strategies then

21: Move r to the right

22: Update d′’s one of the parameters by consulting R and D

23: end if

24: go back to line 10
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In our synthetic data experiments, we present results to validate the qualitative and

scalability aspects of our algorithms.

5.5.1 Real Data Experiments

We design real data experiments that involve workers from AMT focusing on text

editing tasks. In particular, we consider two different types of tasks: a) sentence

translation (translating from English to Hindi) and text creation (writing 4 to 5

sentences on some topic). The objective of these experiments is to validate the

following questions:

1. Can worker availability be estimated and does it vary over time? To answer this
question, we performed 3 different deployments for each task. The first deployment
was done on the weekend (Friday 12am to Monday 12am), the second deployment
was done at the beginning to the middle of the week (Monday to Thursday), the last
one is from the middle of the week until the week-end (Thursday to Sunday). We
design the HITs (Human Intelligence Tasks) in AMT such that each task needs to
be undertaken by a maximum number of workers x. Worker availability is computed
as the ratio of x′

x
, where x′ is the actual number of workers who undertook the task

during the deployment time.

2. How does worker availability impact deployment parameters? To answer this
question, we need to be able to calculate the quality, cost, and latency, along with
worker availability. Latency and cost are easier to calculate, basically, it is the total
amount of money that was paid to workers and the total amount of time the workers
used to make edits in the document. Since text editing tasks are knowledge-intensive,
to compute the quality of the crowd contributions, we ask a domain expert to judge
the quality completed tasks as a percentage. Once worker availability, quality, cost,
and latency are computed, we perform curve fitting that has the best fit to the series
of data points.

3. How do deployment strategies impact different task types? To answer that question,
we deployed both types of text editing tasks using two different deployment strategies
SEQ-IND-CRO and SIM-COL-CRO that were shown to be effective with more than
70% of quality score for short texts [35]. Since our effort here was to evaluate the
effectiveness of these two strategies considering quality, cost, and latency, we did
not set values for deployment parameters and we simply observed them through
experimentation.

Tasks and Deployment Design: We chose three popular English nursery

rhymes for sentence translation. Each rhyme consisted of 4-5 lines that were to be
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Original
Text

Mary had a little lamb, little lamb,
little lamb,
Mary had a little lamb, its fleece
was white as snow.
Everywhere that Mary went, Mary
went, Mary went,
Everywhere that Mary went, the
lamb was sure to go.

Lavender’s blue,
dilly dilly,
Lavender’s green
When you are
king, dilly dilly,
I shall be queen

Rock-a-bye, baby, in
the treetop
When the wind blows,
the cradle will rock
When the bough
breaks, the cradle will
fall
And down will come
baby, cradle and all

Sequential
-independe
nt- crowd

!री $ एक 'ड पाली, 'ड
पाली, 'ड पाली,

!री $ एक 'ड पाली सफ.द
बालौ वाली.

जहा5 भी !री जाती थी, जाती
थी, जाती थी,

जहा5 भी !री जाती थी, वो पी:
आती थी.

ल<=डर की नीली,
गहरी नीली,
ल<=डर का हरा
जब आप राजा हो@ A,
तो आप बBत खDश हो@
A।

G रानी बनHIगी

रॉक-ए-बाय, Lबी, Mीटोप O
जब हवा चQगी, तो
खड़खड़ाहट उठUगी
जब कड़ा फVगा तो खWटया
Wगर जाएगी
और नीY आएगा बZचा,
पालना और सब

simultaneo
us -
collaborativ
e- crowd

[री \ पास एक छोटा सा !मना था,
थोड़ा सा !मना, थोड़ा सा 'ड़ का बZचा,
[री \ पास थोड़ा सा !मना था, उसका
ऊन बफ̀ की तरह सफ.द था।
हर जगह [री चली गई, [री चली गई,
[री चली गई,
हर जगह [री चली गई, !म$ का जाना
Wनिcत था

ल<=डर की नीली,
गहरी नीली,
ल<=डर का हरा
जब आप राजा हो@ A,
तो आप बBत खDश हो@
A।

G रानी बनHIगी

रॉक-ए-बाय, Lबी, Mीटोप O
जब हवा चQगी, तो
खड़खड़ाहट उठUगी
जब कड़ा फVगा तो खWटया
Wगर जाएगी
और नीY आएगा बZचा,
पालना और सब

Sentence Translation Tasks Results

Figure 5.5 Translation: original texts and translation.

translated from English to Hindi (one such sample rhyme is shown in Figure 5.5). For

text creation, we considered three popular topics, Robert Mueller Report, Notre Dame

Cathedral, and 2019 Pulitzer prizes. One sample text creation is shown in Figure 5.6.

As mentioned above, we designed three deployment windows at different days

of the week. We note that unlike typical micro-tasks in AMT, text editing tasks

are more complex, required significantly more time to complete (as described later,

we allocated 2 hours per HIT) than a typical microtask involving only a few clicks.

Therefore, a HIT in this experiment contained either three sentence translation tasks

or three text creation tasks. As opposed to micro-tasks, where a HIT may contain

tens of tasks, designing HITS with a smaller number of tasks (e.g., 3) is a common

practice for complex tasks. For each task type, we validated 2 deployment strategies

- in SEQ-IND-CRO, workers were to work in sequence and independently, whereas,

in SIM-COL-CRO, workers were asked to work simultaneously and collaboratively.

We created two different samples of the same study resulting in a total of eight HITs

114



Strategy TOPIC TEXT

Sequential -
independent-
crowd

Robert
Mueller
report

The Mueller Report, formally titled the Report on the
Investigation into Russian Interference in the 2016 Presidential
Election, is the official report documenting the findings of the
Special Counsel investigation, led by Robert Mueller, into
Russian efforts to interfere in the 2016 United States
presidential election, allegations of conspiracy or coordination
between Donald Trump's presidential campaign and Russia,
and allegations of obstruction of justice. The report was
submitted to Attorney General William Barr on March 22, 2019.
This report addressed obstruction of justice, stating it "does not
conclude that the President committed a crime, [and] it also
does not exonerate him”.

simultaneous -
collaborative-
crowd

Robert
Mueller
report

It was a report related to United States counterintelligence
investigation of the Russian government's efforts to interfere in
the 2016 presidential election. As of April 2019, thirty-four
individuals were indicted by Special Counsel investigators.
Eight have pled guilty to or been convicted of felonies,
including at least five Trump associates and campaign officials.
The report concluded that Russian interference in the 2016
presidential election did occur and "violated U.S. criminal law."

Figure 5.6 Text Creation: two samples on Robert Mueller report.
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Figure 5.7 Worker availability estimation.
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deployed inside the same window. Each HIT was asked to be completed by 10 workers

paid $2 each if the worker spent enough time (more than 10 minutes). This way, a

total of 80 unique workers were hired for each deployment window, and a total of 240

workers were hired for all three deployments.

Worker Recruitment: For both task types, we recruited workers with a HIT

approval rate greater than 90%. For sentence translation, we additionally filtered

workers on geographic locations, either US or India. For text creation tasks, we

recruited US-based workers with a Bachelor’s degree.

Enabling collaboration: After workers were recruited from AMT, they were

directed to Google Docs where the tasks were described and the workers were given

instructions. The docs were set up in editing mode, so edits could be monitored.

Experiment Design: An experiment is comprised of three steps. In Step-1,

all initially recruited workers went through qualification tests. For text creation, a

topic (Royal Wedding) was provided and the workers were asked to write 5 sentences

related to that topic. For sentence translation, the qualification test comprised of

5 sample sentences to be translated from English to Hindi. Completed qualification

tests were evaluated by domain experts and workers with more than 80% or more

qualification scores were retained and invited to work on the actual HITs. In Step-2,

actual HITs were deployed for 72 hours and the workers were allotted 2 hours for the

tasks. In Step-3, after 72 hours of deployment, results were aggregated by domain

experts to obtain a quality score. Cost and latency were easier to calculate directly

from the raw data.

Summary of Results: Our first observation is that worker availability

can be estimated and does vary over time (standard error bars added). We

observed that for both task types, workers were more available during Window 2

(Monday-Thursday), compared to the other two windows. Detailed results are shown

in Figure 5.7.
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Our second observation is that each of the deployment parameters (quality,

cost, and latency) does have a linear relationship with worker availability for text

editing tasks. The first two increases linearly with worker availability, and the

latency decreases with increasing worker availability. This linear relationship could

be captured and the parameters (α, β) could be estimated. Table 5.6 presents these

results and the estimated (α, β) always lie within 90% confidence interval of the fitted

line.

Our final observation is that SEQ-IND-CRO performs better than SIM-COL-

CRO for both task types. However, this difference is not statistically significant.

On the other hand, SEQ-IND-CRO is longer to complete (higher latency). Upon

further analysis, we observe that when workers are asked to collaborate and edit

simultaneously, that gives rise to an edit war and an overall poor quality. Figure 5.8

presents these results.

5.5.2 Synthetic Experiments

We aim to evaluate the qualitative guarantees and the scalability. Algorithms are

implemented in Python 3.6 on Ubuntu 18.10. Intel Core i9 3.6 GHz CPU, 16GB of

memory.

Implemented Algorithms We describe different algorithms that are imple-

mented.

Batch Deployment Algorithms Brute Force: An exhaustive algorithm which

compares all possible combinations of deployment requests and returns the one that

optimizes the objective function.

BaselineG: This algorithm sorts the deployment requests in decreasing order of fi
w⃗i

and greedily selects requests until worker availability W is exhausted.

BatchStrat: Our proposed solution described in Section 5.3.
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 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.6 0.6 0.8 0.9 1 1D
e
p

lo
y
m

e
n
t 

P
a
ra

m
e
te

rs
Worker Availability

Quality
Cost

Latency

(b) Translation SIM-COL-CRO
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(c) Creation SEQ-IND-CRO

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.6 0.7 0.8 0.9 0.9 1D
e
p

lo
y
m

e
n
t 

P
a
ra

m
e
te

rs

Worker Availability

Quality
Cost

Latency

(d) Creation SIM-COL-CRO

Figure 5.8 Relationship between deployment parameters and worker availability.

118



Table 5.6 α, β Estimation in Real Experiments

Worker Availability and Deployment Parameters

Task-Strategy Parameters α,β

Translation SEQ-IND-CRO

Quality 0.09, 0.85

Cost 1.00, 0.00

Latency −0.98, 1.40

Translation SIM-COL-CRO

Quality 0.09, 0.82

Cost 0.82, 0.17

Latency −0.63, 1.01

Creation SEQ-IND-CRO

Quality 0.10, 0.80

Cost 1.00, 0.00

Latency −1.56, 2.04

Creation SIM-COL-CRO

Quality 0.19, 0.70

Cost 1.00,−0.00

Latency −1.38, 1.81

ADPaR Algorithms ADPaRB: This is a brute force algorithm that examines all

sets of strategies of size k. It returns the one that has the smallest distance to the

task designer’s original deployment parameters. While it returns the exact answer,

this algorithm takes exponential time to run.

Baseline2: This baseline algorithm is inspired by a related work [106]. The main

difference though, the related work modifies the original deployment request by just

one parameter at a time and is not optimization driven. In contrast, ADPaR-Exact

returns an alternative deployment request, where multiple parameters may have to

be modified.
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Baseline3: This one is designed by modifying space partitioning data structure

R-Tree [30]. We treat each strategy parameters as a point in a 3-D space and index

them using an R-Tree. Then, it scans the tree to find if there is a minimum bounding

box (MBB) that exactly contains k strategies. If so, it returns the top-right corner of

that MBB as the alternative deployment parameters and corresponding k strategies.

If such an MBB does not exist, it will return the top right corner of another MBB

that has at least k strategies and will randomly return k strategies from there.

ADPaR-Exact: Our proposed solution in Section 5.4.

Summary of Results: Our simulation experiments highlight the following

findings: Observation 1: Our solution BatchStrat returns exact answers for

throughput optimization, and the approximation factor for pay-off maximization is

always above 90%, significantly surpassing its theoretical approximation factor of

1/2. Observation 2: Our solution BatchStrat is highly scalable and takes less than

a second to handle millions of strategies, and hundreds of deployment requests, and k.

Observation 3: Our algorithm ADPaR-Exact returns exact solutions to the ADPaR

problem, and significantly outperforms the two baseline solutions in objective function

value. Observation 4: ADPaR-Exact is scalable and takes a few seconds to return

alternative deployment parameters, even when the total number of strategies is large

and k is sizable.

Quality Experiment

Batch Deployment Recommendation. Goal: We validate the following

two aspects: (i) how many deployment requests BatchStrat can satisfy without invoking

ADPaR? (ii) How does BatchStrat fare to optimize different platform-centric goals?

We compare BatchStrat with the other two baselines, as appropriate.
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Figure 5.9 Percentage of satisfied requests before invoking ADPaR.
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Strategy Generation: The dimension values of a strategy are generated

considering uniform and normal distributions. For the normal distribution, the mean

and standard deviation are set to 0.75 and 0.1, respectively. We randomly pick the

value from 0.5 to 1 for the uniform distribution.

Worker Availability: For a strategy, we generate α uniformly from an interval

[0.5, 1]. Then, we set β = 1 − α to make sure that the estimated worker availability

W is within [0, 1]. These numbers are generated in consistence with our real data

experiments.

Deployment Parameters: Once W is estimated, the quality, latency, and

cost - i.e., the deployment parameters, are generated in the interval [0.625, 1]. For

each experiment, 10 deployment parameters are generated, and an average of 10 runs

is presented in the results.

Figure 5.9 shows the percentage of satisfied requests by BatchStrat with varying

k, m, |S|, W . In general, normal distribution performs better than uniform. Upon

further analysis, we realize that normal distribution has a very small standard

deviation, and is thereby able to satisfy more requests. As shown in Figure 5.9(a),

the percentage of satisfied requests decreases with increasing k, which is expected.

Contrarily, the effect of increasing batch size m is less pronounced. This is because all

requests use the same underlying distribution, allowing BatchStrat to handle more of

them. With more strategies |S|, as Figure 5.9(c) illustrates, BatchStrat satisfies more

requests, which is natural, because with increasing |S|, it simply has more choices.

Finally, in Figure 5.9(d), with higher worker availability BatchStrat satisfies more

requests. By default, we set |S| = 10000,m = 10, k = 10,W = 0.5.

Figure 5.10 shows the results of throughput of BatchStrat by varying k, m,|S|,

compare with the two baselines. Figure 5.11 shows the approximation factor of

BatchStrat and BaselineG. BatchStrat achieves an approximation factor of 0.9 most of
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Figure 5.10 Objective function for throughput.
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Figure 5.11 Objective function and approximation factor for payoff.

124



 1000

 10000

 100000

 1x106

 1x107

200 400 600 800 1000

E
u
c
li
d

e
a
n
 d

is
ta

n
c
e

b
e
tw

e
e
n
 d

 a
n
d

 d
'

|S|

ADPaR-Exact
Baseline2
Baseline3

(a) without Brute Force

 1000

 10000

 100000

 1x106

 1x107

10 20 30

E
u
c
li
d

e
a
n
 d

is
ta

n
c
e

b
e
tw

e
e
n
 d

 a
n
d

 d
'

|S|
ADPaR-Exact

Baseline2
Baseline3

ADPaRB

(b) with Brute Force

 1000

 10000

 100000

 1x106

 1x107

10 20 30 40 50

E
u
c
li
d

e
a
n
 d

is
ta

n
c
e

b
e
tw

e
e
n
 d

 a
n
d

 d
'

K

ADPaR-Exact
Baseline2
Baseline3

(c) without Brute Force

 1000

 10000

 100000

 1x106

 1x107

5 10 15

E
u
c
li
d

e
a
n
 d

is
ta

n
c
e

b
e
tw

e
e
n
 d

 a
n
d

 d
'

K
ADPaR-Exact

Baseline2
Baseline3

ADPaRB

(d) with Brute Force

Figure 5.12 Quality experiments for ADPaR.
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Figure 5.13 Results of scalability experiments.
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the time. For both experiments, the default values are k = 10,m = 5, |S| = 30,W =

0.5 because brute force does not scale beyond that.

Alternative Deployment Recommendation ADPaR. The goal here is to

measure the objective function. Since ADPaRB takes exponential time, to be able to

compare with this, we set |S| = 20, k = 5,W = 0.5 for all the quality experiments

that has to compare with the brute force. Otherwise, the default values are |S| = 200,

k = 5.

In Figure 5.12, we vary |S| and k and plot the Euclidean distance between d

and d′ (smaller is better). Indeed, ADPaR-Exact returns exact solution always. The

other two baselines perform significantly worse, while Baseline 3 is the worst. That

is indeed expected, because these two baselines are not optimization guided, and does

not satisfy our goal. Naturally, the objective function decreases with increasing |S|,

because more strategies mean smaller change in d′, making the distance between d

and d′ smaller. As the results depict, optimal Euclidean distance between d and d′

increases with increasing k, which is also intuitive, because, with higher k value, the

alternative deployment parameters are likely to have more distance from the original

ones.

Scalability Experiments Our goal is to evaluate the running time of our proposed

solutions. Running time is measured in seconds. We present a subset of results that

are representative.

Batch Deployment Recommendation Since the BaselineG has the same

running time as that of BatchStrat (although qualitatively inferior), we only compare

the running time between Brute Force and BatchStrat. The default setting for |S|,

k and W are 30, 10 and 0.75, respectively.

The first observation we make is, clearly BatchStrat can handle millions of

strategies, several hundreds of batches, and very large k and still takes only a few
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fractions of seconds to run. It is easy to notice that the running time of this problem

only relies on the size of the batch m (or the number of deployment requests), and

not on k or S. As we can see in Figure 5.13(a), Brute Force takes exponential time

with increasing m, whereas BatchStrat scales linearly.

Alternative Deployment Recommendation We vary k and |S| with defaults

set to 5 and 10000 respectively, and evaluate the running time of ADPaR-Exact. W

is set to 0.5. As Figures 5.13(b) and 5.13(c) attest, albeit non-linear, ADPaR-Exact

scales well with k and |S|. We do not present the baselines as they are significantly

inferior in quality.

5.6 Related Work

We discuss three different areas related to our work.

Crowdsourcing Deployment: A very few related works [9, 149] have started

to study the importance of appropriate deployment strategies but these works are

empirical and do not propose algorithmic solutions.

Skyline and Skyband Queries: Skyline queries playe an essential role in computing

favored answers from a database [36, 49]. Based on the concepts of skylines, other

classes of queries arise, especially top-k queries and k-skyband problems which aim

to bring more useful information than original skylines. Mouratidis et al. [110, 111]

study several related problems. In [110], sliding windows are used to track the records

in dynamic stream rates. In [111], a geometry arrangement method is proposed for

top-k queries with uncertain scoring functions. Because our problem seeks the optimal

group of k strategies, it is similar to the top-k queries problem. However, unlike

Skyband or any other related work, ADPaR recommends alternative deployment

parameters. Thus, these solutions do not extend to solve ADPaR.
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Query Refinement: Query reformulation has been widely studied in Information

Retrieval [71]. In [106], authors take users’ preference into account and propose an

interactive method for seeking an alternative query which could satisfy a specific

cardinality constraint. This is different from ADPaR since it only relaxes one

dimension at a time. Aris et al. [13] proposed a graph modification method to

recommend queries that maximize an overall utility. Mottin et al. [109] develop an

optimization driven framework but the solutions can only handle Boolean/categorical

data. Thus, none of these extend to solving ADPaR.

5.7 Discussion

We discuss two immediate extension of StratRec that are part of our ongoing

investigation.

Worker availability as pdf: Instead of an expected value, one possible extension

is to use the actual pdf and revisit the problems in StratRec. This will require

reformulating Batch Deployment Recommendation and ADPaR. For example, the

goal of the former problem would be to optimize F in an expected sense, considering

W as a pdf. Similarly, ADPaR will produce k different strategies for every possible

worker availability value considering its corresponding probability. We note that the

current framework stays unaltered under this extension, only the designed algorithms

are likely to exhibit higher computational complexity.

