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ABSTRACT

PERIODIC FAST MULTIPOLE METHOD

by
Ruqi Pei

Applications in electrostatics, magnetostatics, fluid mechanics, and elasticity often

involve sources contained in a unit cell C, centered at the origin, on which periodic

boundary condition are imposed. The free-space Green’s functions for many classi-

cal partial differential equations (PDE), such as the modified Helmholtz equation,

are well-known. Among the existing schemes for imposing the periodicity, three

common approaches are: direct discretization of the governing PDE including

boundary conditions to yield a large sparse linear system of equations, spectral

methods which solve the governing PDE using Fourier analysis, and the method

of images based on tiling the plane with copies of the unit cell and computing the

formal solution. In the method of images, the lattice of image cells is divided into

a “near” region consisting of the unit source cell and its nearest images and an infi-

nite “far” region covered by the remaining images. Recently, two new approaches

were developed to carry out calculation of the free-space Green’s function over

sources in the near region and correct for the lack of periodicity using an integral

representation or a representation in terms of discrete auxiliary Green’s functions.

Both of these approaches are effective even for unit cells of high aspect ratio, but

require the solution of a possibly ill-conditioned linear system of equations in the

correction step.

In this dissertation, a new scheme is proposed to treat periodic boundary

conditions within the framework of the fast multipole method (FMM). The scheme

is based on an explicit, low-rank representation for the influence of all far images.

It avoids the lattice sum/Taylor series formalism altogether and is insensitive to the

aspect ratio of the unit cell. The periodizing operators are formulated with plane-

wave factorizations that are valid for half spaces, leading to a simple fast algorithm.

When the rank is large, a more elaborate algorithm using the Non-Uniform Fast



Fourier Transform (NUFFT) can further reduce the computational cost. The

computation for modified Helmholtz case is explained in detail. The Poisson

equation is discussed, with charge neutrality as a necessary constraint. Both

the Stokes problem and the modified Stokes problem are formulated and solved.

The full scheme including the NUFFT acceleration is described in detail and the

performance of the method is illustrated with extensive numerical examples.

In the last chapter, another project about boundary integral equations is

presented. Boundary integral equations and Nyström discretization methods pro-

vide a powerful tool for computing the solution of Laplace and Helmholtz boundary

value problems (BVP). Using the fundamental solution (free-space Green’s func-

tion) for these equations, such problems can be converted into boundary integral

equations, thereby reducing the dimension of the problem by one. The result-

ing geometric simplicity and reduced dimensionality allow for high-order accurate

numerical solutions with greater efficiency than standard finite-difference or finite-

element discretizations. Integral equation methods require appropriate quadrature

rules for evaluating the singular and nearly singular integrals involved. A standard

approach uses a panel-based discretization of the curve and Generalized Gaussian

Quadrature (GGQ) rules for treating singular and nearly-singular integrals sep-

arately, which correspond to a panel’s interaction with itself and its neighbors,

respectively. In this dissertation, a new panel-based scheme is developed which

circumvents the difficulties of the nearly-singular integrals. The resulting rule

is more efficient than standard GGQ in terms of the number of required kernel

evaluations.
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CHAPTER 1

INTRODUCTION

Applications in electrostatics, magnetostatics, fluid mechanics, and elasticity in-

volve sources contained in a unit cell C, centered at the origin, on which are

imposed periodic boundary conditions. In two dimensions, define a unit cell by

two fundamental translation vectors ê1 and ê2. In the doubly periodic case, with-

out loss of generality, we assume ∥ê1∥ ≥ ∥ê2∥ and by rotation, we can have ê1

aligned with the x-axis and ê2 lie in the upper half space (see Figure 1.1). Let

C =
{
x1ê1 + x2ê2 ∈ R2| x1, x2 ∈ [−1

2
, 1
2
]
}
, where ê1 = ⟨d, 0⟩, ê2 = ⟨ξ, η⟩, with

d ≥
√
ξ2 + η2 and d, η > 0. For the singly periodic case, we assume that the

periodic direction is aligned with the x-axis without ∥ê1∥ ≥ ∥ê2∥. Without loss of

generality, we can assume that the unit cell is rectangular and of dimension d× η,

see Figure 1.1. Let t = (x, y) and u(t) denote a scalar quantity of interest. We

define doubly periodic boundary conditions as:

u(t+ ê1) = u(t),

u(t+ ê2) = u(t).

(1.1)

We define singly periodic boundary conditions as:

u(t+ ê1) = u(t), (1.2)

with a standard outgoing/decay condition in the y-direction.

Assuming we have a governing partial differential equation (PDE)

∆u(t)− β2u(t) =

NS∑
j=1

qjδ(t− sj), (1.3)

with β non-negative and real and t, sj are points lying within the unit cell C.

Equation (1.3) is called modified Helmholtz equation when β > 0. When β = 0,

1



̂e1

̂e2

x

y

Figure 1.1 In the doubly periodic case (left), the unit cell is a parallelogram
which tiles the entire plane. By convention, we assume that the lattice is oriented
so that the longer cell dimension is aligned with the x-axis: ∥ê1∥ ≥ ∥ê2∥. In the
singly periodic case (right), we assume the periodic direction is aligned with the
x-axis. The unit cell may still be a parallelogram, but we can always define a
corresponding rectangular unit cell, indicated by thick blue lines. In this case, we
cannot assume that the long cell dimension is aligned with the x-axis. Periodic
boundary conditions are imposed through the method of images: that is, by in-
cluding the influence of the translated sources in every image cell on the targets
in the fundamental unit cell.

Equation (1.3) becomes the Poisson equation. In two dimensions, the free-space

Green’s functions for these equations are well-known and given by (Mikhlin and

Prossdorf, 1986; Stakgold, 1968)

G(t, s) =
1

2π
K0(β∥t− s∥),

G(t, s) =
1

2π
log(1/∥t− s∥).

(1.4)

where K0 refers to the zeroth order modified Bessel function of the second kind

(Olver et al., 2010).

Therefore, in free space, the solution to Equation (1.3) at targets t1, . . . , tNT

can be written as

u(f)(ti) =

NS∑
j=1

G(ti, sj) qj, i = 1, . . . , NT . (1.5)

where G(t, s) denotes the relevant free-space Green’s function. Knowing the well-

known fast multipole method (FMM) (Cheng et al., 1999; Greengard and Rokhlin,

1987; Greengard and Rokhlin, 1997; Ying et al., 2004) can reduce the computa-

tional cost of evaluating Equation (1.5) from O(NS · NT ) to O(NS + NT ), with

2



a prefactor depending logarithmically on the desired precision, we consider this

problem as a classical problem. We have three common approaches available for

imposing periodicity. We can directly discretize governing PDE including bound-

ary conditions to yield a large sparse linear system of equations or we can use

spectral methods which solves Equation (1.3) using Fourier analysis or we can

apply the method of images, based on tiling the plane with copies of a unit cell

and computing the solution as:

u(ti) =

NS∑
j=1

K(p)(ti, sj)qj , (1.6)

where

K(p)(t, s) =
∑

(m,n)∈Z2

G(t, s+ lmn)

is the periodic Green’s function and Z2 = {(m,n)|m,n ∈ Z} is the set of integer

lattice points on the 2D plane and lmn = mê1+nê2. This formal solution satisfies

the PDE and the boundary conditions. For the modified Helmholtz equation,

the K(p)(t, s) is convergent. For the Poisson equation, the series is conditionally

convergent.

The spectral approach is standard in quantum mechanics and solid-state

physics (Ewald, 1921) (Bloch, 1928) (with earlier work in the mathematics lit-

erature by Floquet, Hill and others). Here, we focus on the method of images,

using Equation (1.6), which is common in acoustics, electromagnetics, and fluid

dynamics and dates back to Rayleigh (Rayleigh, 1892).

Definition 1. In the doubly periodic case, we decompose the two-dimensional

integer lattice Z2 into Λnear = {(m,n)|m ∈ {−m0, . . . ,m0}, n ∈ {−1, 0, 1}} and

Λfar = Z2−Λnear. m0 = 1 is sufficient for rectangular unit cells. In order to allow

for parallelograms with arbitrarily small angles (ξ ≫ η), it is sufficient to set

m0 = 3. The region covered by the unit cell C and its nearest images, indexed by

Λnear, will be referred to as the near field and denoted by N . The region covered

by the remaining image cells, indexed by Λfar, will be referred to as the far field

3



and denoted by F . For consistency in notation, in the singly periodic case, we

define Λ
(1)
near = {(m, 0)|m ∈ {−1, 0, 1}} and Λ

(1)
far = {(m, 0)|m ∈ Z} − Λ

(1)
near.

Definition 2. In the two-dimensional case, we define the aspect ratio of the

fundamental unit cell by A = d/η. Since we have chosen to orient the longer

lattice vector ê1 with the x-axis, A ≥ 1. The problem is computationally more

involved when A is large. In the one-dimensional case, we define the aspect ratio

by A = max(1, η/d) As we shall see below, it is again when A is large that the

computation is most difficult. (See Figure 1.1.)

The singly or doubly periodic Green’s function can be expressed as:

K(p)(t, s) = Knear(t, s) + Kfar(t, s), (1.7)

where

Knear(t, s) =
∑

(m,n)∈Λnear

G(t, s+ lmn)

Kfar(t, s) =
∑

(m,n)∈Λfar

G(t, s+ lmn)

(1.8)

Since the sources in Kfar(t, s) are far-distanced from the unit cell, we can

express their contributions within the unit cell as a series

Kfar(t, s) =
∞∑

l=−∞

SlIl(λ∥t− s∥)eilθt,s (1.9)

with θt,s = arg(t− s), where Il is modified Bessel function of the first kind (Olver

et al., 2010) and Sl is lattice sum

Sl =
∑

(m,n)∈Λfar

Kl(λ|lmn|)eilϕmn , (1.10)

with ϕnm = arg(lmn). (This is a straightforward application of the Graf addition

theorem (Olver et al., 2010, §10.23).)

We omit the nearest image cells from Kfar(t, s) because the convergence

behavior of the series expansion in Equation (1.9) is controlled by the distance
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of the nearest source from the disk centered at the origin and enclosd in the unit

cell, see Figure 1.2. The more images included in the near field, the faster the

convergence rate of the local expansion.

When the unit cell has aspect ratio near or equal to 1, this yields an opti-

mal scheme and is widely used in periodic versions of the fast multipole method

(Berman and Greengard, 1994; Greengard and Rokhlin, 1987; Malhotra and Biros,

2015). In the work of Yan and Shelley (Yan and Shelley, 2018), this problem ex-

tends a three-dimensional (3D) version of the kernel-independent FMM library

(Malhotra and Biros, 2015) to allow the imposition of periodicity on the unit

cube in one, two or three directions. There are also many other works having a

lot of dicussion in the context of the Poisson, Helmholtz and Maxwell equations,

see (Berman and Greengard, 1994; Denlinger et al., 2017; Dienstfrey et al., 2001;

Enoch et al., 2001; Huang, 1999; Linton, 2010; McPhedran et al., 2000; Moroz,

2006; Otani and Nishimura, 2008). The lattice sum-based approaches are com-

parably less efficient when the unit cell has comparably high aspect ratio. This

is illustrated with a doubly periodic problem in Figure 1.2. Also, every source

assigned to the far field must be in the exterior of the smallest disk enclosing the

unit cell in order to ensure convergence of the local expansion. Therefore, one may

have to redefine Λfar to exclude a large number of image cells and redefine Λnear

to include those image cells and make a big modification over the underlying fast

algorithm.

Remark 1. In the FMM, lattice sums are not used for the evaluation of Kfar(t, s)

for each source and target. Instead, given a multipole expansion for the unit cell,

one constructs a single local expansion of the form

∞∑
l=−∞

αlIl(λ∥t∥)eilθt (1.11)

that captures the field due to all sources in the far field F within the unit cell.

This is a slight modification of Rayleigh’s original method (Rayleigh, 1892). The

5



! !

Figure 1.2 Two fundamental unit cells C in the doubly periodic case. On the left,
the indicated 7×3 grid of neighbors define the near region N when the parameter
m0 = 3. On the right, when m0 = 1, the near region corresponds to the 3 × 3
grid of neighbors, which is sufficient for rectangular lattices. We also plot the
centers of the nearest image cells outside N . Note that if the field due to distant
images is represented in the unit cell by a Taylor series, the convergence behavior
is controlled by the distance from the smallest disk covering the unit cell C to the
nearest such image, which must lie outside the disk. For the geometry on the left,
all image sources outside N satisfy this constraint and the Taylor series converges.
For high aspect ratio cells, illustrated on the right, several of the images lie within
the disk, and a region much larger than N must be excluded for the corresponding
Taylor series to be convergent.

coefficients αl are determined from the multipole coefficients through a formula

which involves the lattice sums Sl.

Recently, two new approaches were developed that carry out a free space

calculation of the form Equation (1.5) over sources in Λnear and correct for the

lack of periodicity using an integral representation (Barnett and Greengard, 2010;

Barnett and Greengard, 2011) or a representation in terms of discrete auxiliary

Green’s functions, see (Barnett et al., 2018; Liu and Barnett, 2016; Wang et al.,

2021). Both of these approaches are effective, even for the unit cells with high as-

pect ratio, but they require the solution of a possibly ill-conditioned linear system

of equations in the correction step.

In this dissertation, we describe a new scheme to treat periodic boundary

conditions based on an explicit, low-rank representation for the influence of all

distant sources in the far field (those in image cells indexed by Λfar). It not only

avoids the lattice sum/Taylor series formalism altogether and but also is insensitive

to the aspect ratio of the unit cell. It was motivated by, and makes use of, the

fast algorithms for lattice sums and elliptic functions developed in previous work

(Dienstfrey et al., 2001; Enoch et al., 2001; Huang, 1999; McPhedran et al., 2000)
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North : n ≥ 2

South : n ≤ − 2

East : m ≥ 2West : m ≤ − 2
-1,0,1n =-1,0,1n =

Figure 1.3 The tiling of the plane in the far region (for doubly periodic problems
with m0 = 1) can be decomposed into four parts. The fundamental unit cell is
indicated by C and the near field by N . All other copies of the unit cell lie to the
“south” (blue, with n ≤ −2), the “north” (red, with n ≥ 2), the “west” (magenta,
with n = −1, 0, 1 andm < −1) or the “east” (black, with n = −1, 0, 1 andm > 1).

and fast translation operators used in modern versions of the FMM (Cheng et al.,

2006; Greengard and Rokhlin, 1997; Hrycak and Rokhlin, 1998).

The essence of this approach is illustrated in the doubly periodic setting

(Figure 1.3), where the tiling of the far field is divided into four subregions.

Remark 2. To fix notation, we will denote by t = (x, y) or tl = (xl, yl) the

coordinates of a target point where we seek to evaluate the field. We will denote

by s = (x′, y′) or sj = (x′j, y
′
j) the coordinates of a source point.

Claim 1. Consider the field induced by all sources lying in image cells with centers

lying to the “south”: {(m,n) ∈ Z2|m ∈ Z, n ≤ −2} (Figure 1.3). Then, for any

target t ∈ C,

u(t) =

NS∑
j=1

(
∞∑

m=−∞

−2∑
n=−∞

G(t, sj + lm,n)

)
qj

=
∞∑

m=−∞

cm e−
√

(2πm/d)2+β2ye2πimx/d ,

(1.12)

where

cm =
π

d

(
e−2
√

(2πm/d)2+β2ηe−4πimξ/d

1− e−
√

(2πm/d)2+β2ηe−2πimξ/d

)
NS∑
j=1

qj
e
√

(2πm/d)2+β2y′j e−2πimx′
j/d√

(2πm/d)2 + β2
.

The derivation of this formula will be described in detail in later sections,
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but let us briefly examine its consequences. First, the behavior of the series is not

controlled by a radius of convergence, as it is for methods based on lattice sums and

Taylor series. Second, the series converges exponentially fast. Since |y|, |yj| ≤ η
2
,

it is easy to see that the mth term of the series decays faster than e−2πmη/d.

Clearly, approximately 6A terms yields double precision accuracy, where A = d/η

is the aspect ratio of the unit cell. Computing the moments cm requires O(NS A)

work. Subsequent evaluation at NT target points again requires O(NT A) work.

Overall, this is an efficient low-rank, separable representation of the potential

due to a subset of the image sources, the rank of which grows at most linearly

with A. When A is sufficiently large, we will show how to use the non-uniform

FFT (NUFFT) (Barnett and Magland, 2018; Dutt and Rokhlin, 1993; Dutt and

Rokhlin, 1995; Greengard and Lee, 2004; Lee and Greengard, 2005) to obtain an

algorithm whose cost is of the order O(log(1/ϵ)(A logA + (NS + NT ) log(1/ϵ)))

with prescribed precion ϵ.

Below, we complete and generalize the representation Equation (1.12), per-

mitting the imposition of periodic boundary conditions in one or two directions

for a variety of non-oscillatory PDEs in the plane. We will denote by

Kfar
2 (t, s) =

∑
(m,n)∈Λfar

G(t, s+ lmn) (1.13)

the far-field kernel for doubly periodic problems. In the singly periodic case, we

denote the corresponding far-field kernel by

Kfar
1 (t, s) =

∑
(m,0)∈Λ(1)

far

G(t, s+ lm0) . (1.14)

Definition 3. Let S = {sj | j = 1, . . . , NS} and T = {tl | l = 1, . . . , NT} de-

note collections of sources and targets, respectively, in the unit cell C and let

q = (q1, . . . , qNS
) denote a vector of “charge” strengths. With a slight abuse

of notation, we define the NT × NS periodizing operators P1 = PC
1(T,S) and
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P2 = PC
2(T,S) by

P1(l, j) = Kfar
1 (tl, sj)

and

P2(l, j) = Kfar
2 (tl, sj),

where the far field kernels Kfar
1 and Kfar

2 are given by Equation (1.13) and Equa-

tion (1.14). The vectors

P1q, P2q

will be referred to as the periodizing potentials.

It is worth noting that our method yields an explicit, low-rank representation

of the periodic Green’s function, without the need to solve any auxiliary linear

systems. In fact, the periodizing operators P2,P1 admit plane-wave factorizations

of rankO(A) similar to the formula for the “south” images described above, leading

to simple fast algorithms for their evaluation. More precisely, letting r = O(A)

be the numerical rank of P2 or P1 to precision ε, a simple, direct method requires

O(r(NS + NT )) work. When r is large, a more elaborate algorithm using the

NUFFT requires only O(log(1/ϵ)(r log r + (NS +NT ) log(1/ϵ))) work.

In Chapter 2, we review the mathematical and computational foundations

of the method. In Chapter 3, we discuss the modified Helmholtz case in detail. In

Chapter 4, we discuss the Poisson equation, where charge neutrality is a necessary

constraint. The Stokes and modified Stokes problems are considered in Chapter

5. In Chapter 6, we describe the full scheme including NUFFT acceleration. We

illustrate the performance of the method in Chapter 7 with several numerical ex-

amples and describe future extensions of the method in Chapter 8. An extension of

our representation for multipole sources is provided in Appendix B and Appendix

C.
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CHAPTER 2

ANALYTICAL APPARATUS

2.1 The Poisson Summation Formula

Let f̂ be the Fourier transform of f , that is,

f̂(k) =

∫
R
e−ikxf(x)dx, f(x) =

1

2π

∫
R
eikxf̂(k)dk. (2.1)

The Poisson summation formula (for example, see (Dym and McKean, 1972))

states that
∞∑

n=−∞

f

(
x+

2πn

h

)
=

h

2π

∞∑
m=−∞

f̂(mh)eimhx. (2.2)

This formula holds for a wide class of functions, in particular, the Dirac

delta function. In this case, we have (Jones, 1966)

∞∑
n=−∞

δ

(
x+

2πn

h

)
=

h

2π

∞∑
m=−∞

eimhx. (2.3)

2.2 Generalized Gaussian Quadrature For The Doubly Periodic Case

In evaluating the integrals in Equation 3.7 or Equation 3.9, we will require suitable

quadrature rules. More generally, we would like efficient rules of the form

∫ ∞

0

e−
√

λ2+β2x√
λ2 + β2

[M1(λ)e
iλy +M1(−λ)e−iλy] dλ

≈
N∑
k=1

e−
√

λ2
k+β2x√

λ2k + β2
[M1(λk)e

iλky +M1(−λk)e−iλky]wk

and ∫ ∞

0

e−λzM(λ)dλ ≈
N∑
k=1

e−λkzM(λk)wk
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for (x, y) in a bounded domain of R2. The functions M1(λ) and M(λ) here are

smooth functions of λ that depend on the source locations and strengths and are

derived from the infinite series that appear in the periodizing operators. The

remaining cases in Equation 3.7 or Equation 3.9 are treated using the same nodes

and weights. Because we have separated the near and far fields, we will be using

these rules under restrictive conditions on x, y. As we shall see below in more

detail, for the doubly periodic case we will typically invoke the quadrature under

suitable rescaling so that x ∈ [1, 7] and y ∈ [−2, 2]. Finding optimal weights

and nodes for this restricted range of arguments leads to a nonlinear optimization

problem which can be solved by what is known as generalized Gaussian quadrature

(Bremer et al., 2010a; Ma et al., 1996; Yarvin and Rokhlin, 1998).

