
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

12-31-2020

Performance optimization of big data computing workflows for Performance optimization of big data computing workflows for

batch and stream data processing in multi-clouds batch and stream data processing in multi-clouds

Huiyan Cao
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Cao, Huiyan, "Performance optimization of big data computing workflows for batch and stream data
processing in multi-clouds" (2020). Dissertations. 1591.
https://digitalcommons.njit.edu/dissertations/1591

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1591?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1591&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

PERFORMANCE OPTIMIZATION OF BIG DATA COMPUTING
WORKFLOWS FOR BATCH AND STREAM DATA PROCESSING

IN MULTI-CLOUDS

by
Huiyan Cao

Workflow techniques have been widely used as a major computing solution in many

science domains. With the rapid deployment of cloud infrastructures around the

globe and the economic benefits of cloud-based computing and storage services, an

increasing number of scientific workflows have migrated or are in active transition to

clouds. As the scale of scientific applications continues to grow, it is now common

to deploy various data- and network-intensive computing workflows such as serial

computing workflows, MapReduce/Spark-based workflows, and Storm-based stream

data processing workflows in multi-cloud environments, where inter-cloud data

transfer oftentimes plays a significant role in both workflow performance and financial

cost. Rigorous mathematical models are constructed to analyze the intra- and

inter-cloud execution process of scientific workflows and a class of budget-constrained

workflow mapping problems are formulated to optimize the network performance of

big data workflows in multi-cloud environments. Research shows that these problems

are all NP-complete and a heuristic solution is designed for each that takes into

consideration module execution, data transfer, and I/O operations. The performance

superiority of the proposed solutions over existing methods are illustrated through

extensive simulations and further verified by real-life workflow experiments deployed

in public clouds.

PERFORMANCE OPTIMIZATION OF BIG DATA COMPUTING
WORKFLOWS FOR BATCH AND STREAM DATA PROCESSING

IN MULTI-CLOUDS

by
Huiyan Cao

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

December 2020

Copyright c© 2020 by Huiyan Cao

ALL RIGHTS RESERVED

APPROVAL PAGE

PERFORMANCE OPTIMIZATION OF BIG DATA COMPUTING
WORKFLOWS FOR BATCH AND STREAM DATA PROCESSING

IN MULTI-CLOUDS

Huiyan Cao

Dr. Chase Qishi Wu, Dissertation Advisor Date
Professor of Computer Science, NJIT

Dr. Cristian M. Borcea, Committee Member Date
Professor of Computer Science, NJIT

Dr. Yi Chen, Committee Member Date
Professor of Martin Tuchman School of Management, NJIT

Dr. Xiaoning Ding, Committee Member Date
Associate Professor of Computer Science, NJIT

Dr. Senjuti Basu Roy, Committee Member Date
Assistant Professor of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author: Huiyan Cao

Degree: Doctor of Philosophy

Date: December 2020

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,

New Jersey Institute of Technology, Newark, NJ, USA, 2020

• Master of Information, Production and Systems Engineering,
Waseda University, Tokyo, Japan, 2014

• Bachelor of Software Engineering,
Xidian University, Xi’an, China, 2009

Major: Computer Science

Presentations and Publications:

Huiyan Cao, Chase Q. Wu, Liang Bao, Aiqin Hou and Wei Shen, “Throughput
Optimization for Storm-based Processing of Stream Data on Clouds,” Future
Generation Computer Systems, Volume 112, Pages 567-579, November 2020.

Huiyan Cao and Chase Q. Wu, “Performance Optimization of Budget-
Constrained MapReduce Workflows in Multi-Clouds,” Proceedings of the
18th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, Washington, D.C., USA, May 1-4, 2018.

Huiyan Cao, Chase Q. Wu, Liang Bao, Aiqin Hou and Wei Shen, “Throughput
Optimization for Storm-based Processing of Stream Data on Clouds,”
Proceedings of the Workshop on Workflows in Support of Large-Scale Science
in conjunction with Supercomputing, Accepted for Lightning Talk, Dallas, TX,
USA, November 11, 2018.