Non-linear relationship between worker availability and parameters of

a strategy: BatchStrat would need to be adapted for the case where the relationship

between worker availability and the parameters of a strategy is non-linear. We note

that theoretical guarantees of our designed solutions (BatchStrat and ADPaR-Exact)

as well as their running time hold on all the polynomial relations with degree less

than five, because these functions do have analytical solutions for finding zero points.

As for functions with higher degrees, ADPaR-Exact will remain unaltered. The only
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change will be for the Workforce Requirement Computation in Section 5.3.2, that will

rely on the Newton-Raphson method, and hence its running time will increase.

5.8 Conclusion

We propose StratRec, an optimization-driven middle layer designed to recommend

strategies to multiple deployment requests or recommend alternative deployment

parameters if a request cannot be satisfied as formulated. Our work addresses

multi-faceted modeling challenges through the generic design of modules in StratRec

that could be instantiated to optimize different types of goals by accounting for worker

availability. We develop computationally-efficient algorithms. We present extensive

real data experiments through multiple deployments in AMT and conduct synthetic

experiments to validate the qualitative and scalability aspects of StratRec. Our future

investigations are summarized in Section 5.7.
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CHAPTER 6

RANK AGGREGATION WITH PROPORTIONATE FAIRNESS

6.1 Introduction

Ranking is a commonly used method to prioritize desirable outcomes among a set of

candidates and is an essential step in many high impact applications, such as, hiring

candidates for a job, selecting students for school and college admission or scholarship,

finding winning candidates in a competition, or approving loans. Traditionally,

producing the final ranking involves aggregating potentially conflicting preferences

from multiple individuals and is a central problem in the areas of voting and social

choice theory, which is traditionally known as the rank aggregation problem [8,59,136].

Our goal in this work is to revisit the rank aggregation problem considering a

notion of fairness, namely proportionate fairness or p-fairness [26, 134] that ensures

proportionate representation of every group based on a protected attribute in every

position of the aggregated ranked order. P-fairness has been studied in the theory

community to enable resource allocation satisfying temporal fairness or proportionate

progress. The classical problem in this context is known as the Chairman Assignment

Problem [19,134] which studies how to select a chairman of a union every year from a

set of r states such that that at any time the accumulated number of chairmen from

each state is proportional to its weight. We formalize the rank aggregation subject to

p-fairness or RAPF to that end.

RAPF is defined formally as follows: m conflicting rankings are given over

a database of n candidates, where candidates have a protected attribute A with

ℓ associated values (defined, e.g., over seniority level, ethnicity, or gender). Let

f(p) denote the fraction of candidates with protected attribute value p, that is,

f(p) = 1
n

∑
v∈V 1A(v)=p. The goal is to find an aggregated ranking such that the

total number of disagreements between the aggregated ranking and each of the
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individual m rankings is minimized, and for every protected attribute value p and

every position k in the aggregated ranking, the representation of the candidates

with protected attribute value p in the top k candidates is proportional to f(p).

P-fairness is desirable in several compelling rank aggregation applications, such as,

French process of admitting students to university (Parcoursup), matching medical

students to US hospitals for residency, or faculty hiring in the universities, to name

a few. Section 6.1.1 describes one such application in depth.

We initiate this investigation by studying the Individual p-Fairness or IPF

problem that finds a closest p-fair ranking to an individual ranking, which we believe is

an important problem in its own merit. A similar problem is studied in the past [72]

with weaker notion of fairness and the designed solutions are just heuristic. We

investigate how a solution designed for IPF could solve RAPF.

6.1.1 Motivation

Running Example: p-fairness in faculty hiring. Consider a toy database of

n (12) applicants who are interviewed to be hired for a small number of faculty

positions in a university. The hiring committee comprises of a set of m (4) members,

each of whom ranks these n candidates (refer to Table 6.1) based on their credentials

and interview performance. After that, these individual ranks are to be aggregated

to create an overall order based on which the candidates would be made job offers

until the positions are filled. Potential protected attributes of the candidates are

seniority level, research areas, and gender. As an example, considering seniority level,

3 applicants are junior, 4 are mid-career, and 5 are senior, making the proportion over

seniority level to be 3/12, 4/12, and 5/12, respectively.

The goal of RAPF is to produce a ranked order over the 12 candidates by

aggregating all 4 ranked lists such that the produced order is closest to the individual

4 ranks and for each of the 12 positions and for each of the values of a particular
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protected attribute the candidates appear proportionate to their representation in

the original data. Indeed, it is important to ensure fairness in each of the 12

positions considering the given protected attribute - otherwise, depending on who

accepts/declines the job offer, the proportionate representation of the candidates

based on the underlying protected attribute would get disrupted. Intuitively speaking,

assuming seniority level as the protected attribute, a solution designed for RAPF

must ensure that the representation of junior, mid-career, and senior candidates is

(0.75, 1, 1.25) up to integral rounding in the top 3 positions, (1, 1.33, 1.67) up to

integral rounding in the top 4 positions, and so on.

Table 6.1 Original Ranks Provided by four Members

Candidate Name Gender Seniority level Area Mem 1 Mem 2 Mem 3 Mem 4

Molly Female Junior DB 1 3 4 6

Amy Female Junior DB 2 2 1 5

Abigail Female Junior AI 3 5 2 7

Kim Male Mid career HCI 4 7 3 8

Lee Male Mid career Theory 5 9 6 1

Park Male Mid career Vision 6 1 5 2

Kabir Male Mid career NLP 7 4 8 3

Damien Male Senior ML 8 6 7 4

Andres Male Senior Security 9 8 10 9

Aaliyah Female Senior Systems 10 10 9 10

Kiara Female Senior DM 11 11 12 11

Jazmine Female Senior PL 12 12 11 12

We acknowledge that the existing popular group based fairness definition

statistical parity [58] is somewhat similar to p-fairness, however, the best adapted

version of top-k statistical parity studied in a recent paper [87] does not account for

proportionate representation in every position of the top-k, limiting its applicability.

Section 6 contains further details.
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6.1.2 Contributions

Our first contribution is to formalize two optimization problems, Individual

p-Fairness or IPF and the rank aggregation problem subject to proportionate

fairness (RAPF) (Section 6.2) considering binary (ℓ = 2) and multi-valued (ℓ > 2)

protected attributes.

Our second contribution is theoretical and algorithmic (Sections 6.4, 6.5).

For the IPF problem, we present an efficient greedy solution GrBinaryIPF for

a binary protected attribute that runs in O(n) time. For a multi-valued protected

attribute, we prove that the proposed algorithms studied in a recent work [72] for

IPF are heuristics and do not ensure optimality (refer to Section 6.3.1 for details).

In fact, we claim that solving IPF for multi-valued protected attribute is non-trivial.

We present two solutions for multi-valued IPF - a dynamic programming based

exact algorithm ExactMultiValuedIPF that takes linear time when the number

of values on the protected attribute is a constant, and ApproxMultiValuedIPF

based on a minimum weight matching on convex bipartite graphs [39], that admits a

2 approximation factor.

Since rank aggregation problem under Kemeny Optimization is NP-hard for

4 or more lists [8, 59, 136], RAPF is also NP-hard. In Section 6.5, we present

two algorithmic frameworks RandAlgRAPF and AlgRAPF for RAPF, one is

randomized and the other one is deterministic that admit provable approximation

factors. Both frameworks are scalable while the randomized one is highly scalable but

because of its randomized nature, its approximation factor is expressed in expectation.

Both algorithmic frameworks use as subroutine the solutions of IPF. They also

leverage on variants of the Pick-A-Perm algorithm [8, 59, 136] that is widely used

in the classical rank aggregation context. We then prove that the approximation

factor of the solution designed for RAPF is 2+ the approximation factor of the

IPF algorithm used as subroutine. This implies that multi-valued RAPF with
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Table 6.2 Summary of Technical Results
Problem Protected Attribute Hardness Algorithm Approx Factor Running Time

IPF

binary p-time GrBinaryIPF exact O(n)

multi-
open

ExactMultiValuedIPF exact O(nℓ2ℓ)

valued ApproxMultiValuedIPF 2 O(n2.5 log n)

RAPF

binary NP-hard
RandAlgRAPF+GrBinaryIPF 2 O(n)

AlgRAPF+ GrBinaryIPF 2 O(m2n log n)

multi- NP-hard

RandAlgRAPF+ ExactMultiValuedIPF 3 O(nℓ2ℓ)

RandAlgRAPF+ ApproxMultiValuedIPF 4 O(n2.5 log n)

valued AlgRAPF+ ExactMultiValuedIPF 3 O(m2n log n+ mnℓ2ℓ)

AlgRAPF+ ApproxMultiValuedIPF 4 O(m2n log n+ mn2.5 log n)

ExactMultiValuedIPF admits a 3 approximation factor; whereas, it admits a

4 approximation factor when ApproxMultiValuedIPF is used instead. Table 6.2

summarizes our theoretical results.

Our third contribution is experimental (Section 6.6). We run extensive

experiments using 3 real world and a large scale synthetic datasets, and compare

an implementation of our solution with the implementation of two state-of-the-art

solutions DetConstSort [72] for IPF and FairILP [87] for RAPF. Our first

and foremost observation is that, consistent with our theoretical analysis, p-fairness

promotes stronger notion of fairness, by ensuring proportionate representation of each

of the protected attribute values for every position in the aggregated ranked order.

Our experimental results demonstrate that our proposed model and solutions satisfy

the fairness criteria proposed in state-of-the-art solutions [72, 87] - however, existing

solutions do not extend to satisfy p-fairness. Our experimental results corroborate

our theoretical results in terms of approximation factors and demonstrate that our

solutions are highly scalable to large number of items and ranks.
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Table 6.3 Important Notations

Notation Meaning

A Protectedattribute

ℓ Number ofdifferent values in A

f(p) proportion of candidates with attribute value p

σ(u) position of item u in rank σ

6.2 Preliminaries and Formalism

Database. contains n items or candidates. These two terms will be used

interchangeably in the chapter. Using the running example, n = 12. The set of

items will be denoted V , individual items will be denoted by u and v.

Rank. We consider rankings of the items in V . Each such ranking can be viewed as

a permutation. We will use the terms ranking and permutation interchangeably.

Multiple Rankings. The input consists m different complete rankings. Using the

running example, m = 4.

Protected Attribute. Each item/candidate v ∈ V has a protected attribute A(v)

that can take any of ℓ different values. As an example, seniority level is a multi-valued

protected attribute with three possible values Junior, Mid career, Senior - thus ℓ = 3.

Contrarily, gender is a binary protected attribute with two values male and female,

and ℓ = 2.

Rank Aggregation Measures [8, 59]. In this work we consider two popular rank

distance measures Kendall-Tau distance and Spearman’s footrule distance.

Definition 1. Kendall-Tau distance. Given two permutations σ, η : V → [1..n],

the Kendall-Tau distance between the two permutations is the sum of pairwise
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disagreements between σ and η (bubble-sort distance).

K(σ, η) =
∑

{u,v}⊆V

1(σ(v)−σ(u))(η(v)−η(u))<0

Note that the Kendall-Tau distance is symmetric, that is, K(σ, η) = K(η, σ).

It also satisfies the triangle inequality, for any three permutations σ, µ, η we have

K(σ, µ) +K(µ, η) ≥ K(σ, η).

Definition 2. Spearman’s footrule distance. Given two permutations σ, η : V →

[1..n], the Spearman’s footrule distance between the two permutations is the sum of

the absolute values (ℓ1 distance) of the differences between two permutations.

S(σ, η) =
∑
u∈V

|(σ(u)− η(u)|

Using the running example, the Kendall-Tau distance between the rankings of

Member 1 and Member 2 is 12 because there are 12 pairs of items that appear in

opposite order in these two rankings. Spearman’s footrule distance between them is

22, which is the sum of the absolute values of the difference in the order between

these two rankings.

Relationship between the two measures. Diaconis and Graham [56] proved

that for any two permutations the Spearman’s footrule distance is at least the Kendall-

Tau distance between them, and at most twice the Kendall-Tau distance. That is,

for any two permutations σ, η, we have K(σ, η) ≤ S(σ, η) ≤ 2K(σ, η).

In the rest of the chapter, we focus on Kendall-Tau distance and when we refer

to Spearman’s footrule distance we will state it explicitly. The Kemeny distance

between a single ranking and multiple rankings is based on Kendall-Tau distance.

Definition 3. Kemeny Distance. For rankings ρ1, ρ2, . . . , ρm the Kemeny Distance

of the ranking σ to these rankings is

κ(σ, ρ1, ρ2, . . . , ρm) =
m∑
i=1

K(σ, ρi)
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Using the running example, Kemeny Distance between each of the aggregated rankings

presented in the three columns of Table 6.4 and the individual member ranks are 34, 34,

and 46, respectively.

We note that Kemeny distance which is based on Kendall-Tau distance is the

most popular and accepted measure for quantifying the quality of rank aggregation

and has been widely used in the related work on rank aggregation [7, 8, 58]. The

Kemeny distance measure has a maximum likelihood interpretation and it is the

only known measure that simultaneously satisfies: neutrality, consistency, and the

(extended) Condorcet property. Moreover, Kendall-Tau/Kemeny has also been

adopted in the only previously known fair rank aggregation FairILP [87] work. Other

distance measures are briefly described in Section 6.3.

Definition 4. Proportionate Fair or p-fair ranking [26,134]. For any protected

attribute value p, let f(p) denote the fraction of items with this value, that is, f(p) =

1
n

∑
v∈V 1A(v)=p. A ranking σ is proportionate fair or p-fair if for every k ∈ [1..n],

the number of items with protected attribute value p among the k top ranked items in

σ is either ⌊f(p) · k⌋ or ⌈f(p) · k⌉.

Using the running example, if gender is the protected attribute with 50%

representation of male and female, then p-fairness implies 1 male and 1 female in

the top-2 items, 2 males and 2 females in the top-4 items , and so on. (Note that

for any odd k the difference between the number of males and females in the top-k

is exactly 1.) We refer to the 3rd column of Table 6.4 and note that p-fairness is

satisfied.

Definition 5. Relaxed p-fair ranking. Given an integer input δ ≥ 0, a ranking

σ is relaxed proportionate fair or relaxed p-fair if for every k ∈ [1..n], the number of

items with protected attribute value p among the k top ranked items in σ is between

⌊f(p) · k⌋ − δ and ⌈f(p) · k⌉+ δ.
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This alternative fairness definition essentially relaxes p-fair ranking definition,

such that for every position, the proportionate representation of items with protected

attribute value p is allowed to have at most δ deviation (an input parameter) from

its original p-fair ranking. Using the running example, if gender is the protected

attribute with 50% representation of male and female, then the relaxed p-fairness

with δ = 1 implies at least 1 male and at least 1 female in the top-4 items, at least 2

males and at least 2 females in the top-6 items, and so on.

6.2.1 Problem Formulation

P1: Individual p-fair rank (or IPF). Given a ranking ρ find a p-fair ranking

that is closest to ρ in Kendall-Tau distance.

P2: Rank aggregation under p-fairness (or RAPF). Given m rankings

ρ1, ρ2, . . . , ρm find a p-fair ranking that minimizes the Kemeny distance to

these m rankings. We observe that RAPF is NP-Hard which directly follows

from the fact that rank aggregation considering unconstrained Kemeny distance

minimization is NP-hard when m ≥ 4 [8].

We study IPF and RAPF for binary and multi-valued protected attributes

considering fairness as a constraint. By that process, it is likely to deteriorate the

Kemeny Distance values, i.e., the Kemeny Distance of an unfair rank aggregation

is likely to be smaller than that of a fair one (recall Column 1 and Column 3 of

Table 6.4). These choices and other alternative ways of incorporating fairness inside

rank aggregation are explored in Section 6.7.

We also study IPF and RAPF subject to the relaxed p-fairness. Our proposed

solutions trivially adapt for this version and we omit those for brevity. Experimental

results based on this relaxed definition are included in Section 6.6.4.
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Table 6.4 Rank Aggregation Results of Comparable Methods Using Section 6.1.1
Example Considering Gender as the Protected Attribute

Rank
Rank aggregation
(without fairness)

Rank aggregation
(with statistical parity) [87]

Rank aggregation
(with p-fairness)

1 Amy (Female) Amy (Female) Amy ( Female )
2 Molly (Female) Molly (Female) Park ( Male )
3 Abigail (Female) Abigail (Female) Molly ( Female )
4 Kim (Male) Kim (Male) Kabir ( Male )
5 Lee (Male) Lee (Male) Abigail ( Female )
6 Park (Male) Park (Male) Kim ( Male )
7 Kabir (Male) Kabir (Male) Lee ( Male )
8 Damien (Male) Damien (Male) Aaliyah ( Female )
9 Andres (Male) Andres (Male) Damien ( Male )
10 Aaliyah (Female) Aaliyah (Female) Kiara ( Female )
11 Kiara (Female) Kiara (Female) Andres (Male)
12 Jazmine (Female) Jazmine (Female) Jazmine ( Female )

Kemeny Distance 34 34 46

6.3 Related Work and Comparison

Rank Aggregation. The rank aggregation study was initiated in the early 2000s by

Dwork et. al. [59]. Since then, rank aggregation and several of its variants have been

well studied, including rank aggregation considering different optimization functions,

rank aggregation with partial ranking information, or with ties [7, 8, 24, 38, 63].

Kemeny optimal rank aggregation which minimizes the sum/average Kendall-Tau

distances [82,84] to the individually ranked lists is the most popular variant. In [8,24],

the authors show that computing the Kemeny optimal rank aggregation is NP-hard

for 4 or more rankings. There exist both randomized and deterministic approximation

algorithms for rank aggregation [8, 136, 137]. In [8], Ailon et al. introduced a

randomized approximation algorithm with a 4
3
approximation factor. In [136, 137],

the authors propose deterministic pivoting algorithms with the same approximation

factors. In [53] Conitzer et al. propose an exact integer programming solution for the

Kemeny optimal rank aggregation.

One of the early yet popular results in this space is the randomized algorithm

Pick-a-Perm [8,59] that is shown to admit a 1
2
approximation factor for the Kemeny

Rank Aggregation Problem in expectation. We adapt Pick-a-Perm in our proposed

solution for the RAPF problem.
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Alternative rank aggregation measures. Other than Kemeny, alternative

measures of the quality of rank aggregations, such as, those based on Spearman’s

Footrule and Borda’s Method [59]. We note that finding an optimal rank aggregation

using Spearman’s Footrule based measure is computationally easy. However, it is open

whether the RAPF problem using Spearman’s Footrule distance is computationally

tractable. On the other hand, the IPF problem using Spearman’s Footrule distance is

tractable. We design a polynomial time algorithm for the IPF problem in Spearman’s

Footrule distance and use it to approximate the IPF problem in Kendall-Tau distance.

Borda’s method [34] is a “positional” method. It assigns a score corresponding to the

position in which a candidate appears within each voter’s ranked list of preferences,

and the candidates are sorted by their total score. Rank aggregation using Borda’s

method is also computationally easy, however, it does not satisfy the Condorcet

criterion. Since Borda’s method does not induce a distance between rankings it is

unclear how to extend it to satisfy the p-fairness constraint.