For the modified Hemholtz equation, if β is bounded away from zero, the

integral converges and the number of nodes depends rather weakly on β itself. We

note, however, that in the limit β = 0, the modified Helmholtz integral (for x > 0)

becomes ∫ ∞

0

e−λx

λ
[M1(λ)e

iλy +M1(−λ)e−iλy]dλ, x > 0,

with M1(λ) = O(1/λ). Thus, significant adjustments would be required as β → 0

to handle the near hypersingularity at the origin. In the present context, where

we seek to impose periodicity, charge neutrality is a natural condition.

For the modified Helmholtz equation, special purpose quadratures have been

constructed for β in different ranges. The number of quadrature nodes decreases

as β increases. For β ∈ [10−6,+∞), x ∈ [1, 7], y ∈ [−2, 2], at most 21 nodes have

been found to yield six digits of accuracy and at most 41 nodes have been found to

yield twelve digits of accuracy. When β > 22, only 1 node is sufficient for six digits

of accuracy. When β > 37, 3 nodes are sufficient for twelve digits of accuracy.

For the Poisson equation, with x ∈ [1, 7], y ∈ [−2, 2], 18 nodes yield six digits

of accuracy and 29 nodes yield twelve digits of accuracy. We omit consideration

of the modified Helmholtz equation when β < 10−6 but charge neutrality is not

satisfied, as this is a highly ill-conditioned problem. Assuming charge neutrality,
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one may simply use the quadrauture designed for the Poisson equation.

2.3 The Non-Uniform Fast Fourier Transform

For high aspect ratio unit cells, we will require the evaluation of discrete Fourier

transforms where the nodes, frequencies, or both are not uniformly spaced. By

combining the standard fast Fourier transform (FFT) with careful analysis and

fast interpolation techniques, these sums can be computed with nearly optimal

computational complexity. The resulting algorithms are known as non-uniform

fast Fourier transforms (NUFFTs). They were originally described in (Dutt and

Rokhlin, 1993; Dutt and Rokhlin, 1995). We refer the reader to (Barnett and

Magland, 2018; Barnett et al., 2019) for recent references and a state-of-the-art

implementation.

The type-I NUFFT evaluates sums of the form

fk =
N∑
j=1

cje
ikxj , for k = −M, . . . ,M. (2.4)

Letting f = (f−M , . . . , fM−1, fM) and letting c = (c1, . . . , cN), we will write

f = N(1)c.

When the explicit dependence on the point locations {xj} and the number of

Fourier modes M are needed, we will denote the operator N(1) by N(1)({xj};M).

The operator N(1) can be applied using O(M logM +N log(1/ϵ)) operations with

nearly the same performance as the standard FFT.

Given the vector f , The type-II NUFFT evaluates sums of the form

vj =
M∑

k=−M

fke
−ixjk , for j = 1, . . . , N , (2.5)
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corresponding to the adjoint of N(1):

v = N(2)f ,

with the same computational complexity, where v = (v1, . . . , vN).

2.4 Legendre Polynomials And Barycentric Interpolation

The standard Legendre polynomials can be defined by setting P0 ≡ 1 and P1(t) =

t, with higher degree polynomials defined by the recurrence formula

(l + 1)Pl+1(t) = (2l + 1)tPl(t)− lPl−1(t) .

Let −1 < t1 < · · · < tM < 1 be the roots of PM , known as the Legendre

nodes of order M .

Letting f be a function defined on [−1, 1], the degree M − 1 polynomial,

pM [f ], which interpolates f at the Legendre nodes of order M , can be written in

the form

pM [f ](t) =

∑M
i=1

σi

t−ti
f(ti)∑M

i=1
σi

t−ti

, (2.6)

where

σi =
1∏

j ̸=i (ti − tj)
. (2.7)

This is known as the second form of the barycentric formula for the inter-

polant.

As observed in (Wang and Xiang, 2012), if f is analytic in the Bernstein ellipse

with foci at ±1 and semi-major and semi-minor lengths adding up to ρ > 1, then

∥f − pM [f ]∥∞ ≤ (1 + ΛM)
2C

ρM(ρ− 1)
, (2.8)

where ∥ · ∥∞ is the maximum norm on [−1, 1], C is a constant so that |f | ≤ C on

the Bernstein ellipse, and ΛM = O(
√
M) is the Lebesgue constant for the nodes.
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Thus, the interpolant is a spectrally accurate approximation of f . See (Fornberg,

1998; Hesthaven et al., 2007; Trefethen, 2008; Wang and Xiang, 2012) for further

details.
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CHAPTER 3

PLANEWAVE EXPANSIONS OF VARIOUS KERNELS

3.1 The Helmholtz Kernel

The Sommerfeld integral representation (Sommerfeld and Strauss, 1949) for the

first kind Hankel function of order zero states that

i

4
H

(1)
0

(
β
√
x2 + y2

)
=


1

4π

∫ ∞

−∞

e−
√

λ2−β2y√
λ2 − β2

eiλxdλ, y > 0,

1

4π

∫ ∞

−∞

e
√

λ2−β2y√
λ2 − β2

eiλxdλ, y < 0.

(3.1)

Similar expressions can be derived for left and right half planes. By

applying the so-called raising operator (∂/∂x+ i∂/∂y)/(−β) l times on both sides

of Equation 3.1, we obtain (McPhedran et al., 2000)

H
(1)
l

(
β
√
x2 + y2

)
eilϕ =


(−i)l+1

πβl

∫ ∞

−∞

(
λ−

√
λ2 − β2

)l e−√λ2−β2y√
λ2 − β2

eiλxdλ, y > 0,

(−i)l+1

πβl

∫ ∞

−∞

(
λ+

√
λ2 − β2

)l e√λ2−β2y√
λ2 − β2

eiλxdλ, y < 0,

(3.2)

with ϕ = arg(x+ iy).

Using the connection formula (Olver et al., 2010)

Kl(z) =
π

2
il+1H

(1)
l (iz), (3.3)

we obtain

K0

(
β
√
x2 + y2

)
=


1

2

∫ ∞

−∞

e−
√

λ2+β2y√
λ2 + β2

eiλxdλ, y > 0,

1

2

∫ ∞

−∞

e
√

λ2+β2y√
λ2 + β2

eiλxdλ, y < 0,

(3.4)
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and

Kl

(
β
√
x2 + y2

)
eilϕ =


il

2βl

∫ ∞

−∞

(√
λ2 + β2 − λ

)l e−√λ2+β2y√
λ2 + β2

eiλxdλ, y > 0,

(−i)l
2βl

∫ ∞

−∞

(√
λ2 + β2 + λ

)l e√λ2+β2y√
λ2 + β2

eiλxdλ, y < 0,

(3.5)

respectively. For completeness, we also list the plane wave expansion for left and

right half planes:

Kl

(
β
√
x2 + y2

)
eilϕ =


1

2βl

∫ ∞

−∞

(√
λ2 + β2 + λ

)l e−√λ2+β2x√
λ2 + β2

eiλydλ, x > 0,

(−1)l
2βl

∫ ∞

−∞

(√
λ2 + β2 − λ

)l e√λ2+β2x√
λ2 + β2

eiλydλ, x < 0,

(3.6)

After all, the Green’s function for the modified Bessel function,K0(β
√
x2 + y2),

and its higher order multipole terms can be expressed as this Sommerfeld integral

representation (Mores and Feshbach, 1953; McPhedran et al., 2000; Olver et al.,

2010):

Kl

(
β
√
x2 + y2

)
eilϕ =



il

2βl

∫ ∞

−∞

(√
λ2 + β2 − λ

)l e−√λ2+β2y√
λ2 + β2

eiλxdλ, y > 0,

(−i)l
2βl

∫ ∞

−∞

(√
λ2 + β2 + λ

)l e√λ2+β2y√
λ2 + β2

eiλxdλ, y < 0,

1

2βl

∫ ∞

−∞

(√
λ2 + β2 + λ

)l e−√λ2+β2x√
λ2 + β2

eiλydλ, x > 0,

(−1)l
2βl

∫ ∞

−∞

(√
λ2 + β2 − λ

)l e√λ2+β2x√
λ2 + β2

eiλydλ, x < 0,

(3.7)

for l ≥ 0.

3.2 The Laplace Kernel

The plane-wave expansion of the Green’s function for the Laplacian is typically
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invoked for the complex analytic function

1

z
=

1

x+ iy
=

x− iy
x2 + y2

= −
(
∂

∂x
− i ∂

∂y

)
log(1/

√
x2 + y2) ,

rather than log(1/
√
x2 + y2) itself. This is sufficient for our purposes, where we

assume the collection of sources in the unit cell C satisfies charge neutrality:

NS∑
j=1

qj = 0. (3.8)

In Appendix C, we will consider multipole sources as well as charge distri-

butions, and will make use of the representations below. Let z = x + iy ∈ C.

Then

1

zl
=



1

(l − 1)!

∫ ∞

0

λl−1e−λzdλ, x > 0,

(−1)l
(l − 1)!

∫ ∞

0

λl−1eλzdλ, x < 0,

(−i)l
(l − 1)!

∫ ∞

0

λl−1eiλzdλ, y > 0,

il

(l − 1)!

∫ ∞

0

λl−1e−iλzdλ, y < 0.

(3.9)

for l ≥ 1.These representations are useful in developing diagonal translation op-

erators for FMMs (Cheng et al., 2006; Hrycak and Rokhlin, 1998) as well as for

the computation of harmonic lattice sums and elliptic functions (Huang, 1999).

Note that the integrals in Equation 3.9 are consistent with Equation 3.7 . In

the case l = 1, for example, this requires taking the limit β → 0 and using the

formula (Olver et al., 2010, §10.30.2):

lim
β→0

βK1(βr)e
−iθ =

1

z
, z = reiθ. (3.10)
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CHAPTER 4

PERIODICITY FOR THE MODIFIED HELMHOLTZ EQUATION

In this chapter, we consider the imposition of periodic boundary conditions for the

two-dimensional modified Helmholtz equation with either one or two directions of

periodicity. This requires an efficient scheme for the evaluation of the field due

to all image sources in the far field (outside the nearest neighbors of C). For

simplicity, we fix m0 = 1 when considering periodicity in the the ê1 = (d, 0)

direction alone and m0 = 3 when considering periodicty in both the ê1 = (d, 0)

and ê2 = (ξ, η) directions. Since the governing Green’s function is exponentially

decaying, all of the infinite series in the definition of the periodizing operators in

Equation (3) converge absolutely.

Our algorithm is based on splitting the far field kernels into two parts for

singly periodic case,

Kwest
1 (t, s) =

−2∑
m=−∞

G(t, s+ (md, 0)),

Keast
1 (t, s) =

∞∑
m=2

G(t, s+ (md, 0)),

(4.1)

and four parts (as in Figure 1.3) for the doubly periodic case:

Kwest
2 (t, s) =

1∑
n=−1

−4∑
m=−∞

G(t, s+ lmn),

Keast
2 (t, s) =

1∑
n=−1

∞∑
m=4

G(t, s+ lmn),

Ksouth
2 (t, s) =

−2∑
n=−∞

∞∑
m=−∞

G(t, s+ lmn),

Knorth
2 (t, s) =

∞∑
n=2

∞∑
m=−∞

G(t, s+ lmn).

(4.2)

The corresponding operators will be denoted by Pwest
1 , Peast

1 , Pwest
2 , Peast

2 ,
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Psouth
2 and Pnorth

2 , so that

P1 = Pwest
1 +Peast

1 ,

P2 = Pwest
2 +Peast

2 +Psouth
2 +Pnorth

2 .

(4.3)

Theorem 4.1. Let S = {sj | j = 1, . . . , NS} and T = {tl | l = 1, . . . , NT} denote

collections of sources and targets in the unit cell C and let Psouth
2 denote the NT×NS

operator with Psouth
2 (l, j) = Ksouth

2 (tl, sj). Given a precision ϵ, let

M =

⌈
d

2πη
log

(
1

1− e− 2πη
d

1

ϵ

)⌉
≈ A

2π
(log(A) + log(1/ϵ)). (4.4)

For m = −M, . . . ,M , let

αm =
2πm

d
, χm =

√
α2
m + β2, Qm = χmη − iαmξ . (4.5)

Let Lsouth ∈ CNT×(2M+1) and Rsouth ∈ C(2M+1)×NS be dense matrices and let

Dsouth ∈ C(2M+1)×(2M+1) be a diagonal matrix with

Lsouth(l,m) = e−χmyleiαmxl ,

Rsouth(m, j) = eχmy′j e−iαmx′
j ,

Dsouth(m,m) =
1

2dχm

e−2Qm

1− e−Qm
.

(4.6)

Then

Psouth
2 = Lsouth Dsouth Rsouth +O(ϵ). (4.7)
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Proof. Combining Equation (3.7) and (4.2), we obtain

Ksouth
2 (t, sj) =

−2∑
n=−∞

∞∑
m=−∞

∫ ∞

−∞

e−
√

λ2+β2(y−y′j−nη)

4π
√
λ2 + β2

eiλ(x−x′
j−md−nξ)dλ

=
−2∑

n=−∞

∞∑
m=−∞

∫ ∞

−∞

e−
√

λ2+β2(y−y′j−nη)√
λ2 + β2

eiλ(x−x′
j−nξ) 1

2d
δ

(
λ− 2πm

d

)
dλ

=
−2∑

n=−∞

∞∑
m=−∞

1

2d

e−χm(y−y′j−nη)

χm

eiαm(x−x′
j−nξ),

(4.8)

where χm, αm are given by Equation (4.5). The last two equalities follow from the

Poisson summation formula Equation (2.3) and the Dirac delta function property.

Exchanging the order of summation and summing the relevant geometric series in

n leads to

Ksouth
2 (t, sj) =

1

2d

∞∑
m=−∞

e−χm(y−y′j)+iαm(x−x′
j)

χm

e−2Qm

1− e−Qm
(4.9)

where Qm is given in Equation (4.5).

Truncating the sum at |m| =M yields the (2M + 1) term approximation

K2,M
south(t, sj) =

1

2d

M∑
m=−M

e−χm(y−y′j)+iαm(x−x′
j)

χm

e−2Qm

1− e−Qm
(4.10)

and the formulas in Equation (4.6).

We now estimate the truncation error

Es = |K2
south(t, sj)−K2.M

south(t, sj)|. (4.11)

For any m ∈ Z, it is easy to verify that

χm ≥
2π|m|
d

,
∣∣e−χm(y−yj)−Qm

∣∣ = ∣∣e−χm(η+y−yj)
∣∣ ≤ 1,

∣∣e−Qm
∣∣ ≤ e−χmη,

∣∣1− e−Qm
∣∣ ≥ 1− e−χmη.
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From these bounds, it follows that

Es ≤
1

d

∞∑
m=M+1

1

χm

e−χmη

1− e−χmη
<

1

M + 1

e−
2π(M+1)η

d

1− e− 2π(M+1)η
d

∞∑
k=0

e−
2πkη

d

=
1

2π(M + 1)

e−
2π(M+1)η

d(
1− e− 2π(M+1)η

d

)(
1− e− 2πη

d

) . (4.12)

with M given by Equation (4.4). The estimate Equation (4.7) follows, completing

the proof. 2

Remark 3. Theorem 4.1 yields a truncated version of the formula in Equation

(1.12) with weights c = (c−M , c−M+1, . . . , cM−1, cM) given by

c = DsouthRsouthq ,

where q = (q1, . . . , qNS
) is the vector of charge strengths.

Remark 4. When β ≫ 1, the value of M in Equation (4.4) can be shown to

be even smaller, but since the cost is logarithmic in A and ϵ we omit this more

detailed analysis.

Remark 5. The observation that Poisson summation yields rapidly converging

series approximations for lines or half spaces of lattice points that do not pass

through the origin was made in (Enoch et al., 2001; McPhedran et al., 2000) for

the purpose of computing lattice sums.

By applying the same analysis, we have

Corollary 1. The matrix Pnorth
2 has the low-rank factorization

Pnorth
2 = LnorthDnorthRnorth +O(ϵ)

where Dnorth = Dsouth,

Lnorth(l,m) = eχmyleiαmxl ,

Rnorth(m, j) = e−χmy′j e−iαmx′
j .

(4.13)
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Definition 4. Since the rank is precision-dependent, we say that Pnorth
2 has an

ϵ-rank of 2M + 1.

It remains to consider the “west” and “east” contributions.

Theorem 4.2. Let t, sj lie in a unit cell C and m0 = 1. Then, the kernels Kwest
1

and Keast
1 have the integral representations

Kwest
1 (t, sj) =

∫ ∞

−∞

e−
√

λ2+β2(x−x′
j)

4π
√
λ2 + β2

eiλ(y−y′j)
e−2
√

λ2+β2d

1− e−
√

λ2+β2d
dλ,

Keast
1 (t, sj) =

∫ ∞

−∞

e
√

λ2+β2(x−x′
j)

4π
√
λ2 + β2

eiλ(y−y′j)
e−2
√

λ2+β2d

1− e−
√

λ2+β2d
dλ.

(4.14)

Letting m0 = 3 with the additional assumption with d ≥
√
ξ2 + η2, the kernels

Kwest
2 and Keast

2 have the integral representations

Kwest
2 (t, sj) =

1∑
n=−1

∫ ∞

−∞

e−
√

λ2+β2(x−x′
j−nξ)

4π
√
λ2 + β2

eiλ(y−y′j−nη) e−4
√

λ2+β2d

1− e−
√

λ2+β2d
dλ,

Keast
2 (t, sj) =

1∑
n=−1

∫ ∞

−∞

e
√

λ2+β2(x−x′
j−nξ)

4π
√
λ2 + β2

eiλ(y−y′j−nη) e−4
√

λ2+β2d

1− e−
√

λ2+β2d
dλ.

(4.15)

Proof. These formulas follow directly from Equation (3.7) and Equation (4.1) and

summation of the geometric series in m. In the singly periodic case, excluding one

nearest neighbor from either side is sufficient to ensure the exponential decay of

the integrand in Equation (4.14). In the doubly periodic case, with a parallelogram

as the unit cell, we must ensure that we are using the integral representation of

the modified Bessel function where it is valid and that the resulting integrand

decays exponentially fast. For this, we must have that x − x′ −md − nξ > d for

all m ≤ −(m0 + 1) and |n| ≤ 1 in the “west” case, and x− x′ +md− nξ > d for

all m ≥ m0 + 1 and |n| ≤ 1 in the “east” case. It is straightforward to verify that

if m0 = 3, then x− x′ −md− nξ ≥ 4d− (d+ ξ)− ξ > d in the first instance and

that x − x′ + md − nξ > d in the second instance under the stated assumption

about the unit cell. 2
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There is a major difference between the east/west representations and those

for the north and south. The latter are fully discrete, while for the east and

west representations, we have an integral that needs to be evaluated before we

can develop a low-rank decomposition. For this, we will make use of numerical

quadrature, in order to develop a low-rank approximation of precision ϵ. This

provides a discrete approximation of the Sommerfeld representation forKwest
1 (t, sj)

and Kwest
2 (t, sj) in Equation (4.14) and Equation (4.15) rewritten in the form

Kwest
1 (t, sj) = ℜ

(∫ ∞

0

e−
√

λ2+β2(x−x′
j)

2π
√
λ2 + β2

eiλ(y−y′j)
e−2
√

λ2+β2d

1− e−
√

λ2+β2d
dλ

)

≈ ℜ
(N1

q (β,d,η)∑
n=1

wn,1(β, d, η)
e−
√

λ2
n,1+β2(x−x′

j)

2π
√
λ2n,1 + β2

eiλn,1(y−y′j)
e−2
√

λ2
n,1+β2d

1− e−
√

λ2
n,1+β2d

)
.