Chase Q. Wu and Huiyan Cao, “Optimizing the performance of big data workflows in
multi-cloud environments under budget constraint,” Proceedings of the 13th
IEEE International Conference on Services Computing, San Francisco, USA,
June 27 - July 2, 2016.

iv

Qianwen Ye, Chase Q. Wu, Huiyan Cao, Nageswara S.V. Rao, and Aiqin Hou,
“Storage-aware Task Scheduling for Performance Optimization of Big Data
Workflows,” Proceedings of the 8th IEEE International Conference on Big
Data and Cloud Computing, Melbourne, Australia, December 11-13, 2018.

Meng Wang, Chase Q. Wu, Huiyan Cao, Yang Liu, Yongqiang Wang, and Aiqin Hou,
“On MapReduce Scheduling in Hadoop Yarn on Heterogeneous Clusters,”
Proceedings of the 12th IEEE International Conference on Big Data Science
and Engineering, New York City, USA, July 31 August 3, 2018.

Tao Wang, Chase Q. Wu, Yongqiang Wang, Aiqin Hou, and Huiyan Cao, “Multi-Path
Routing for Maximum Bandwidth with K Edge-Disjoint Paths,” Proceedings
of the 14th International Wireless Communications and Mobile Computing
Conference, Limassol, Cyprus, June 25-29, 2018.

Huiyan Cao and Chase Q. Wu, “Performance Optimization of Budget-Constrained
Scientific Workflows in Multi-Cloud Environments,” IEEE Access, under
review, 2020.

v

I dedicate my dissertation work to my parents, Lianjun
Yu and Huamin Cao.

vi

ACKNOWLEDGMENT

I am very grateful to Prof. Chase Wu for his guidance.

I’d like to thank Prof. Cristian M. Borcea, Prof. Yi Chen, Prof. Xiaoning Ding and

Prof. Senjuti Basu Roy for serving on my dissertation committee.

Also, I want to thank my parents and friends for their love and support.

Last, but not the least, I’d like to thank department of Computer Science at NJIT

for the teaching assistantship and U.S. NSF for the research funding under Grant

No. CNS-1560698 and No. CNS-1828123 with NJIT.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