Proportionate Fairness. Based on the Chairman assignment problem [134],

the idea of proportionate fairness (p-fairness) was studied in the context of resource

scheduling [26]. The Chairman assignment problem simply studies how to select a

chairman for a union from k states such that at any time the accumulated number

of chairmen from each state is proportional to its weight. In [26], Baruha et al.

propose an algorithm for generating the p-fair schedule. Then, [27] introduces a

series of algorithms for different single resource p-fair scheduling problems. Note

that p-fairness is a group fairness criteria that is close to statistical or demographic

parity [50] studied in the context of group fairness. We note that for the rank

aggregation problem, p-fairness is more suitable and stronger than statistical parity,

because it ensures statistical parity for every position in the ranked order. This makes

the problem significantly harder and the existing solutions do not trivially adapt.
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Social Choice Theory. Various ranking methods have been studied in the field

of social choice theory [17, 65, 82, 100, 101, 146]. Early social choice theory literature

considered rank aggregation in the context of preference aggregation methods [82,

101, 146]. The social choice theory papers [17, 65] focus on Arrow’s impossibility

theorem. This theorem states that it is impossible to have a rank aggregation method

that simultaneously satisfies several conditions some of which relate to fairness. The

paper [100] seeks to identify rank aggregation methods that are “close” to satisfying

Arrow’s conditions, enabling decisions that are fairer in practice. However, the focus

of these works is to propose models, whereas, our primary goal is to develop efficient

computational framework by adapting some of these proposed models.

6.3.1 Fair Ranking Solutions

Several recent fair ranking studies focus on achieving fairness on a single rank [18,45,

72,147]. Celis et al. [45] introduce a top-k fairness measure that ensures a given upper

and lower bound of the representation of each of the protected attribute values in the

top-k, for fixed values of k. They use Spearman’s footrule-like distance which is easier

than Kendall-Tau distance since it can be modeled by a maximum weight perfect

matching problem in a bipartite graph. They provide a dynamic programming exact

algorithm, and efficient approximation algorithms. In [147], Zehlike et al. extend

group fairness using the standard notion of protected groups and ensure that the

proportion of protected candidates in every top-k ranking remains statistically above

a given minimum (while not ensuring any upper bound). Asudeh et al. [18] propose

sweep-line-based algorithms for a more general fairness ranking problem.

Next, we describe two related works in more detail: the first one is a recent work

DetConstSort [72] that studies a variant of the IPF problem. The other one is

FairILP [87], which to the best of our knowledge is the only recent work that studies
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some version of fair rank aggregation alas only with binary protected attributes and

thus can be compared to RAPF.

DetConstSort Geyik et al. [72] propose Algorithm DetConstSort to produce

fairness-aware ranking given an input ranking. This algorithm ensures that for every

protected attribute value p, and for every k ∈ [1..n] the number of items with

protected attribute value p among the top k ranked items in the output ranking

is at least ⌊f(p) · k⌋, where f(p) is the fraction of items with protected attribute

value p, that is, f(p) = 1
n

∑
v∈V 1A(v)=p. Essentially, Algorithm DetConstSort

produces a ranking that only satisfies the lower bound of p-fairness.

Example 4. Statement: DetConstSort [72] does not produce the closest

ranking that satisfies the p-fairness lower bound. We simulate the running

of Algorithm DetConstSort on the ranking given by Member 1 in Table 6.1

considering seniority level as the protected attribute. The algorithm scans the ranked

items in descending order starting at the top (k = 1), and checks at each position,

whether any value of the protected attribute becomes “tight” and thus an item with

this value needs to be inserted to the tentative output ranking. For the ranking given

by Member 1, no seniority level becomes tight at k = 1, 2. At k = 3, ⌊f(Senior) · k⌋ =

⌊5/12 ∗ 3⌋ = 1 and ⌊f(Mid career) · k⌋ = ⌊4/12 ∗ 3⌋ = 1. So, the top ranked Senior

candidate (Damien) and the top ranked Mid career candidate (Kim) are inserted

to the tentative output ranking. Since Kim is ranked higher than Damien in the

input ranking, the tentative (ordered) output ranking is [Kim,Damien]. At k = 4,

⌊f(Junior) · k⌋ = ⌊3/12 ∗ 4⌋ = 1 and the top Junior candidate Molly needs to be

inserted in the list. Since Molly is ranked higher than both Kim and Damien in

the input ranking and since both Kim and Damien can be pushed to position 3

without violating the p-fairness lower bound, Molly is inserted into position 1 of

the tentative output ranking which is now [Molly,Kim,Damien]. Continuing in the
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same manner, the final output ranking is

[Molly,Kim,Lee,Damien,Amy, Park,

Andres, Abigail, Aaliyah,Kabir,Kiara, Jazmine]

The Kendall-Tau distance between the Member 1 ranking and the output ranking is

12. However, consider the following ranking.

[Molly, Amy,Kim,Damien,Abigail, Lee,

Andres, Park,Aaliyah,Kabir,Kiara, Jazmine]

It also satisfies the p-fairness lower bound and the Kendall-Tau distance between it

and the Member 1 ranking is only 8.

Example 5. Statement: DetConstSort [72] does not produce a p-fair

ranking. The ranking produced by DetConstSort in Example 4 violates the

upper bound of the p-fairness condition, since the seniority level of 2 out of the top 3

candidates is Mid career but ⌈f(Mid career) · 3⌉ = ⌈4/12 ∗ 3⌉ = 1 < 2.

FairILP Kuhlman and Rundensteiner [87] consider fairness aware rank aggregation

in a setting of a binary protected attribute. To measure fairness they propose pairwise

statistical parity.

Definition 6. Pairwise statistical parity. For a ranking σ with a binary protected

attribute, let Vi be the set of items with protected attribute value i, we define Rpar(σ)

as:

Rpar(σ) =
1

|V1||V2|

∣∣∣∣∣∣
∑

{u∈V1}

∑
{v∈V2}

(
1σ(u)<σ(v) − 1σ(v)<σ(u)

)∣∣∣∣∣∣ .
The ranking σ satisfies pairwise statistical parity if Rpar(σ) = 0. The relaxed

pairwise statistical parity requires that Rpar(σ) ≤ δ, for a given δ ≥ 0. The

unnormalized pairwise statistical parity is defined as |V1||V2|Rpar(σ).
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Given m rankings ρ1, ρ2, . . . , ρm, FairILP finds a ranking σ whose pairwise

unnormalized statistical parity is bounded by a given δ ≥ 0 that is closest to the

input rankings in Kemeny distance.

Example 6. Statement: FairILP [87] is not necessarily p-fair even with

δ = 0.

Consider the running example and assume that the (binary) protected attribute

considered is gender.

Table 6.4 shows three aggregated rankings for the running example, the first

without fairness, with second subject to pairwise statistical parity with δ = 0, and

the third subject to p-fairness. Note that the first two rankings are identical, which

implies that pairwise statistical parity does not imply p-fairness. Intuitively, the reason

for this is that pairwise statistical parity just considers pairs of items with different

protected attribute value in an aggregated manner and does not consider the actual

positions of the items in the aggregated ranking.

In summary, IPF is stronger than any of the existing fairness aware single rank

problem [18,45,72,147], because we consider proportionate representation considering

both lower and upper bound of the protected attributes for every position. Similarly,

RAPF promotes a stronger notion of fairness compared to FairILP [87], as well as

consider both binary and multi-valued protected attribute.

6.4 Individual p-fairness (IPF)

In this section, we describe our proposed solutions for the individual p-fairness or the

IPF problem. First, we consider the binary case, denoted BinaryIPF, in which the

protected attribute has two values, i.e., ℓ = 2. We present an exact greedy algorithm

GrBinaryIPF for BinaryIPF, prove its correctness, and analyze its running time.

Then, we consider the general case of IPF, denoted MultiValuedIPF, when ℓ > 2.

We demonstrate that MultiValuedIPF cannot be solved using a greedy algorithm
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similar to the binary case, and present two solutions: a dynamic programming

based exact algorithm ExactMultiValuedIPF, and an approximation algorithm

ApproxMultiValuedIPF based on minimum weight matching. We analyze the

running time and prove the correctness of both algorithms.

6.4.1 BinaryIPF

In this subsection we present an exact algorithm toBinaryIPF in which the protected

attribute value of each of the items can take only two possible values. Algorithm

GrBinaryIPF takes an input ranking ρ and the output is a p-fair ranking σ with the

minimum Kendall-Tau distance to ρ. The algorithm builds on Lemma 7 that implies

that if item u is the i-th item (counting from the top) with protected attribute value

p in ranking ρ, then the same item is also the i-th item with protected attribute value

p in ranking σ.

Baruah et al. [26] proved the following for any p-fair ranking. Consider the

ranks of the items with protected attribute value p in the p-fair ranking. Then, for

i ∈ [1..f(p) · n], the i-th such item has to be ranked within the interval

[

⌊
i− 1

f(p)

⌋
+ 1,

⌈
i

f(p)

⌉
].

Thus, for every item v ∈ V , we define the interval [top(v), bot(v)] as the feasible

positions of this item in any p-fair ranking that is closest to permutation ρ.

Algorithm GrBinaryIPF whose pseudo code is given in Algorithm 9 starts

by computing bot(v), for every v ∈ V (Line 1). Then, it sorts the items according

to their rank, and partitions the sorted list into two sub-lists, one for each protected

attribute value (Line 3). The ranking σ is constructed from top to bottom. For each

position i, Algorithm GrBinaryIPF considers the current top items u1 and u2 in

each of the sub-lists. In case bot(·) of one of these two items is “tight”, that is, equals

i, Algorithm GrBinaryIPF assigns i to σ of this item. (In Lemma 8, we show that
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both items cannot be tight.) Otherwise, Algorithm GrBinaryIPF assigns i to σ of

the item among u1 and u2 that is ranked higher in ρ. (Lines 5–12).

Algorithm 9 GrBinaryIPF

1: compute bot(v) for each item v ∈ V

2: sort the items according to the ranking ρ

3: partition the sorted list into two sub-lists L1, L2, one for each protected attribute

value

4: for i = 1 to n do

5: Let u1 and u2 be the current top items in L1 and L2

6: if bot(u1) = i ∨ bot(u2) = i then

7: v ← the tight item among u1 and u2

8: else

9: v ← the higher ranked item in ρ among u1 and u2

10: end if

11: σ(v)← i

12: remove v from its ordered list

13: end for

14: return σ

We demonstrate the algorithm considering as input the initial ranking provided

by Member 2 in the running example and the binary protected attribute gender. The

following two sub-lists are obtained:

Lfemale = [Amy,Molly, Abigail, Aaliyah,Kiara, Jazmine]

Lmale = [Kim,Lee, Park,Kabir,Damien,Andres]

Note that bot(Amy) = bot(Kim) = 2. Amy is put into the first position in σ

since Amy is ranked higher than Kim in ρ. Since bot(Kim) = 2, Kim is assigned
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be the second place in σ. By repeating this procedure, we end up with the ranking:

[Amy,Kim,Molly, Lee, Abigail, Park,

Kabir, Aaliyah,Damien,Kiara,Andres, Jazmine],

where K(ρ, σ) = 17.

Running Time Analysis: It is straightforward to see that Algorithm

GrBinaryIPF runs in O(n) time, since all the computations can be done by a

constant number of linear scans over the items.

As mentioned above the algorithm is based on the following lemma.

Lemma 7. Consider two elements u and v with the same protected attribute value
(A(u) = A(v)). If ρ(u) < ρ(v) then σ(u) < σ(v) in any p-fair ranking σ that is
closest to permutation ρ,

Proof Sketch:

The proof is by contradiction. Assume that σ(v) < σ(u). Consider the ranking
σ′ given by swapping σ(v) and σ(u), that is, σ′(u) = σ(v), σ′(v) = σ(u), and for every
w ∈ V \ {u, v}, σ′(w) = σ(w). The ranking σ′ is also p-fair (since A(u) = A(v)), and
we prove below that K(σ′, ρ) < K(σ, ρ); a contradiction.

Since ρ(u) < ρ(v) and σ(u) > σ(v) we have

(σ(u)− σ(v))(ρ(u)− ρ(v)) < 0

(σ′(u)− σ′(v))(ρ(u)− ρ(v)) > 0.

So, the pair (u, v) contributes 1 to K(σ, ρ) and 0 to K(σ′, ρ). Since for x, y ∈ V \{u, v},
we have (σ(x) − σ(y)) = (σ′(x) − σ′(y)) all such pairs (x, y) contribute the same to
K(σ, ρ) and K(σ′, ρ). Consider w ∈ V \ {u, v}, such that either σ(w) > σ(u)
or σ(w) < σ(v). We have (σ(w) − σ(u)) = (σ′(w) − σ′(u)) and (σ(w) − σ(v)) =
(σ′(w) − σ′(v)). Thus, the contribution of the pairs (u,w) and (v, w) is the same to
K(σ, ρ) and K(σ′, ρ).

We are left with the case w ∈ V \ {u, v}, such that σ(w) ∈ (σ(v), σ(u)). In this
case

(σ(v)− σ(w)) = (σ′(u)− σ′(w)) < 0

(σ(u)− σ(w)) = (σ′(v)− σ′(w)) > 0.

Clearly, ρ(v)− ρ(w) > ρ(u)− ρ(w). Thus

(σ(v)− σ(w))(ρ(v)− ρ(w)) < (σ′(u)− σ′(w))(ρ(u)− ρ(w))

(σ(u)− σ(w))(ρ(u)− ρ(w)) < (σ′(v)− σ′(w))(ρ(v)− ρ(w)),
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which implies that the contribution of the pairs (u,w) and (v, w) to K(σ′, ρ) is at

most their contribution to K(σ, ρ).

Lemma 8. For any iteration i of the algorithm one cannot have bot(u1) = i and
bot(u2) = i.

Proof. Since bot(·) is nondecreasing as we iterate over the items, then for all items
v that are added to σ up to iteration i we have bot(v) ≤ i. Suppose that both
bot(u1) = i and bot(u2) = i. In this case thare are i + 1 items (i − 1 items from
previous iterations together with u1 and u2) that need to be ranked in the top i places,
which is infeasible, and thus in contradiction to the feasibility of p-fair ranking as
proved in [26].

Theorem 22. AlgorithmGrBinaryIPF returns the exact solution to the BinaryIPF
problem.

Proof. To obtain a contradiction assume that µ is the p-fair ranking with minimum
distance to ρ, and that µ ̸= σ. Let i be the top rank where µ and σ differ. Let u be
the item ranked i in µ and v be the item ranked i in σ. Since the order of the items
with the same value of the protected attribute has to be the same in both µ and σ, we
must have that A(u) ̸= A(v). Without loss of generality assume that u is in sub-list
L1 and v is in sub-list L2. Certainly bot(u) ̸= i and bot(v) ̸= i as otherwise either µ
or σ would not be p-fair. Thus, according to our algorithm ρ(v) < ρ(u). Let j be the
rank of v in µ. Since i is the top rank where µ and σ differ we must have j > i. Also,
all items ranked i, . . . , j − 1 in µ must be in sub-list L1. As otherwise, the order of
the items from L2 would not be the same in both µ and σ.

Since ρ(v) < ρ(u), then for item w ranked j− 1 in µ, we also have ρ(v) < ρ(w).
Item w is ranked lower than j − 1 in σ, thus bot(w) ≥ j. Since the rank of item v in
σ is i, top(v) ≤ i ≤ j− 1. However, then the ranking µ′ given by swapping the items
w and v ranked j − 1 and j in µ is p-fair and similar to Lemma 7 it can be shown to
be closer than µ to the ranking ρ, a contraction.

6.4.2 MultiValuedIPF

In this subsection we present an approximate and an exact algorithms forMultiValuedIPF.

The input is a ranking ρ and the output is a p-fair ranking σ that minimizes the

Kendall-Tau distance to ρ.

MultiValuedIPF is a harder problem. We begin this section by demon-

strating that a simple greedy scheme is not adequate to solve MultiValuedIPF
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like in the binary case. Consider the following artificial example consisting of 20

items with four possible values of their protected attribute. There are 5 items with

protected attribute value a, 10 items with protected attribute value b, 4 items with

protected attribute value c, and 1 item with protected attribute value d. Note that

we must have one item with protected attribute value a in each block of 4 ranked

items starting from the top, one item with protected attribute value b in each block

of 2 ranked items starting from the top, and one item with protected attribute value

c in each block of 5 ranked items starting from the top.

Now, consider the ranking ρ = 1, . . . , 20 (the identity permutation [131]). The

value of the protected attribute for these items in given in the table 6.5.

Table 6.5 Protected Attribute Values

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

a a b b b d c b c b a b c b a b c b a b

The greedy algorithm creates a p-fair ranking by starting with the highest

ranked item 1 (with protected attribute value a), then the 2 items 3, and 4 (with

value b), then the item 6 (with value d), next it must pick item 7 (with value c), and

5 (with value b), and only then item 2 (with value a). From this point on the p-fair

ranking coincides with the original ranking; that is, items 8, . . . , 20 appear in order,

and the resulting ranking is (1, 3, 4, 6, 7, 5, 2, 8, . . . , 20). The Kendall-Tau distance of

this ranking from ρ is 7.

However, the optimal p-fair ranking is (1, 3, 4, 7, 2, 5, 6, 8, . . . , 20) which is closer

to ρ with Kendall-Tau distance 5.

Approximation Algorithm We first present an efficient algorithm

ApproxMultiValuedIPF for computing IPF that is based on minimum weight

matching in a bipartite graph. Then, we proceed with the exact algorithm that is

more complex.
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The proposed algorithm ApproxMultiValuedIPF whose pseudo code is

given in Algorithm 10 considers as the underlying abstraction a weighted bipartite

graph G(V, Y, E), where |V | = |Y | = n. The nodes in V represent the items and the

nodes in Y represent their potential position.

Recall that Baruah et al. [26] proved that in any p-fair ranking the position

of an item v ∈ V must be within [top(v)..bot(v)]. Consequently, an edge evy ∈ E

exists, if y ∈ [top(v)..bot(v)]. The algorithm assigns the weight |ρ(v) − y| to every

edge evy ∈ E (Line 2), which is the Spearman’s footrule distance between position

of v in ρ and y. Then, ApproxMultiValuedIPF finds a perfect matching in this

graph (Line 4), and the output of the perfect matching induces a p-fair ranking σ

(Line 6) that is closest to ρ in Spearman’s footrule distance.

Algorithm 10 ApproxMultiValuedIPF(G)

1: for evy ∈ E do

2: weight(evy)← |ρ(v)− y|

3: end for

4: Find M a minimum weight perfect matching in G

5: for evy ∈M do

6: v is set to be the item ranked y in σ

7: end for

8: return σ

We demonstrate the algorithm considering as input the initial ranking provided

by Member 2 and the ternary protected attribute seniority level. The top ranked

candidate of Member 2 is Park whose seniority level is Mid career. Note that

f(Mid career) = 4
12

= 1
3
. Thus, top(Park) = 1 and bot(Park) =

⌈
1 · 3

1

⌉
= 3. Thus,

there are 3 edges connecting to nodes in Y : ePark,1, ePark,2, ePark,3 with weights 0, 1, 2,

respectively. The rest of the edges of the bipartite graph are computed similarly. The

minimum weight perfect matching in the created bipartite graph implies the following
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ranking, and the Spearman’s footrule distance to the original ranking of Member 2

is 18:

[Park,Amy,Damien,Kabir, Andres,Molly,

Kim,Aaliyah,Abigail,Kiara, Lee, Jazmine].

Running Time: The running time of Algorithm ApproxMultiValuedIPF

is dominated by the running time of the minimum weight perfect matching which is

O(n2.5 log n).

Theorem 23. ApproxMultiValuedIPF admits a 2-approximation factor for the
IPF problem.

Proof Sketch:

A lemma similar to Lemma 7 holds also for the Spearman’s footrule distance,

and thus any p-fair ranking that is closest in Spearman’s footrule distance to the

ranking ρ has to correspond to a perfect matching in G. It follows that the minimum

weight perfect matching implies a p-fair ranking σ that is closest in Spearman’s

footrule distance to the ranking ρ. Let µ be a p-fair ranking that is closest (in Kendall-

Tau distance) to ρ. Clearly, S(ρ, σ) ≤ S(ρ, µ). Thus, by the inequalities in [56]

K(ρ, σ) ≤ S(ρ, σ) ≤ S(ρ, µ) ≤ 2K(ρ, µ). We conclude that σ is a 2-approximation to

a p-fair ranking that is closest (in Kendall-Tau distance) to the ranking ρ.