Kwest
2 (t, sj) = ℜ

(∫ ∞

0

e−
√

λ2+β2(x−x′
j)

2π
√
λ2 + β2

eiλ(y−y′j)
e−4
√

λ2+β2d

1− e−
√

λ2+β2d

[e−
√

λ2+β2ξ+iλη + e
√

λ2+β2ξ−iλη + 1] dλ

)

≈ ℜ
(N2

q (β,d,η)∑
n=1

wn,2(β, d, η)
e−
√

λ2
n,2+β2(x−x′

j)

2π
√
λ2n,2 + β2

eiλn,2(y−y′j)
e−4
√

λ2
n,2+β2d

1− e−
√

λ2
n,2+β2d

[e−
√

λ2
n,2+β2ξ+iλn,2η + e

√
λ2
n,2+β2ξ−iλn,2η + 1]

)
.

(4.16)

Note that different numbers of nodes may be needed for the two cases. We denote

by N1
q and N2

q the number of nodes needed for Kwest
1 and Kwest

2 , respectively, with

weights and nodes {wn,1, λn,1} and {wn,2, λn,2}.

In both cases, we define λ′ = λ/d so that the decaying exponential in the

integrand decays at least as fast as e−
√

λ′2+β̃2
(β̃ = β · d). In the doubly periodic

case, this leads to the consideration of the integrals in Section 2.2 where (x, y) ∈

[1, 7] × [−2, 2]. Generalized Gaussian quadrature can be applied to construct

numerical quadratures for a given precision ϵ, with a weak dependence on β.

These quadratures are valid for unit cells with arbitrary geometric parameters

and thus can be precomputed and stored (Bremer et al., 2010a; Ma et al., 1996;
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Yarvin and Rokhlin, 1998).

In the singly periodic case, x lies in [1, 3], while the range of y can be

very large when η ≫ d, leading to highly oscillatory integrals. In this case, the

quadrature is constructed as follows. First, the interval [0,∞) is truncated to [0, L],

which can be accomplished easily due to the exponential decay in the x variable,

with L =
√

(log(1/ϵ))2 − β2. If log(1/ϵ) ≤ β, we can set L = 0, since the whole

integral is then negligible. Second, in order to accurately capture the oscillatory

behavior in the y variable, the interval [0, L] is further divided into subintervals

[jλ0, (j + 1)λ0] for j = 0, . . . , ⌈L/λ0⌉, where λ0 = 2πd/η. A shifted and scaled n

point Gauss-Legendre quadrature rule (with n = O(log(1/ϵ))) is then applied to

discretize the integral on each subinterval [jλ0, (j+1)λ0] for j ≥ 1. Third, when β

is very small, a new difficulty emerges - namely that the integrand is nearly singular

at the origin. In that case, we further divide [0, λ0] into dyadic subintervals [0, a]

and [2k−1a, 2ka] for k = 1, . . . , lmax, where lmax = ⌈log2(λ0/β)⌉ and a = λ0/lmax.

A shifted and scaled n point Gauss-Legendre quadrature rule is again applied to

discretize the integral on each such subinterval. To summarize, the total number

of quadrature nodes N1
q (i.e., the numerical rank of the periodizing operator) is

O
(
log(1/ϵ)

(
log(1/β) + log(1/ϵ) · ⌈η

d
⌉
))
. In the limit β → 0, it is also possible to

develop asymptotic expansions in β, which we do not consider here.

Remark 6. The difference between the singly and doubly periodic cases seems

rather significant in terms of quadrature design. However, this distinction is some-

what artificial. The reason that the quadrature problem is simple in the doubly

periodic case is that we have the freedom to choose which lattice vector is oriented

along the x-axis. The difficult direction to deal with is the short axis of the unit

cell and, by our convention, this makes the north/south periodizing kernels more

oscillatory which are already discrete. Thus, the number of terms in the plane-

wave expansion for the north/south parts will grow linearly with respect to the

aspect ratio d
η
but without the need for quadrature design.

To summarize, the numerical rank of the periodizing operators may grow lin-
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early with respect to the aspect ratio for both singly and doubly periodic problems.

When the rank r is large, the NUFFT can be used to reduce the computational

cost from O(r(NT +NS)) to O(log(1/ϵ)(r log r + (NT +NS) log(1/ϵ))) with ϵ the

prescribed precision.

Theorem 4.3. Let S = {sj | j = 1, . . . , NS} and T = {tl | l = 1, . . . , NT} denote

collections of sources and targets in the unit cell C and let Pwest
1 ,Pwest

2 denote the

NT × NS operators with Pwest
1 (l, j) = Kwest

1 (tl, sj) and Pwest
2 (l, j) = Kwest

2 (tl, sj).

Given a precision ϵ, let N1
q (β, d, η), N

2
q (β, d, η) denote the number of points needed

in the numerical quadrature for Kwest
1 (t, s) and Kwest

2 (t, s), with weights and nodes

{wn,1, λn,1} {wn,2, λn,2}, respectively. Let Lwest
1 ∈ CNT×N1

q , Lwest
2 ∈ CNT×N2

q ,

Rwest
1 ∈ CN1

q×NS , Rwest
2 ∈ CN2

q×NS be dense matrices and let D
e/w
1 , Dwest

2 be diag-

onal matrices of dimension N1
q and N2

q , respectively, with

Lwest
1 (l, n) = e−

√
λ2
n,1+β2xleiλn,1yl ,

Lwest
2 (l, n) = e−

√
λ2
n,2+β2xleiλn,2yl ,

Rwest
1 (n, j) = e

√
λ2
n,1+β2x′

j e−iλn,1y′j ,

Rwest
2 (n, j) = e

√
λ2
n,2+β2x′

j e−iλn,2y′j ,

D
e/w
1 (n, n) =

1

2π

wn,1√
λ2n,1 + β2

e−2
√

λ2
n,1+β2d

1− e−
√

λ2
n,1+β2d

,

Dwest
2 (n, n) =

wn,2√
λ2n,2 + β2

e−4
√

λ2
n,2+β2d

1− e−
√

λ2
n,2+β2d

[e−
√

λ2
n,2+β2ξ+iλn,2η + e

√
λ2
n,2+β2ξ−iλn,2η + 1]

2π
.

(4.17)

Let

Pwest
1 = Lwest

1 D
e/w
1 Rwest

1 ,

Pwest
2 = Lwest

2 Dwest
2 Rwest

2 .

Then the real parts of the vectors

Pwest
1 q, Pwest

2 q

denote the contributions from the west sources to the corresponding periodizing
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potentials.

Corollary 2. The matrices Peast
1 and Peast

2 have the low-rank factorizations

Peast
1 = Least

1 D
e/w
1 Reast

1 +O(ϵ)

Peast
2 = Least

2 Deast
2 Reast

2 +O(ϵ)

where Deast
2 = Dwest

2 ,

Least
1 (l, n) = e

√
λ2
n,1+β2xleiλn,1yl ,

Least
2 (l, n) = e

√
λ2
n,2+β2xleiλn,2yl ,

Reast
1 (n, j) = e−

√
λ2
n,1+β2x′

j e−iλn,1y′j ,

Reast
2 (n, j) = e−

√
λ2
n,2+β2x′

j e−iλn,2y′j .

(4.18)
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CHAPTER 5

PERIODIZING OPERATOR FOR THE LAPLACE KERNEL

In this chapter, we derive formulas for Pwest
1 , Peast

1 , Pwest
2 , Peast

2 , Psouth
2 and Pnorth

2

in the limit β → 0, allowing us to impose periodic boundary conditions for the

Poisson equation using the same formalism

P1 = Pwest
1 +Peast

1 ,

P2 = Pwest
2 +Peast

2 +Psouth
2 +Pnorth

2 .

(5.1)

As noted earlier, we require charge neutrality for the periodic problem to

be well-posed. Moreover, as is well-known, the potential is only unique up to an

arbitrary constant.

Theorem 5.1. Let S = {sj | j = 1, . . . , NS}, q = (q1, . . . , qNS
), and T = {tl | l =

1, . . . , NT} denote collections of source locations, charge strengths and targets in

the unit cell C with
∑NS

j=1 qj = 0. Given a precision ϵ, let

M =

⌈
d

2πη
log

(
1

1− e− 2πη
d

1

ϵ

)⌉
≈ A

2π
(log(A) + log(1/ϵ)). (5.2)

For m = −M. . . . ,M , let

αm =
2πm

d
, Qm = αmη − iαmξ . (5.3)
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Let Lsouth ∈ CNT×(2M+1) and Rsouth ∈ C(2M+1)×NS be dense matrices and let

Dsouth ∈ C(2M+1)×(2M+1) be a diagonal matrix with

 Lsouth(l,m) = e−|αm|yleiαmxl for m ̸= 0,

 Lsouth(l, 0) = yl,

Rsouth(m, j) = e|αm|y′j e−iαmx′
j for m ̸= 0,

Rsouth(0, j) = y′j,

Dsouth(m,m) =
1

4π|m|
e−2Qm

1− e−Qm
for m ̸= 0

Dsouth(0, 0) = − 1

2dη
.

(5.4)

Then

Psouth
2 = Lsouth Dsouth Rsouth +O(ϵ).

Proof. For all modesm ̸= 0, this result follows directly from taking the limit β → 0

in the corresponding term for the modified Helmholtz equation. For m = 0, the

relevant contribution to Ksouth
2 (t, sj) in (4.9) is

1

2d

1

β

e−2βη

1− e−βη
e−β(y−y′j).

Letting usouth denote the field due to all sources in the “south” image cells

and summing over all sources yields

usouth(t) =
1

2d

1

β

NS∑
j=1

e−2βη

1− e−βη
e−β(y−y′j)qj. (5.5)

Differentiating both sides of Equation 5.5 with respect to y, we have

∂usouth(x, y)

∂y
= − 1

2d

e−2βη

1− e−βη

NS∑
j=1

e−β(y−y′j)qj. (5.6)
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Taylor expansion of the various terms yields:

∂usouth(x, y)

∂y
= − 1

2d

1−O(β)
βη +O(β2)

e−βy

[
NS∑
j=1

qj + β

NS∑
j=1

qjy
′
j

]

Taking the limit β → 0 and using charge neutrality as Equation 3.8, we

obtain

lim
β→0

∂usouth(x, y)

∂y
= − 1

2dη

NS∑
j=1

yjqj. (5.7)

Hence, usouth(x, y) is given by

lim
β→0

usouth(x, y) = −
1

2dη

(
NS∑
j=1

yjqj

)
y (5.8)

up to an arbitrary constant, completing the derivation. 2

Then we can verify the following corollary.

Corollary 3. Under the hypotheses of Theorem 5.1, let Lnorth ∈ CNT×(2M+1) and

Rnorth ∈ C(2M+1)×NS be dense matrices with

Lnorth(l,m) = e|αm|yleiαmxl for m ̸= 0,

Lnorth(l, 0) = yl,

Rnorth(m, j) = e−|αm|y′j e−iαmx′
j for m ̸= 0,

Rnorth(0, j) = y′j.

(5.9)

Then

Pnorth
2 = Lnorth Dnorth Rnorth +O(ϵ),

where Dnorth = Dsouth.

We can take care this similar issue in the steps of deriving the east and the west

formulas in the limit of β → 0.

Theorem 5.2. Let S = {sj | j = 1, . . . , NS}, q = (q1, . . . , qNS
), and T = {tl | l =

1, . . . , NT} denote collections of source locations, charge strengths, and targets in
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the unit cell C, with
∑NS

j=1 qj = 0. Given a precision ϵ, let N1
q (d, η), N

2
q (d, η) denote

the number of points needed in the numerical quadrature for the Kwest
1 and Kwest

2

kernels (see 5.11 and 5.12 below), with weights and nodes {wn,1, λn,1} {wn,2, λn,2},

respectively. Let Lwest
1 ,Least

1 ∈ CNT×N1
q , Lwest

2 ,Least
2 ∈ CNT×N2

q , Rwest
1 ,Reast

1 ∈

CN1
q×NS , Rwest

2 ,Reast
2 ∈ CN2

q×NS be dense matrices and let D
e/w
1 , Dwest

2 and Deast
2

be diagonal matrices of dimension N1
q and N2

q , respectively, with

Lwest
1 (l, n) = e−λn,1xleiλn,1yl , Lwest

2 (l, n) = e−λn,2xleiλn,2yl ,

Least
1 (l, n) = eλn,1xleiλn,1yl , Least

2 (l, n) = eλn,2xleiλn,2yl ,

Rwest
1 (n, j) = eλn,1x′

j e−iλn,1y′j , Rwest
2 (n, j) = eλn,2x′

j e−iλn,2y′j ,

Reast
1 (n, j) = e−λn,1x′

j e−iλn,1y′j , Reast
2 (n, j) = e−λn,2x′

j e−iλn,2y′j ,

D
e/w
1 (n, n) =

1

2π

wn,1

λn,1

e−2λn,1d

1− e−λn,1d
,

Dwest
2 (n, n) =

1

2π

wn,2

λn,2

e−4λn,2d

1− e−λn,2d
[e−λn,2ξ+iλn,2η + eλn,2ξ−iλn,2η + 1],

(5.10)

and Deast
2 = Dwest

2 . Let

Pwest
1 = Lwest

1 D
e/w
1 Rwest

1 ,

Pwest
2 = Lwest

2 Dwest
2 Rwest

2 .

Peast
1 = Least

1 D
e/w
1 Reast

1 ,

Peast
2 = Least

2 Deast
2 Reast

2 .

Then the real parts of the vectors

Pwest
1 q, Peast

1 q, Pwest
2 q,Peast

2 q

denote the contributions from the west or east sources to the corresponding peri-

odizing potentials.

Proof. Focusing on the “west” sources, the formulas themselves follow directly

from the modified Helmholtz case, letting β → 0 in Equation 4.16 and applying

generalized Gaussian quadrature. As noted in section 2.2, however, the quadrature
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rule is now being used to evaluate an integral of the apparent form

∫ ∞

0

e−λxeiλy

λ
M1(λ)

e−2λd

1− e−λd
dλ (5.11)

for the singly periodic case or

∫ ∞

0

e−λxeiλy

λ
M1(λ)

e−4λd

1− e−λd
[e−λξ+iλη + eλξ−iλη + 1]dλ (5.12)

for the doubly periodic case. Since e−2λd

1−e−λd and e−4λd

1−e−λd are both of the order O( 1
λ
)

as λ → 0, the integrals appear to be strongly singular, with a 1
λ2 singularity at

the origin. However, in applying the periodizing operator, we limit ourselves to

charge neutral distributions, so that we have

M1(λ) =

NS∑
j=1

qje
λ(xj−iyj) = O(λ).

Moreover, in computing any physical quantity, such as the gradient of the

potential, a second factor of λ is introduced in the numerator and thus, the gen-

eralized Gaussian quadrature rule is only being applied to integrals of the form

∫ ∞

0

e−λxeiλyM2(λ) dλ,

where M2(λ) is smooth. The analysis for the “east” sources is identical. 2
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CHAPTER 6

PERIODIZING OPERATOR FOR THE MODIFIED STOKES

EQUATIONS

The modified Stokeslet is the fundamental solution to the modified Stokes equa-

tions

(β2 −∆)u+∇p = 0

∇ · u = 0

(6.1)

and is given at t = (x, y) by

G(MS)(t) = (∇⊗∇−∆I)GMB(t) =

−∂yy ∂xy

∂xy −∂xx

GMB(t) (6.2)

where

GMB(t) = −
1

2πβ2
[K0(β|t|)− log(1/|t|)] . (6.3)

This is the fundamental solution for the modified biharmonic equation:

∆(∆− β2)GMB(t) = δ(t). (6.4)

Taking the Fourier transform of both sides yields the representation

GMB(t) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

1

(k21 + k22)(β
2 + k21 + k22)

ei(k1x+k2y)dk1dk2. (6.5)

Substituting Equation (6.5) into Equation (6.2), we obtain the Fourier rep-

resentation of the modified Stokeslet:

G
(MS)
ij (t) =

1

4π2

∫ ∞

−∞

∫ ∞

−∞

(k21 + k22)δij − kikj
(k21 + k22)(β

2 + k21 + k22)
ei(k1x+k2y)dk1dk2. (6.6)

We now extend Sommerfeld’s method to derive a plane-wave expansion for

the modified Stokeslet (valid for x > 0) by contour integration in the k1 variable

and the residue theorem. Note that in the complex k1-plane, the integrand has four
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poles: namely ±i
√
β2 + k22 and ±i|k2|. Under the assumption: x > 0, consider

the closed contour from −R to R along the real k1 axis and returning along a

semicircle of radius R in the upper half of the complex plane, the integral along

the semicircle vanishes as R→∞, since

|eik1x| ≤ 1 ,
1

β2 +R2e2iθ + k22
→ 0 as R→∞

and the remaining terms in the integrand are bounded by 2. From the Residue

Theorem, it follows that the integral is due to the residues at the two poles

i
√
β2 + k22 and i|k2| that lie within the contour, leading to:

G(MS)(t) =
1

4πβ2

∫ ∞

−∞

e−
√

β2+λ2x√
β2 + λ2

eiλy

 −λ2 iλ
√
β2 + λ2

iλ
√
β2 + λ2 β2 + λ2

 dλ
+

1

4πβ2

∫ ∞

−∞
e−|λ|x+iλy

 |λ| −iλ
−iλ −|λ|

 dλ, x > 0.

(6.7)

The plane-wave expansions for x < 0, y > 0, and y < 0 are obtained

similarly. Here, we have renamed the k2 Fourier variable as λ to be consistent

with our earlier notation.

6.1 Low Rank Factorization

The periodizing operators P1 and P2 can be constructed by the same method as

for the modified Helmholtz equation:

P1 = Pwest
1 +Peast

1 ,

P2 = Pwest
2 +Peast

2 +Psouth
2 +Pnorth

2 .

(6.8)
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For a source to the “south”, we have

Ksouth
2 (t, sj) =

−2∑
n=−∞

∞∑
m=−∞

G(MS)(t− (s+ lmn))

=
1

4πβ2

−2∑
n=−∞

∞∑
m=−∞

{∫ ∞

−∞

e−
√

β2+λ2(y−y′j−nη)√
β2 + λ2

eiλ(x−x′
j−md−nξ)

·

 β2 + λ2 iλ
√
β2 + λ2

iλ
√
β2 + λ2 −λ2

 dλ
+

∫ ∞

−∞
e−|λ|(y−y′j−nη)+iλ(x−x′

j−md−nξ)

−|λ| −iλ
−iλ |λ|

 dλ
 .

(6.9)

Following the same procedure used for the modified Helmholtz equation

above, we obtain

Ksouth
2 (t, sj) =

1

2dβ2

∞∑
m=−∞


χm iαm

iαm −α2
m

χm

 e−2Q
(β)
m

1− e−Q
(β)
m

e−χm(y−y′j)+iαm(x−x′
j)

+

−|αm| −iαm

−iαm |αm|

 e−2Qm

1− e−Qm
e−|αm|(y−y′j)+iαm(x−x′

j)

 ,

(6.10)

where

Q(β)
m = χmη − iαmξ, Qm = |αm|η − iαmξ, (6.11)

with αm, χm given in Equation (4.5).

This establishes

Theorem 6.1. Let S = {sj | j = 1, . . . , NS} and T = {tl | l = 1, . . . , NT} denote

collections of sources and targets in the unit cell C and let Psouth
2 denote the NT×NS

block matrix with Psouth
2 (l, j) = Ksouth

2 (tl, sj). Given a precision ϵ, let M be given

by Equation (4.4). For m = −M. . . . ,M , let Q
(β)
m , Qm be given by Equation (6.11)

and let αm, χm be given by Equation (4.5). Let Lsouth
β ,Lsouth,Lnorth

β ,Lnorth ∈

C2NT×2(2M+1) and Rsouth
β ,Rsouth,Rnorth

β ,Rnorth ∈ C2(2M+1)×2NS be dense NT ×

(2M + 1) and (2M + 1) × NS block matrices, respectively, with 2 × 2 blocks,
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let Dsouth
β ,Dsouth,Dnorth

β ,Dnorth ∈ C2(2M+1)×2(2M+1) be (2M + 1)× (2M + 1) block

diagonal matrices with 2 × 2 diagonal blocks, let I2 denote the identity matrix of

size 2, and let

Lsouth
β (l,m) = e−χmyleiαmxlI2, Lnorth

β (l,m) = eχmyleiαmxlI2 ,

Lsouth(l,m) = e−|αm|yleiαmxlI2, Lnorth(l,m) = e|αm|yleiαmxlI2 ,

Rsouth
β (m, j) = eχmy′je−iαmx′

jI2, Rnorth
β (m, j) = e−χmy′je−iαmx′

jI2 ,

Rsouth(m, j) = e|αm|y′je−iαmx′
jI2, Rnorth(m, j) = e−|αm|y′je−iαmx′

jI2 ,

Dsouth
β (m,m) =

1

2β2d

e−2Q
(β)
m

1− e−Q
(β)
m

χm iαm

iαm −α2
m/χm

 , Dnorth
β (m,m) = Dsouth

β (m,m) ,

Dsouth(m,m) =
1

2β2d

e−2Qm

1− e−Qm

−|αm| −iαm

−iαm |αm|

 , Dnorth(m,m) = Dsouth(m,m) .