2 RELATED WORK . 7

3 COST MODEL CONSTRUCTION . 12

3.1 A Three-layer Workflow Execution Architecture 12

3.2 Inter-Module Transfer Time Cost Models 15

4 SERIAL COMPUTING WORKFLOWS USING DEDICATED VM 16

4.1 Problem Formulation . 16

4.1.1 Time and Financial Cost of Module Execution 16

4.1.2 Problem Formulation . 17

4.2 Algorithm Design . 18

4.2.1 Multi-Cloud Workflow Mapping Algorithm 18

4.3 Algorithm Implementation and Performance Evaluation 20

4.3.1 Simulation Settings . 20

4.3.2 Simulation Results . 25

5 SERIAL COMPUTING WORKFLOWS REUSING VM 32

5.1 Problem Formulation . 32

5.1.1 Time and Financial Cost of Module Execution: 32

5.1.2 Problem Formulation . 33

5.2 Algorithm Design . 34

5.2.1 Multi-Cloud Workflow Mapping Algorithm 34

5.3 Algorithm Implementation and Performance Evaluation 38

5.3.1 Simulation Settings . 38

5.3.2 Simulation Results . 43

5.3.3 Experimental Results . 52

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

6 MAPREDUCE-BASED WORKFLOWS 65

6.1 Problem Formulation . 65

6.1.1 Time and Financial Cost Models 65

6.1.2 Problem Formulation . 71

6.2 Algorithm Design . 73

6.2.1 MapReduce Workflow Mapping Algorithm in Multi-Clouds . . 73

6.3 Algorithm Implementation and Performance Evaluation 78

6.3.1 Simulation Results . 78

6.3.2 Experimental Results . 82

7 STORM-BASED STREAM DATA PROCESSING WORKFLOWS 91

7.1 Problem Formulation . 91

7.2 Algorithm Design . 101

7.2.1 Bottleneck-Oriented Topology Mapping 102

7.3 Simulation-based Performance Evaluation 107

7.3.1 Simulation Settings . 107

7.3.2 Comparison with Other Methods 108

7.3.3 Convergence of BOTM . 110

7.4 Experiment-based Performance Evaluation 110

7.4.1 Experiment 1 with Flight Data 110

7.4.2 Experiment 2 with Climate Data 119

7.4.3 Summary . 123

8 CONCLUSION . 127

REFERENCES . 129

ix

LIST OF TABLES

Table Page

4.1 The Average MED Improvement Percentages α = Imp(VM-GREEDY),
β = Imp(BW-GREEDY), and γ = Imp(CRITICAL-GREEDY) of
MCWM and the Corresponding Standard Deviations Across 400
Instances (20 Budget Levels × 20 Random Workflow Instances) at
Different Problem Sizes . 28

4.2 The Average MED Improvement Percentages α = Imp(VM-GREEDY),
β = Imp(BW-GREEDY), and γ = Imp(CRITICAL-GREEDY) of
MCWM and the Corresponding Standard Deviations Across 400
Instances (20 Problem Sizes × 20 Random Workflow Instances) at
Difference Budget Levels . 29

5.1 The Average MED Improvement Percentages α = Imp(VM-GREEDY),
β = Imp(BW-GREEDY), and γ = Imp(CRITICAL-GREEDY) of
ICPWM and the Corresponding Standard Deviations Across 400
Instances (20 Budget Levels × 20 Random Workflow Instances) of
Different Problem Sizes . 45

5.2 The Average MED Improvement Percentages α = Imp(VM-GREEDY),
β = Imp(BW-GREEDY), and γ = Imp(CRITICAL-GREEDY) of
ICPWM and the Corresponding Standard Deviations Across 400
Instances (20 problem sizes × 20 Random Workflow Instances) at
Difference Budget Levels . 46

5.3 The Number of Nodes/Edges and Directed Graph Density in Five
Different Workflow Types . 53

5.4 Hadoop Cluster and VM Specifications of Different VM Types in AWS
and GCP . 57

5.5 Bandwidth Matrix BW . 57

5.6 Data Transfer Price Matrix price . 57

5.7 Execution Time Matrix TE . 58

5.8 Execution Cost Matrix CE . 58

5.9 The Average MED Measurements (in Milliseconds) by ICPWM, VM-
GREEDY, BW-GREEDY, CRITICAL-GREEDY and Optimal Solution
at Difference Budget Levels Using the WRF Workflow in GCP-AWS
Environments . 63

x

LIST OF TABLES
(Continued)

Table Page

6.1 The Average MinMS Improvement Percentages α = Imp(VM-GREEDY),
β = Imp(MCMA), and γ = Imp(CRITICAL-GREEDY) and the
Corresponding Standard Deviations Across 400 Instances (20 Budget
Levels × 20 Random Workflow Instances) with Different Problem Sizes 83

6.2 The Average MinMS Improvement Percentages α = Imp(VM-GREEDY),
β = Imp(MCMA), and γ = Imp(CRITICAL-GREEDY) and the
Corresponding Standard Deviations Across 400 Instances (20 problem
sizes × 20 Random Workflow Instances) at Different Budget Levels . . 84

6.3 VM Instances Provisioned by Different Cloud Computing Platforms in
the Experiment . 85

6.4 System Specifications of Different VM Types in the Experiment 85

6.5 Bandwidth Matrix BW . 86

6.6 Data Transfer Price matrix price . 86

7.1 System Specifications of Different VM Types in the Experiment 112

7.2 Execution Time Matrix Te in ms . 113

7.3 The VM Instances of the Storm Cluster Provisioned under Different
Mapping schemes in AWS . 113

7.4 Mapping Schemes Obtained by BOTM and VM-G (VM-GREEDY) in
Experiment 1, Where Each Cell Stores (vt,DoP) for the Corresponding
Module . 113

7.5 Throughput Measurements in Tuples/min of BOTM, VM-G (VM-
GREEDY), and STORM (STORM DEFAULT) in Experiment 1 on
Flight Data, Where Each Run Lasts for 10 Hours 114