Exact Algorithm We present a dynamic programming based exact algorithm

ExactMultiValuedIPF for the MultiValuedIPF problem. We prove that when

ℓ, the number of different values of the protected attribute, is a constant (or even

logarithmic in n), Algorithm ExactMultiValuedIPF computes the closest p-fair

ranking in polynomial time. The running time of ExactMultiValuedIPF is

exponential in ℓ, and thus when ℓ = Ω(n), the running time ofExactMultiValuedIPF
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is exponential. Due to space constraints we just describe the intuition behind this

algorithm.

Consider an index 1 ≤ k < n. Suppose that we wish to break the problem of

computing the closest p-fair ranking into two subproblems. One is computing the

top k items of the p-fair ranking and the other is computing the bottom n− k items.

Let’s concentrate on computing the bottom n − k items, that is, which items are in

positions k + 1, . . . , n and their order. Certainly, this depends on which items are

ranked in the top k (but it does not depend on the order of these top k items). The

algorithm is based on the observation that the amount of this information is limited.

Note that for each item u if bot(u) ≤ k then u must be in the top k and if top(u) > k

then u must be in the bottom n − k. The only ambiguity is regarding the items

u for which top(u) ≤ k and bot(u) ≥ k + 1. It follows that for all these items u

we have k, k + 1 ∈ [top(u), bot(u)]. By the definition of top(·) and bot(·), for any

two items u and v such that A(u) = A(v), the intersection of [top(u), bot(u)] and

[top(v), bot(v)] consists of no more than a single item. It follows that for each of the

ℓ possible values of the protected attribute we have exactly one item u with this value

for which k, k+ 1 ∈ [top(u), bot(u)]. Since each such item can be either in the top k

or in the bottom n− k, the number of possibilities is bounded by 2ℓ.

The dynamic programming based exact algorithm ExactMultiValuedIPF

for the MultiValuedIPF problem works as follows. The algorithm works in n

iterations. For k = 1, . . . , n, and for every subset Lk of the items u for which

k, k+1 ∈ [top(u), bot(u)], it computes the optimal rank of the top k elements of the

closest p-fair ranking subject to the constraint that the items in Lk are in the bottom

n−k. (Note that there may not be a feasible solution for some of these subsets.) The

computation is done using the optimal ranking of the top k − 1 elements computed

for all possible subsets Lk−1. It is not difficult to see that each such computation
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can be implemented in O(ℓ2ℓ) time, and thus the algorithm is polynomial as long as

ℓ = O(log n).

Theorem 24. The running time complexity of ExactMultiValuedIPF is linear
when ℓ is constant and polynomial when ℓ is O(log n).

6.5 Rank Aggregation Subject to p-fairness (RAPF)

In this section, we present two scalable solution frameworks for the RAPF problem

both for binary and multi-valued protected attribute. Algorithm RandAlgRAPF

is randomized, highly scalable, but the approximation factor is in expectation.

Algorithm AlgRAPF, on the other hand, produces a deterministic approximation

factor, but less scalable than its randomized counterpart.

6.5.1 Randomized Algorithm

We start with the randomized algorithm RandAlgRAPF. Input to this algorithm

are m rankings ρ1, ρ2, . . . , ρm and the output is σ, the aggregated p-fair ranking.

AlgorithmRandAlgRAPF randomly selects one of the ρ1, ρ2, . . . , ρm input rankings

uniformly, denoted ρrandInd. Then, Algorithm RandAlgRAPF calls the subroutine

AlgIPF(ρ), with the parameter ρrandInd. The subroutine AlgIPF(ρ) computes

the p-fair ranking that is closest to this selected ranking ρrandInd (either exactly

or approximately). The resulting p-fair ranking σ is the output of Algorithm

RandAlgRAPF.

The subroutine AlgIPF(ρ) can invoke any of the algorithms described in

Section 6.4. Recall that GrBinaryIPF produces an exact p-fair solution of

the binary IPF problem. For multi-valued IPF, the highly scalable Algorithm

ApproxMultiValuedIPF produces a 2 approximation factor, whereas, the dynamic

programming based solution Algorithm ExactMultiValuedIPF is more expensive

but produces an exact solution for the multi-valued IPF problem. Depending on the

underlying IPF problem, any of these could be used inside AlgIPF.
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We prove that in expectation the approximation factor of the aggregate

ranking returned by this incredibly simple Algorithm RandAlgRAPF is 2+ the

approximation factor of the algorithm for the IPF problem invoked in AlgIPF(ρ).

Running Time: The running time of Algorithm RandAlgRAPF is the same

as the running time of Algorithm AlgIPF.

Theorem 25. Let α be the approximation factor of the algorithm for the IPF problem

invoked in AlgIPF(ρ). The expected Kemeny distance of the ranking returned by

Algorithm RandAlgRAPF to ρ1, ρ2, . . . , ρm is bounded by α+2 times the minimum

Kemeny distance of any p-fair ranking to ρ1, ρ2, . . . , ρm.

Proof. Let OPTU be the optimal (unconstrained) aggregate ranking of ρ1, ρ2, . . . , ρm,

and let OPTF be the optimal p-fair aggregate ranking. For i ∈ [1..m], let σi =

AlgIPF(ρi). Note that for i ̸= randInd, we do not compute σi; it is just used in the

proof. We have

κ(OPTU , ρ1, ρ2, . . . , ρm) ≤ κ(OPTF , ρ1, ρ2, . . . , ρm).

Since for i ∈ [1..m], K(σi, ρi) ≤ αK(OPTF , ρi) we also have

m∑
i=1

K(σi, ρi) ≤ ακ(OPTF , ρ1, ρ2, . . . , ρm).

By the triangle inequality for any i ∈ [1..m] we have

κ(σi, ρ1, ρ2, . . . , ρm)

≤
m∑
j=1

[K(σi, ρi) +K(ρi, OPTU) +K(OPTU , ρj)]

= m [K(σi, ρi) +K(ρi, OPTU)] + κ(OPTU , ρ1, ρ2, . . . , ρm)
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Summing over all i ∈ [1..m] we get

m∑
i=1

κ(σi, ρ1, ρ2, . . . , ρm)

= m

m∑
i=1

[K(σi, ρi) +K(ρi, OPTU)]

+m · κ(OPTU , ρ1, ρ2, . . . , ρm)

= m

m∑
i=1

K(σi, ρi) + 2m · κ(OPTU , ρ1, ρ2, . . . , ρm)

≤ m · α · κ(OPTF , ρ1, ρ2, . . . , ρm) + 2m · κ(OPTU , ρ1, ρ2, . . . , ρm)

≤ m · (α + 2) · κ(OPTF , ρ1, ρ2, . . . , ρm)

The expected distance is 1
m

of this sum, that is

E [κ(σrandInd, ρ1, ρ2, . . . , ρm)] ≤ (α + 2) · κ(OPTF , ρ1, ρ2, . . . , ρm).

6.5.2 Deterministic Algorithm

We proceed to describe the deterministic algorithm AlgRAPF. Input to this

algorithm are m rankings ρ1, ρ2, . . . , ρm and the output is σ, the aggregated p-fair

ranking. Algorithm AlgRAPF whose pseudo code is given in Algorithm 11 runs in

two steps. (1) Invoke the subroutine AlgIPF(ρ) to solve the IPF problem for each

of the m input rankings (Line 2); (2) out of the m fair rankings produced in step

1, find the ranking that minimizes the Kemeny distance to the input rankings and

output it as the aggregated p-fair ranking (Lines 4–11).

As in the randomized case, the subroutine AlgIPF(ρ) inside AlgRAPF

computes an approximation to the closest p-fair of ρ by invoking any of the algorithms

described in Section 6.4. The resulting approximation factor is 2+ the approximation

factor of the chosen algorithm.
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Algorithm 11 AlgRAPF(ρ1, ρ2, . . . , ρm)

1: for i ∈ [1..m] do

2: σi ←AlgIPF(ρi)

3: end for

4: min← m · n2 ▷ upper bound on the distance

5: for i ∈ [1..m] do

6: if κ(σi, ρ1, ρ2, . . . , ρm) < min then

7: min← κ(σi, ρ1, ρ2, . . . , ρm)

8: minInd← i

9: end if

10: end for

11: return σminInd

We demonstrate Algorithm AlgRAPF using the running example. It first

calls subroutine AlgIPF to find the p-fair rankings that are closest to the rankings

of each of the 4 members. The Kendall-Tau distances between the resulting p-fair

rankings and the original rankings are 6, 3, 4, and 9, respectively. Next, Algorithm

AlgRAPF outputs the ranking among these 4 p-fair rankings that minimizes the

Kemeny distance to original rankings. The output is the one closest to the ranking

of member 2, shown below, and its Kemeny distance to the original rankings is 50.

[Park,Amy,Molly,Kabir, Abigail,Damien,

Kim,Aaliyah,Andres,Kiara, Lee, Jazmin]

Running Time: The running time of Algorithm AlgRAPF is m times the

running time of algorithm AlgIPF plus O(m2n log n). Note that the Kendall-Tau

distance between two rankings can be computed in O(n log n) time using a binary

search tree.
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Theorem 26. Let α be the approximation factor of the algorithm for the IPF problem
invoked in AlgIPF(ρ). The aggregate ranking returned by Algorithm AlgRAPF is
an α + 2 approximation of the closest p-fair aggregate ranking of ρ1, ρ2, . . . , ρm.

Proof. In Theorem 25 we proved that

m∑
i=1

κ(σi, ρ1, ρ2, . . . , ρm) ≤ m · (α + 2) · κ(OPTF , ρ1, ρ2, . . . , ρm).

It follows that the minimum distance is bounded by 1
m

of this sum, and thus

κ(σminInd, ρ1, ρ2, . . . , ρm) ≤ (α + 2) · κ(OPTF , ρ1, ρ2, . . . , ρm).

Lemma 9. Algorithms RandAlgRAPF and AlgRAPF admit 3, 3, and 4 approxi-
mation factors for the RAPF problem when GrBinaryIPF, ExactMultiValuedIPF,
and ApproxMultiValuedIPF, respectively, are used as the underlying solutions for
the IPF problem.

6.6 Experimental Evaluations

The goal of this study is to evaluate the quality and scalability of our proposed

solutions, designed for IPF and the RAPF problems. We also compare our solutions

with multiple state-of-the-art solutions [72, 87] to demonstrate how our studied

problems promote stronger notion of fairness for the rank aggregation problem.

All algorithms are implemented in Python 3.8. All experiments are conducted

on a cluster server machine with 32GB RAM memory, OS: Scientific Linux release

7.8 (Nitrogen), CPU: Intel(R) Xeon(R) CPU E3-1245 v6 @ 3.70GHz. All numbers

are presented as an average of 10 runs. For brevity, we present a subset of results

that are representative. The code and the data is available at 1.

6.6.1 Dataset Description

We perform evaluations considering 3 real world datasets. (a) Fantasy players choose

real athletes for their fantasy teams and generate scores based on the athlete’s real

1https://github.com/MouinulIslamNJIT/Rank-Aggregation_Proportionate_

Fairness.git Retrieved on May/01/2021
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performance. Rankings of the athletes are provided by real human voters. We

use rankings of National Football League (NFL) players for 16 weeks of the 2019

football season from the top 25 experts. (b) German Credit Score: This is a publicly

available dataset in the UCI repository. It is based on credit ratings generated by

Schufa, a German private credit agency based on a set of variables for each applicant,

including age, gender, and marital status, among others. Schufa Score is an essential

determinant for every resident in Germany when it comes to evaluating credit rating

before getting a phone contract, a long-term apartment rental or almost any loan.

We use the credit-worthiness as scores just it is done in [145], and create a protected

attribute with 4 different values. (c) MoveLens Dataset: We use MovieLens 25 million

movie dataset to select a set of movies that are all rated by the same set of users.

The individual user rating is used to create individual ranking. We use the movie

genres as the protected attribute. Table 6.6 has further details.

Table 6.6 Real World Datasets

Dataset #records (n) # ranks (m) protected attributes (ℓ)

Fantasy

football

ranking

55 25

American Football Conference

(AFC):proportion: 50% , National Football

Conference (NFC): proportion: 50%

German

Credit

Score

1000 1

age<35 & sex = female: proportion: 33.5%

, age≥35 & sex = female: proportion: 35.5%

age<35 & sex = male: proportion: 21.3%,

age≥35 & sex = male: proportion: 9.7%

MovieLens 268 7

Thriller: proportion: 2.24%, Western:

proportion: 6.72%, Documentary:

proportion: 3.36%, Comedy: proportion:

21.64%, Horror: proportion: 4.85%, Musical:

proportion: 0.37%, Film-Noir: proportion:

1.49%, Drama: proportion: 59.33%
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Synthetic dataset We generate large scale synthetic data [87,145] using Mallows’

Model [95]. The Kemeny rank aggregation has been shown to be a maximum

likelihood estimator for this model [145]. It contains two parameters - (i) θ that

controls the degree of consensus among the rankings (higher values shows more

agreement); (ii) p that dictates the probability of elements of the first group to be

ranked higher than elements in the Second group. We refer to [87] for further details.

The θ and p are set to 0.9 and 0.7 respectively in our experiments.

6.6.2 Implemented Algorithms

DetConstSort [72] is a fairness-aware ranking algorithm designed towards mitigating

algorithmic bias for a single rank. DetConstSort only ensures the lower bound

of proportionate representation. As shown in Section 6.3.1, it neither guarantees

smallest Kendall-Tau distance nor ensures p-fairness. We implement this for IPF.

FairILP [87] finds the closest aggregate ranking that satisfies a bound on the pairwise

statistical parity. The original implementation of FairILP is specified for a binary

protected attribute. To adapt it for multi-valued protected attribute we ensure that

for each value of the protected attribute, the bound on the pairwise statistical parity

is satisfied between the items with this value and the rest of the items. In our

experiments we set δ = 1 as the (unnormalized) bound on the pairwise statistical

parity. We note that due to the definition of pairwise statistical parity, it may be

infeasible in many instances to find a solution for δ = 0.

OptIPF is the exact solution for IPF produced by solving an Integer Linear

Programming (ILP) model using Gurobi Optimizer 9.1. The optimizer does not

scale and thus exact solutions cannot be computed for large-scale datasets.

OptRAPF is the exact solution for RAPF produced by solving an ILP model using

Gurobi Optimizer 9.1. Again, the optimizer only produces the optimal solution on

small datasets.
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OptRA is the exact solution for rank aggregation without considering fairness, and

is produced by solving an ILP model.

Measures. For quality evaluation we use the following measures. (i) Kendall-Tau

and Kemeny Distances, (ii) percentage of items satisfying p-fairness, and (iii)

approximation factors. For scalability evaluation, we measure the running time.

6.6.3 Summary of Results

Our first observation is that, consistent with our theoretical analysis, p-fairness

promotes stronger notion of fairness, by ensuring proportionate representation of each

of the protected attribute values for every position in the ranked order. Naturally,

incorporating p-fairness inside rank aggregation comes with a cost - the Kendall-Tau

and Kemeny distances are typically higher (albeit not substantially worse) for the p-

fair rank aggregation than that of OptRA. Second, our experimental results demon-

strate that our proposed model and solutions satisfy the fairness criteria proposed in

state-of-the-art solutions [72, 87] - however, these aforementioned existing solutions

do not extend to satisfy p-fairness. Third, our experimental results corroborate our

theoretical results, that is, GrBinaryIPF is exact, ApproxMultiValuedIPF

admits a solution that is no more than twice the optimal for MultiValuedPF,

and AlgRAPF in conjunction with ApproxMultiValuedIPF admits tighter

approximation factor compared to our proposed theoretical bound 4. Finally, our

scalability results indicate that our proposed solutions are scalable considering very

large number of items (1, 000, 000) and ranks (10, 000). In fact, RandAlgRAPF is

insensitive to the number of ranks. We extend our experiments and consider relaxed

p-fairness varying δ ≥ 0 values as defined in Definition 5.
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6.6.4 Quality Experiments

In this section we describe the results of our qualitative analysis.

BinaryIPF Results Figures 6.1(a) and 6.2(a) compare the fairness ofGrBinaryIPF

and DetConstSort. These results clearly indicate that GrBinaryIPF consis-

tently satisfies p-fairness, whereas, DetConstSort does not.

Figure 6.3(a) compares the Kendall-Tau distance between the input ranking

and the ranking computed by OptIPF, GrBinaryIPF, and DetConstSort.

Consistent with our theoretical analysisOptIPF andGrBinaryIPF always produce

the same distance. At times DetConstSort computes a ranking with a smaller

distance. This can indeed happen, as DetConstSort does not necessarily compute

a p-fair ranking.

Figure 6.4(a) plots the Kendall-Tau distance of the ranking computed by

GrBinaryIPF as we relax the p-fairness using δ ≥ 0 values. We note that for

a small value of δ the relaxed output is the same as input unfair ranking, and the

Kendall-Tau distance is 0.

(a) Fantasy football:
GrBinaryIPF vs
DetConstSort

(b) German Credit:
ApproxMultiValuedIPF
vs DetConstSort

(c) MovieLens:
ApproxMultiValuedIPF
vs DetConstSort

Figure 6.1 Percentage of positions satisfying p-fairness (IPF).
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(a) Fantasy football:
GrBinaryIPF vs
DetConstSort

(b) German Credit:
ApproxMultiValuedIPF
vs DetConstSort

(c) MovieLens:
ApproxMultiValuedIPF
vs DetConstSort

Figure 6.2 Percentage of groups satisfying p-fairness (IPF).

(a) Fantasy football:
OptIPF, GrBinaryIPF ,
DetConstSort

(b) German Credit:
ApproxMultiValuedIPF
vs DetConstSort

(c) MovieLens:
ApproxMultiValuedIPF
vs DetConstSort

Figure 6.3 Kendall-Tau distance for IPF algorithms.

(a) Fantasy Football:
GrBinaryIPF

(b) German Credit :
ApproxMultiValuedIPF

(c) MovieLens:
ApproxMultiValuedIPF

Figure 6.4 Varying δ analysis IPF.
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(a) GrBinaryIPF (b) ApproxMultiValuedIPF

Figure 6.5 Running time analysis of IPF.

(a) Fantasy football: p-fairness:
AlgRAPF vs FairILP [87]

(b) MovieLens: p-fairness: AlgRAPF vs
FairILP [87]

Figure 6.6 % of positions satisfying p-fairness (RAPF).

(a) Fantasy football: AlgRAPF
vs RandAlgRAPFvs OptRA vs
FairILP [87]

(b) MovieLens: AlgRAPF vs
RandAlgRAPFvs OptRA vs
FairILP [87]

Figure 6.7 Kemeny Distance RAPF.
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Table 6.7 Approximation Factors of the Algorithms for IPF/RAPF

Number of items 10 15 20 25 30

GrBinaryIPF (Football) 1.0 1.0 1.0 1.0 1.0

ApproxMultiValuedIPF

(MovieLens)
1.52 1.46 1.37 1.33 1.30

ApproxMultiValuedIPF (Credit

Score)
1.8 1.76 1.60 1.57 1.52

AlgRAPF (Football) 2.86 2.76 2.15 2.14 2.01

AlgRAPF (MovieLens) 1.90 1.21 1.18 1.11 1.10

RandAlgRAPF (Football) 2.98 2.77 2.15 2.13 2.06

RandAlgRAPF (MovieLens) 2.10 1.71 1.6 1.70 1.60

MultiValuedIPF Results We use the MovieLens and German Credit Score

datasets to demonstrate the effectiveness of our proposed solutionApproxMultiValuedIPF

and compare it with DetConstSort. Figures 6.1(b), 6.1(c), 6.2(b), and 6.2(c)

demonstrate that also in this case ApproxMultiValuedIPF consistently satisfies

p-fairness whereas DetConstSort fails to satisfy p-fairness. Figures 6.3(b), 6.3(c)

compares the Kendall-Tau distance between the input ranking and the ranking

computed by ApproxMultiValuedIPF and DetConstSort. Again, at times

DetConstSort computes a ranking with a smaller distance since DetConstSort

does not necessarily compute a p-fair ranking.