(6.12)

Then

Psouth
2 = Lsouth

β Dsouth
β Rsouth

β + LsouthDsouthRsouth +O(ϵ),

Pnorth
2 = Lnorth

β Dnorth
β Rnorth

β + LnorthDnorthRnorth +O(ϵ).
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For the sources in image boxes to the “west”, we have

Kwest
1 (t, sj) =

−2∑
m=−∞

G(MS) (t− (sj + lm0))

=
1

4πβ2

{∫ ∞

−∞
e−
√

β2+λ2(x−x′
j)eiλ(y−y′j)

·

− λ2√
β2+λ2

iλ

iλ
√
β2 + λ2

 e−2
√

β2+λ2d

1− e−
√

β2+λ2d
dλ

+

∫ ∞

−∞
e−|λ|(x−x′

j)+iλ(y−y′j)

·

 |λ| −iλ
−iλ −|λ|

 e−2|λ|d

1− e−|λ|ddλ

 ,

Kwest
2 (t, sj) =

−4∑
m=−∞

1∑
n=−1

G(MS) (t− (sj + lmn))

=
1

4πβ2

1∑
n=−1

{∫ ∞

−∞
e−
√

β2+λ2(x−x′
j−nξ)eiλ(y−y′j−nη)

·

− λ2√
β2+λ2

iλ

iλ
√
β2 + λ2

 e−4
√

β2+λ2d

1− e−
√

β2+λ2d
dλ

+

∫ ∞

−∞
e−|λ|(x−x′

j−nξ)+iλ(y−y′j−nη)

·

 |λ| −iλ
−iλ −|λ|

 e−4|λ|d

1− e−|λ|ddλ

 .

(6.13)

Theorem 6.2. Let S = {sj | j = 1, . . . , NS} and T = {tl | l = 1, . . . , NT} de-

note collections of sources and targets in the unit cell C and let Pwest
1 ,Pwest

2 de-

note the NT × NS block matrices with 2 × 2 blocks Pwest
1 (l, j) = Kwest

1 (tl, sj) and

Pwest
2 (l, j) = Kwest

2 (tl, sj). Given a precision ϵ, let N1
q (β, d, η), N

1
q (0, d, η) and

N2
q (β, d, η), N

2
q (0, d, η) denote the number of points needed in the numerical quadra-

tures for the two integrals in each of Kwest
1 (t, s) and Kwest

2 (t, s), with weights and

nodes {wn,β,1, λn,β,1}, {wn,0,1, λn,0,1}, {wn,β,2, λn,β,2}, and {wn,0,2, λn,0,2}, respec-

tively. Let Lwest
1,β , Lwest

1 , Lwest
2,β , Lwest

2 , Rwest
1,β , Rwest

1 , Rwest
2,β , Rwest

2 be dense block
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matrices with 2× 2 blocks given by:

Lwest
1,β (l, n) = e−

√
λ2
n,β,1+β2xleiλn,β,1ylI2 | l = 1, . . . , NT , n = 1, . . . , N1

q (β, d, η)

Lwest
1 (l, n) = e−|λn,0,1|xleiλn,0,1ylI2 | l = 1, . . . , NT , n = 1, . . . , N1

q (0, d, η)

Lwest
2,β (l, n) = e−

√
λ2
n,β,2+β2xleiλn,β,2ylI2 | l = 1, . . . , NT , n = 1, . . . , N2

q (β, d, η)

Lwest
2 (l, n) = e−|λn,0,2|xleiλn,0,2ylI2 | l = 1, . . . , NT , n = 1, . . . , N2

q (0, d, η)

Rwest
1,β (n, j) = e

√
λ2
n,β,1+β2x′

je−iλn,β,1y
′
jI2 | n = 1, . . . , N1

q (β, d, η), j = 1, . . . , NS

Rwest
1 (n, j) = e|λn,0,1|x′

je−iλn,0,1y′jI2 | n = 1, . . . , N1
q (0, d, η), j = 1, . . . , NS

Rwest
2,β (n, j) = e

√
λ2
n,β,2+β2x′

je−iλn,β,2y
′
jI2 | n = 1, . . . , N2

q (β, d, η), j = 1, . . . , NS

Rwest
2 (n, j) = e|λn,0,2|x′

jeiλn,0,2y′jI2 | n = 1, . . . , N2
q (0, d, η), j = 1, . . . , NS ,

(6.14)

and let Dwest
1,β , Dwest

1 , Dwest
2,β , Dwest

2 be block diagonal matrices with 2 × 2 blocks
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given by:

Dwest
1,β (n, n) =

wn,β,1

4πβ2

e−2
√

λ2
n,β,1+β2d

1− e−
√

λ2
n,β,1+β2d

− λ2
n,1√

β2+λ2
n,β,1

iλn,β,1

iλn,β,1
√
β2 + λ2n,β,1

 ,
n = 1, . . . , N1

q (β, d, η)

Dwest
1 (n, n) =

wn,0,1

4πβ2

e−2|λn,0,1|d

1− e−|λn,0,1|d

 |λn,0,1| −iλn,0,1
−iλn,0,1 −|λn,0,1|

 ,
n = 1, . . . , N1

q (0, d, η)

Dwest
2,β (n, n) =

wn,β,2

4πβ2
[e−
√

β2+λn,β,2ξ+iλn,β,2η + eλn,β,2ξ−iλn,β,2η + 1]·

e−4
√

λ2
n,β,2+β2d

1− e−
√

λ2
n,β,2+β2d

− λ2
n,β,2√

β2+λ2
n,β,2

iλn,β,2

iλn,β,2
√
β2 + λ2n,β,2

 ,
n = 1, . . . , N2

q (β, d, η)

Dwest
2 (n, n) =

wn,0,2

4πβ2
[e−|λn,0,2|ξ+iλn,0,2η + e|λn,0.2|ξ−iλn,0.2η + 1]·

e−4|λn,0,2|d

1− e−|λn,0,2|d

 |λn,0,1| −iλn,0,1
−iλn,0,1 −|λn,0,1|

 , n = 1, . . . , N2
q (0, d, η).

(6.15)

Let

Pwest
1 = Lwest

1,β Dwest
1,β Rwest

1,β + Lwest
1 Dwest

1 Rwest
1 ,

Pwest
2 = Lwest

2,β Dwest
2,β Rwest

2,β + Lwest
2 Dwest

2 Rwest
2 .

Then the real parts of the vectors

Pwest
1 q, Pwest

2 q

denote the contributions from the west sources to the corresponding periodizing

potentials. The formulas for Peast
1 and Peast

2 are identical, except that xl ↔ −xl
and x′j ↔ −x′j in the various L(l, n) and R(n, j) blocks above and that Deast

1,β =

Dwest
1,β , Deast

1 = Dwest
1 , Deast

2,β = Dwest
2,β , Deast

2 = Dwest
2 .
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CHAPTER 7

PERIODIZING OPERATOR FOR THE STOKES EQUATIONS

While the Stokeslet, i.e., the Green’s function for the incompressible Stokes flow,

is given by the formula

G(S)(t) = − 1

4π

(
log |t| I− t⊗ t

|t|2
)
, (7.1)

a systematic way of computing the correct limit for the periodizing operators is

to let β → 0 in the various formulas for the modified Stokes equations, invoking

charge neutrality before taking the limit.

Theorem 7.1. Let S = {sj | j = 1, . . . , NS} and T = {tl | l = 1, . . . , NT} denote

collections of sources and targets in the unit cell C and let Psouth
2 denote the NT×NS

block matrix which is the periodizing operator for all “south” sources. Given a

precision ϵ, let M be given by Equation 4.4. With αm, Qm given in Equation 4.5

and Equation 6.11, let Lsouth and Rsouth be defined as in Equation 6.12 except with

Lsouth(l, 0) =

yl 0

0 yl


Rsouth(0, j) =

y′j 0

0 y′j

 .

(7.2)

Let Dsouth
a ,Dsouth

b ∈ C2(2M+1)×2(2M+1) be (2M + 1) × (2M + 1) block diagonal

matrices with 2 × 2 diagonal blocks, and let DS ∈ C2NS×2NS , DT ∈ C2NT×2NT be
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block diagonal matrices with 2× 2 diagonal blocks given by

Dsouth
a (m,m)

=
1

4d

e−2Qm

1− e−Qm

 1

|αm|

1 0

0 1

 − 2− e−Qm

1− e−Qm
η

 1 i sign(m)

i sign(m) −1




for m ̸= 0

Dsouth
b (m,m) =

1

4d

e−2Qm

1− e−Qm

 1 i sign(m)

i sign(m) −1

 for m ̸= 0

Dsouth
a (0, 0) = − 1

2dη

1 0

0 0


Dsouth

b (0, 0) =

0 0

0 0


DS(j, j) =

y′j 0

0 y′j


DT (i, i) =

yi 0

0 yi

 .

(7.3)

Then

Psouth
2 = LsouthDsouth

a Rsouth −DT Lsouth Dsouth
b Rsouth + LsouthDsouth

b Rsouth DS +O(ϵ) .

Proof. Consider first one of the terms in Equation 6.10 corresponding to a mode

m ̸= 0. We will denote the limit as β → 0 by Ksouth
2 [m]. Using L’Hopital’s rule,
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and taking the limit β → 0, it is straightforward to see that

Ksouth
2 [m](t, sj) = lim

β→0

1

2dβ2


χm iαm

iαm −α2
m

χm

 e−2Q
(β)
m

1− e−Q
(β)
m

e−χm(y−y′j)+iαm(x−x′
j)

+

−|αm| −iαm

−iαm |αm|

 e−2Qm

1− e−Qm
e−|αm|(y−y′j)+iαm(x−x′

j)


=

1

4d

 1

|αm|

1 0

0 1

− (y − y0 + 2− e−Qm

1− e−Qm
η

) 1 i sign(m)

i sign(m) −1




· e−2Qm

1− e−Qm
e−|αm|(y−y′j)+iαm(x−x′

j).

(7.4)

It is easy to check that every column of Ksouth
2 [m] is divergence-free and

that every entry of Ksouth
2 [m] is biharmonic.

For the m = 0 term, we have

Ksouth
2 [0](t, sj) = lim

β→0

1

2dβ2

β 0

0 0

 e−2βη

1− e−βη
e−β(y−y′j). (7.5)

As we did for the Poisson equation, using charge neutrality and expanding the

exponential terms in a Taylor series, we obtain

Ksouth
2 [0](t, sj) = −

1

2dη

yy′j 0

0 0

 . (7.6)
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Combining Equation 7.4 and Equation 7.6, we obtain

Ksouth
2 (t, sj) =

∞∑
m=−∞

Ksouth
2 [m](t, sj)

= − 1

2dη

yy′j 0

0 0

+
1

4d

∞∑
m=−∞
m ̸=0

 1

|αm|

1 0

0 1


−
(
y − y′j +

2− e−Qm

1− e−Qm
η

) 1 i sign(m)

i sign(m) −1




· e−2Qm

1− e−Qm
e−|αm|(y−y′j)+iαm(x−x′

j).

(7.7)

2

Remark 7. In an almost identical manner, we can show that

Knorth
2 (t, sj) = −

1

2dη

yy′j 0

0 0

+
1

4d

∞∑
m=−∞
m ̸=0

 1

|αm|

1 0

0 1


−
(
y − y′j −

2− e−Qm

1− e−Qm
η

) −1 i sign(m)

i sign(m) 1




· e−2Qm

1− e−Qm
e|αm|(y−y′j)+iαm(x−x′

j).

(7.8)

And the expression for Pnorth
2 can be derived similarly.

Taking the limit β → 0 for Equation 6.13 and using charge neutrality, we
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likewise obtain the west part of the periodizing operator for the Stokeslet:

Kwest
1 (t, s) =

1

8π

∫ ∞

−∞

e−2|λ|d

1− e−|λ|d e
−|λ|(x−x′)eiλ(y−y′) ·

 1

|λ|

1 0

0 1


−
(
x− x′ + 2− e−|λ|d

1− e−|λ|dd

) −1 i sign(λ)

i sign(λ) 1


 dλ,

Kwest
2 (t, s) =

1

8π

1∑
n=−1

∫ ∞

−∞

e−4|λ|d

1− e−|λ|d e
−|λ|(x−x′−nξ)eiλ(y−y′−nη) ·

 1

|λ|

1 0

0 1


−
(
x− x′ − nξ + 4− 3e−|λ|d

1− e−|λ|d d

) −1 i sign(λ)

i sign(λ) 1


 dλ,

(7.9)

It is again easy to check that every column ofKwest
1 orKwest

2 is divergence-free

and that every entry is biharmonic. The above representation yields the following

theorem.

Theorem 7.2. Let S = {sj | j = 1, . . . , NS} and T = {tl | l = 1, . . . , NT} de-

note collections of sources and targets in the unit cell C and let Pwest
1 ,Pwest

2 de-

note the NT × NS block matrices with 2 × 2 blocks Pwest
1 (l, j) = Kwest

1 (tl, sj) and

Pwest
2 (l, j) = Kwest

2 (tl, sj). Given a precision ϵ, let N1
q (d, η) and N2

q (d, η) de-

note the number of points needed in the numerical quadratures for the integrals in

Kwest
1 (t, s) and Kwest

2 (t, s), with weights and nodes {wn,0,1, λn,0,1}, {wn,0,2, λn,0,2},

respectively. Let Lwest
1 , Lwest

2 , Rwest
1 , Rwest

2 be dense block matrices with 2 × 2

blocks given by Equation 6.14, and let Dwest
1,a , Dwest

1,b , Dwest
2,a , Dwest

2,b be block diagonal
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matrices with 2× 2 blocks given by:

Dwest
1,a (n, n) =

wn,0,1

8π

e−2|λn,0,1|d

1− e−|λn,0,1|d

(1/|λn,0,1| 0

0 1/|λn,0,1|


− 2− e−|λn,0,1|d

1− e−|λn,0,1|d
d

 −1 i sign(λn,0,1)

i sign(λn,0,1) 1

),
Dwest

1,b (n, n) =
wn,0,1

8π

e−2|λn,0,1|d

1− e−|λn,0,1|d

 −1 i sign(λn,0,1)

i sign(λn,0,1) 1

 ,
Dwest

2,a (n, n) =
wn,0,2

8π

e−4|λn,0,2|d

1− e−|λn,0,2|d
[e−|λn,0,2|ξ+iλn,0,2η + e|λn,0,2|ξ−iλn,0,2η + 1]×(1/|λn,0,2| 0

0 1/|λn,0,2|

− 4− 3e−|λn,0,2|d

1− e−|λn,0,2|d
d

 −1 i sign(λn,0,2)

i sign(λn,0,2) 1


− [e−|λn,0,2|ξ+iλn,0,2η − e|λn,0,2|ξ−iλn,0,2η] ξ

 −1 i sign(λn,0,2)

i sign(λn,0,2) 1

)

Dwest
2,b (n, n) =

wn,0,2

8π

e−4|λn,0,2|d

1− e−|λn,0,2|d
[e−|λn,0,2|ξ+iλn,0,2η + e|λn,0,2|ξ−iλn,0,2η + 1]× −1 i sign(λn,0,2)

i sign(λn,0,2) 1

 .
(7.10)

Let

Pwest
1 = Lwest

1 Dwest
1,a Rwest

1 −DTL
west
1 Dwest

1,b Rwest
1 + Lwest

1 Dwest
1,b Rwest

1 DS

Pwest
2 = Lwest

2 Dwest
2,a Rwest

2 −DTL
west
2 Dwest

2,b Rwest
2 + Lwest

2 Dwest
2,b Rwest

2 DS .

Then the real parts of the vectors

Pwest
1 q, Pwest

2 q

denote the contributions from the west sources to the corresponding periodizing

potentials.

44



Remark 8. In an almost identical manner, we can show that

Keast
1 (t, s) =

1

8π

∫ ∞

−∞

e−2|λ|d

1− e−|λ|d e
|λ|(x−x′)eiλ(y−y′) ·

 1

|λ|

1 0

0 1


−
(
x− x′ − 2− e−|λ|d

1− e−|λ|dd

) 1 i sign(λ)

i sign(λ) −1


 dλ,

Keast
2 (t, s) =

1

8π

1∑
n=−1

∫ ∞

−∞

e−4|λ|d

1− e−|λ|d e
|λ|(x−x′−nξ)eiλ(y−y′−nη) ·

 1

|λ|

1 0

0 1


−
(
x− x′ − nξ − 4− 3e−|λ|d

1− e−|λ|d d

) 1 i sign(λ)

i sign(λ) −1


 dλ.

(7.11)

The expressions for Peast
1 , Peast

2 can be derived similarly.

For both the modified Stokeslet and Stokeslet, the associated pressurelet is

given by:

p(t) =
1

2π

t

|t|2 =
1

2π
∇ log |t|. (7.12)

Thus, the periodizing operators for the pressurelet can be obtained by simply

differentiating those for the logarithmic kernel in Chapter 5, summarized in the

following two theorems.

Theorem 7.3. Let S = {sj | j = 1, . . . , NS} and T = {tl | l = 1, . . . , NT} de-

note collections of sources and targets in the unit cell C and let Psouth
2 denote the

NT × NS block matrix which is the periodizing operator for all “south” sources

for the pressure for both the modified Stokes and Stokes equations. Given a preci-

sion ϵ, let M be given by Equation 5.2. With αm, Qm given in Equation 5.3, let

Lsouth,Lnorth ∈ CNT×(2M+1) and Rsouth,Rnorth ∈ C(2M+1)×2NS be dense matrices

and let

Dsouth,Dnorth ∈ C(2M+1)×(2M+1)
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be diagonal matrices with

Lsouth(l,m) = e−|αm|yleiαmxl , for m ̸= 0,

Lnorth(l,m) = e|αm|yleiαmxl , for m ̸= 0,

Lsouth(l, 0) = yl, Lnorth(l, 0) = yl,

Rsouth(m, j) = e|αm|y′j e−iαmx′
j [iαm − |αm|] for m ̸= 0,

Rnorth(m, j) = e−|αm|y′j e−iαmx′
j [iαm |αm|] for m ̸= 0,

Rsouth(0, j) = [0 1], Rnorth(0, j) = [0 1],

Dsouth(m,m) = − 1

4π|m|
e−2Qm

1− e−Qm
for m ̸= 0

Dsouth(0, 0) =
1

2dη
, Dnorth = Dsouth.

(7.13)

Then

Psouth
2 = Lsouth DsouthRsouth +O(ϵ),

Pnorth
2 = LnorthDnorthRnorth +O(ϵ).

(7.14)

Theorem 7.4. Under the hypotheses of Theorem 5.2, let Lwest
1 ,Least

1 ∈ CNT×N1
q ,

Lwest
2 ,Least

2 ∈ CNT×N2
q , be dense matrices and let D

e/w
1 , Dwest

2 and Deast
2 be diagonal

matrices of dimension N1
q and N2

q defined in Equation 5.10. Let Rwest
1 ,Reast

1 ∈

CN1
q×2NS , Rwest

2 ,Reast
2 ∈ CN2

q×2NS be dense matrices with

Rwest
1 (n, j) = eλn,1x′

j e−iλn,1y′j [λn,1 − iλn,1] ,

Rwest
2 (n, j) = eλn,2x′

j e−iλn,2y′j [λn,2 − iλn,2] ,

Reast
1 (n, j) = e−λn,1x′

j e−iλn,1y′j [−λn,1 − iλn,1] ,

Reast
2 (n, j) = e−λn,2x′

j e−iλn,2y′j [−λn,2 − iλn,2] .

(7.15)

Let

Pwest
1 = Lwest

1 D
e/w
1 Rwest

1 ,

Pwest
2 = Lwest

2 Dwest
2 Rwest

2 .