7.6 Execution Time Matrix Te in ms for WRF 115

7.7 Storm Cluster VM Instances Provisioned Under Different Mapping
Schemes in AWS . 119

7.8 Mapping Schemes Obtained by BOTM and VM-G (VM-GREEDY) in
Experiment 2, Where Each Cell Stores (vt,DoP) for the Corresponding
Module . 119

7.9 Throughput Measurements in tuples/hour of BOTM, VM-G (VM-
GREEDY), and STORM (STORM DEFAULT) in Experiment 2 on
WRF Workflow, Where Each Run Lasts for 10 Hours 122

xi

LIST OF FIGURES

Figure Page

1.1 The framework of the dissertation research. 5

1.2 The roadmap of the dissertation research. 6

3.1 A three-layer architecture for workflow execution in multi-clouds. 13

3.2 Data storage. 14

3.3 Intra-cloud and inter-cloud data transfer. 15

4.1 The number of optimal results among 1000 instances (50 workflow
instances × 20 budget levels) produced by MCWM, VM-GREEDY,
BW-GREEDY, and CRITICAL-GREEDY under different problem sizes. 26

4.2 The average MED performance improvement percentages (%) with
standard deviations across 400 instances (20 budget levels × 20 random
workflow instances) for each problem size. 27

4.3 The average performance improvement percentages with standard deviations
across 400 instances (20 different problem sizes × 20 random workflow
instances) for each budget level. 30

4.4 The overall performance improvement percentages (%) of MCWM over
VM-GREEDY with varying budget levels and problem sizes. 30

4.5 The overall performance improvement percentages (%) of MCWM over
BW-GREEDY with varying budget levels and problem sizes. 31

4.6 The overall performance improvement percentages (%) of MCWM over
CRITICAL-GREEDY with varying budget levels and problem sizes. . 31

5.1 The number of optimal results among 1000 instances (50 workflow
instances × 20 budget levels) produced by ICPWM, VM-GREEDY,
BW-GREEDY, and CRITICAL-GREEDY under different problem sizes. 43

5.2 The average MED performance improvements (%) with standard deviations
across 400 instances (20 budget levels × 20 random workflow instances)
for each problem size. 47

5.3 The average performance improvements (%) with standard deviations
across 400 instances (20 different problem sizes × 20 random workflow
instances) for each budget level. 48

xii

LIST OF FIGURES
(Continued)

Figure Page

5.4 The overall performance improvements (%) of ICPWM over VM-GREEDY
with varying budget levels and problem sizes. 49

5.5 The overall performance improvements (%) of ICPWM over BW-
GREEDY with varying budget levels and problem sizes. 50

5.6 The overall performance improvements (%) of ICPWM over CRITICAL-
GREEDY with varying budget levels and problem sizes. 51

5.7 Montage . 52

5.8 CyberShake . 52

5.9 Epigenomics . 52

5.10 LIGO’s Inspiral Analysis . 52

5.11 Sipht . 52

5.12 The average performance improvements (%) with standard deviations
across 20 instances at each budget level for the Montage workflow. . . 53

5.13 The average performance improvements (%) with standard deviations
across 20 instances at each budget level for the CyberShake workflow. 54

5.14 The average performance improvements (%) with standard deviations
across 20 instances at each budget level for the Epigenomics workflow. 55

5.15 The average performance improvements (%) with standard deviations
across 20 instances at each budget level for the LIGO’s Inspiral
Analysis workflow. 56

5.16 The average performance improvements (%) with standard deviations
across 20 instances at each budget level for the Sipht workflow. 59

5.17 The optimization process of ICPWM running the problem instance of
Index 15 under three different budget levels. 60

5.18 A general structure of the executable WRF workflow. 61

5.19 The WRF workflow of three pipelines in the experiments. 61

5.20 The WRF workflow after grouping. 61

xiii

LIST OF FIGURES
(Continued)