Figures 6.4(b), 6.4(c) plot the Kendall-Tau distance of the rankings by

ApproxMultiValuedIPF, as we relax the p-fairness using δ ≥ 0. Unsurprisingly,

for large δ, the Kendall-Tau values become 0.

RAPF Results Next, we evaluate the RAPF problem by studying the effec-

tiveness of our proposed AlgRAPF using GrBinaryIPF (Fantasy football) and
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Table 6.8 Case Study Results on MovieLens Dataset

Movie User1 User2 User3 User4 User5 OptRAPF FairILP Genre

Bad News Bears, The (1976) 9 7 7 7 4 7 3 Comedy

True Grit (2010) 7 5 1 9 3 9 6 Western

My Darling Clementine (1946) 2 3 3 3 10 4 4 Western

Last Picture Show, The (1971) 4 1 5 1 5 5 1 Drama

Man with the Golden Arm, The (1955) 6 8 4 10 6 8 10 Drama

Heaven Can Wait (1978) 10 10 8 8 8 10 9 Comedy

Rio Bravo (1959) 1 4 6 5 7 1 5 Western

Elephant Man, The (1980) 5 2 2 4 2 6 2 Drama

Buddy Holly Story, The (1978) 3 6 10 6 9 2 8 Drama

Animal House (1978) 8 9 9 2 1 3 7 Comedy

ApproxMultiValuedIPF (MovieLens), and compare it with FairILP [87] and

OptRAPF, whenever appropriate.

Figures 6.6(a) and 6.6(b) demonstrate that AlgRAPF consistently satisfies

p-fairness whereas FairILP fails to satisfy p-fairness. Figures 6.7(a) and 6.7(b)

compare the Kemeny distance between the input rankings and the aggregate ranking

produced by AlgRAPF, RandAlgRAPF, FairILP, and OptRA. As expected

OptRA achieves the smallest distance, followed by FairILP, since it does not require

p-fairness, and thenAlgRAPF andRandAlgRAPF. AlgorithmRandAlgRAPF

is inferior to AlgRAPF in practice, since its performance is same as the latter one

only in expectation.

Figures 6.9(a) and 6.9(b) plot the Kemeny distance of the ranking computed

by OptRA, AlgRAPF, RandAlgRAPF as we relax the p-fairness using δ ≥ 0

values. Unsurprisingly, with large δ, our algorithms become very close to OptRA.

Finally, Table 6.7 presents the actual approximation factors of the different

algorithms proposed in this work. Because of the exponential nature of the OptIPF

this comparison could be conducted only on small datasets. As evident from the table

the actual approximation factors are lower than the proven theoretical bounds.

166



6.6.5 Case Study

For the case study we use the 10 popular movies based on 5 different IMDB users.

All these movies belong to 3 different genres (protected attribute): Drama, Western,

Comedy. The proportion of these genres are 0.4, 0.3, and 0.3, respectively. The

last two columns of the table 6.8 show the ranked order of the results based on

FairILP [87] and our proposed OptRAPF, respectively. It is easy to notice that

compared to FairILP, OptRAPF ranks the movies in a manner where different

genres are proportionally distributed in all 10 ranked positions, thereby promoting

improved user experience.

(a) Vary n, m = 100:RandAlgRAPF (b) Vary m, n = 1000 : RandAlgRAPF

(c) Vary n, m = 100:AlgRAPF (d) Vary m, n = 1000 :AlgRAPF

Figure 6.8 Running time analysis
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(a) Fantasy Football : AlgRAPF vs
RandAlgRAPF varying δ

(b) Movie Lens : AlgRAPF vs
RandAlgRAPF varying δ

Figure 6.9 Varying δ analysis RAPF.

6.6.6 Scalability Experiment

We present the running times of RAPF, RandAlgRAPF, GrBinaryIPF,

ApproxMultiValuedIPF. We do not present these results wrt any other baselines

because of two reasons: first, we have shown that the baselines DetConstSort [72]

and FairILP [87] do not satisfy the p-fairness criteria; second, the baseline algorithm

FairILP [87] is inherently not scalable. We use synthetically generated data using

Mallows’ model for this purpose. We vary n and m. Figures 6.5, and 6.8 show these

results and demonstrate that our solution easily scale to 1 million items (n) and

10, 000 ranks (m). These results also corroborate our theoretical analysis and shows

that the running time of RandAlgRAPF is not dependent on m.

6.7 Conclusion and Future Work

We propose the RAPF problem to incorporate a group fairness criteria (p-fairness)

considering binary and multi-valued protected attributes with the classical rank

aggregation problem. We first study how to produce a p-fair ranking that is

closest to a single input ranking (IPF). IPF can be solved exactly using a greedy

technique when the protected attribute is binary. When the protected attribute is

multi-valued such an approach fails. We then present two solutions for multi-valued
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IPF, ExactMultiValuedIPF is optimal and ApproxMultiValuedIPF admits

2 approximation factor. Next, we design two computational frameworks to solve

RAPF: RandAlgRAPF and AlgRAPF that exhibit 3 and 4 approximation

factors when designed usingExactMultiValuedIPF andApproxMultiValuedIPF,

respectively. The effectiveness of our proposed solutions is demonstrated by

comparison to state-of-the-art solutions using multiple real world and large scale

synthetic datasets.

Our work opens up several interesting research directions.

A. Alternative models. There exist alternative ways to incorporate p-fairness

inside rank aggregation. As an example, one can study the problem of minimizing

“weighted” Kemeny distance where the weights are derived considering p-fairness

criteria. A slightly different problem is to ensure proportionate fairness not on every

position, but for every x (given as input) positions. This problem would be important

in applications where every x consecutive individuals in a ranked order are eligible

to get the same preferable outcome (such as, top-5% of employees get 100% bonus

of their base salary, etc). Studying RAPF considering Spearman’s Footrule remains

part of our ongoing investigation.

B. RAPF for Top-k or considering incomplete information. We are

studying how to adapt RAPF to produce only top-k aggregated rank. This will

require us to adapt Kendall-Tau and Kemeny Optimization for top-k results. One

possible approach is to consider all items in the individual rank starting at place k+1

as ties, and generalize Kemeny based on ties [7, 63]. We are also interested to study

how to obtain an aggregate p-fair ranking when each member inputs only a partial

ranking [7, 63].

C. Hardness of IPF. We note that IPF essentially finds a perfect matching

in a convex bipartite graph while minimizing crossings. The problem of minimizing

the number of crossings in a (geometric) bipartite matching is known to be NP-Hard
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for general bipartite graphs [1]. For convex bipartite graphs, we currently explore

if and how existing works that aim at finding a maximum matching without any

crossing [47,96] can adapt to crossing minimization of a perfect matching.
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CHAPTER 7

SATISFYING COMPLEX TOP-K FAIRNESS CONSTRAINTS
BY PREFERENCE SUBSTITUTIONS

7.1 Introduction

Preference aggregation is important in finding top-k outputs that represent plurality

preference [103] and has wide variety of applications in recommender systems,

search results listing [122], electoral systems [90, 104], or allocating resources among

candidates, such as, in hiring or admission [148]. A natural variant of the top-k

preference aggregation problem is defined as follows: given m users (voters) and n

items (candidates), each user (voter) casts her preference for a single item (candidate)

as a ballot, and the k items (candidates) from the n that have the highest number of

preferences are selected. However, this variant may not produce a desired outcome

when applications need to promote fairness by ensuring proportionate representation

of the items (candidates) in the top-k results based on their protected attributes. For

example, given race as a protected attribute with values, Asian vs. Pacific Highlander

vs. White, a proportionate representation of each of the values must be present in

the top-k results. We study how to guarantee fairness by single ballot substitutions,

where each such substitution replaces a vote for an item (candidate) i by a vote for

an item (candidate) j.

Our goal in this work is to optimize preference substitution to satisfy complex

top-k fairness constraints, where the fairness requirement is defined over a set R

of protected attributes. The objective is to minimize the number of single ballot

substitutions that guarantee fairness in the top-k results. Borrowing terminology from

Election Theory [43], we define this minimum number of single ballot substitutions

as the margin. To the best of our knowledge we are one of the first to propose
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a systematic study of the margin finding problem via single ballot substitutions

considering multiple protected attributes (Section 7.6 contains details).

Our first contribution is to formalize several variants of the margin finding

problem via single ballot (preference) substitutions considering complex fairness

constraints (Section 7.2). (i) In MFBinaryS, proportionate representation is

required over a single binary protected attribute, such as male and female of the

protected attribute gender; (ii) In MFMultiS, it is defined over a single multi-valued

protected attribute, such as, race that contains more than two different values; (iii)

Contrarily, in MFMulti2, proportionate representation is required over two different

protected attributes, such as gender and race; and finally, (iv) in MFMulti3+, we

study the margin finding problem via preference substitutions considering three or

more protected attributes, such as, race, gender, and ethnicity.

Our second contribution is to study the defined problems theoretically and

make principled algorithmic contributions (Sections 7.3 and 7.4). We prove that

both MFBinaryS and MFMultiS are computationally easy, i.e., finding margin

is polynomial time solvable and we design exact algorithms Alg1AttBOpt and

Alg1AttMOpt for both these variants that run in O(n log n). Next, we consider

MFMulti2 and MFMulti3+ in which two or more attributes are involved in

defining fairness requirement. To the best of our knowledge we are the first to study

these problems rigorously from computational standpoint. Clearly, a trivial solution is

to take a Cartesian product over the attribute values, enumerate over all combinations

of possible values of the cells in the Cartesian product, and find the margin for each

such combination by converting the requirement to a single multi-valued protected

attribute. However, if the domain size of the involved protected attributes are

not constant, the Cartesian product may create an exponential number of possible

combinations for the converted multi-valued protected attribute, making the process

computationally intractable. When there are two different protected attributes
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involved in outlining the fairness requirement, we prove that the decision version

of that problem, i.e., MFMulti2, is (weakly) NP-hard by reducing the well known

NP-hard Partition problem to our problem [70]. We design an efficient algorithm

Alg2AttApx that obtains a 2 approximation factor and runs in O(n2ℓ logm) time,

by casting this problem as a min cost flow problem, where ℓ is the total number of

possible attribute values. Finally, for MFMulti3+, we prove that the satisfiability

problem itself is (strongly) NP-hard through a reduction from the 3-dimensional

matching (3DM) problem [70]. Namely, it is NP-hard just to decide whether there

exists a feasible solution that satisfies the fairness requirement defined over those 3

or more attributes.Our technical results are summarized in Table 7.1.

Our final contribution is experimental (Section 7.5). We conduct rigorous

large scale experiments involving 3 real world (involving election and movie appli-

cations) and one synthetic datasets and compare multiple state-of-the-art solutions [66,

129] after appropriate adaptation. Despite non-trivial adaptation, these related works

fail to optimize margin values and do not turn out to be effective choices. Our

experimental results corroborates our theoretical analysis, the designed algorithms

match theoretical guarantees qualitatively, and demonstrate to be highly scalable.

Section 7.7 discusses some extensions of the problems, and we conclude in

Section 7.8.

7.2 Data Model & Problem Definitions

In this section, we describe the data model and illustrate that with a running example,

following which we define the studied problems.

7.2.1 A Toy Running Example

Table 7.2 describes the ballots of 12 voters and the outcome of a voting process

with 6 candidates (C1,C2,C3,C4,C5, C6). For example, V1, V2, V4 and V7 vote for

candidate C1, and C1 becomes the top candidate with 4 votes. Each candidate has
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Table 7.1 Summary of Technical Results

Problem
Protected

Attribute
Hardness Algorithm

Approx

Factor

Running

Time

MFBinaryS
single attribute

binary valued
p-time Alg1AttBOpt exact O(n log n)

MFMultiS
single attribute

multi (ℓ) valued
p-time Alg1AttMOpt exact O(n log n)

MFMulti2
2 attributes

ℓ possible values
Weak NP-hard Alg2AttApx 2 O(n2ℓ logm)

MFMulti3+ 3+ attributes NP-hard

MFMulti2

MFMulti3+

2+ attributes

const size (c) of

Cartesian prod

p-time AlgCartOpt exact O(nc+1 log n)

Table 7.2 12 Voters, 6 Candidates, and a Voting Outcome

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
∑

Vi

C1

(M,Sr,si)
1 1 0 1 0 0 1 0 0 0 0 0 4

C2

(M,Jr,si)
0 0 1 0 1 0 0 0 1 0 0 0 3

C3

(M,Jr,ma)
0 0 0 0 0 1 0 0 0 0 0 1 2

C4

(F,Jr,si)
0 0 0 0 0 0 0 0 0 1 1 0 2

C5

(F,Jr,ma)
0 0 0 0 0 0 0 1 0 0 0 0 1

C6

(F,Sr,di)
0 0 0 0 0 0 0 0 0 0 0 0 0
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three protected attributes: Gender (M, F), Seniority Level (Senior and Junior,

abbreviated as Sr and Jr, respectively), and Marital status (Married, Single, and

Divorced, abbreviated as ma, si, and di, respectively.

An Example Complex fairness constraint. Imagine the goal is to select

k = 4 candidates from the voting outcome described in Table 7.2 with the following

fairness constraints described in Table 7.3.

Table 7.3 Fairness Constraints in Top-4 Results
of Running Example

Attribute Value
Fairness

constraint

Gender
M 2

F 2

Seniority

Level

Sr 2

Jr 2

Marital

Status

ma 2

si 1

di 1

Table 7.4 Table of Notations

Notation Meaning

n,m, k #candidates, #voters,#results

Ai protected attribute

ℓi
#values of a protected

attribute Ai

LC list of candidates

LV

respective list of number

of votes

t threshold

a∗(t)
#candidates form group GA

with at least t votes

C, c set of candidates, Πℓ
i=1ℓi

Preference Elicitation and Aggregation. Each user (voter) casts her top-1

preference (vote) through a ballot, and the k items (candidates) who get the highest

number of votes are elected1. In Section 7.7, we discuss an extension of this settings.

Database. The database contains the outcome of a voting process based on the top-1

preference of m voters over n candidates. The set of candidates will be denoted as C,

individual candidate will be denoted by i and j. Considering the running example,

m = 12 voters provide preferences over a set of n = 6 candidates, and the aggregated

preference is shown in Table 7.2.

1For the remainder of the paper, users and voters are synonymous, as well as items and
candidates are used interchangeably.

175



Note that the outcome may not be unique, and there may be more than one set

of k candidates who get the highest number of votes. We refer to such a situation as

a tie. A reasonable tie breaking is one in which none of the k elected candidates have

received less votes than any non-elected candidate.

Protected Attribute. Each candidate has one or more protected attribute, where

each protected attribute Ai can take any of ℓi different values. When ℓi = 2, it is a

binary protected attribute; when ℓi ≥ 2 it is a multi-valued protected attribute. As

an example, the attributes Marital Status and Gender are multi-valued and binary

protected attributes, respectively.

Top-k [75, 87, 129] Fairness Constraints. When fairness is defined over a single

protected attribute containing ℓ different groups G1, G2,.,Gℓ, such that the required

representation of each group Gi is ai, then the top-k is a fair top-k, if
∑ℓ

i ai = k.

Generalizing this, if fairness is defined over a set R of different protected attributes

with a required representation on each group of each attribute, a fair top-k result

must simultaneously satisfy proportionate representation for all attributes in R.

One such complex fairness constraint is described using Table 7.3. Based on this,

{C1, C3, C5, C6} is a feasible top-4 outcome, as it satisfies all these requirements.

7.2.2 Problem Definitions

Definition 7. Given two candidates i and j, a single ballot substitution is defined

as removing one vote from candidate i and assigning it to candidate j; thus, after the

ballot change, the number of votes obtained by candidate i is decreased by one, and

the number of votes obtained by candidate j is increased by one.

Problem 5. MFBinaryS. Margin Finding for a Single Binary Protected

Attribute. Given a protected attribute A with ℓ = 2 different protected groups,

an outcome of a voting process, and a fairness constraint that requires to have a1
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candidates from group G1 and a2 candidates from group G2 in the top-k, with a1+a2 =

k, find the margin that guarantees a fair outcome.

Using Example 7.2, consider a fairness constraint defined over the binary

protected attribute Gender, such that, aM = aF = 2. The top-4 (C1,C2,C3,C4)

candidates consist of 3 males and 1 female. To satisfy the fairness constraint, one

can remove a single vote from C3 and assign that it to C5. After the substitution,

C3 and C5 will have 2− 1 = 1 and 1 + 1 = 2 votes, respectively. The resulting top-4

(C1,C2,C4,C5) satisfies the fairness constraint and the margin is 1.

Problem 6. MFMultiS. Margin Finding for a Single Multi-valued Protected

Attribute. Given a protected attribute A with ℓ > 2 different protected groups, an

outcome of a voting process, and a fairness constraint that requires for every i ∈ [1..ℓ],

to have ai candidates from group Gi in the top-k, with
∑ℓ

i ai = k, find the margin

that guarantees a fair outcome.

Consider Table 7.2 again with Marital Status as the multi-valued protected

attribute, with ℓ = 3. Consider a top-4 fairness constraint such that, ama = 2∧ asi =

1 ∧ adi = 1. The top-4 candidates (C1,C2,C3,C4) consist of 1 married and 3 single

candidates. To satisfy the fairness constraint, remove two votes from C2 and one vote

from C4 and assign one vote to C5 and two votes to C6. After the substitutions the

votes of candidates C2, C4, C5, and C6 become 1, 1, 2, 2, respectively. The resulting

top-4 (C1,C3,C5,C6) satisfies the fairness constraint. In this case, the margin is 3.

Problem 7. Margin Finding over Multiple Protected Attributes. Given a set

R = {A1, . . . , A|R|} of protected attributes, where attribute Ai has ℓi different protected

groups, an outcome of a voting process, and fairness constraints that require for every

i ∈ [1..|R|], and j ∈ [1..ℓi] to have a[i, j] candidates from group Gj of attribute Ai in

the top-k, with
∑ℓi

j a[i, j] = k, for i ∈ [1..|R|], find the margin that guarantees a fair

outcome.
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MFMulti2. Margin Finding for two Protected Attributes. When |R| =

2, this problem instantiates to finding the margin when the fairness constraints are

defined over two different attributes.

Consider Table 7.2 again, and let R consist of the two attributes Gender and

Seniority level. The top-4 fairness constraints are as follows: aM = 2∧aF = 2∧aSi =

2 ∧ aJr = 2. The top-4 candidates (C1,C2,C3,C4) consist of 1 female and 3 male

candidates, and 1 senior and 3 junior candidates. To satisfy the fairness constraints,

remove two votes from candidate C3 and assigning them to candidate C6. After

the ballot substitutions, C3 has 0 votes, and C6 has 2 votes. The resulting top-4

candidates C1, C2, C4, and C6 with 4, 3, 2, 2 votes, respectively, satisfy the fairness

constraints. It is easy to verify that a fair outcome cannot be obtained by performing

a single substitution. Thus, in this case, the margin is 2.

MFMulti3+. Margin Finding for More than two Protected Attributes.

When |R| ≥ 2, this problem instantiates to finding the margin when the fairness

constraints are defined over three or more different attributes.

Consider Table 7.2 again and the fairness constraint presented in Table 7.3. To

satisfy the fairness constraints, perform 3 single ballot substitutions, by removing

2 votes from C2 and 1 vote from C4 and assigning 2 votes to candidate C6 and 1

vote to C5. After the substitutions the votes of candidates C2, C4, C5, and C6 are

1, 1, 2, 2, respectively. The resulting top-4 (C1,C3,C5,C6) with votes 4, 2, 2, 2

satisfy the fairness constraints. It is easy to verify that a fair outcome cannot be

obtained by performing less than 3 substitutions. Thus, in this case, the margin is

3.