Peast
1 = Least

1 D
e/w
1 Reast

1 ,

Peast
2 = Least

2 Deast
2 Reast

2 .
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Then the real parts of the vectors

Pwest
1 q, Peast

1 q,Pwest
2 q,Peast

2 q

denote the contributions from the west or east sources to the corresponding peri-

odizing pressures.
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CHAPTER 8

Basic Algorithm and NUFFT Acceleration

In this chapter, we use the planewave representations derived in the previous

chapters to define explicit algorithms for computing fast sums of the periodizing

operators PY,l and PL,l for a collection of Ns sources at Nt targets. The first sub-

section contains a basic algorithm with O(r(Ns +Nt)) computational complexity,

where r is the rank of PY,l or PL,l. Because the rank r grows linearly in the as-

pect ratio A = d/η, an acceleration strategy is proposed in the second subsection.

There, the NUFFT is used to achieve a computational complexity of the form

O((r +Ns +Nt) log(r +Ns +Nt)).

The central idea of both algorithms is to divide the evaluation of PY,l and

PL,l into two stages based on the separability of the planewave representations: a

“form” stage in which the coefficients for approximating PY,l or PL,l in the plane

wave basis are computed and an “apply” stage in which the approximate operators

are evaluated at any set of targets by evaluating the planewave expansions at those

points. The accelerated algorithm takes advantage of NUFFT-like rank structures

in the form and apply operators.

8.1 Basic Algorithm

Consider a collection of Ns sources with strengths qj and locations Sj = (xj, yj) ∈

C. Let αm and χm be defined as:

αm = α0 +
2πm

d
, χm =

√
α2
m + β2, (8.1)

and let M be the order of the planewave expansions for the north and south

directions. Further, let

Q(Y )
m = χmη − i ((αm − α0)ξ + β0η) (8.2)
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and

Q(L)
m =

2πm

d
(η − iξ). (8.3)

The “form planewave” operators will be written as a matrix-vector multiplication

of the form Fq, where q is the vector of charge strengths. We define the Yukawa

form planewave operator for the south direction by

[
FY,l

s ({Sj};M)q
]
m
=

iℓπ

χmd

(
β

χm + αm

)ℓ
e−2Q

(Y )
m

1− e−Q
(Y )
m

Ns∑
j=1

qje
χmyj−iαmxj ,

for m = m0 −M, . . . ,m0 +M. (8.4)

Similarly, we define the Laplace form planewave operator for the south

direction by

[
FL,l

s ({Sj};M)q
]
m
=

(−i)ℓ
m(ℓ− 1)!

(
2πm

d

)ℓ
e−2Q

(L)
m

1− e−Q
(L)
m

Ns∑
j=1

qje
2πm(yj−ixj)/d ,

for m = 1, . . . ,M. (8.5)

The corresponding form planewave operators for the north direction are

defined analogously.

The form planewave operators for the west direction take a similar form but

now involve the quadrature nodes and weights of the previous section. We define

[
FY,l

w ({Sj})q
]
m
= w

(Y,l)
i (β̃)

Ns∑
j=1

qje
xj

√
(λ(Y,l)

m )
2
+β̃2

d e−i
yjλ

(Y,l)
m
d ,

for m = 1, . . . , Nq(β̃)
(Y,l) (8.6)

and
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[
FL,l

w ({Sj})q
]
m
= w

(L,l)
i

Ns∑
j=1

qje
xj

√
(λ(L,l)

m )
2
+β̃2

d ei
yjλ

(L,l)
m
d ,

for m = 1, . . . , N (L,l)
q . (8.7)

The form planewave operators for the east direction are defined analogously.

Let c denote the coefficients returned by any of the form operators defined above.

The apply operators evaluate the planewave expansions corresponding to these

coefficients at a set of Nt target nodes, which we denote by Ti = (vi, wi) ∈ C. We

define the apply operators for the south direction by

[
AY,l

s ({Ti};M)c
]
n
=

m0+M∑
m=m0−M

cme
iαmvn−χmwn , for n = 1, . . . , Nt , (8.8)

and

[
AL,l

s ({Ti};M)c
]
n
=

M∑
m=1

cme
2πm(ivn−wn)/d , for n = 1, . . . , Nt . (8.9)

The north direction is defined analogously. Similarly, we define the apply

operators for the west direction by

[
AY,l

w ({Ti}; β̃)c
]
n
=

N
(Y,l)
q (β̃)∑
m=1

cme
−

vn

√
(λ(Y,l)

m )
2
+β̃2

d ei
wnλ

(Y,l)
m
d , for n = 1, . . . , Nt ,

(8.10)

and

[
AY,l

w ({Ti})c
]
n
=

N
(L,l)
q∑

m=1

cme
− vnλ

(L,l)
m
d e−i

wnλ
(L,l)
m
d , for n = 1, . . . , Nt . (8.11)

The apply operators for the east direction are defined analogously.

Once these operators are defined, the basic algorithm for evaluating the

Yukawa periodizing operator can be stated succinctly; see Algorithm 1. The
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cost of the algorithm is clearly O(M(Ns + Nt) + N
(Y,l)
q (β̃)(Ns + Nt)). The M

required to achieve a given accuracy, ϵ, grows linearly in the aspect ratio, i.e.

M = O(log(1/ϵ)d/η). The number of quadrature nodes required, N
(Y,l)
q , is compa-

rable to the number of terms required in a fast multipole method, i.e. N
(Y,l)
q (β̃) =

O(log(1/ϵ)), independent of the aspect ratio.

Algorithm 1 Basic algorithm for evaluating ui =
∑Ns

j=1P
Y,l(Ti,Sj)qj.

Input: {Sj}, q, {Ti}, M .
1: cs ← FY,l

s ({Sj};M)q
2: cn ← FY,l

n ({Sj};M)q
3: cw ← FY,l

w ({Sj})q
4: ce ← FY,l

e ({Sj})q
5: u ← 0
6: u ← u+AY,l

s ({Ti};M)cs
7: u ← u+AY,l

n ({Ti};M)cn
8: u ← u+AY,l

w ({Ti})cw
9: u ← u+AY,l

e ({Ti})ce
Output: u.

8.2 NUFFT Acceleration

To efficiently compute the periodization operators for unit cells with moderate

to high aspect ratios, we must accelerate the evaluation of the form and apply

operators for the south and north directions.

8.2.1 Accelerated Form Operators

Consider the form south operator for Yukawa potentials, i.e., FY,l
s . Suppose that

we are interested in applying this operator for some set of sources S
(0)
j where the

y-coordinate is fixed, i.e. S
(0)
j = (x

(0)
j , y(0)) ∈ C. Setting

ν(Y,l)m (y(0)) =
iℓπ

χmd

(
β

χm + αm

)ℓ
e−2Q

(Y )
m

1− e−Q
(Y )
m

eχmy(0)

σ
(Y,l)
j ({x(0)j }) = e−i(α0+2πm0/d)x

(0)
j ,

(8.12)

we have that
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Figure 8.1 An illustration of the auxiliary grids used for the accelerated algo-
rithm. Yellow diamonds represent source locations for the form stage or target
locations for the apply stage. The blue dots are the auxiliary points used for an-
terpolation in the form stage or interpolation in the apply stage.

[
FY,l

s ({S(0)
j };M)q

]
m
= ν(Y,l)m (y(0))

Ns∑
j=1

e−im′(2πxj/d)σ
(Y,l)
j ({S(0)

j })qj ,

for m = m0 −M, . . . ,m0 +M , (8.13)

where m′ = m−m0. Thus, the form south operator can be written

FY,l
s ({S(0)

j };M) = D(Y,l,1)
s (y(0))N(1)({−2πx(0)j /d},M)D(Y,l,2)

s ({x(0)j }) , (8.14)

where D
(Y,l,1)
s (y(0)) and D

(Y,l,2)
s ({x(0)j }) are diagonal operators and N(1) is the type-

I NUFFT operator defined in Equation (2.4). The cost of applying FY,l
s for such a

set of points is then O((Ns+M) log(Ns+M)) using a standard NUFFT algorithm.

To apply this acceleration to general sets of source points, {Sj}, we use an anter-

polation strategy. Observe that each component of FY,l
s is an entire function of

the source point coordinates, xj and yj; the dependence of the m-th output on

source location j takes the form

f(Sj; qj) = γmqje
χmyj−iαmxj ,

where γm is a constant. We can thus interpolate this function to any source

location by using its value for a small number of fixed y coordinates.
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In particular, we define y(i) = η(ti + 1)/2, where t1 < · · · < tMleg
are the

Mleg-th order Legendre nodes. To conform to the parallelogram shape of the unit

cell, we interpolate this function along lines with slope η/ξ; see Figure 8.1 for

an illustration. Defining x̄j = xj − ξyj/η, we can then interpolate f(Sj; qj) by

using the values f(S
(i)
j ; qj) where S

(i)
j = (x̄j + ξy(i)/η, y(i)) . Let λ1, . . . , λMleg

be

the barycentric interpolation weights defined in Equation (2.7). Then,

c(1)(yj)f(S
(1)
j ; qj) + · · ·+ c(Mleg)(yj)f(S

(Mleg)
j ; qj)

is a spectrally accurate approximation of f(Sj; qj), where

c(i)(yj) =

λi

yj−y(i)∑Mleg

n=1
λn

yj−y(n)

. (8.15)

Interpolation of the operator in this way can be reinterpreted as defining a set of

“equivalent sources” through anterpolation, i.e., the source at Sj with charge qj

is replaced by sources at S
(1)
j , . . . ,S

(Mleg)
j with charges qjc

(1)(yj), . . . , qjc
(Mleg)(yj).

Because each of the sets {S(i)
j } has charges with a fixed y-coordinate, the NUFFT-

accelerated approach described above can be applied. The resulting algorithm is

provided in Algorithm 2 and has O(Mleg(Ns +M) log(Ns +M)) computational

complexity. The anterpolated sources provide a spectrally accurate approximation

of the original sources. For non-oscillatory kernels like Yukawa and Laplace, we

find that 25 Legendre nodes are sufficient for double precision accuracy.
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Algorithm 2 Accelerated algorithm for evaluating cs ≈ FY,l
s (Sj;M)q.

Input: {Sj}, q, M , Mleg.
1: t1, . . . , tMleg

← Mleg-th order Legendre nodes
2: λ1, . . . , λMleg

← Barycentric weights
3: for i = 1, . . . ,Mleg do
4: y(i) ← yj(ti + 1)/2
5: for j = 1, . . . , Ns do
6: (xj, yj) ← Sj

7: x̄j ← xj − ξyj/η
8: x

(i)
j ← x̄j + ξy(i)/η

9: q
(i)
j ← qjc

(i)(yj)

10: cs ← 0
11: for i = 1, . . . ,Mleg do

12: q̃ ← D(Y,l,2)({x(i)j })q(i)

13: c̃ ← N(1)
({
−2πx(i)j /d

}
,M
)
q̃

14: cs ← cs +D
(Y,l,1)
s (y(i))c̃

Output: cs.

8.2.2 Accelerated Apply Operators

A similar strategy can be applied to the operator AY,l
s . Suppose that some target

points of interest, T
(0)
i , all share the same y-coordinate, i.e. T

(0)
i = (v

(0)
i , w(0)) ∈ C.

Setting

σ(Y,l)
n ({v(0)j }) = ei(α0+2πm0/d)v

(0)
n ,

we have that

[
AY,l

s ({T(0)
j };M)c

]
n
= σ(Y,l)

n

M∑
m′=−M

e−χm′+m0
w(0)

cm′+m0e
im′(2πvn/d) ,

for n = 1, . . . , Nt . (8.16)

Thus, the apply south operator can be written

AY,l
s ({T(0)

j };M) = D(Y,l,3)
s ({v(0)j })N(2)({2πv(0)j /d},M)D(Y,l,4)(w(0)) , (8.17)
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whereD
(Y,l,3)
s ({v(0)j }) andD

(Y,l,4)
s (w(0)) are diagonal operators andN(2) is the type-

II NUFFT operator defined in Equation (2.5). The cost of applying AY,l
s for such a

set of points is then O((Ns+M) log(Ns+M)) using a standard NUFFT algorithm.

To apply this strategy to general sets of targets, {Tj} where Tj = (vj, wj) ∈

C, we use an apparatus similar to that used for the form operator. As before,

define w(i) = η(ti + 1)/2, where t1 < · · · < tMleg
are the Mleg-th order Legendre

nodes. Defining v̄j = vj−ξwj/η, we can then interpolate AY,l({Tj};M)c by using

the values AY,l({T(i)
j };M)c where T

(i)
j = (v̄j + ξw(i)/η, w(i)). Let λ1, . . . , λMleg

be

the barycentric interpolation weights defined in Equation (2.7). Then,

c(1)(wj)A
Y,l(T

(1)
j ;M)c+ · · ·+ c(Mleg)(wj)A

Y,l(T
(Mleg)
j ;M)c

is a spectrally accurate approximation of AY,l(Tj;M)c, where

c(i)(wj) =

λi

wj−w(i)∑Mleg

n=1
λn

wj−w(n)

. (8.18)

Because each of the sets {T(i)
j } has charges with a fixed y-coordinate, the NUFFT-

accelerated approach described above can be applied. The resulting algorithm is

provided in Algorithm 3 and has O(Mleg(Ns +M) log(Ns +M)) computational

complexity. The interpolated values provide a spectrally accurate approximation.

For non-oscillatory kernels like Yukawa and Laplace, we find that 25 Legendre

nodes are sufficient for double precision accuracy.
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Algorithm 3 Accelerated algorithm for evaluating u ≈ AY,l
s ({Tj};M)c.

Input: {Tj}, c, M , Mleg.
1: t1, . . . , tMleg

← Mleg-th order Legendre nodes
2: λ1, . . . , λMleg

← Barycentric weights ▷ See Equation (2.7).
3: for i = 1, . . . ,Mleg do
4: w(i) ← wj(ti + 1)/2
5: for j = 1, . . . , Ns do
6: (vj, wj) ← Sj

7: v̄j ← vj − ξwj/η

8: v
(i)
j ← v̄j + ξw(i)/η

9: u ← 0
10: for i = 1, . . . ,Mleg do

11: ũ ← D
(Y,l,4)
s (w(i))c

12: ũ ← N(2)
({

2πv
(i)
j /d

}
,M
)
ũ

13: ũ ← D
(Y,l,3)
s ({v(i)j })ũ

14: for n = 1, . . . , nt do
15: un ← un + c(i)(wn)ũn

Output: u.
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CHAPTER 9

NUMERICAL RESULTS

We have implemented the algorithms described in this paper in Fortran. Our

implementation uses the fmm2d library (Askham et al., 2021) for the free-space

FMMs and the finufft package (Barnett and Magland, 2018),(Barnett et al., 2019)

for the NUFFTs. The code is compiled using gfortran 9.3.0 with -O3 option.

The results shown in this section were obtained on a single core of a laptop with

Intel(R) 2.40GH i9-10885H CPU.

We first test the performance of the code in the high accuracy regime.

Table 9.1 shows the results for the modified Helmholtz kernel with precision set to

10−12. 40, 000 source points are placed in the fundamental unit cell with a uniform

random distribution, with 500 equispaced target points on each side of the unit

cell to check the enforcement of periodic conditions. In Table 9.1, A is the aspect

ratio defined at Definition 2, tper is the time for applying the periodizing operator,

tFMM is the time for the FMM call with sources in the near region N consisting

of (2m0 +1)× (2n0 +1) copies of the unit cell. n0 = 1 in the doubly periodic case

and n0 = 0 in the singly periodic case. m0 = 1, 2, or 3, depending on the precise

shape of the unit cell. ttotal is the total computational time and t0FMM is the time

required by the free-space FMM, with sources restricted to the fundamental unit

cell alone for reference as a lower bound. All times are measured in seconds and the

error is the estimated relative l2 error in satisfying periodicity (i.e., the potential

difference between the right and left sides for the singly periodic case, and the sum

of potentials differences in both x and y for the doubly periodic case). P1 and P2

denote the imposition of periodicty in one or two dimensions, respectively. For the

singly periodic case, m0 = 1. That is, the central 3 cells are include in the near

region. For the doubly periodic case, m0 = 1 for the rectangular cell; m0 = 2 for

the parallelogram with θ = π/3; and m0 = 3 for the parallelogram with θ = π/6,

where θ is the angle between ê1 and ê2. The cost of the periodization step is
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insensitive to the geometry of the unit cell, since we make use of acceleration with

the NUFFT, and a small fraction of the total cost. The FMM for sources in the

near region N is about one to four times more expensive than for the unit cell

alone.

In our current implementation, we simply call the free-space FMM with all

near region sources but with targets restricted to the unit cell. A more efficient

code could be developed by taking advantage of the fact that the sources in each

image cells are identical, as are the corresponding hierarchy of multipole moments.

Minor modification of the FMM could reduce the cost to being within a factor of

two of the FMM cost for the unit cell alone.

Similar results hold for the other kernels. In Table 9.2 we show the timings

obtained for the Laplace kernel with precision ϵ = 10−9, and in Table 9.3, we

show the timings obtained for the Stokeslet with precision ϵ = 10−6. The column

headings have the same meaning as in Table 9.1.
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Table 9.1 Timing results of the periodic FMM for the modified Helmholtz kernel
with β = 1 and 40, 000 sources in the unit cell. The requested precision is ϵ =
10−12.

A tper tFMM ttotal t0FMM Error

P1 : rectangle

1 0.08 1.78 1.87 1.78 0.12e-12
10 0.08 1.95 2.03 1.61 0.69e-14
100 0.12 2.19 2.30 1.37 0.86e-15
1000 0.48 2.88 3.36 1.35 0.16e-14

P2 : rectangle

1 0.18 2.45 2.63 1.69 0.31e-13
10 0.17 2.48 2.65 1.62 0.44e-14
100 0.17 3.70 3.87 1.39 0.49e-15
1000 0.19 3.72 3.91 1.36 0.48e-15

P2 :
parallelogram with
θ = π/3

2 0.18 3.40 3.59 1.82 0.20e-12
10 0.17 3.45 3.63 1.78 0.35e-12
100 0.17 4.24 4.42 1.39 0.12e-12
1000 0.19 3.84 4.03 1.36 0.45e-12

P2 :
parallelogram with
θ = π/6

2 0.18 4.18 4.37 1.53 0.17e-12
10 0.17 3.30 3.48 1.95 0.15e-12
100 0.17 4.25 4.42 1.38 0.32e-12
1000 0.22 3.95 4.18 1.36 0.26e-12
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Table 9.2 Timing results of the periodic FMM for the Laplace kernel with 40, 000
sources in the unit cell and a requested precision of ϵ = 10−9.

A tper tFMM ttotal t0FMM Error

P1 : rectangle

1 0.06 0.56 0.62 0.64 0.10D-09
10 0.07 0.83 0.90 0.66 0.98D-11
100 0.08 0.64 0.73 0.44 0.21D-12
1000 0.23 1.02 1.25 0.40 0.15D-12

P2 : rectangle

1 0.14 1.03 1.17 0.54 0.11D-10
10 0.12 0.81 0.93 0.66 0.63D-11
100 0.12 1.14 1.27 0.44 0.13D-11
1000 0.13 1.48 1.61 0.40 0.52D-13

P2 :
parallelogram with
θ = π/3

2 0.14 1.13 1.27 0.65 0.26D-10
10 0.12 1.17 1.29 0.72 0.13D-09
100 0.12 1.64 1.77 0.44 0.31D-09
1000 0.13 1.29 1.42 0.40 0.24D-09

P2 :
parallelogram with
θ = π/6

2 0.13 1.76 1.90 0.46 0.20D-10
10 0.13 1.11 1.24 0.62 0.23D-09
100 0.12 1.66 1.78 0.45 0.60D-10
1000 0.13 1.28 1.42 0.40 0.34D-09
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Table 9.3 Timing results of the periodic FMM for the Stokeslet with 40, 000
sources in the unit cell and a requested precision of ϵ = 10−6.