Figure Page

5.21 The MED comparison (in seconds) between ICPWM, VM-GREEDY,
BW-GREEDY, CRITICAL-GREEDY and optimal solution at different
budget levels using the WRF experiment workflow in GCP-AWS
environments. 64

6.1 A single MapReduce job execution. 66

6.2 Execution of MapReduce jobs in the same cloud. 68

6.3 Illustration of the start time and finish time of a MapReduce module in
a ready queue. 70

6.4 The last round of Map tasks of the i-th Module with Si
Avail Map slots

(Si
m = Sm(vt) ∙ n(vt)). 72

6.5 The number of optimal results among 1000 instances (50 workflow
instances × 20 budget levels) produced by MRWM, VM-GREEDY,
MCMA, and CRITICAL-GREEDY under different problem sizes. . . . 80

6.6 The average MinMS performance improvement percentages (%) with
standard deviations across 400 instances (20 budget levels × 20 random
workflow instances) under 20 problem sizes. 80

6.7 The average MinMS performance improvement percentages (%) with
standard deviations across 400 instances (20 different problem sizes
× 20 random workflow instances) at 20 budget levels. 80

6.8 The overall performance improvement percentages (%) of MRWM over
VM-GREEDY with different budget levels and problem sizes. 82

6.9 The overall performance improvement percentages (%) of MRWM over
MCMA with different budget levels and problem sizes. 82

6.10 The overall performance improvement percentages (%) of MRWM over
CRITICAL-GREEDY with different budget levels and problem sizes. . 82

6.11 The optimization process of MRWM running the problem instance of
Index 11 under three different budget levels. 89

6.12 The structure of the MapReduce workflow. 89

6.13 The MinMS performance in minutes across 6 budget levels on small-scale
datasets. 90

6.14 The MinMS performance in minutes across 6 budget levels on medium-
scale datasets. 90

xiv

LIST OF FIGURES
(Continued)

Figure Page

6.15 The MinMS performance in minutes across 6 budget levels on large-scale
datasets. 90

7.1 Execution dynamics of the first bolt of the topology with DoP = m, i.e.,
there are m concurrent workers executing the first bolt. 93

7.2 Execution dynamics in Case 1: the gap time when Ti = Ti+1. 94

7.3 Execution dynamics in Case 1: the gap time when Ti > Ti+1. 95

7.4 Execution dynamics in Case 1: the gap time when Ti < Ti+1. 96

7.5 Execution dynamics in Case 2. 97

7.6 Illustration of gap time for throughput calculation. 99

7.7 Performance measurements for simulations under different budget levels. 106

7.8 The number of optimal results among 50 instances (10 workflow instances
× 5 budget levels) produced by BOTM, VM-GREEDY and STORM
DEFAULT, respectively, under different problem sizes. 109

7.9 The optimization process of BOTM running the problem instance of
Index 5 in the simulations under three different budget levels. 111

7.10 The structure of the Storm topology for flight data processing. 111

7.11 The average throughput with standard deviation of the Storm topology
across different degrees of parallelism (DoP) in clusters C1 and C2
produced by BOTM and VM-GREEDY, respectively, and a randomly
generated C3 under a given budget. 117

7.12 The average throughput (per core) with standard deviation of the Storm
topology across different degrees of parallelism (DoP) in clusters C1
and C2 produced by BOTM and VM-GREEDY, respectively, and a
randomly generated C3 under a given budget. 118

7.13 A general structure of the executable WRF workflow. 118

7.14 The WRF Storm workflow of three pipelines in the experiments. 121

7.15 The WRF Storm workflow after grouping. 121

xv

LIST OF FIGURES
(Continued)

Figure Page

7.16 The average throughput with standard deviation of the Storm topology
for WRF data processing across different degrees of parallelism (DoP)
in clusters C4 and C5 produced by BOTM and VM-GREEDY,
respectively, and randomly generated cluster C6 under a given budget. 124

7.17 The average throughput (per core) with standard deviation of the
Storm topology for WRF data processing across different degrees of
parallelism (DoP) in clusters C4 and C5 produced by BOTM and
VM-GREEDY, respectively, and randomly generated cluster C6 under
a given budget. 125