7.3 Single Protected Attribute

In this section, we study two problems, namely MFBinaryS and MFMultiS, the

first one finds margin via single ballot substitutions, when the fairness constraint is
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defined by a single binary protected attribute, and the second one does so when the

fairness constraint is defined by a single multi-valued protected attribute.

7.3.1 Binary Protected Attribute

The algorithm Alg1AttBOpt finds an exact solution to MFBinaryS. The input

to the problem is an initial vote outcome, and a fairness constraint defined by a

single binary protected attribute. The binary attribute partitions the candidates into

two groups GA and GB. The fairness constraint requires that the top-k consists of

a candidates from GA and b candidates from GB, where k = a + b. The initial

vote outcome is represented by two lists, LC - the list of candidates and LV - the

respective list of the number of votes casted to each candidate. We sort both lists in

non increasing order of number of votes, implying that, LC(1) is a candidate with the

most number of votes LV (1), and so on. The output is, B, a set of ballot substitutions

of minimum size that guarantees a fair outcome (or guarantees, in case of a tie, that

all outcomes that can be produced by a reasonable tie breaking are fair).

Algorithm Alg1AttBOpt as well as subsequent algorithms use the notion of

a threshold of an election outcome defined as follows.

Definition 8. The threshold of an election outcome is the number of votes, denoted

by t, such that each of the top-k candidates got at least t votes and at least one such

candidate got exactly t votes.

Using running example, GSr = {C1, C6}, GJr = {C2, C3, C4, C5}, LC =

[C1, C2, C3, C4, C5, C6] , LV = [4, 3, 2, 2, 1, 0]. For k = 4, threshold is t = 2 where

all top-4 candidates got at least 2 votes and both C3 and C4 got exactly 2 votes. We

note that for the original election outcome the threshold is LV (k), and that in case

of a tie any reasonable outcome will have the same threshold.

The core of Alg1AttBOpt is a subroutine FindBallotSubB that finds for

a given threshold t the minimum number of single ballot substitutions that guarantee
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a fair outcome. This subroutine is invoked repeatedly inside Alg1AttBOpt to

efficiently search for the margin, obtained by finding the threshold that achieves the

minimum number of single ballot substitutions that guarantee a fair outcome over all

possible thresholds. The pseudo code of FindBallotSubB and Alg1AttBOpt is

shown in Algotithms 12 and 13.

Let ia be the index in LC of the a-th candidate from GA. That is, LC(ia) ∈ GA

and the number of candidates from GA in LC(1), . . . , LC(ia) is exactly a. Similarly,

let ib be the index of the b-th candidate from GB in LC . Below, we assume that ia < ib

and thus LV (ia) ≥ LV (ib). The other case is symmetric. In Lemma 13 we prove that

the optimal threshold t must be in the interval [LV (ib), LV (ia)]. Thus, from now on

we just consider this interval.

For any threshold t in the open interval (LV (ib), LV (ia)) the optimal set of ballot

additions and removals is determined in Case 3 of subroutine FindBallotSubB

(described below). For a specific t, ballots are added to candidates in group GB

and removed from candidates in group GA. Later we show how to replace the vote

additions and removals by single ballot substitutions. The number of these single

ballot substitutions is the maximum between the number of vote additions and vote

removals.

The number of votes subtracted from candidates in GA declines as t grows in

this interval and the number of votes added to candidates in GB grows as t grows

in this interval. The optimal t can thus be found using binary search. We can

make the binary search even more efficient, and instead of doing it on the interval

(LV (ib), LV (ia)) which may be Ω(m) we can do it on the interval (ia, ib). After

completing this binary search we identify an index i ∈ (ia, ib), such that the optimal

threshold is in the interval [LV (i), LV (i+1)). Later we show how the optimal threshold

in this interval can be computed in constant time.
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Algorithm 12 FindBallotSubB

Inputs: t, LV , LC , a, b, ia, ib

Outputs: S = number of ballot Substitutions

1: Calculate a∗(t), b∗(t)

2: Ia = {(a∗(t) + b∗(t) + 1), . . . , ib}

3: Ba = t(b− b∗(t))−
∑

i∈Ia & LC(i)∈GB
LV (i)

4: Ir = {(ia + 1), . . . , (a∗(t) + b∗(t))}

5: Br =
∑

i∈Ir & LC(i)∈GA
LV (i)− (t− 1)(a∗(t)− a)

6: S = max{Ba, Br}

7: Return S

7.3.2 Subroutine FindBallotSubB

Given a threshold t, FindBallotSubB finds the minimum number of single ballot

substitutions that result in a fair outcome with this threshold. For simplicity we first

assume that the fair outcome does not have a tie. Later, we show how to remove this

assumption.

Let a∗(t) and b∗(t) be the number of candidates from groups GA and GB

respectively who received at least t votes. Note that LV (a∗(t) + b∗(t)) = t and

LV (a∗(t) + b∗(t) + 1) < t.

This subroutine is designed by distinguishing the following cases.

Case 1: t ≤ LV (ib) (and LV (ib) > 0). In this case the numbers of candidates from

groups GA and GB who got at least t votes are at least a and b, respectively; namely,

a∗(t) ≥ a and b∗(t) ≥ b. We decrease the number of votes of the a∗(t)− a candidates

from GA in LC(ia + 1), . . . , LC(a∗(t) + b∗(t)) and the number of votes of the b∗(t)− b

candidates from GB in LC(ib + 1), . . . , LC(a∗(t) + b∗(t)) to t− 1. To reconcile for the

decrease of these votes, we add votes of the candidate in LC(1).

Case 2: t > LV (ia). In this case the numbers of candidates from groups GA and GB

who got at least t votes are less than a and b, respectively; namely, a∗(t) < a and
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Algorithm 13 Alg1AttBOpt

Inputs: LV , LC , a, b

Outputs: M = minimum number of ballot substitutions

1: Calculate ia, ib

2: Sa = num of single ballot substitution for threshold LV (ia)

3: Sb = num of single ballot substitution for threshold LV (ib)

4: Binary Search over all i ∈ (ia, ib)

t = LV (i)

Si = FindBallotSubB(t,LV ,LC ,a, b, ia, ib)

If found i such that M lies in Si, Si+1; break

5: Calculate M for thresholds in the range [LV (i), LV (i+ 1)]

6: Return min{Sa, Sb,M}

b∗(t) < b. We increase the number of votes of the a − a∗(t) candidates from GA in

LC(a∗(t) + b∗(t) + 1), . . . , LC(ia) and the number of votes of the b− b∗(t) candidates

from GB in LC(a∗(t) + b∗(t) + 1), . . . , LC(ib) to t. To reconcile for the increase, we

decrease the number of votes of the candidates from GA in LC(ia + 1), . . . , LC(n)

and the number of votes of the candidates from GB in LC(ib + 1), . . . , LC(n) to 0, as

needed. If this is not enough we can decrease the number of votes of the candidates

in LC(1), . . . , LC(a∗(t + 1) + b∗(t + 1)) to t, as needed. Note that for this case to be

feasible we must have n ≥ k · t.

Case 3: LV (ib) < t ≤ LV (ia). In this case the number of candidates from group GA

who got at least t votes is at least a and the number of candidates from group GB

who got at least t votes is less than b; namely, a∗(t) ≥ a, b∗(t) < b. We increase the

number of votes of the b−b∗(t) candidates from GB in LC(a∗(t)+b∗(t)+1), . . . , LC(ib)

to t. Then, we decrease the number of votes of the a∗(t) − a candidates from GA in

LC(ia + 1), . . . , LC(a∗(t) + b∗(t)) (if such exist) to t− 1. Finally, one has to reconcile

the increase in the votes of the candidates from GB with the decrease in the votes of
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the candidates from GA. If this is not enough, further reconciliation is done similar

to the previous two cases. Note again that for this case to be feasible, one must have

n ≥ k · t.

Using the running example, consider the binary attribute Seniority Level and

a = 2, b = 2. We have iJr = 3, iSr = 6, LV (iJr) = 2, LV (iSr) = 0. Consider a

threshold, t = 1 then a∗(1) = 4 and b∗(1) = 1. To satisfy fairness constraint, one can

reduce votes of a∗(1) − a = 4 − 2 = 2 junior candidate to t − 1 = 1 − 1 = 0. When

these two candidates are C4 and C5, the minimum ballot reduction 2− 0+ 1− 0 = 3

is obtained for this threshold t = 1. Similarly, to obtain fairness, votes of b− b∗(1) =

2−1 = 1 senior candidate has to be increased to t = 1. The minimum ballot increase

will occur when candidate C6 vote is increased from 0 to 1. To reconcile the 3 ballots

that were removed from C4 and C5, one vote is matched to vote added to candidate

C6 and 2 of them are matched to two votes added to candidate C1. After the ballot

substitution the votes of candidates C1, C2, C3, C4, C5, C6 are 6, 3, 2, 0, 0, 1 and the

candidates who got at least t = 1 votes are C1, C2, C3, C6. For threshold t = 1, the

minimum number of ballot substitution that guarantees fairness is 3.

Converting ballot additions and removals to ballot substitutions. In each

of the cases we showed how to reconcile in case there are more vote additions than

removals or vice versa. In case there are more vote additions than removals we are

guaranteed to achieve the reconciliation only if n ≥ k · t. This raises the question

what if for the optimal threshold t we have n < k · t. Suppose that this is the case;

that is, even after reducing the number of votes of all the unelected candidates to 0

and reducing the number of votes of the all the elected candidates to the threshold t

we still have some unmatched ballot additions. It is easy to see that in this case we

have more vote additions than removals, and thus if t > 1, reducing the threshold by

1 will reduce the number of vote additions and thus t cannot be optimal. It follows

that the only assumption we need to make is for t = 1, and in this case we assume
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that n ≥ k. This is a reasonable assumption since we need to elect k and thus we

should have more than k ballots.

Finally, we consider the case of a tie. This may be optimal only when the

threshold is either LV (ia) or LV (ib). For threshold t = LV (ia) we need to also consider

the possibility of increasing the number of votes of the b− b∗(t+ 1) candidates from

GB in LC(a∗(t+ 1) + b∗(t+ 1) + 1), . . . , LC(ib) to t+ 1. Note that after this increase

we may have more than a candidates from GA with at least t votes, but strictly less

than a candidates from GA with at least t + 1 votes. On the other hand we have

exactly b candidates from GB with at least t + 1 votes, but no candidates from GB

with t votes. Thus, we have a tie only if a∗(t) − a∗(t + 1) > a − a∗(t + 1), and any

reasonable way to break such a tie is by varying the subset of size a − a∗(t + 1) of

elected candidates from GA with t votes. For threshold t = LV (ib) we need to also

consider the possibility of decreasing the number of votes of the a∗(t)− a candidates

from GA in LC(ia + 1), . . . , LC(a∗(t) + b∗(t)) to t − 1. The analysis is similar to the

one given above.

Using the running example, consider the binary attribute Seniority Level with

GA and GB the Junior and Senior groups, and a = 2, b = 2. At threshold t = 2, there

is a tie situation for group junior because a∗(2) − a∗(3) = 3 − 1 = 2 > a − a∗(3) =

2−1 = 1. One way of achieving fairness is to increase the votes of candidate C6 from

0 to t+ 1 = 2 + 1 = 3. After the increase there are 3 junior candidates with votes at

least 2 and there is no senior candidate with exactly 2 votes.

Running Time. The running time of Alg1AttBOpt is determined by the

subroutine FindBallotSubB. We precompute a∗(t), a∗(t), for t ∈ (ia, ib) in O(n)

time. We can also precompute required ballot additions and removals for t in(ia, ib)

which also requires O(n). As a result Subroutine FindBallotSubB takes constant

time. This subroutine is called O(log n) times in Alg1AttBOpt. Overall running
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time is O(n + log n) = O(n). The time complexity is dominated by the O(n log n)

time it takes to sort the lists LC and LV .

Lemma 10. Alg1AttBOpt always produces a fair outcome.

Proof. Consider Case 3, where LV (ib) < t ≤ LV (ia). Before the substitution, the
number of candidates who got at least t votes were a∗(t) and b∗(t) from groups
GA and GB respectively. After the substitution, the number of candidates who got
at least t votes from group GB increased by b − b∗(t), and from GA decreased by
a∗(t) − a. The total number of candidates from GB who got at least t votes =
b∗(t) + (b − b∗(t)) = b. The total number of candidates from GA who got at least t
votes = a∗(t) − (a∗(t) − a) = a. The total number of candidates from both GA and
GB who got at least t votes = a+ b = k. Hence, candidates who got at least t votes
constitute the top-k results and the top-k has a and b candidates from group GA and
GB respectively. In this case, top-k satisfies fairness constraint. Similarly, we can
prove that our algorithm produces a fair outcome for the other two cases, and it still
produces a fair outcome when there is a tie.

Lemma 11. Any optimal algorithm for finding the minimum number of single ballot
substitutions that guarantee fairness can be viewed as a Alg1AttBOpt.

Proof. Any optimal algorithm that performs minimum number of single ballot
substitution, will output a top-k set having a, b candidates from group GA, GB

respectively. We can define a threshold t such that, after the substitutions, the
number of candidates from GA who got at least t + 1 votes is less than a but the
number of candidates from GA who got at least t votes is equal to or greater than a ,
and the number of candidates from GB who got at least t+1 votes is less than b but
the number of candidates from GB who got at least t votes is equal to or greater than
b. Any optimal algorithm is essentially finding a threshold t that requires minimum
number of ballot substitutions.

Lemma 12. For a given threshold t, subroutine FindBallotSubB returns a
minimum number of ballot substitutions to satisfy fairness constraint.

Proof. At first, we show that we are doing a minimum number of additions and a
minimum number of removals for a given threshold t. Consider Case 3, to achieve
fairness we need to reduce votes of a− a∗(t) candidates who already got t votes from
group GA to t−1. Algorithm decreases the number of votes of the a∗(t)−a candidates
from GA in LC(ia + 1), . . . , LC(a∗(t) + b∗(t)) to t − 1. This is the minimum number
of vote removals to satisfy a candidates in the top-k. Because if we reduce votes of
candidates who are not in the range of candidates LC(ia + 1), . . . , LC(a∗(t) + b∗(t)),
it will either produce unfair result or result will not be minimum. If we reduce votes
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of candidates from GA in LC(1), . . . , LC(ia), then the number of vote removals is
not minimum because all candidates in that range have higher votes than all the
candidates in LC(ia+1), . . . , LC(a∗(t)+ b∗(t)). We can not reduce votes of candidate
from GA in LC(a∗(t)+b∗(t)+1), . . . , LC(n) to t−1, because they got less than t votes.
Similarly, to achieve fairness we need to increase votes of b∗(t)− b candidates who got
less than t votes from group GB to t. We can show that number of vote additions is
minimized when we add votes from GB in LC(a∗(t) + b∗(t) + 1), . . . , LC(ib). As the
number of vote substitutions is the maximum of vote additions and vote removals,
for a given threshold t, subroutine FindBallotSubB returns the minimum number
of ballot substitutions that guarantee fairness in Case 3. Similarly, we can prove the
same statement for the other 2 cases and when there is a tie.

Lemma 13. The optimal threshold is in interval [LV (ib), LV (ia)].

Proof. Consider a threshold t > LV (ia), to satisfy fairness, the number of votes of
the a− a∗(t) candidates from GA in LC(a∗(t)+ b∗(t)+ 1), . . . , LC(ia) and the number
of votes of the b− b∗(t) candidates from GB in LC(a∗(t) + b∗(t) + 1), . . . , LC(ib) need
to be increased to at least t. On the other hand vote removals are not needed. It
follows that the number of ballot substitutions equals the total number of ballot
additions. Clearly, the number of vote additions required to guarantee fairness in
case the threshold is LV (ia) is lower, and thus t cannot be optimal. Similarly, for
threshold t < LV (ib), the number of vote removals required to guarantee fairness is
more than this number when the threshold is LV (ib). Hence, the optimal threshold t
must be in the interval [LV (ib), LV (ia)].

Lemma 14. The minimum number of ballot additions to GB increases and the
minimum number of ballot removals from GA decreases monotonically with t in the
interval [LV (ib), LV (ia)].

Proof. We get minimum number of ballot additions when we increase votes of the
b−b∗(t) candidates from GB in LC(a∗(t)+b∗(t)+1), . . . , LC(ib) to t. When t increases,
both b − b∗(t) and distance from t to votes of candidates from GB in LC(a∗(t) +
b∗(t) + 1), . . . , LC(ib) increases. Hence, the minimum number of ballot additions to
GB increases monotonically with t in the interval [LV (ia), LV (ib)]. Similarly, we can
prove that the minimum number of ballot removals from GA decreases monotonically
with t in the interval [LV (ia), LV (ib)].

Theorem 27. Alg1AttBOpt produces optimal result.

Proof. We proved that for a given threshold t, FindBallotSubB calculates
minimum ballot substitutions required to satisfy fairness. Optimal threshold t is
in the interval of [LV (ib), LV (ia)]. Since the minimum number of ballot additions
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to GB increases and the minimum number of ballot removals from GA decreases
monotonically with t in the interval [LV (ib), LV (ia)] the optimal number of ballot
substitutions can be found by performing a binary search in the range [LV (ib), LV (ia)].
Hence, Alg1AttBOpt produces optimal result.

7.3.3 Multi-valued Protected Attribute

Next we consider a multi-valued protected attribute. Consider an attribute A with

ℓ possible values, denoted A[1], . . . , A[ℓ]. The fairness constraint requires that the

top-k consists of a[j] candidates with attribute value A[j], where
∑ℓ

j=1 a[j] = k.

We first describe the subroutine FindBallotSubM for multi valued attribute.

Then we use it to perform a binary search for the optimal threshold similar to

Alg1AttBOpt. For a given threshold t, the subroutine FindBallotSubM

computes the minimum number of single ballot substitutions that result in a fair

outcome. For simplicity we first assume that the fair outcome does not have a tie.

Later, we show how to remove this assumption. Define ia[j] as the index in LC of

the a[j]-th candidate with attribute value A[j]. That is, the candidate LC(ia[j])

has attribute value A[j] and the number of candidates with this attribute value

in LC(1), . . . , LC(ia[j]) is exactly a[j]. Below, we assume that ia[1] ≤ . . . ≤ ia[ℓ].

Other cases are symmetric. Define aj∗(t) as the number of candidates with attribute

value A[j] who received at least t votes (before any ballot changes). Note that

LV (a1∗(t) + . . .+ aℓ∗(t)) = t and LV (a1∗(t) + . . .+ aℓ∗(t) + 1) < t.

Below we distinguish several cases.

Case 1: t ≤ LV (ia[ℓ]). We decrease the number of votes of the aj∗(t)− aj candidates

with attribute value A[j] in LC(ia[j] + 1), . . . , LC(a1∗(t) + · · ·+ aℓ∗(t)) to t− 1 for all

j ∈ [1..ℓ].

Case 2: t > LV (ia[1]). We increase the number of votes of the a[j]−aj∗(t) candidates

with attribute value A[j] in LC(a1∗(t) + . . . + aℓ∗(t) + 1), . . . , LC(ia[j]) to t for all

j ∈ [1..ℓ].
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Case 3: LV (ia[j+1]) < t ≤ LV (ia[j]). We increase the number of votes of the a[q] −

aq∗(t) candidates with attribute value A[q] in LC(a1∗(t)+ · · ·+aℓ∗(t)+1), . . . , LC(ia[q])

to t for q ∈ [j+1..ℓ]. We decrease the number of votes of the ap∗(t)− a[p] candidates

with attribute value A[p] in LC(ia[p] + 1), . . . , LC(a1∗(t) + · · · + aℓ∗(t)) (if such exist)

to t− 1 for all p ∈ [1..j].

In all three cases, we reconcile the ballot additions and removals to obtain single

ballot substitutions the same way it is done in the binary case described previously.