A tper tFMM ttotal t0FMM Error

P1 : rectangle

1 0.09 1.05 1.14 0.81 0.19D-06
10 0.07 1.17 1.24 0.94 0.12D-06
100 0.08 1.09 1.18 0.78 0.16D-08
1000 0.19 1.31 1.50 0.69 0.39D-10

P2 : rectangle

1 0.25 1.63 1.89 0.69 0.21D-07
10 0.24 1.31 1.55 0.94 0.53D-07
100 0.23 1.42 1.65 0.79 0.73D-08
1000 0.24 2.30 2.55 0.69 0.12D-09

P2 :
parallelogram with
θ = π/3

2 0.25 1.50 1.75 0.78 0.35D-07
10 0.24 1.55 1.80 0.88 0.19D-06
100 0.24 2.30 2.55 0.80 0.57D-06
1000 0.25 2.31 2.56 0.69 0.39D-06

P2 :
parallelogram with
θ = π/6

2 0.25 2.24 2.50 0.88 0.72D-07
10 0.24 1.58 1.83 0.77 0.47D-06
100 0.24 2.29 2.53 0.82 0.32D-06
1000 0.25 2.27 2.52 0.68 0.61D-06
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Chapter 10

VARIANTS OF GENERALIZED GAUSSIAN QUADRATURE

Boundary integral equations and Nyström discretization methods provide a pow-

erful tool for computing the solution of Laplace and Helmholtz boundary value

problems (BVP). Using the fundamental solution (free-space Green’s function) for

these equations we can convert such problems into boundary integral equations,

thereby reducing the dimension of the problem. More precisely, a BVP in two-

dimension (2D) is converted via the so-called jump relations to an integral equation

for an unknown function on a one-dimension (1D) curve. The resulting geomet-

ric simplicity and reduced dimensionality allow for high-order accurate numerical

solutions with greater efficiency than standard finite-difference or finite-element

discretizations.

Consider the Helmholtz equation:

(∆ + k2)u(x) = 0, in D (10.1)

u(x) = g(x), on Γ ,

where D is a bounded domain with boundary Γ. Let Gk be the Green’s function

for the Helmholtz equation in two dimensions, i.e.,

Gk(x,y) =
i

4
H

(1)
0 (k|x− y|) .

The standard layer potentials are then the single layer potential,

S[µ](x) =
∫
Γ

Gk(x,y)µ(y) ds , (10.2)

and the double layer potential,

D[µ](x) =
∫
Γ

n(y) · ∇yGk(x,y)µ(y) ds , (10.3)
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where n(y) denotes the outward unit normal vector at y ∈ Γ. Taking u(x) =

icS[µ](x) + D[µ](x), i.e. using a combined layer potential representation, and

applying the jump relations for S and D, we obtain the following formula as

x ∈ D tends to some point y0 on Γ:

− 1

2
µ(y0) + icS[µ](y0) +D[µ](y0) = g(y0) . (10.4)

When k2 is not an eigenvalue of the Laplace operator for these boundary conditions

on D, the Equation (10.4) is an invertible second-kind integral equation (Colton

and Kress, 1983).

The Nyström method discretizes the integral Equation (10.4) using a quadra-

ture rule, with the unknown µ represented by its values at the discretization nodes.

Thus, Equation (10.4) becomes a linear system of the form

− 1

2
µi +

N∑
j=1

w
(i)
j (icGk(yi,yj) + n(yj) · ∇yGk(yi,yj))µj , (10.5)

where {yj} is a set of quadrature nodes, {w(i)
j } is a set of quadrature weights for

each “target” point yi, and µi ≈ µ(yi).

One of the challenges in implementing integral equation methods is that

the kernels, e.g., Gk and n · ∇yGk, have logarithmic singularities as functions

of the boundary so that standard quadrature rules cannot be applied with high

order accuracy. We will briefly review some of the available quadrature schemes for

singular integrals. For now, let Γ be a single curve which has the parameterization

γ(t) = (γ1(t), γ2(t)) with γ : [a, b)→ Γ. The most popular discretization schemes

can be classified by the arrangement of the nodes yj along the curve Γ.

The equispaced schemes defined the set {yj} using equispaced sampling in

either the parameter space [a, b) or arclength along the curve Γ. Typically, the

quadrature rule is then based on the trapezoidal rule, which is high order accurate

for smooth functions on the curve, with a “local correction” applied to obtain the

quadrature rule for each target (Kapur and Rokhlin, 1997; Alpert, 1999). Global
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Figure 10.1 Illustration of a panel based discretization.

schemes for equispaced discretizations have also been considered (Kress, 1991).

Equispaced sampling is not efficient when there is some local feature of the

boundary, Γ, the boundary data, g, or the unknown density, µ, which needs to

be resolved. To address this issue, the panel-based schemes defined the set {yj}

by adaptively dividing the curve into “panels” and taking the nodes {yj} to be

the union of scaled Legendre nodes defined on each panel. See Figure 10.1 for an

illustration.

For integration over a given panel, the standard Gauss-Legendre rule pro-

vides high precision for targets which are sufficiently far from that panel. The

“self” panels which contain the target require a special quadrature rule for the

corresponding singular integral over that panel. Likewise, the “neighbor” pan-

els which are adjacent to the self panel require a special rule as well, one which

accounts for any of a continuous range of possible nearby singularities. The gener-

alized Gaussian quadrature framework of (Bremer et al., 2010b) is an automated

approach to designing quadrature rules for any finite set of integrands based on

matrix compression and a robust optimization procedure for the nonlinear prob-

lem of finding optimal nodes and weights. In this framework, the continuous

range of possible nearby singularities must be discretized, resulting in a large set

of integrands. This set can be compressed but the resulting rules ultimately re-

quire a relatively large number of nodes. Other approaches include the Helsing
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kernel-split quadrature (Helsing, 2009), which leverages analytical knowledge of

the singularity, and quadrature-by-expansion (Klöckner et al., 2013), which first

computes expansion coefficients for the layer potential away from the boundary

and then evaluates that expansion at the target point.

The rest of this chapter is organized as follows. We give a brief explanation

of classical Gaussian quadrature rules for integrals with logarithmic singularity as

well as some panel-based schemes in section 10.2 and section 10.3. Methods of

constructing the three-panel rule are given in detail in section 10.4. Numerical

results and convergence performance are demonstrated in section 10.5.

10.1 Details of Panel-Based Quadrature for Layer Potentials

In this chapter, we outline a standard Nyström discretization strategy for integral

equations of the form

µ(x) +

∫
Γ

K(x,y)µ(y) ds = f(x) (10.6)

where x ∈ Γ andK(x,y) may be written asK(x,y) = ϕ1(x,y)+ϕ2(x,y) log |x−y|

with both ϕ1(x,y) and ϕ2(x,y) smooth functions of x and y. As in the previous

section, we assume that the boundary curve Γ is the image of a smooth, 2π-

periodic function γ, i.e. γ : [0, 2π) → Γ. Further, we assume that γ is regular,

i.e. γ ′(t) ̸= 0 for any t.

Remark 9. In the case of the combined-field layer potential, for which K(x,y) =

−2(n(y)·∇yGk(x,y)+icGk(x,y)), the functions ϕ1 and ϕ2 are known analytically,

see (DLMF, 2020, §10.8). Such explicit knowledge is the basis for applying kernel-

split quadrature, see, inter alia, (Helsing and Holst, 2015), which requires an

algorithm for evaluating the functions ϕ1 and ϕ2. For the generalized Gaussian

quadrature rules developed in the present work, it is sufficent to know that the

functions ϕ1 and ϕ2 exist; an explicit algorithm for evaluating these functions is
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not required.

Let t1, . . . , tq and w1, . . . , wq be the Gauss-Legendre nodes and weights of

order q. A composite Gauss-Legendre discretization of Γ is based on dividing Γ into

n contiguous segments, Γ = ∪ni=1Γi, called panels and defining the boundary nodes

to be given by a scaled copy of the standard Gauss-Legendre nodes on each panel.

In particular, if we have Γi = γ([ai−1, ai)) with 0 = a0 < a1 < · · · < an = 2π, then

the boundary nodes on each panel, y
(i)
j ∈ Γi for j = 1, . . . , q, may be defined by

y
(i)
j = γ(t

(i)
j ) with

t
(i)
j = ai−1 + (tj + 1)

ai − ai−1

2
. (10.7)

In a Nyström discretization, µ is represented by its values at the discretiza-

tion nodes, µ
(i)
j = µ

(
y
(i)
j

)
. To solve Equation 10.6, we must then be able to

evaluate

∫
Γ

K(x,y) ds

with x = y
(i)
j for each i = 1, . . . , n and j = 1, . . . , q. Because of the singularity in

K, the standard (scaled) Gauss-Legendre weights cannot achieve high-precision

for panels which are too close to x. On the panel Γi, we consider three different

quadrature strategies, depending on the relative location of x.

Self interaction If x ∈ Γi, the integral over Γi contains the singularity and

requires a special quadrature. After some simplifications and rescaling, the corre-

sponding integral in parameter space is of the form

∫ 1

−1

ψ1(t) + ψ2(t) log |t− tj| dt , (10.8)

where ψ1 and ψ2 are smooth functions and j ∈ {1, . . . , q}.
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Neighbor interaction When x ∈ Γi−1 or x ∈ Γi+1 (setting Γ0 = Γn and

Γn+1 = Γ1), the kernel K(x,y) is not singular on Γi. However, because the

singularity is near the sub-interval, standard quadrature rules for smooth functions

are not efficient. Unlike the singular case, the location of this singularity is not

drawn from a fixed set after rescaling. We thus require a quadrature rule which is

accurate for integrals of the form

∫ 1

−1

ψ1(t) + ψ2(t) log |t− t̃| dt , (10.9)

where t̃ ∈ [1 + δ, 5] or [−5, 1− δ] for some small δ > 0.

Well-separated interaction Finally, we assume that if x is on any non-self and

non-neighbor panel, then it is at a distance greater than some fraction, say 1/4, of

the panel length, |Γi|, from the panel. We approximate this locally by requiring

that no panel is more than twice the length of its neighbors; equivalently,

|Γi| ∈
[
min(|Γi−1|, |Γi+1|)

2
, 2max(|Γi−1|, |Γi+1|)

]
, (10.10)

which we refer to as a level-restriction on the panel discretization.

In this case, the integrand is relatively smooth and we apply the scaled

Gauss-Legendre rule, i.e.,

∫
Γi

K(x,y)µ(y) ds ≈
q∑

j=1

K
(
x,γ

(
t
(i)
j

))
µ
(i)
j

∣∣∣γ ′
(
t
(i)
j

)∣∣∣ wj(ai − ai−1)

2
. (10.11)

As the panels are refined, the error in this rule does not converge to zero

under the assumptions above (the lowest precision typically being when x is lo-

cated on a neighbor of a neighbor panel). However, the error will converge to a

precision determined by the order of the quadrature rule and the relative distance

of the target node. We find that the level-restriction described above and setting

q = 16 is sufficient for about 12 digits of precision in our examples. These issues
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are discussed in greater detail in, inter alia, (Epstein et al., 2013; af Klinteberg

and Tornberg, 2017; Davis and Rabinowitz, 1984).

Remark 10. The level-restriction property only guarantees that panels are well-

separated locally. For domains with narrow features, it is still possible that nodes

beyond the self and neighbor panels are nearby. While this problem is eventually

alleviated as the discretization is refined, it may be more efficient to treat these

cases using either an oversampled Gauss-Legendre rule or adaptive quadrature.

10.2 Generalized Gaussian Quadrature

The self and neighbor interactions described in the previous section, having either

singular or nearly singular integrands, require some specialized quadrature rules.

In this section, we briefly review the generalized Gaussian quadrature framework

of (Bremer et al., 2010b) for computing such rules and then explain the standard

approach to generalized Gaussian quadrature for self and neighbor interactions.

10.2.1 Optimization Procedure

Let ϵquad be a target precision and let {χj}2mj=1 be a set of functions on the in-

terval [−1, 1]. Consider the problem of finding nodes ξ1, . . . , ξnquad
and weights

ω1, . . . , ωnquad
such that

∣∣∣∣∣
∫ 1

−1

χj(t) dt−
nquad∑
l=1

χj(ξl)ωl

∣∣∣∣∣ ≤ ϵquad , (10.12)

for each j = 1, . . . , 2m. For any set of nquad = 2m distinct nodes, computing

appropriate weights is a trivial linear problem — though it can be unstable to

compute these weights for certain arrangements of nodes — and the resulting rule

is termed a generalized Cauchy rule. The challenge is in designing an efficient

quadrature rule, i.e., one with as few nodes and weights as possible. A rule with

nquad = m nodes and weights that satisfies Equation (10.12) is optimal in some
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sense and termed a generalized Gaussian quadrature rule, though a rule with fewer

nodes is possible if the (numerical) dimension of the set {χj}2mj=1 is less than 2m.

Let ϵdisc and ϵrank be two further precision variables (to account for accumu-

lated round-off and other numerical artifacts) satisfying ϵdisc < ϵrank ≤ ϵquad. The

algorithm of (Bremer et al., 2010b) attempts to compute a Gaussian quadrature

rule in three stages:

Stage 1: discretization and compression To discretize the problem, a highly-

refined, composite Gauss-Legendre grid with ndisc nodes, {ξ̃j}ndisc
j=1 , is computed

such that the interpolants defined on this grid for the functions in the set {χj}2mj=1

agree with the functions themselves to precision ϵdisc in the L2 norm. After scal-

ing, it is then possible to apply the standard singular value decomposition (SVD)

or a rank revealing QR decomposition to obtain an L2-orthonormal set of func-

tions, {uj}rj=1 which spans the set {χj}2mj=1, at least to precision ϵrank. If there is

significant decay in the singular values of this system, r may be smaller than 2m,

meaning that the set of functions to integrate can be compressed.

Stage 2: a generalized Cauchy rule The functions uj are defined by inter-

polation of their values on the ndisc nodes of the composite Gauss-Legendre grid

defined in stage 1. Thus, the natural composite Gauss-Legendre quadrature rule

may be considered exact for these functions; in particular, the system



u1(ξ̃1) u1(ξ̃2) · · · u1(ξ̃ndisc
)

u2(ξ̃1) u2(ξ̃2) · · · u2(ξ̃ndisc
)

...

ur(ξ̃1) ur(ξ̃2) · · · ur(ξ̃ndisc
)


w =



∫ 1

−1
u1(t) dt∫ 1

−1
u2(t) dt

...∫ 1

−1
ur(t) dt


(10.13)

has a solution with w given by the scaled composite Gauss-Legendre weights. An

r-sparse solution of Equation (10.13) provides a generalized Cauchy rule, which

is the starting point for the next stage. This r-sparse solution must exist and

may be computed stably by appropriately scaling the columns and applying a
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rank-revealing QR decomposition.

Stage 3: iterated thinning and continuous optimization of nodes In this

stage, the algorithm attempts to find an n− 1 node rule starting from an n node

rule. This can be accomplished by removing one node-and-weight pair from the

quadrature rule at a time and applying local optimization on the remaining nodes

and weights to see if an acceptably precise n−1 node rule can be reached from that

starting configuration. The local optimization can be performed with a damped

Gauss-Newton type iteration. If an acceptable n − 1 node rule is reached, the

process repeats. If no acceptable n− 1 node rule is found the process terminates.

Remark 11. Generalized Gaussian quadrature rules are typically computed in an

offline fashion and stored in a file for later use. As such, these calculations are often

performed in quadruple-precision arithmetic to obtain full double precision, i.e.

ϵquad ≈ 2·10−16, in the final quadrature rule. Indeed, the quadrature rules reported

in this paper were computed using quadruple-precision arithmetic. However, the

use of extended precision is not strictly required for rules with high precision, say

ϵquad ≈ 10−13, as the stages outlined above are reasonably stable.

10.2.2 Standard Quadrature for Self and Neighbor Interactions

As noted in Section 10.1, the original GGQ approach to quadrature on curves

is based on q “self” quadrature rules, one for each node on the panel, and a

universal “neighbor” quadrature rule which treats a range of possible locations

for singularities on the neighboring panel. Once the optimization machinery of

the previous subsection is in place, computing these quadrature rules is simply a

matter of defining the correct set of functions.

For the self interaction, we apply the GGQ optimization procedure to the

sets

Bog,self
ℓ = {tj1 + tj2 log |t− tℓ| : 0 ≤ j1, j2 < q} ,
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for ℓ = 1, . . . , q. This gives an order q rule and a set of functions of size 2q.

We denote the output nodes and weights by t
og(q)
ℓ,1 , . . . , t

og(q)
ℓ,mℓ

and w
og(q)
ℓ,1 , . . . , w

og(q)
ℓ,mℓ

,

respectively. In general, a Gaussian rule is found, i.e. mℓ = q.

Remark 12. While a quadrature rule of order higher than q is possible, the overall

scheme is limited to order q because of the interpolation step from the original

nodes to the nodes output by the GGQ code.

For the neighbor interaction, we must discretize the continuous range of

possible singularities to obtain a finite problem. In particular, we select δ = 10−5

and divide [1 + δ, 5] into the exponentially graded intervals [1 + δ, 1 + 10δ], [1 +

10δ, 1 + 102δ], . . . , [1 + 104δ, 2], [2, 5] and define the grid t̃1, . . . , t̃ñ to be the union

of 16th order scaled Legendre nodes on these intervals, so that ñ = 96. We then

define the set

Bog,near = {tj1 + tj2 log |t− t̃j3| : 0 ≤ j1, j2 < q and 1 ≤ j3 ≤ ñ} .

This set has 97q functions, but it is highly compressible. We denote the output

nodes and weights for this set by

t̃
og(q)
1 , . . . , t̃

og(q)
m̃

and

w̃
og(q)
1 , . . . , w̃

og(q)
m̃

respectively. See tables below for examples of the number of nodes, m̃, used for

these rules:

The neighbor rule defined here is one-sided in that it is only designed to

integrate a range of singularities “to the right” of the interval. For singularities to

the left, the rule defined here can be reflected.

Remark 13. An independent test of the accuracy of the quadratures obtained by

GGQ is available for this kernel in both the original GGQ setting described above
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Table 10.1 Cost on self panel.

polynomials standard GGQ threepanel
64 37 37
48 34 34
32 30 30
24 24 24
16 16 16

Table 10.2 Nearby Nodes Comparison.

polynomials standard GGQ threepanel
48 33 22
32 27 19
24 24 16
16 21 14

and the three panel scheme detailed in the next section. This is because there is

a formula for integrals of the form tj1 log |t − tℓ| based on the Cauchy-Hadamard

Theorem; see, for instance, the recursion formulas defined in (Helsing, 2009). All

quadratures were checked using these formulas in quadruple precision.

10.3 Three-Panel Rule

10.3.1 Quadrature for the Merged Panel

As with the original GGQ singular integration strategy, the three panel method is

based on defining an appropriate set of functions to send to the GGQ optimization

procedure. By the level-restriction assumption, each of the neighbors of a given

panel is at least half the length of the self. Thus, we can define a universal

quadrature that integrates the density over the self panel and half the self panel

length of each neighbor, see Figure 10.2 for an illustration. The remainder of each

neighbor is then sufficiently separated to apply a standard, scaled Gauss-Legendre

integration rule.

For singular integration on the merged panel, we then apply the GGQ

optimization procedure to the sets
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•
ai−2

•
ai−1

•
ai

•
ai+1

left remainder right remaindermerged panel

Figure 10.2 Illustration of a merged panel and left and right remainders of neigh-
boring panels.

B3p,self
ℓ = {tj1 + tj2 log |t− tℓ/2| : 0 ≤ j1, j2 < p} ,

for ℓ = 1, . . . , q. The Gauss-Legendre nodes, tℓ, are scaled by 1/2 because the

merged panel is twice the length of the original self panel. We denote the output

nodes and weights by t
3p(q)
ℓ,1 , . . . , t

3p(q)
ℓ,nℓ

and w
3p(q)
ℓ,1 , . . . , w

3p(q)
ℓ,nℓ

, respectively.

On the merged panel, the choice of the order of the rule, p, is less obvious

than in the original GGQ case. Because densities are being interpolated from

degree q polynomials on three panels, the choice p = 3q seems natural. However,

the merged panel is only twice the length of the original self panel. Thus, for an

oscillatory density, the merged panel would account for twice as many wavelengths

as the original and setting p = 2q seems natural. In practice, the functions in

B3p,self
ℓ are compressible and the total number of nodes obtained by setting p = 3q

is not much larger than the number obtained setting p = 2q. For the experiments

below, we selected p = 3q.

10.3.2 Three Panel Algorithm

Let a boundary curve, Γ, be discretized as in section 10.1 and let y
(i)
ℓ = γ(t

(i)
ℓ ) ∈ Γi

be a boundary node on the ith panel. In this section, we describe how to apply

the three panel quadrature scheme to evaluate the integral corresponding to this

target over the self and neighbor panels, i.e. how to evaluate

∫
Γi−1∪Γi∪Γi+1

K(y
(i)
ℓ ,y)µ(y) ds . (10.14)

The three panels of interest are the image of the interval [ai−2, ai+1), i.e.
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Γi−1 ∪ Γi ∪ Γi+1 = γ([ai−2, ai+1)) .