7.18 The resource consumption for WRF data processing across different
degrees of parallelism (DoP) in clusters C4, C5, and randomly
generated cluster C6 by BOTM, VM-GREEDY and STORM DEFAULT,
respectively, under a given budget. 126

xvi

CHAPTER 1

INTRODUCTION

Next-generation scientific applications are producing colossal amounts of data,

now frequently termed as “big data”, on the order of terabytes nowadays and

petabytes in the predictable future, which must be processed and analyzed in

a timely manner for knowledge discovery and scientific innovation. In many of

these scientific applications, computation and computing tasks for data generation,

processing, and analysis are often assembled and constructed as workflows comprised

of interdependent computing modules1. To some degree, workflows have become

an indispensable enabling technology to meet various science missions in a wide

spectrum of domains. In [41], stochastic optimization algorithms were utilized and

Li et al. proposed a parameter tuning workflow which consists of two types of

repeated tests. One type is multiple independent tests for a single event and the

other involves tests of multiple events.

With the rapid deployment of cloud infrastructures around the globe and

the economic benefit of cloud-based computing and storage services, an increasing

number of scientific workflows have been shifted or are in active transition to

clouds. As we enter the “big data” era, several efforts have been made to develop

workflow engines for Hadoop ecosystem running on cloud platforms with virtual

resources [20, 21, 22, 23, 24]. Due to the rapidly expanding scale of scientific

workflows, it is now common to deploy data- and network-intensive computing

workflows in multiple cloud sites. Real-life examples include a workflow deployment

1We refer to the smallest computing entity in a scientific workflow as a computing module,
which represents either a serial computing task or a parallel processing job such as a typical
MapReduce program in Hadoop.

1

across multiple Availability Zones within a certain Region in Amazon EC2, which are

geographically distributed but connected through low-latency links [18]. Typically,

within the same cloud, virtual machines (VMs) are organized into a virtual cluster

and intra-cloud data transfer is performed through a shared storage system or

network file system (NFS) without financial charge [1] [33]; while inter-cloud data

transfer may constitute a significant part of both the execution time and the financial

cost of a big data workflow due to the sheer volume of data being processed.

The current cloud services are categorized into: Infrastructure as a Service

(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). IaaS

clouds provide virtualized hardware resources for users to deploy their own systems

and applications, and therefore are most suitable for executing scientific workflows

developed on various programming platforms. For example, Amazon EC2 provides

VM instances with different CPU , memory, disk, and bandwidth capacities to meet

the varying resource demands of different applications [18]. Such VM instances

are usually priced according to their processing power and storage space but not

necessarily in a linear manner [43], and charged by the provisioned time units, such

as hours. Note that any partial hours are often rounded up in the cost evaluation of

workflow execution as in the case of EC2 [37], but such rounding may be negligible

in big data applications with a long workflow execution time. In many real-life

applications, budget constraint is a major factor that affects the deployment of

data-intensive workflows.

As we enter the big data era, several efforts have been made to develop workflow

engines for Hadoop ecosystem in clouds with virtual resources. We expand our work

to Hadoop environments.

Recently, there is an increasing need to process and analyze datasets as they are

generated and transferred in real time for various purposes such as stock prediction,

2

malfunction detection, social network analysis, and log data processing. To meet such

demands, a wide range of computing engines have been developed and deployed for

streaming data processing, including Apache Storm [24], Apache Flink [2], Apache

Spark (Spark Streaming) [3], Apache Samza [4], Apache Apex [5], and Google Cloud

Dataflow [6]. For example, Yahoo adopted Apache Storm to replace the internally

developed S4 platform [46]; JStorm [7], now being merged into Apache Storm,

and Heron [8] are heavily used by Alibaba Inc. and Twitter Inc., respectively;

Spark Streaming and Flink are also gaining a widespread adoption in industry.