Finally, we consider the case of a tie that may occur when the threshold is any

of LV (ia[j]) (or multiple of them). We find the maximum of the number of candidates

with the same attribute value who got exactly t votes (after the vote manipulations).

Let this attribute value be p. We do not change the votes of these candidates. For the

rest of the candidates we do the following. For all candidates with attribute value A[q],

for which q ̸= p and t ≥ LV (ia[q]), we increase the number of votes of the a[q]−aq∗(t+1)

candidates with attribute value A[q] in LC(a1∗(t+1)+· · ·+aℓ∗(t+1)+1), . . . , LC(ia[q])

to t+1. For all candidates with attribute value A[q], for which q ̸= p and t ≤ LV (ia[q]),

we decrease the number of votes of the aq∗(t)−a[q] bottom candidates with attribute

value A[q] in LC(ia[q] + 1), . . . , LC(a1∗(t) + · · ·+ aℓ∗(t)) (if such exist) to t− 1.

Running Time. The running time of Alg1AttMOpt is also dominated by the

O(n log n) time it takes to sort the lists LC and LV as in Alg1AttBOpt. We note

that we use to a priority queue to implement FindBallotSubM efficiently. The

initialization of this priority queue takes O(n) time, and each iteration takes O(log ℓ)

time. Thus the overall running time of Alg1AttMOpt (excluding the sorting) is

O(n+ log n log ℓ) = O(n).

Theorem 28. Alg1AttMOpt always produces a fair outcome.

Proof. The proof is similar to the proof of Theorem 27.

188



7.4 Multiple Protected Attributes

In this section we assume that there are ℓ attributes, denoted A1, . . . , Aℓ. For i ∈ [1..ℓ],

attribute Ai has ℓi possible values, denoted A[i, j], for j ∈ [1..ℓi]. Each candidate is

associated with a specific value from each attribute. In addition, we are given target

quantities a[i, j], for i ∈ [1..ℓ], and j ∈ [1..ℓi], with property that all marginals some to

k. Namely, for every i ∈ [1..ℓ],
∑ℓi

j=1 a[i, j] = k. A fair election outcome should satisfy

the fairness condition that for i ∈ [1..ℓ], and j ∈ [1..ℓi], exactly a[i, j] candidates whose

Ai attribute value is A[i, j] are elected. The goal is to find the margin, namely the

minimum number of ballot substitutions, that guarantees a fair outcome.

We consider the complexity of computing the margin in the multi attribute

case. We first show that if the total number of possible values of the ℓ-dimensional

attribute vector is constant then the multi attribute case can be reduced to the single

attribute case. Next, we consider the general 3 attribute case and show that even

deciding the feasibility of a fair outcome is NP-Complete in this case. Then, we

consider the 2 attribute case and show that it is weakly NP-Complete. (Recall that

problem is weakly NP-complete if there is an algorithm for the problem whose running

time is polynomial in the dimension of the problem and the magnitudes of the data

involved, provided these are given as integers, rather than the base-two logarithms

of their magnitudes.) On the positive side, we show a 2 approximation algorithm for

this case by designing an algorithm that minimizes the sum of ballot additions and

removals.

7.4.1 Constant Number of Attribute Configurations

We propose AlgCartOpt by converting multiple protected attribute to a single

multi-valued attribute. Suppose that Πℓ
i=1ℓi is constant c. This means that we have

a constant number c of possible values of the ℓ-dimensional attribute vector. For i ∈

[1..c], let V⃗ [i] = V [i, 1], V [i, 2], . . . , V [i, ℓ] be the i-th possible value of ℓ-dimensional
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attribute vector. We enumerate over all c-tuples (n1, . . . , nc) such that
∑c

i=1 ni = k.

Each such c-tuple represents a possible outcome of the election in which ni candidates

with attribute vector V⃗ [i] are elected. For each such c-tuple we first check that it is a

feasible outcome by making sure that there are at least ni candidates with attribute

vector V⃗ [i], for i ∈ [1..c]. If so, we further check if having ni candidates with attribute

vector V⃗ [i] results in the desired outcome. This is the case if the following is satisfied:

∀ j ∈ [1..ℓ] ∀ r ∈ [1..ℓj]
c∑

i=1

ni · 1V [i,j]=A[j,r] = a[j, r]. (7.1)

In this case we compute the margin required to guarantee ni candidates with attribute

vector V⃗ [i], for i ∈ [1..c], by reducing this to the single attribute case, where the single

attribute has c possible values corresponding to the possible values of the attribute

vector.

Using the running example, consider the attributes Gender and Marital Status

where ℓGender = 2, ℓMaritalStatus = 3 and c = 3 × 2 = 6. The required numbers of

candidates with each attribute value are a[M ] = 2 ∧ a[F ] = 2 ∧ a[ma] = 2 ∧ a[si] =

1∧ a[di] = 1. Here, V [1] = {M, si}, V [2] = {M, si}, V [3] = {M,ma}, V [4] = {F, si},

V [5] = {F,ma}, and V [6] = {F, di}. One of the possible tuples that satisfy fairness

is (n1, . . . , n6) = (1, 0, 1, 0, 1, 1) where
∑6

i=1 ni = 4.

Running time. Since the number of c-tuples is O(nc), we can solve the case of

constant number of attribute configurations by O(nc) calls to the single attribute

case and then choosing the call that produced the smallest margin. Alg1AttBOpt

has a running time of O(n). Overall running time is O(nc+1).

Theorem 29. AlgCartOpt finds the optimal set of single ballot substitutions.

Proof. We first prove that the outcome is fair. In AlgCartOpt, each c-tuple
represents a possible outcome of the election in which ni candidates with attribute
vector V⃗ [i] are elected, and all c-tuples satisfy equation 7.1. As

∑c
i=1 ni = k, the

output top-k has a[j, r] candidates from group A[j,r]. Hence, AlgCartOpt always
produces fair outcome. Since we enumerate over all possible c-tuples (n1, . . . , nc) that
satisfy fairness, AlgCartOpt produces optimal result.
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7.4.2 The 3 Attribute Case

In the 3 attribute case, each candidate has 3 attributes A[1, j1], A[2, j2] and A[3, j3],

where ji ∈ [1..ℓi], for i ∈ {1, 2, 3}. The outcome needs to have exactly a[i, j]

candidates with attribute A[i, j], for i ∈ {1, 2, 3} and j ∈ [1..ℓi].

Theorem 30. Deciding the feasibility of a general instance of the 3 attribute case
(and thus any d ≥ 3 attributes as well) is NP-Complete.

Proof. Given a solution that specifies the ballot substitutions in an instance of the 3
attribute case it is easy to check whether the solution satisfies the fairness conditions.
To prove the hardness we reduce the 3-Dimensional Matching problem (3DM) to our
problem. Our Technical Report contains further details.

7.4.3 Hardness of the 2 Attribute Case

In the 2 attribute case, each candidate has 2 attributes A[1, j1], A[2, j2], where j1 ∈

[1..ℓ1] and j2 ∈ [1..ℓ2]. A fair outcome needs to have exactly a[i, j] candidates with

attribute A[i, j], for i ∈ {1, 2} and j ∈ [1..ℓi]. The problem is to find the minimum

number of ballot substitutions needed to guarantee a fair outcome.

Theorem 31. Deciding whether a given number of ballot substitutions guarantees a
fair outcome of a general instance of the 2 attribute case is weakly NP-Complete.

Proof. Given a solution that specifies the ballot substitutions in an instance of the 2
attribute case it is easy to check whether the solution satisfies the fairness conditions.
To prove the hardness we reduce the weakly NP-Hard Partition problem to our
problem. The proof is rather involved and we refer to our Technical Report for
details.

7.4.4 Approximating the Margin in the 2 Attribute Case

We show a 2 approximation algorithm Alg2AttApx (Algorithm 15) for computing

the margin in the 2 attribute case. Let OPTC be the optimal number of ballot

substitutions required to guarantee a fair outcome. Let OPTA+R be the optimal

number of ballot additions and removals required to guarantee a fair outcome. The

approximation algorithm first computes OPTA+R ballot additions and removals that
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yield a fair outcome. Then, this solution is converted to a solution with at most

OPTA+R ballot substitutions that has a fair outcome. Note that OPTA+R ≤ 2OPTC ,

since any solution with x ≥ 0 ballot substitutions can be converted to a solution

with x ballot additions and x ballot removals. Thus the solution with OPTA+R ballot

substitutions is a 2 approximation.

Computing the optimal ballot additions and removals We compute OPTA+R

ballot additions and removals that yield a fair outcome. The subroutine

FindBallotSub2Att is shown in Algorithm 14. This is done by enumerating all

possible thresholds and for each threshold t we compute the optimal number of ballot

additions and removals that yield a fair outcome by casting the problem as a min-cost

b matching problem. We also show that the number of possible thresholds is 3n− 1

(where n is the number of candidates).

The b-matching problem is defined on a bipartite graph G(X, Y,E), where the

nodes in X correspond to the possible values of the first attribute, the nodes in Y

correspond to the possible values of the second attribute, and the edges correspond

to the candidates. Specifically, for i ∈ [1..ℓ1], node xi ∈ X corresponds to attribute

value A[1, i], for j ∈ [1..ℓ2], node yj ∈ Y corresponds to attribute value A[2, j], and

a candidate c with attributes A[1, i], A[2, j] corresponds to an edge ec = (xi, yj).

Note that we may have parallel edges in case there are more than one candidate with

the same attributes. Next, we define the weight of each edge. The weight of edge

ec, denoted w(ec) depends on the number of votes of the candidate c. Suppose that

c = LC(i) and thus this candidate has LV (i) votes. If LV (i) < t then w(ec) = t−Lv(i).

Otherwise, that is LV (i) ≥ t, then w(ec) = (t− 1)− LV (i) < 0.

Define a b-matching in the graph G as a collection of edges such that exactly

a[1, i] edges are adjacent to node xi ∈ X, for i ∈ [1..ℓ1], and exactly a[2, j] edges

are adjacent to node yj ∈ Y , for j ∈ [1..ℓ2]. Note that total number of edges in the
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b-matching is
∑ℓ1

j=1 a[1, j] =
∑ℓ2

j=1 a[2, j] = k. Consider a b-matching M ⊆ E in the

graph G. Clearly, this matching corresponds to a subset of k candidates that satisfy

the fairness conditions. Let w(M) =
∑

e∈M w(e) denote the weight of the matching

M .

Using the running example, for the attributes Gender and Marital Status X =

{M,F} and Y = {ma, si, di}. The candidates correspond to edges: C1 to ec1 =

(M, si), C2 to ec2 = (M, si), C3 to ec3 = (M,ma), and so on. Notice that edges ec1

and ec2 are parallel as both connecting node M to si. Consider a threshold t = 2,

weight of edge eC1 is, w(eC1) = t− 1− LV (1) = 2− 1− 4 = −3 because in this case

LV (1) ≥ t. On the other hand, weight of edge eC5 is, w(eC5) = t−LV (5) = 2− 1 = 1

since LV (5) < t. The weights of the 6 edges corresponding to candidates C1, C2,

C3, C4, C5, and C6 are {−3,−2,−1,−1, 1, 2}. To satisfy the fairness constraint that

requires 2 male and 2 female to be in the top-4, the b-matching has 2 edges adjacent

to each of the nodes M and F . Similarly, To satisfy the fairness constraint that

requires 2 married, 1 single, and 1 divorced to be in the top-4, the b-matching has 2

edges adjacent to node ma and 1 edge adjacent to each of the nodes si and di. The

total number of edges in b-matching is = 2 + 2 = 2 + 1 + 1 = 4 = k. The result of

b-matching is M∗ = {eC1, eC3, eC5, eC6} and w(M∗) = −3 − 1 + 1 + 2 = −1. Here,

R = 3 + 2 + 1 + 1 = 7, and AplusR = −1 + 7 = 6 (see below).

Theorem 32. Let M∗ ⊆ E be a minimum cost matching. The number of ballot
additions and removals needed to guarantee the election of the candidates that
correspond to the edges of M∗ with threshold t is minimum among all fair outcomes
that can be obtained with threshold t.

Proof. Let R =
∑

e∈E max{−w(e), 0} Consider the sum w(M∗) + R. For each edge
ec ∈ M∗ that corresponds to a candidate with less than t votes, the weight w(ec) is
exactly the number of vote additions required to bring candidate c to the threshold
t. Since this weight is non-negative the respective term of ec in R is 0. For each edge
ec ∈ M∗ that corresponds to a candidate with at least t votes, its weight is negative
and thus its contributions to w(M∗) and R cancel each other. Each edge ec ∈ E \M∗

that corresponds to a candidate with at least t votes contributes just to R and this
contribution is exactly the number of vote removals required to bring candidate c
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below the threshold t. Each edge ec ∈ E \M∗ that corresponds to a candidate with
less than t votes does not contribute anything to the sum. It follows that w(M∗)+R
is the number of ballot additions and removals needed to guarantee the election of
the candidates that correspond to the edges of M∗ with threshold t. Since R is
independent of any specific matching the matching M∗ minimizes w(M) +R over all
feasible matching M ⊆ E. The theorem follows.

To compute OA+R we need to iterate the min cost matching over all possible

threshold values. We show that it is enough to consider no more than 2n threshold

values. It is easy to see that we just need to consider threshold values in the interval

[LV (1), LV (n)]. For i ∈ [1..n − 1] consider the open sub-interval (LV (i), LV (i + 1)).

Note that the set of candidates below this threshold and the set of candidates above

this threshold are identical for all thresholds in this sub-interval. We claim that it is

enough to just consider the two extreme threshold values in this sub-interval, namely,

LV (i) + 1 and LV (i + 1) − 1. Consider any threshold t ∈ [LV (i) + 2..LV (i + 1) − 2]

and the subset of candidates that yield a fair outcome with the minimum number

of ballot additions and removals with threshold t. If this subset of candidate has

more candidates that are below the threshold, then the number of of ballot additions

and removals required to elect this subset of candidates with threshold LV (i) + 1 is

lower. Otherwise, that is, at least half the candidates in this subset are not above the

threshold, then the number of of ballot additions and removals required to elect this

subset of candidates with threshold LV (i + 1) − 1 is not higher. It follows that the

only threshold values that need to be checked are LV (i), LV (i) + 1, LV (i+ 1)− 1, for

i ∈ [1..n− 1], and LV (n).

Approximating the number of single ballot substitutions Given the OA+R

ballot additions and removals that yield a fair outcome with the threshold t, we

generate a set of no more than 2OC ballot substitutions that yield a fair outcome.

Suppose that the optimal set of ballot additions and removals is composed from a

additions and r removals, where a+ r = OA+R. We distinguish two cases.
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Case 1: a ≤ r. In this case we create a ballot substitutions by matching a ballot

addition with a ballot removal. We are left with r−a ballot removals that we convert

to ballot substitutions by adding r − a ballots all of them with votes to any of the

already elected candidates.

Case 2: a > r. In this case we create r ballot substitutions by matching a ballot

removal with a ballot addition. We are left with a−r ballot additions. We match these

addition with ballot removals that subtract votes from some (or all) the unelected

candidates. Suppose that even after reducing the number of votes of all the unelected

candidates to 0 we still have some unmatched ballot additions. In this case we subtract

votes from some (or all) the elected candidates reducing their number of votes to the

threshold t. Suppose that this is still not enough to match all the ballot additions.

In this case we lower the threshold down from t. Note that as long as the threshold

is not lowered to 0 the outcome remains the same (since all the unelected candidates

have now 0 votes). As we lower the threshold the number of ballot that needs to be

added is reduced and we can also reduce further the number of votes of the elected

candidates. We claim that if the number of ballots is at least k then this process has

to stop when all the ballot additions are matched at some threshold t′ > 0. Suppose

that this is not the case then at threshold 1 we still have unmatched ballot additions.

However, since in this case all the elected candidates have one vote and the there

are still unmatched additions then the number of ballot substitutions and thus the

number of ballots is less than k. Since we need to elect k candidates it is reasonable

to assume that we have more than k ballots.

Running Time. The running time of Alg2AttApx is determined by the time

complexity of subroutine FindBallotSub2Att and specifically by the computation

of a minimum cost b-matching in G. The b-matching problem can be solved via a

min cost flow algorithm on a graph with ℓ = ℓ1 + ℓ2 nodes and n edges. It follows

that the min cost flow problem can be solved in O(nℓ logm) time [6]. The subroutine
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FindBallotSub2Att is called O(n) times from Alg2AttApx. Thus, the running

time of Alg2AttApx is O(n2ℓ logm).

7.5 Experimental Evaluations

We evaluate both the quality and scalability of the proposed algorithms. The quality

studies focus on finding the margin values and comparing them to the implemented

(optimal) baselines for the problems MFBinaryS, MFMultiS, MFMulti2, and

MFMulti3+. Thus, providing computational evidence to the correctness of

our exact algorithms and evaluating the computational approximation ratios of

our approximation algorithms versus the approximation ratios that were proven

analytically. The scalability measures the running time of the implemented algorithms

by varying the number of candidates (N), number of voters (m), number of top

items (k), and the complexity of the fairness constraints (single binary, vs single

multi-valued, vs two attributes, or more than three attributes).

7.5.1 Experiment Design

All the algorithms are implemented in Python 3.8 on a machine with Windows 11,

core i7 with 16gb memory. All numbers are presented as an average of 10 runs. Code

and data could be found in the github.

Datasets Description Algorithms are evaluated using multiple real world and a

synthetic datasets. The datasets descriptions are presented in Table 7.5.

Synthetic dataset. We generate large scale synthetic data using normal

distribution for each binary protected attribute, as voting outcomes tend to follow

such distributions [105]. The process runs as follows -a loop is repeated m times to

generate an id between 1...n (top candidate choice of a voter) that follows normal

distribution with certain mean (mean) and standard deviation (sd). Additionally,

there is a parameter p that dictates the probability of candidates of the first group

196

vldb23_https://anonymous.4open.science/r/BallotChange-266D/


Table 7.5 Real World Datasets

Dataset # candidates(n) # voters(m) protected attributes (ℓ)

New South

Wales (NSW)

Senate Elections

105 4695326

single multi-valued ℓ = 36

on the political parties and

the election history

Bronx Justice

of the Supreme

Court Election

in New York

City

107, 163 4
single binary - democrat and

republican

MovieLens 2926 382323

3 attributes on movie genre,

production company and

original language.

to be ranked higher than that in the second group. The mean, sd and p are set to

0.5 ∗ n, 0.3 ∗ n and 0.5, respectively. We consider the top-1 choice of each voter to

generate the voting outcome.

Implemented Algorithms We implement the following baseline algorithms.

The first two baselines are heuristics, whereas, the last one gives exact solution

of the problem. These algorithms are compared with our proposed solutions

Alg1AttBOpt, Alg1AttMOpt, Alg2AttApx, AlgCartOpt.

• LEXIMIN [66] + FindBallotSub. This existing work is not designed to solve
the margin finding problem, but it produces a probability distribution of a set
of possible top-k candidates, where each set satisfies fairness constraints. We
draw one such top-k set from the output distribution based on the associated
probability and consider that to be the set of selected candidates in top-k. Given
this top-k, we run the FindBallotSub to compute the margin.
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• Fair-Topk-Set [129]+FindBallotSub. This related work also does not solve
the margin finding problem. Rather it proposes a greedy algorithm to satisfy
fairness constraint over a single protected attribute on the top-k set, similar to
one of our prior work [140]. When multiple protected attributes are considered,
it converts it to a single multi-valued protected attribute considering the
Cartesian Product over the attribute values and taking the joint distribution
assuming the attributes to be independent. As before, once these steps are
performed, we run the FindBallotSub to compute the margin.

• Integer Linear Programming. We implement an exact algorithm for
MFBinaryS, MFMultiS, MFMulti2, and MFMulti3+ problems using
ILP. We refer to these variants as ILPBinaryS, ILPMultiS, ILPMulti2,
ILPMulti3+, respectively.