Setting hi = ai − ai−1, we break [ai−2, ai+1) into three subintervals: the merged

panel [ai−1 − hi/2, ai + hi/2), the left remainder panel [ai−2, ai−1 − hi/2), and the

right remainder panel [ai+hi/2, ai+1). Recall that t1, . . . , tq and w1, . . . , wq denote

the standard order q Gauss-Legendre nodes and weights and that, for each panel,

we have the scaled nodes t
(i)
j . To apply the three panel quadrature scheme, we

must interpolate from these original nodes to scaled nodes on the merged and

remainder panels.

Scaling and translating given nodes and weights defined on [−1, 1] are com-

mon operations for this scheme. Let these operations be defined by

T (t, a, b) = a+ (t+ 1)
b− a
2

,

W (w, a, b) = w
b− a
2

.

Another common operation is to interpolate a vector of function values given

at some nodes x1, . . . , xm to a different set of nodes, y1, . . . , yn. The n×m matrix

which maps function values at the x1, . . . , xm to the polynomial interpolant of

those values at the y1, . . . , yn will be denoted by M (y1, . . . , yn;x1, . . . , xm).

The scaled nodes and weights for the merged panel and remainder panels

are:
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tmerg
j = T (t

3p(q)
ℓ,j , ai−1 − hi/2, ai + hi/2) ,

wmerg
j = W (w

3p(q)
ℓ,j , ai−1 − hi/2, ai + hi/2) ,

tlremj = T (tj, ai−2, ai−1 − hi/2) ,

wlrem
j = W (tj, ai−2, ai−1 − hi/2) ,

trremj = T (tj, ai + hi/2, ai+1) ,

wrrem
j = W (tj, ai + hi/2, ai+1) .

While the interpolation onto the left and right remainder panels should be

done from the left and right neighbor panels, respectively, the nodes on the merged

panel can lie on any of the three panels. Accordingly, we split the tmerg
j into three

sets of nodes: the left merged nodes, tlmerg
1 , . . . , tlmerg

ml
, satisfying tlmerg

j < ai−1; the

self merged nodes, tsmerg
1 , . . . , tsmerg

ms
, satisfying ai−1 ≤ tsmerg

j ≤ ai; and the right

merged nodes, trmerg
1 , . . . , trmerg

mr
, satisfying trmerg

j > ai. Note that this splitting can

contain a different number of nodes per panel depending on the target at hand,

i.e. depending on the index ℓ. These numbers do not depend on which panel is

being considered because the relative scales are always the same.

The relevant interpolation operators are then:

M lrem = M (tlrem1 , . . . , tlremq ; t
(i−1)
1 , . . . , t(i−1)

q ) ,

M rrem = M (trrem1 , . . . , trremq ; t
(i+1)
1 , . . . , t(i+1)

q ) ,

M lmerg = M(tlmerg
1 , . . . , tlmerg

ml
; t

(i−1)
1 , . . . , t(i−1)

q ) ,

M smerg = M(tsmerg
1 , . . . , tsmerg

ms
; t

(i−1)
1 , . . . , t(i−1)

q ) ,

M rmerg = M(trmerg
1 , . . . , trmerg

mr
; t

(i−1)
1 , . . . , t(i−1)

q ) .

The three panel scheme can then be applied in two steps:
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Step 1: Interpolate the density and Jacobian to the merged and re-

mainder nodes Setting

f (i) =


|γ(t(i)1 )|µ(i)

1

...

|γ(t(i)q )|µ(i)
q

 ,

we perform the interpolations using the formulas: f lrem = M lremf (i−1), f rrem =

M rremf (i+1), and

fmerg =


M lmergf (i−1)

M smergf (i)

M rmergf (i+1)

 ,

where the vertical concatenation in the formula for fmerg is assumed to be done in

accordance with the original order of the merged nodes tmerg
j .

Step 2: Apply the quadrature rules We set

Slrem =

q∑
j=1

wlrem
j f lrem

j K(y
(i)
ℓ ,γ(t

lrem
j )) ,

Srrem =

q∑
j=1

wrrem
j f rrem

j K(y
(i)
ℓ ,γ(t

rrem
j )) ,

Smerg =

nℓ∑
j=1

wmerg
j fmerg

j K(y
(i)
ℓ ,γ(t

merg
j )) ,

so that the total quadrature approximation of Equation 10.14 is Slrem + Srrem +

Smerg.

10.4 Numerical Results

In this section, we test the accuracy and convergence of the three panel quadrature

technique of the previous section on synthetic boundary value problems. The ac-
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curacy and convergence are compared against the original GGQ strategy outlined

in Section 10.2. In all examples, we solve the Helmholtz equation with Dirichlet

boundary condition, Equation (10.1), on the interior of a starfish-like domain, (see

Figure 10.3) using a double layer potential. The Dirichlet boundary data is taken

to be that induced by sources (charges) on the exterior of the domain. In most ex-

amples, there are 100 sources placed around the geometry, with some separation.

We compare the solution of the discretized integral equation with the analytic

solution at 100 target locations randomly placed in the domain. The reported

errors are the relative ℓ2-norm error in the value of the computed solution at these

locations. Typical source and target arrangements are shown in Figure 10.3. In

all convergence plots, N is the number of panels used. The Helmholtz frequency

is denoted by k.
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Figure 10.3 Illustration of geometries we will use in the following numerical tests.
From top left to bottom right these are 3, 5, 10 and 30 arm starfish.

10.4.1 Three-Panel Rule Versus Standard GGQ

In these comparisons, the three-panel rule consists of a 34-point rule for the self

interaction for each target, which integrates degree 48 polynomials and polyno-
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mials times a log singularity. Then we use 16 shifted and scaled Gauss-Legendre

nodes on the left remaining panel and the right remaining panel respectively. The

standard GGQ rule we use in the following comparison has 16 points on the self

panel, designed to integrate degree 16 polynomials and polynomials times a log

singularity, and 48 points on left and right near-neighbor panels. We compare the

performance of these rules on a suite of tests: increasingly complex geometries,

increasing problem frequency, and a problem which requires adaptive refinement.
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Figure 10.4 Geometry test : 3-arm starfish convergence rate and 5-arm starfish
convergence rate. For comparison purpose, both rules are tested with kernel fre-
quency variable k = 10 and 100 simulated source points.
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Figure 10.5 Geometry test : 10-arm starfish convergence rate and 30-arm starfish
convergence rate.

Increasing the complexity of the geometry: Because the performance of

a quadrature rule will depend on the arc-length density, we test on starfish ge-
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ometries, see Figure 10.3, with an increasing number of “arms”. The boundary in

these tests is refined uniformly. In Figure 10.4 and Figure 10.5, we see that both

methods have similar performance across geometries and a high rate of conver-

gence.
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Figure 10.6 Kernel test : frequency k = 1 on the left and k = 10 on the right.
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Figure 10.7 Kernel test : frequency k = 100

Increasing the complexity of the kernel: The performance of a quadrature

rule will also depend on accurately integrating the integral kernel; we thus test
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kernels of increasing complexity by solving Helmholtz problems with increasing k

on a fixed domain (a five armed starfish). When the kernel frequency is small,

both rules have similar performance, and the standard GGQ converges a little

earlier than the three-panel rule; see Figure 10.6. When the kernel frequency is

large, as in Figure 10.7, the three-panel rule notably outperforms the standard

GGQ.
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Figure 10.8 On the left is an example problem set up with many sources located
close to a small region of the boundary. On the right is a an illustration of the
type of adaptive panelization used to solve this problem.

A problem requiring dyadic refinement: The three-panel scheme relies on

a 2:1 balance condition across panels. Thus, the quality of the quadrature scheme

may suffer on a problem which requires a lot of refinement of the boundary in one

region. A problem geometry which requires this is illustrated in Figure 10.8. The

sources here are all localized near the point (1, 0). In particular, 100 sources are

placed at a distance of 0.01 to the boundary at a random angle with mean zero

and standard devation 10−7. The solution corresponding to these sources requires

significant refinement near (1, 0). In the test, we define an adaptive mesh that is

approximately uniform away from (1, 0) and is geometrically graded near (1, 0).

Specifically, for a given m, we define Mu = 5m and Md = 5 +m. The starfish is

parameterized in the natural way over [0, 2π]. We divide [0, 2π] uniformly intoMu

subintervals. Each of the end subintervals, [0, 2π/Mu] and [2π(Mu − 1)/Mu, 2π],
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are subdivide further dyadically toward 0 and 2π, respectively. The number of

dyadic refinements is determined by Md. For example, if Md = 4, the subinterval

[0, 2π/Mu] is divided into

[0, 2π/(24Mu)], [2π/(2
4Mu), 2π/(2

3Mu)], . . . , [2π/(2Mu), 2π/Mu] .

This type of panelization is demonstrated in Figure 10.8.
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Figure 10.9 Convergence plots for the test requiring dyadic refinement.

In Figure 10.9, the three-panel rule is observed to converge as well as the standard

GGQ rule using the dyadic refinement scheme.

10.4.2 Different Order Three-Panel Rules

The tests above were conducted using a three-panel rule designed to integrate 48th

order polynomials, with a different rule to handle the singularity corresponding

to each of the 16 nodes on any given panel. Note that here we will refer to the

order of the rules as the order of these polynomials. All rules here still refer to an

underlying 16th order discretization of the domain boundary.
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While it is clear that a merged panel will likely require a rule that can in-

tegrate higher degree polynomials than the order of the underlying discretization

(16th), it is unclear exactly how that order should be chosen. The plots in Figure

10.10 and Figure 10.11 show the convergence obtained for rules designed to inte-

grate 16th, 24th, and 32nd order polynomials on a 5 arm starfish with k = 10,

with the standard source locations that do not require adaptive refinement.
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Figure 10.10 Compare different order three-panel rules: 16th order and 24th
order

0 50 100 150 200 250

10
-12

10
-9

10
-6

3 panel

standard GGQ

Figure 10.11 Compare different order three-panel rules: 32nd order
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These results shows that lower-order (16th and 24th) three-panel rules can

not provide as good results as standard GGQ. The 32nd order three-panel rule

is sufficient to provide similar performance as the Standard GGQ rule. The 48th

order rule only provides a marginal improvement over the 32nd order rule in the

convergence rate on the synthetic tests we conducted; however, the 48th order rule

only requires roughly 4 more integration nodes, as described further below.

10.4.3 Three-Panel Rule Versus New GGQ

Observing that the improved performance of the three-panel rule may owe

to the fact that it is designed to integrate higher order polynomials, we have also

designed a new GGQ rule which integrates 32 polynomials in the self panel and

near-neighbor panel separately up to quadruple accuracy. We have average 26.875

points on the middle panel and 27 points on left and on right near-neighbor, re-

spectively. Thus, we have this new GGQ rule with average 80.875 points together.

This gives a more fair comparison with our three-panel rule because they are

pre-computed by integrating same number of polynomials in each panel. The fol-

lowing visulization can show the performance between the 32nd order three-panel

rule and the 32nd order new GGQ rule. We compare these rules on the same tests

as we did above.
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Figure 10.12 Geometry test of the 32nd order three-panel rule and new GGQ: 3-
arm starfish convergence rate and 5-arm starfish convergence rate. For the purpose
of comparison, both figures are plotted for k = 10.
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Figure 10.13 Geometry test of the 32nd order three-panel rule and new GGQ:
10-arm starfish convergence rate and 30-arm starfish convergence rate. For the
purpose of comparison, both figures are plotted for k = 10.

Increasing the complexity of the geometry: In Figure 10.12 and Figure

10.13, we see that both 32nd order rules have similar performance. The new GGQ

is converging slightly faster when the geometry is very complicated, such as on

the 30-arm starfish.
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Figure 10.14 Kernel test of the 32nd order three-panel rule and new GGQ: k = 1
convergence rate and k = 10 convergence rate. For the purpose of comparison,
both figures are plotted for the 5-arm starfish.
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Figure 10.15 Frequency Test: 32nd order three-panel rule and new GGQ with
k = 100 on a 5 arm starfish.

Increasing the complexity of the kernel: Both rules have similar perfor-

mance across all the frequency tests; see Figure 10.14 and Figure 10.15.
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Figure 10.16 Scaled Frequency Test: 32nd order three-panel rule and new GGQ
with k = 100 on a 5 arm starfish.The three-panel rule is scaled by 62 and the new
GGQ is scaled by 80.875.

Scaling the number of panels: In the above tests, especially in Figure 10.15,

we see that 32nd order new GGQ rule is outperforming 32nd order three-panel

rule in terms of accuracy per panel. Scaling the number of panels by the number

of interpolation nodes per target can give an idea of these rules performance in

terms of accuracy per interpolation nodes. Therefore, the 32nd order new GGQ is

scaled by 80.875 where 26.875 comes from the average self panel nodes for different

targets and 27 nodes on each near-neighbor panels. The 32nd order three-panel

rule is scaled by 62 where 30 comes from the merged self panel and 16 nodes on

each remaning near-neghbor panels. After scaling, see Figure 10.16, both rules

have very good and similar performance.
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Figure 10.17 Dyadic Refinement Test: For the purpose of comparison, both rules
are tested on 5-arm starfish and kernel frequency k = 10.

A test with dyadic refinement: On the test requiring dyadic refinement, both

32nd order rules begin converging at a similar rate. However, the new GGQ rule

achieves a lower precision before flattening out. This occurs most dramatically on

this test; a possible explanation is that the neighbor interaction rule is stressed by

the dyadic refinement because the near singularity is effectively closer than in the

other tests. See Figure 10.17.
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Figure 10.18 Simple comparion among standard GGQ and new GGQ rules.

There is a noticeable difference between the new GGQ and old GGQ on their

level of precision when converged, see Figure 10.18 and the other tests above. The

exact source of this is still being pursued. Before achieving this precision, however,

the new rule appears advantageous, particularly for more complex problems.

10.4.4 Timing Complexity Results

Because the bulk of the matrix interactions are treated using the standard smooth

rule, the cost of the self and neighbor interactions constitute a small portion of the

overall computation of the full system matrix. Once a fast algorithm is used for the

separated interactions, however, the self and neighbor interactions may contribute

more significantly to the run time. For these interactions, the primary costs are

interpolation and kernel evaluations. In our experience, the interpolation costs

are less expensive than the kernel evaluations. We thus take the average number

of support nodes used per target to account for the self and neighbor interactions

as our measure of the efficiency of these rules.
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The standard GGQ self rule was designed to integrate 16th order polynomials

and polynomials times the appropriate log singularity, with a different rule for

each target. These rules all ended up with 16 support nodes. The standard GGQ

also optimized for interpolation costs and employed a symmetric rule for neighbor

interactions, using 48 support nodes. Thus, each target requires a total of 112

kernel evaluations for the self and neighbor interactions.

The most performant three-panel rules are designed to integrate either 32nd

or 48th order polynomials and polynomials times the appropriate log singularity

on the merged panel and uses the standard smooth nodes on the remainders of

the neighbors. The new GGQ rules were designed to integrate the same sets of

functions but limited to the self panel. We also designed non-symmetric neighbor

rules requiring fewer total nodes. The average number of total nodes for these

rules is summarized in Table 10.3. In more detail, the three-panel rule requires

30 or 34 nodes on the merged self panel and 16 nodes on each of the remaining

near-neighbor panel. The new GGQ requires average 26.875 or 33.625 nodes on

the self panel depending on the location of target, and 27 or 33 nodes on each of

the near-neighbor panel.

Table 10.3 Number of Nodes in Different Rules

polynomials Standard GGQ New GGQ Three-Panel
48 NA 99.625 66
32 NA 80.875 62
16 112 NA NA
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Chapter 11

Conclusions and Future Work

Explicit, separable low-rank factorizations have been constructed for the peri-

odizing operator for particle interactions governed by the modified Helmholtz,

Poisson, modified Stokes, and Stokes equations in two dimensions. The factoriza-

tion is based on the Sommerfeld integral representation of the Green’s function,

which is readily available for the modified Helmholtz and Poisson kernels, and can

be derived more generally by Fourier analysis and contour integration, as done

here for the modified Stokeslet or Stokeslet. In both the singly and doubly pe-

riodic cases, the ϵ-rank r of the periodizing operator is shown to be of the order

O (log(1/ϵ) (log(1/β) + A log(1/ϵ))), where A is the aspect ratio of the fundamen-

tal unit cell. Here, β is the parameter that defines the modified Helmholtz and

modified Stokes kernels. For the Poisson and Stokes kernels, the factor log(1/β)

disappears.

Our factorization leads to a simple fast algorithm for the action of the

periodizing operators with O(r(NT +NS)) complexity - linear with respect to the

number of targets and sources. When r is large, a more complicated fast algorithm,

relying on the NUFFT, can be used to further speed up the calculation, reducing

the complexity to O(log(1/ϵ)(r log r + (NT +NS) log(1/ϵ))).

There are several natural extensions or generalizations of the current work.

First, the scheme can easily be extended to treat nonoscillatory kernels in three

dimensions. Second, there is no essential obstacle to extending the scheme to

treat oscillatory problems (such as the Helmholtz or Maxwell equations) in two

and three dimensions. The various sums and integrals, however, must be treated

with more care, as they are conditionally convergent, permit “quasi-periodic”

boundary conditions and are subject to resonances (Wood anomalies) (Barnett and

Greengard, 2010; Barnett and Greengard, 2011; Denlinger et al., 2017; Dienstfrey
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et al., 2001; Enoch et al., 2001; McPhedran et al., 2000). Third, the scheme

can be coupled with integral equation methods and the fast multipole method to

solve periodic boundary value problems when the unit cell contains inclusions of

complicated shape. Finally, more efficient versions of the FMM can be deployed to

reduce the cost of handling the near region copies of the unit cell, as in the periodic

version of the original scheme (Greengard and Rokhlin, 1987). This would bring

into closer alignment the time tFMM and t0FMM in Table 9.1,9.2,9.3. For multiple

scattering problems with singly or doubly periodic boundary conditions, where

the far field of a scatterer is represented by a multipole expansion, the periodic

scattering matrix can be constructed via simple modifications of the algorithms

in (Gan et al., 2016; Gimbutas and Greengard, 2013). This requires periodizing

operators for multipole sources, which are presented in the appendices of the

present paper.

In the first project of the thesis, we have formulated the periodizing opera-

tors for the Yukawa kernel and the Laplace kernel with planewave expansion. By

splitting the periodizing operator into four parts, we are able to apply the Pois-

son summation formula on the north and south parts and develop appropriate

quadrature rules for the west and east parts. We applied a limiting procedure for

lower-order Laplace kernel to obtain the converged periodizing operator. Com-

bining these planewave representations with NUFFT, we reduced the cost from

O(r(Ns + Nt)) to O((r + Ns + Nt)log(r + Ns + Nt)), where r is the rank of the

periodizing operators.

For the periodic fast multipole algorithm, our current work on 2D Yukawa

and Laplace kernels can be extended to 3D problems for general parallelepipes.

In order to have this method work in 3D, we will need to have to apply Pois-

son’s Theorem to two of the dimensions and we use our quadrature nodes on the

third dimension. Also, we can generalize this idea to the Stokes problem and the

Helmholtz problem. For the Stokes problem, we may need to apply the limiting

procedure to obtain the correct periodizing operator in a similar way to what we
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did with the lower-order Laplace kernel. For the Helmholtz problem, we can for-

mulate the periodizing operator like the Yukawa kernel, except we need to replace

iκ with β.

P(H,l)
s (T,S) =

−2∑
n=−∞

∞∑
m=−∞

Kl (iκRmn) e
ilθmneik0·Lmn

=
−2∑

n=−∞

∞∑
m=−∞

il

2(iκ)l

∫ ∞

−∞

(√
λ2 + (iκ)2 − λ

)l e−√λ2+(iκ)2(y−y0−nη)√
λ2 + (iκ)2

· eiλ(x−x0−md−nξ)ei(α0md+α0nξ+(iκ)0nη)dλ

=
−2∑

n=−∞

∞∑
m=−∞

1

2κl

∫ ∞

−∞

(√
λ2 − κ2 − λ

)l e−√
λ2−κ2(y−y0−nη)

√
λ2 − κ2

· eiλ(x−x0−nξ)ei(α0nξ+iκ0nη)
2π

d
δ

(
λ− α0 −

2πm

d

)
dλ,

(11.1)

where the last equality follows from the Poisson summation formula. The integral

over λ is now easily carried out using the property of the Dirac delta function:

P(H,l)
s (T,S) =

−2∑
n=−∞

∞∑
m=−∞

π

dκl
(χm − αm)

l e
−χm(y−y0−nη)−κ0nη

χm

· eiαm(x−x0−nξ)eiα0nξ,

(11.2)

where

αm = α0 +
2πm

d
, χm =

√
α2
m − κ2. (11.3)

Exchanging the order of summation and summing over a geometric series in n

leads to

P(H,l)
s (T,S) =

π

dκl

∞∑
m=−∞

(χm − αm)
l

χm

e−χm(y−y0)+iαm(x−x0)
e−2Qm

1− e−Qm

=
π

d

∞∑
m=−∞

(
κ

χm + αm

)l
1

χm

e−χm(y−y0)+iαm(x−x0)
e−2Qm

1− e−Qm

(11.4)

where

Qm = χmη + κη − i ((αm − α0)ξ) . (11.5)

92



By observing the exponential factor on the numerator, we know the Helmholtz

kernel will decay slower than the Yukawa kernel. Also, we may face a convergence

issue because when αm < κ, χm is purely imaginary (for real κ). Decay doesn’t

begin until αm > κ, which means Helmholtz will take more M -terms to converge

for the south and north parts of summation.