In fact, real-time streaming data processing systems have become an indispensable

building block in the entire big data ecosystem. As one of the most commonly used

systems for streaming data processing, Apache Storm provides a workflow-based

mechanism to execute directed acyclic graph (DAG)-structured topologies2. In recent

years, we have witnessed a rapid deployment of cloud infrastructures around the

globe and great economic benefits brought by cloud-based computing and storage

services. As a result, many such Storm workflows have been shifted or are in active

transition to cloud environments. As most public clouds adopt a pay-as-you-go

service model, one additional constraint on financial budget must be considered in

addition to traditional performance optimization goals. However, efforts in improving

the performance of streaming data processing in clouds are still very limited.

To summarize, in this work, we focus on improving performance of big

data computing workflows for batch and stream data processing in multi-cloud

environment. We have worked on (1) serial-computing workflows, (2) MapReduce

workflows and (3) Storm-based streaming processing workflows. The framework of

the dissertation research consisting of various technical components is illustrated in

Figure 1.1.

2The workflow structure in Storm is referred to as a topology, and hereafter, these two
terms are used interchangeably.

3

For serial computing workflows, considering two scenarios: 1) mapping using

dedicated VM instances, and 2) mapping reusing VM instances. In Chapter 4,

we solved scenario 1) and analyzed both the time cost and the financial cost of

intra- and inter-cloud execution of big data scientific workflows and formulate a

Budget-Constrained workflow mapping problem for Minimum End-to-end Delay in

IaaS Multi-Cloud environments, referred to as BCMED-MC. We show BCMED-MC

to be NP-complete and design a heuristic solution that considers cloud service types

and wide-area data transfer cost in the provisioning of VM instances and the selection

of cloud sites. In Chaper 5, we tackle BCMED-MC problem for scenario 2). We

designed a new heuristic solution that considers VM reuse.

As we enter the big data era, several efforts have been made to develop workflow

engines for Hadoop ecosystem in clouds with virtual resources. We expanded our

work to Hadoop environments in Chapter 6, we dived into the execution dynamics of

MapReduce-based scientific workflows and formulated a budget-constrained workflow

mapping problem for minimum makespan in IaaS multi-cloud environments, referred

to as MinMRW-MC. We show MinMRW-MC to be NP-complete and design a

heuristic solution.

Also, streaming data processing has become increasingly important due to its

impacts on a wide range of use cases, such as real-time trading analytics, malfunction

detection, campaign, social network, log processing and metrics analytics. To

meet the demands of streaming data processing, many new computing engines

have emerged, including Apache Storm and Apache Spark (Spark Streaming).

In Chapter 7, we analyze both the time and financial cost of Storm-based

workflow execution and formulate a Storm Topology Mapping problem for maximum

throughput in clouds under Budget Constraint, referred to as STM-BC. We show

4

Figure 1.1 The framework of the dissertation research.

STM-BC to be NP-complete and design a heuristic solution that takes into

consideration the parallelism of each task (spout/bolt) in the topology.

The performance superiority of all proposed solutions over existing methods

are illustrated through extensive simulations and further verified by real-life workflow

experiments deployed in public clouds.

Our workflow mapping solutions offer IaaS providers an economical resource

allocation scheme to meet the budget constraint specified by the user, and meanwhile

also serve as a cloud resource provisioning reference for scientific users to make

proactive and informative resource requests. When try to locate the cooresponding

chapter in this dissertation for the suitable workflow optimization solution of different

types, please refer to the roadmap shown in Figure 1.2.

5

Figure 1.2 The roadmap of the dissertation research.

6

CHAPTER 2

RELATED WORK

In recent years, an increasing number of efforts have been made on resource

provisioning and workflow mapping in clouds where both financial cost and

workflow performance must be taken into consideration. Zeng et al. proposed a

budget-conscious scheduler to minimize many-task workflow execution time within

a certain budget [58]. Their scheduling strategy starts with tasks labeled with an

average execution time on several VMs, and then sorts the tasks such that those

on the initial critical path will be rescheduled first based on an objective function

defined as Comparative Advantage (CA). In [15], Abrishami et al. designed a

QoS-based workflow scheduling algorithm based on Partial Critical Paths (PCP)

in SaaS clouds to minimize the cost of workflow execution within a user-defined

deadline. As many existing critical-path heuristics, they schedule modules on the

critical path first to minimize the cost without exceeding their deadline. PCP are

then formed ending at those scheduled modules, and each PCP takes the start

time of the scheduled critical module as its deadline. This scheduling process

continues recursively until all modules are scheduled. In [44, 43], Mao et al.