7.5.2 Summary of Results

Our first and foremost observation is, consistent with our theoretical analysis

Alg1AttBOpt, Alg1AttMOpt, AlgCartOpt produce exact solutions of the

underlying problems, i.e., they satisfy the fairness constraints, while minimizing

the margin values, whereas, Alg2AttApx demonstrates better approximation

factors compared to the theoretical bound 2. Our second observation is, the

implemented state-of-the-art solutions LEXIMIN [66] and Fair-Topk-Set [129],

despite adapting them non-trivially to our problem, fail to optimize margin values

and do not turn out to be effective to be used. Our final observation is, consistent with

our theoretical analysis, Alg1AttBOpt, Alg1AttMOpt, and Alg2AttApx

are highly scalable, and run well on outcome consisting of a very large number of

candidates, ballots, or large k. We find that the value of margin depends on both k

and the vote gaps between candidates: with increasing k, margin generally decreases

with larger k. On the other hand, we also notice that the margin increases with larger

gap between the candidates.
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7.5.3 Quality Experiments Results

Results for MFBinaryS The Figure 7.1(a) includes the data from the election

for 2021 Bronx Justice of the Supreme Court. There are 6 candidates(5 Democrats

and 1 Republican), in which the candidate from Republican receives the least votes.

We set the Republican must be included in the top-k (otherwise, the margin would

be zero). We can observe that the margin decreases with increasing k.

We construct a synthetic attribute for the candidates in 2019 NSW Senate

Election dataset in Figure 7.1(b): isAtxPercentile, where x is the specific percentile

we want to evaluate (only one member will be assigned True and all others are

False). This figure illustrates the relation between the margin and vote gaps across

candidates, we calculate the required margin for promoting one candidate at the

specific percentile position into the top-5.

(a) 2021 Bronx Justice Election (b) 2019 NSW Senate Election

Figure 7.1 Results for MFBinaryS.

Results for MFMultiS We present the results for MFMultiS in Figure 7.2. We

consider the party of candidates in 2019 NSW Senate Election and the movie genre

in MovieLens as the protected attributes. In 2019 NSW Senate Election, candidates

are from 36 parties and there 18 genres in MovieLens dataset.
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(a) 2019 NSW Senate Election (b) MovieLens

Figure 7.2 Results for MFMultiS.

Results for MFMulti2 Figure 7.3 shows the results for MFMulti2. We consider

whether the candidate has been elected before as the additional protected attribute

in NSW Senate Election dataset, and only four candidates have been elected before.

On the other hand, the binary attribute: whether produced by American companies

of each movie is the additional protected attribute in MovieLens dataset, and 540

movies are produced by American companies. We can observe that the margins from

Alg2AttApxis bounded by 2 times of ILP ’s result and AlgCartOptproduces the

exact results which match our expectations.

(a) 2019 NSW Senate Election (b) MovieLens

Figure 7.3 Results for MFMulti2.
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Results for MFMulti3+ Similar to 7.5.3, we consider the binary attribute:

whether the original language of movie is English as the third protected attribute

in MoiveLens and there are 2112 movie’s original language is English.

Figure 7.4 Results for MFMulti3+.

7.5.4 Scalability Results

(a) Alg1AttBOpt vs
Alg1AttMOpt vary n,
k = 50,m = 10000k

(b) Alg1AttBOpt vs
Alg1AttMOpt vary m,
k = 50, n = 10k

(c) Alg1AttBOpt vs
Alg1AttMOpt vary k,
n = 10k,m = 10000k

Figure 7.5 Running time for MFBinaryS, MFMultiS.

For these experiments, we use the synthetically generated normally distributed

data to validate the effect of the parameters n, m, k on the running time of the

proposed algorithms, considering one, two, or three or more protected attributes.

Results for MFBinaryS, MFMultiS In these experiments, we set the default

parameters as follows: n = 10k,m = 10000k, k = 50, ℓ = 2 for Alg1AttBOpt
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(a) Alg2AttApx vary n,
m = 100k, k = 50

(b) Alg2AttApx vary m,
n = 10k, k = 50

(c) Alg2AttApx vary k,
n = 10k, m = 100k

Figure 7.6 Running time for MFMulti2.

(a) Vary sd, m = 1000k, n = 10k:
Alg1AttBOpt vs Alg1AttMOpt

(b) Vary mean, m = 1000k, n = 10k:
Alg1AttBOpt vs Alg1AttMOpt

Figure 7.7 Varying distribution MFBinaryS, MFMultiS.

Figure 7.8 Running time for MFMulti3+
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and ℓ = 3 for Alg1AttMOpt considering a single attribute. Figure 7.5 shows

that our proposed algorithms Alg1AttBOpt and Alg1AttMOpt are scalable up

to millions of candidates and voters. In Figure 7.5(a), the running time increases

log-linearly w.r.t number of candidates n, whereas the running time does not change

significantly while varying number of voters m and the size of the result set k

(Figure 7.5(b), 7.5(c)).

Figure 7.7(b) and 7.7(a) show running times ofAlg1AttBOpt andAlg1AttMOpt

varying standard deviation (sd) and mean. We observe non-significant change in

running time due to sd and mean.

Results for MFMulti2 The default parameters for the experiments ofMFMulti2

are as follows: n = 10k, m = 1000k, k = 50 considering two attributes. The

running time of Alg2AttApx w.r.t n,m and k are shown in Figure 7.6. The

running time of Alg2AttApx is sub-quadratic w.r.t number of candidates n as

shown in Figure 7.6(a), while it increases linearly w.r.t number of voters m (shown

in Figure 7.6(b)) and does not change significantly with the size of the result set k

(Figure 7.6(c)).

Results for MFMulti3+ In these experiments, we set the default parameters as

follows: n = 100,m = 1000 considering three or more attributes. In Figure 7.8,

we present the running time of AlgCartOpt w.r.t c where c = Πℓ
i=1ℓi. Here, the

running time increases exponentially with c.

7.6 Related Work

We primarily discuss three types of existing work that are related to our proposed

problem.

Preference Elicitation and Aggregation. Preference of the individual users could

be elicited as pairwise comparison [55], in form of a binary vector [124] known as
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Approval Voting [37], in an ordinal scale [12,86], or considering Arrowian social choice,

where users provide partial or complete preference order over the items [32, 42, 85,

127]. Similarly, The properties of social welfare functions for aggregating preferences

have been studied by mathematicians since the 18th century [41, 46, 48]. Different

preference aggregation methods are proposed, including majority voting, plurality

voting [90, 104, 113], their weighted versions, as well as aggregation methods that

consider positional preference [32, 42, 127], such as Kemeny rule [59, 82], Condorcet

rule [52], or Borda Count [60]. Our adopted preference elicitation model allows users

to provide their top-choice and aggregate these choices using plurality voting, which

is natural for our problem setting.

Fairness in Preference Aggregation and Top-k. In [67,121], authors study the

fairness of preference aggregation in the context of Arrow’s Impossibility Theorem.

In a very recent work of ours [140], we study how to ensure proportionate fairness in

aggregating preferences that are provided as ranked orders. The idea of proportionate

fairness (p-fairness) is studied in the context of resource scheduling [26,27]. Earlier,

existing works study proportionate representation considering group fairness in the

top-k ranked order [72, 87]. Authors in [69] study how to strike a balance between

individual and group fairness in selecting top-k order. In [18], the authors study how

to tune the weights of the attributes to promote fairness in the top-k ranked results.

We are also aware of prior works that select top-k set [66, 129] to maximize fairness

or diversity. In a recent paper [44], the authors maximize a monotone submodular

function given only upper bound of fairness constraints. They study three different

functions, namely, Chamberlin-Courant rule, SNTV (similar to ours) and α − CC,

where SNTV is similar to ours. Unlike our work, it does not study ballot substitution

as well as does not consider exact fairness constraints.

Preference Update Models. Preference update could elicited by adding a new

vote, deleting an existing vote, or substituting the original preference with another
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choice. In the absence of adversaries, the last one is most realistic that we adopt in this

work. Preference substitution of preference transfer has received significant interests

in electoral systems, in particular, to understand the mechanism of Single Transferable

Vote (STV) [64, 133]. In [144], the authors study margin, defined as the number of

ballot manipulation to introduce a different election result for different voting systems,

including approval voting, all positional scoring rules (which include Borda, plurality,

and veto). In [33, 43, 126] margin is calculated in STV setting. In [25], Orlin and

Bartholdi prove margin finding is NP-hard even for a single candidate selection for

STV where voters provide a full preference of the candidates.

While we adapt popular preference elicitation and preference aggregation models,

we are the first to study the margin finding problem under single ballot substitutions

considering complex fairness constraints defined over multiple protected attributes and

present principled solutions with theoretical guarantees.

7.7 Discussion

In this section, we present extensions of the proposed problems. Fair top-k

considering top-p ranked preference. One extension is to study the preference

substitution problem where the ballot contains a ranked order of top-p preference.

Clearly, when multiple ranked preferences are provided by voters, the preference

substitution is much more complex and has to be guided by specific mechanism. We

intend to study this problem considering the preference substitution model outlined

in the STV process (Single Transferable Vote) [25,64]. In STV, the vote substitution

is guided by the notion of quota, which is the minimum number of votes a candidate

needs to be selected in top-k that depends on the value of the number of candidates

(n), and the number of seats (k). STV operates in rounds, where, in each round the

mechanism allows either selecting one or more candidates to be part of the top-k,

or eliminating a candidate from further consideration. STV provides a mechanism

to “transfer” excess votes from the winning and losing candidates to be distributed
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amongst the next best choice of the voters in the ballot. An ongoing effort is to

simply understand the margin finding problem under STV model considering even a

single protected attribute.

Alternative preference update models. In this proposed work, we study the

preference update model considering only substitutions. One can potentially consider

other update models, such as, just adding votes, as well as deleting votes. Clearly,

these alternative update models do not satisfy the vote invariance property, which

makes these models contrived for certain applications. However, under the presence

of an adversary, such update models may appear realistic. As an ongoing work, we

are studying these alternative models under adversarial consideration and we believe

our algorithmic framework can be applied for these models as well.

7.8 Conclusion

We initiate the study of the margin finding problem for preference aggregation under

single ballot substitutions, considering one and multiple protected group attributes to

promote fairness, present a suite of algorithms with provable guarantees, and conduct

rigorous experimental analysis.

In Section 7.7, we discuss how our proposed work could be used as a starting

point for studying fairness criteria in some generalized settings, such as, ensuring

fairness where the substitution is governed by STV as well as considering other

preference update models that we continue to study as ongoing works.
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Algorithm 14 FindBallotSub2Att
Inputs: LC , LV , A, t

Outputs: AplusR = Sum of vote addition and removal

1: X = {xi : xi ∈ A1}

2: Y = {yj : yj ∈ A2}

3: E = {ec = (xi, yj) : c ∈ LC with attributes A[1, i] A[2, j]. }

4: for i = 1 to n do

5: c = LC(i)

6: if LV (i) < t then

7: w(ec) = t− LV (i)

8: else

9: w(ec) = (t− 1)− LV (i)

10: end if

11: end for

12: Construct the graph G = (X, Y,E,w)

13: Set the constraints on the number of adjacent edges of nodes xi and yj to a[1, i]

and a[2, j] respectively

14: Find M∗ a min cost b-matching in G subject to the constraints on the number

of adjacent edges

15: R =
∑

e∈E max{−w(e), 0}

16: AplusR = w(M∗) +R.

17: Return AplusR
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Algorithm 15 Alg2AttApx
Inputs: LV ,LC ,A

Outputs: OPTA+R

1: OPTA+R = k ·m

2: U = {LV (i), LV (i) + 1, LV (i+ 1)− 1 : i ∈ [1 . . . n− 1]} ∪ {LV (n)}

3: for t ∈ U do

4: AplusR = FindBallotSub2Att( LC , LV , A, t)

5: if OPTA+R > AplusR then

6: OPTA+R = AplusR

7: end if

8: end for

9: Return OPTA+R
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CHAPTER 8

CONCLUSION AND FUTURE WORK

The goal of this dissertation is in designing quantitative models and algorithms that

recognize and capture human characteristics and study optimization in the HITL

computational paradigm. In this chapter, we summarize the contribution in Section

8.1 and discuss some future works in Section 8.2.

8.1 Conclusion

A HITL process requires holistic treatment and optimization from multiple stand-

points considering all stakeholders: a. applications, b. platforms, c. humans. In

application-centric optimization, the factors of interest usually are latency (how long

it takes for a set of tasks to finish), cost (the monetary or computational expenses

incurred in the process), and quality of the completed tasks. Platform-centric

optimization studies throughput, or revenue maximization, while human-centric

optimization deals with the characteristics of the human workers, referred to as human

factors, such as their skill improvement and learning, to name a few. Finally, fairness

and ethical consideration are also of utmost importance in these processes.

In Chapter 2, we propose StratRec, an optimization-driven middle layer designed

to recommend strategies for multiple deployment requests or recommend alternative

deployment parameters if a request cannot be satisfied as formulated. Our work

addresses multi-faceted modeling challenges through the generic design of modules in

StratRec that could be instantiated to optimize different types of goals by accounting

for worker availability. We develop computationally-efficient algorithms. We present

extensive real data experiments through multiple deployments in AMT and conduct

synthetic experiments to validate the qualitative and scalability aspects of StratRec.
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We focus on how to enhance the workers’ self-improvement in Chapter 3. To the

best of our knowledge, our work is the first to examine algorithmic group formation

with affinities for peer learning. We examine online group formation where members

seek to increase their learning potential via task completion with two learning models

and affinity structures. We formalize the problem of forming a set of k groups with

the purpose of optimizing peer learning under different affinity structures and propose

constrained optimization formulations. We show the hardness of our problems and

develop 4 scalable algorithms with constant approximation factors. Our experiments

with real workers demonstrate that considering affinity structures drastically improves

learning potential, and our synthetic data experiments corroborate the qualitative and

scalability aspects of our algorithms.

We investigate the study of peer learning processes in a dynamic manner in

Chapter 4. The problem is motivated by practical considerations of groups in online

social networks or offline classroom learning. In each round, the participants are split

into groups and learn from interactions within their group. The objective is to find

a sequence of groupings that will maximize the total knowledge at the end of the

process. We introduce a model and an associated algorithmic framework DyGroups

for this problem. Using the insights we gain from our theoretical study, we design

experiments with human subjects that provide evidence corroborating our hypothesis

that the choice of groupings can indeed significantly impact the total amount of

learning.

In Chapter 5, we introduce the p-fairness to the rank aggregation problem and

propose the RAPF problem to incorporate a group fairness criteria (p-fairness)

considering binary and multi-valued protected attributes with the classical rank

aggregation problem. We first study how to produce a p-fair ranking that is

closest to a single input ranking (IPF). IPF can be solved exactly using a greedy

technique when the protected attribute is binary. When the protected attribute is
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multi-valued such an approach fails. We then present two solutions for multi-valued

IPF, ExactMultiValuedIPF is optimal and ApproxMultiValuedIPF admits

2 approximation factor. Next, we design two computational frameworks to solve

RAPF: RandAlgRAPF and AlgRAPF that exhibit 3 and 4 approximation

factors when designed using ExactMultiValuedIPF and

ApproxMultiValuedIPF, respectively.

In Chapter 6, we initiate the study of the margin finding problem for preference

aggregation under single ballot substitutions, considering one and multiple protected

group attributes to promote fairness, where given an aggregated preference of m

voters over n candidates, a single substitution amounts to removing a vote from

candidate i and assigning it to candidate j, and the goal is to minimize the number of

single ballot substitutions to satisfy complex fairness constraints in the top-k results.

We systematically study several variants of this problem, considering how fairness

constraints are specified over a single binary or multi-valued protected attribute or

over multiple protected attributes. We study these variants theoretically and present

a suite of algorithms with provable guarantees. We conduct rigorous large-scale

experiments involving multiple real-world datasets by appropriately adapting multiple

state-of-the-art solutions to demonstrate the effectiveness and scalability of our

proposed methods.

8.2 Future Work

In this section, we outline a few ongoing and future works that are related.

8.2.1 Recommending Deployment Strategies for Considering Worker
Availability as a Probability Density Function

Our proposed work StratRec, is an optimization-driven middle layer that is designed

to recommend strategies to multiple deployment requests or recommend alternative
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deployment parameters if a request cannot be satisfied as formulated. In this future

work, we will study the design of StratRec considering worker availability as a discrete

probability distribution function. We believe that under such an assumption, the

proposed solution will be different from the existing one, as the problem formulation

itself will require a non-trivial extension.

8.2.2 Fair Task Assignment in HITL

Our current works have studied how to form groups to maximize skill improvements

of the workers, considering both static and dynamic group formation characteristics

[61,141]. The theoretical and experimental results in [141] however, indicate that, in

order to maximize cumulative skill improvement (i.e., the sum of learning potential)

over all the members, the current optimization function tends to sacrifice the skill

improvement of the least skilled workers, making the process less equitable and

fair. Therefore, in future work, we intend to study a bi-criteria optimization

problem considering both fairness and other utilities related to learning, such as skill

improvement. Such a problem will perhaps strike a better balance in improving the

aggregated learning potential while ensuring the equity of skill improvements across

all workers.
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[69] David Garćıa-Soriano and Francesco Bonchi. Maxmin-fair ranking: Individual
fairness under group-fairness constraints. In Feida Zhu, Beng Chin Ooi, and
Chunyan Miao, editors, KDD ’21: The 27th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, Virtual Event, Singapore, August
14-18, 2021, pages 436–446. ACM, 2021.

[70] Michael R Garey and David S Johnson. Computers and intractability. wh freeman
New York, 2002.

[71] Susan Gauch and John B. Smith. Search improvement via automatic query
reformulation. ACM Trans. Inf. Syst., 9(3):249–280, 1991.

[72] Sahin Cem Geyik, Stuart Ambler, and Krishnaram Kenthapadi. Fairness-aware
ranking in search & recommendation systems with application to linkedin
talent search. In Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales,
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[112] Gergely Palla, Albert-László Barabási, and Tamás Vicsek. Quantifying social group
evolution. Nature, 446(7136):664–667, 2007.

[113] Lionel S Penrose. The elementary statistics of majority voting. Journal of the Royal
Statistical Society, 109(1):53–57, 1946.

[114] Julien Pilourdault, Sihem Amer-Yahia, Dongwon Lee, and Senjuti Basu Roy.
Motivation-aware task assignment in crowdsourcing. In Volker Markl,
Salvatore Orlando, Bernhard Mitschang, Periklis Andritsos, Kai-Uwe Sattler,
and Sebastian Breß, editors, Proceedings of the 20th International Conference
on Extending Database Technology, EDBT 2017, Venice, Italy, March 21-24,
2017, pages 246–257. OpenProceedings.org, 2017.

[115] Habibur Rahman et al. Worker skill estimation in team-based tasks. PVLDB, 2015.

[116] Habibur Rahman, Senjuti Basu Roy, Saravanan Thirumuruganathan, Sihem Amer-
Yahia, and Gautam Das. Task assignment optimization in collaborative
crowdsourcing. In Charu C. Aggarwal, Zhi-Hua Zhou, Alexander Tuzhilin,
Hui Xiong, and Xindong Wu, editors, 2015 IEEE International Conference on
Data Mining, ICDM 2015, Atlantic City, NJ, USA, November 14-17, 2015,
pages 949–954. IEEE Computer Society, 2015.

[117] Habibur Rahman, Senjuti Basu Roy, Saravanan Thirumuruganathan, Sihem Amer-
Yahia, and Gautam Das. Optimized group formation for solving collaborative
tasks. The VLDB Journal, 28(1):1–23, 2019.

[118] Syama Sundar Rangapuram, Thomas Bühler, and Matthias Hein. Towards realistic
team formation in social networks based on densest subgraphs. In Daniel
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