The north part P
(H,l)
n can be analysed in an almost identical fashion.

We now analyse the west part. We obtain

P(H,l)
w (T,S) =

−m0∑
m=−∞

1∑
n=−1

Kl (iκRmn) e
ilθmneik0·Lmn

=

−m0∑
m=−∞

1∑
n=−1

1

2(iκ)l

∫ ∞

−∞

(√
λ2 − κ2 + λ

)l e−√
λ2−κ2(x−x0−md−nξ)

√
λ2 − κ2

· eiλ(y−y0−nη)ei(α0md+α0nξ+iκ0nη)dλ

=
1

2(iκ)l

1∑
n=−1

∫ ∞

−∞

(√
λ2 − κ2 + λ

)l e−√
λ2−κ2(x−x0−nξ)

√
λ2 − κ2

· eiλ(y−y0−nη)ei(α0nξ−iκnη) e
−m0(

√
λ2−κ2+iα0)d

1− e−(
√
λ2−κ2+iα0)d

dλ,

(11.6)

where the third equality follows from summing a geometric series over m. The

expression for the east part P
(H,l)
e can be obtained similarly. Also if we choose

to rotate the coordinates to avoid excluding 21 cells at high shear rate, we will

need to generate more quadrature nodes and weights for the west and east parts

of summation.

In the second project of the dissertation, We have designed two efficient and

accurate algorithms based on the standard generalized Gaussian quadrature rule,

which is more efficient than the standard GGQ. We have introduced and imple-

mented this new GGQ and efficient three-panel generalized Gaussian quadrature

rule which can be used to evaluate double-layer potentials with high order accu-

racy. We have used this new panel-based quadrature rule to compute nodes and

weights for Helmholtz problem with an interior boundary condition. Comparing

the classic generalized Gaussian quadrature rule, our numerical results shows that
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we are using fewer nodes in three-panel rule to achieve the same level of accuracy.

Furthermore, there are some key observations of the three-panel rule that

we can make. First, by getting rid of the endpoint singularities, we can integrate

more accurately. Second, the merged three panel rule provides a more efficient

quadrature rule. Third, we can say the three panel rule and standard GGQ are

equally stable with respect to high frequency and complicated geometry. Also, the

low-order rule should be used with caution because it is accurate to a certain point

but not always stable. Finally, our numerical experiments indicate our three-panel

converges within less panels and cost less quadrature nodes on each panel.

Here we only had our new panel-based quadrature rule tested with the weakly

singular kernel. In the future, we should test our new panel-based quadrature rule

on singular and hypersingular integrals.
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APPENDIX A

ROTATED PLANE-WAVE EXPANSIONS FOR THE EAST AND
WEST PARTS OF THE DOUBLY PERIODIC PERIODIZING

OPERATORS

In the analysis and implementation of the present paper, we have relied on plane-

wave expansions that decay in x: either for x > 0 (the west part) or for x < 0 (the

east part). Simple geometric considerations led to the conclusion that we may

need to exclude the central 7× 3 copies of the unit cell. For non-rectangualr unit

cells, it is actually more efficient to align the decay direction in the plane-wave

expansion with ê⊥2 - that is, orthogonal to the ê2 direction. We illustrate the

corresponding algorithm in the case of the modified Helmholtz kernel. Consider

the coordinate transformationx̃
ỹ

 =

cos θ − sin θ

sin θ cos θ


x
y

 . (A.1)

In complex notation, this is equivalent to

x̃+ iỹ = eiθ(x+ iy). (A.2)

Let us also write

ξ̃ + η̃ = eiθ(ξ + iη), d̃x + id̃y = deiθ. (A.3)

For the west part, if the plane-wave expansion along the x̃ direction is used, we

have

Kwest
2 (t, s) =

1

2π

−(m0+1)∑
m=−∞

1∑
n=−1

K0 (t, s+ lmn)

=

−(m0+1)∑
m=−∞

1∑
n=−1

∫ ∞

−∞

e−
√

λ2+β2(x̃−x̃′−md̃x−nξ̃)

4π
√
λ2 + β2

· eiλ(ỹ−ỹ′−md̃y−nη̃)dλ

=
1∑

n=−1

∫ ∞

−∞

e−
√

λ2+β2(x̃−x̃′−nξ̃)

4π
√
λ2 + β2

· eiλ(ỹ−ỹ′−nη̃) e
−(m0+1)

(√
λ2+β2d̃x−iλd̃y

)

1− e−
(√

λ2+β2d̃x−iλd̃y
) dλ.

(A.4)
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Figure A.1 New direction of the plane-wave expansion for the west part. In
the main text, we have chosen the plane-wave expansions along the coordinate
axes for all four parts. The advantage is that the east and west parts of the
doubly periodic periodizing operators can be discretized via efficient precomputed
generalized Gaussian quadrature. But the worst case requires the exclusion of the
center 7 × 3 cells from the periodizing operators. If we choose the plane-wave
expansion along the x̃-axis, then one only needs to exclude the center 3 × 3 cells
from the doubly periodic periodizing operators. But the number of plane waves
may increase if the angle between ê1 and ê2 is very small and |ê2| is very close to
|ê1|.

It is now clear that if we choose ex̃ = ê⊥2 - that is, we choose θ such that ξ̃ = 0 and

d̃x > 0, then m0 = 1 is sufficient to ensure that the decaying exponential in the

integrand decays at least as fast as e−
√

λ2+β2d̃x . Thus, one only needs to exclude

the center 3 × 3 cells from the periodizing operator rather than the larger near

region we have used above. The integrand could still be highly oscillatory, so that

an effective high-order quadrature is needed, just as in singly periodic case.
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APPENDIX B

PERIODIZING OPERATORS FOR THE MODIFIED HELMHOLTZ
EQUATION WITH MULTIPOLE SOURCES

The multipole of order l for the modified Helmholtz multipole is defined by

Kl(βr)e
ilθ, where Kl the modified Bessel function of the second kind of order

l. The following lemma describes the corresponding plane-wave expansions for

the far-field contributions of the periodizing operators.

Lemma 1. For the standard unit cell C discussed in the main text, let Ksouth
2 ,

Knorth
2 , Kwest

2 , Keast
2 denote the far-field parts of the periodizing operator for a

multipole source of order l governed by the modified Helmholtz equation subject to

doubly periodic boundary conditions. That is,

Ksouth
2 (t, s) =

−2∑
n=−∞

∞∑
m=−∞

Kl(t, s+ lmn)e
ilθmn ,

Knorth
2 (t, s) =

∞∑
n=2

∞∑
m=−∞

Kl(t, s+ lmn)e
ilθmn ,

Kwest
2 (t, s) =

1∑
n=−1

−4∑
m=−∞

Kl(t, s+ lmn)e
ilθmn ,

Keast
2 (t, s) =

1∑
n=−1

∞∑
m=4

Kl(t, s+ lmn)e
ilθmn .

(B.1)
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Let αm, χm and Qm be given by Equation 4.5. Then

Ksouth
2 (t, s) =

πil

d

∞∑
m=−∞

(
β

χm + αm

)l
1

χm

e−χm(y−y′)+iαm(x−x′) e−2Qm

1− e−Qm
,

Knorth
2 (t, s) =

π(−i)l
d

∞∑
m=−∞

(
χm + αm

β

)l
1

χm

eχm(y−y′)+iαm(x−x′) e−2Qm

1− e−Qm
,

Kwest
2 (t, s) =

1

2βl

1∑
n=−1

∫ ∞

−∞

(√
λ2 + β2 + λ

)l e−√λ2+β2(x−x′−nξ)√
λ2 + β2

· eiλ(y−y′−nη) e−4
√

λ2+β2d

1− e−
√

λ2+β2d
dλ ,

Keast
2 (t, s) =

(−1)l
2βl

1∑
n=−1

∫ ∞

−∞

(√
λ2 + β2 − λ

)l e√λ2+β2(x−x′−nξ)√
λ2 + β2

· eiλ(y−y′−nη) e−4
√

λ2+β2d

1− e−
√

λ2+β2d
dλ .

(B.2)

Similarly, for the singly periodic case,

Kwest
1 (t, s) =

−2∑
m=−∞

Kl(t, s+ (md, 0))eilθm0 ,

=
1

2βl

∫ ∞

−∞

(√
λ2 + β2 + λ

)l e−√λ2+β2(x−x′)√
λ2 + β2

· eiλ(y−y′) e−2
√

λ2+β2d

1− e−
√

λ2+β2d
dλ ,

Keast
1 (t, s) =

∞∑
m=2

Kl(t, s+ (md, 0))eilθm0

=
(−1)l
2βl

∫ ∞

−∞

(√
λ2 + β2 − λ

)l e√λ2+β2(x−x′)√
λ2 + β2

· eiλ(y−y′) e−2
√

λ2+β2d

1− e−
√

λ2+β2d
dλ .

(B.3)

The preceding result yields the following low-rank decompositions for the peri-

odizing operators.

Lemma 2. Under the hypotheses of Theorem 4.1 and Theorem 4.3, let

Lsouth,Lnorth ∈ CNT×(2M+1)
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and Rsouth,Rnorth ∈ C(2M+1)×NS be dense matrices defined in Equation 4.6 and

Equation 4.13, and let Lwest
1 ∈ CNT×2N1

q , Lwest
2 ∈ CNT×2N2

q , Rwest
1 ∈ C2N1

q×NS ,

Rwest
2 ∈ C2N2

q×NS be dense matrices defined in Equation 4.17. Furthermore, let

Dsouth,Dnorth ∈ C(2M+1)×(2M+1) be diagonal matrices with

Dsouth(m,m) =
πil

d

(
β

χm + αm

)l
1

χm

e−2Qm

1− e−Qm
,

Dnorth(m,m) =
π(−i)l
d

(
χm + αm

β

)l
1

χm

e−2Qm

1− e−Qm
,

(B.4)

and let Dwest
1 ,Deast

1 , and Dwest
2 , Deast

2 be diagonal matrices of dimension 2N1
q and

2N2
q , respectively, with

Dwest
1 (n, n) =

1

2βl

(√
λ2n,1 + β2 + λn,1

)l wn,1√
λ2n,1 + β2

e−2
√

λ2
n,1+β2d

1− e−
√

λ2
n,1+β2d

,

Deast
1 (n, n) =

(−1)l
2βl

(√
λ2n,1 + β2 − λn,1

)l wn,1√
λ2n,1 + β2

e−2
√

λ2
n,1+β2d

1− e−
√

λ2
n,1+β2d

,

Dwest
2 (n, n) =

1

2βl

(√
λ2n,2 + β2 + λn,2

)l wn,2√
λ2n,2 + β2

e−4
√

λ2
n,2+β2d

1− e−
√

λ2
n,2+β2d

· [e−
√

λ2
n,2+β2ξ+iλn,2η + e

√
λ2
n,2+β2ξ−iλn,2η + 1] ,

Deast
2 (n, n) =

(−1)l
2βl

(√
λ2n,2 + β2 − λn,2

)l wn,2√
λ2n,2 + β2

e−4
√

λ2
n,2+β2d

1− e−
√

λ2
n,2+β2d

· [e−
√

λ2
n,2+β2ξ−iλn,2η + e

√
λ2
n,2+β2ξ+iλn,2η + 1] ,

(B.5)

where λ−n,1 = −λn,1 for n = 1, . . . , N1
q , and λ−n,2 = −λn,2 for n = 1, . . . , N2

q .

Then, the periodizing operators for the modified Helmholtz multipole of order l are
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given by

Psouth
2 = LsouthDsouthRsouth +O(ϵ),

Pnorth
2 = LnorthDnorthRnorth +O(ϵ),

Pwest
2 = Lwest

2 Dwest
2 Rwest

2 +O(ϵ),

Peast
2 = Least

2 Deast
2 Reast

2 +O(ϵ),

Pwest
1 = Lwest

1 Dwest
1 Rwest

1 +O(ϵ),

Peast
1 = Least

1 Deast
1 Reast

1 +O(ϵ).

(B.6)
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APPENDIX C

PERIODIZING OPERATORS FOR THE LAPLACE EQUATION
WITH MULTIPOLE SOURCES

In two dimensions, using complex variables notation, the Laplace multipole of

order l is simply 1/zl. Here we identify t with z = x + iy, s with z′ = x′ + iy′,

ê1 with e1 = d, ê2 with e2 = ξ + iη, and lmn with zmn = m · e1 + n · e2. The

following lemma contains the plane-wave expansions for the far-field parts of the

corresponding periodic kernels.

Lemma 3. For the standard unit cell C discussed in the main text, let Ksouth
2 ,

Knorth
2 , Kwest

2 , Keast
2 denote the far-field parts of the periodizing operator for a

multipole source of order l governed by the Laplace equation subject to doubly

periodic boundary conditions. That is,

Ksouth
2 (t, s) =

−2∑
n=−∞

∞∑
m=−∞

1

(z − z′ − zmn)l
,

Knorth
2 (t, s) =

∞∑
n=2

∞∑
m=−∞

1

(z − z′ − zmn)l
,

Kwest
2 (t, s) =

1∑
n=−1

−4∑
m=−∞

1

(z − z′ − zmn)l
,

Keast
2 (t, s) =

1∑
n=−1

∞∑
m=4

1

(z − z′ − zmn)l
.

(C.1)

Let Qm = 2πm(η − iξ)/d. Then

Ksouth
2 (t, s) =

(−2πi)l
(l − 1)!dl

∞∑
m=1

ml−1ei
2πm
d

(z−z′) e−2Qm

1− e−Qm
+ δl1

πi

dη
y,

Knorth
2 (t, s) =

(2πi)l

(l − 1)!dl

∞∑
m=1

ml−1e−i 2πm
d

(z−z′) e−2Qm

1− e−Qm
+ δl1

πi

dη
y,

Kwest
2 (t, s) =

1

(l − 1)!

∫ ∞

0

λl−1
(
1 + eλ·e2 + e−λ·e2

)
e−λ(z−z′) e−4λd

1− e−λd
dλ,

Keast
2 (t, s) =

(−1)l
(l − 1)!

∫ ∞

0

λl−1
(
1 + eλ·e2 + e−λ·e2

)
eλ(z−z′) e−4λd

1− e−λd
dλ.

(C.2)
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Similarly, for the singly periodic case,

Kwest
1 (t, s) =

−2∑
m=−∞

1

(z − z′ − zmn)l

=
1

(l − 1)!

∫ ∞

0

λl−1e−λ(z−z′) e−2λd

1− e−λd
dλ,

Keast
1 (t, s) =

∞∑
m=2

1

(z − z′ − zmn)l

=
(−1)l
(l − 1)!

∫ ∞

0

λl−1eλ(z−z′) e−2λd

1− e−λd
dλ.

(C.3)

The derivation of the associated periodizing operators is straightforward and omit-

ted. Note that the integrals in Equation C.2 and Equation C.3 diverge at the origin

when l = 1, but the divergence is compensated for in the associated periodizing

operators under the assumption of charge neutrality.
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APPENDIX D

PERIODIZING OPERATORS FOR THE STOKES STRESSLET

The stresslet for the Stokes equation is defined by the formula

T
(S)
ijk (t, s) =

∂G
(S)
ij (t, s)

∂xk
+
∂G

(S)
jk (t, s)

∂xi
− pj(t, s)δjk, (D.1)

where G
(S)
ij is the ij-th component of the Stokeslet in Equation 7.1, pj is the

jth component of the pressurelet in Equation 7.12, and the partial derivatives

are with respect to the source point s. It is inconvenient to write down the

periodizing operators for the stresslet due to its tensor structure. In practice, it

is often combined with a vector n to form the kernel of the double layer potential

operator or its adjoint operator, when n = (n1, n2) is the unit normal vector at

the source point s or the target point t, respectively. Thus, we will write down

the periodizing operators for the kernel D(S) of the double layer potential operator

defined by the formula D
(S)
ij = T

(S)
jik nk instead.

Lemma 4. For the standard unit cell C discussed in the main text, let Ksouth
2 ,

Knorth
2 , Kwest

2 , Keast
2 denote the far-field parts of the periodizing operator for the

kernel of the Stokes double layer potential subject to doubly periodic boundary

conditions. That is,

Ksouth
2 (t, s) =

−2∑
n=−∞

∞∑
m=−∞

D(S)(t, s+ lmn),

Knorth
2 (t, s) =

∞∑
n=2

∞∑
m=−∞

D(S)(t, s+ lmn),

Kwest
2 (t, s) =

1∑
n=−1

−4∑
m=−∞

D(S)(t, s+ lmn),

Keast
2 (t, s) =

1∑
n=−1

∞∑
m=4

D(S)(t, s+ lmn).

(D.2)
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Let αm = 2πm/d and Qm = 2πm(η − iξ)/d. Then

Ksouth
2 (t, s) =

y

2dη

n2 n1

n1 n2

+
1

2d

∞∑
m=−∞
m ̸=0


2i sign(m)n1 − n2 −n1

−n1 −n2


−(iαmn1 − |αm|n2)

(
y − y′ + 2− e−Qm

1− e−Qm
η

) 1 i sign(m)

i sign(m) −1




· e−2Qm

1− e−Qm
e−|αm|(y−y′)+iαm(x−x′),

Knorth
2 (t, s) =

y

2dη

n2 n1

n1 n2

+
1

2d

∞∑
m=−∞
m ̸=0


2i sign(m)n1 + n2 n1

n1 n2


−(iαmn1 + |αm|n2)

(
y − y′ − 2− e−Qm

1− e−Qm
η

) −1 i sign(m)

i sign(m) 1




· e−2Qm

1− e−Qm
e|αm|(y−y′)+iαm(x−x′),

(D.3)

Kwest
2 (t, s) =

1

4π

1∑
n=−1

∫ ∞

−∞

e−4|λ|d

1− e−|λ|d e
−|λ|(x−x′−nξ)eiλ(y−y′−nη) ·


−n1 −n2

−n2 −n1 + 2i sign(λ)n2


−(−|λ|n1 + iλn2)

(
x− x′ − nξ + 4− 3e−|λ|d

1− e−|λ|d d

) −1 i sign(λ)

i sign(λ) 1


 dλ,

Keast
2 (t, s) =

1

4π

1∑
n=−1

∫ ∞

−∞

e−4|λ|d

1− e−|λ|d e
|λ|(x−x′−nξ)eiλ(y−y′−nη) ·


n1 n2

n2 n1 + 2i sign(λ)n2


−(|λ|n1 + iλn2)

(
x− x′ − nξ − 4− 3e−|λ|d

1− e−|λ|d d

) 1 i sign(λ)

i sign(λ) −1


 dλ.

(D.4)
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Similarly, for singly periodic case,

Kwest
1 (t, s) =

−2∑
m=−∞

D(S)(t, s+ lm0),

=
1

4π

∫ ∞

−∞

e−2|λ|d

1− e−|λ|d e
−|λ|(x−x′)eiλ(y−y′) ·


−n1 −n2

−n2 −n1 + 2i sign(λ)n2


−(−|λ|n1 + iλn2)

(
x− x′ + 2− e−|λ|d

1− e−|λ|dd

) −1 i sign(λ)

i sign(λ) 1


 dλ,

Keast
1 (t, s) =

∞∑
m=2

D(S)(t, s+ lm0),

=
1

4π

∫ ∞

−∞

e−2|λ|d

1− e−|λ|d e
|λ|(x−x′)eiλ(y−y′) ·


n1 n2

n2 n1 + 2i sign(λ)n2


−(|λ|n1 + iλn2)

(
x− x′ − 2− e−|λ|d

1− e−|λ|dd

) 1 i sign(λ)

i sign(λ) −1


 dλ.

(D.5)
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