investigated the automatic scaling of clouds with budget and deadline constraints

and proposed Scaling-Consolidation-Scheduling (SCS) with VMs as basic computing

elements. In [32], Hacker proposed a combination of four scheduling policies based

on an on-line estimation of physical resource usage. Rodriguez et al. proposed

a combined resource provisioning and scheduling strategy for executing scientific

workflows on IaaS clouds to minimize the overall execution cost while meeting

a user-defined deadline [47]. They designed a Particle Swam Optimization-based

approach that incorporates basic IaaS cloud principles such as a pay-as-you-go model,

7

without considering the data transfer cost between data centers. And in [60], Wang

et al. proposed a dynamic group learning distributed particle swarm optimization

(DGLDPSO) for large-scale optimization and extends it for the large-scale cloud

workflow scheduling. In [57], a novel directional and non-local-convergent particle

swarm optimization (DNCPSO) was proposed and it employs non-linear inertia

weight with selection and mutation operations by directional search process, which

can reduce the makespan and cost dramatically and obtain a compromising result.

Jiang et al. addressed two main challenges in executing large-scale workflow

ensembles in public clouds, i.e., execution coordination and resource provisioning [36].

They developed DEWE v2, a pulling-based workflow management system with a

profiling-based resource provisioning strategy, and demonstrated the effectiveness of

their provisioning method in terms of both cost and deadline compliance. Also,

while centralized datacenter schedulers can make high-quality placement decisions

when scheduling tasks in a cluster, several efforts have been made to address the

response time for interactive tasks and cluster utilization challenges. In [34], Gog

et al. proposed Firmament, a centralized scheduler that scales to over ten thousand

machines at sub-second placement latency even though it continuously reschedules

all tasks via a min-cost max-flow (MCMF) optimization.

Most of the existing efforts are focused on workflow execution in a single cloud

site. As scientific workflows are increasingly deployed across multiple clouds or data

centers with network infrastructures to support inter-cloud data transfers, there is

a need to revisit the workflow mapping problems in multi-cloud environments. For

VM placement in such environments, cloud service providers must optimize the use

of physical resources by a careful allocation of VMs to hosts, continuously balancing

between the conflicting requirements on performance and operational costs. In

recent years, several algorithms have been proposed for this important problem [42].

8

In [31], Abazari et al. tackled the Multi-objective workflow scheduling problem by

considering both tasks security demands and interactions in secure tasks placement

in the cloud. in [52], inspired by the hybrid chemical reaction optimization (HCRO)

algorithm, the proposed workflow scheduling scheme is shown to be energy efficient

under a deadline constraint. In [55], Ma et al. also considers the deadline as a

constraint and proposed a scheduling algorithm that minimizes the execution cost

of a workflow by dividing tasks into different levels according to the topological so

that no dependency exists between tasks at the same level. In [38], Zhou et al.

proposed two efficient workflow scheduling approaches for hybrid clouds that both

consider makespan and monetary cost. In [29], besides scheduling strategy, Oliveira

et al. tried to adress the failure of components as failures in a cloud system can

simultaneously affect several users and depreciate the number of available computing

resources. In [39], Bao et al. worked with microservice-based applications in clouds

by performance modeling and prediction methods.

There also exist several efforts on MapReduce optimization. In [45], Moon

et al. explored to optimize the MapReduce framework with solid-state drives in

terms of performance, cost, and energy consumption within Hadoop. In [51], Tian

et al. designed a job scheduler called “HScheduler” to minimize the makespan of

multiple MapReduce jobs, which can be considered as a special case of MapReduce

workflows with independent modules. In [49], Shi et al. designed an elastic resource

provisioning and task scheduling mechanism in clouds to complete as many high-

priority workflow jobs as possible under budget and deadline constraints. In [17],

Alshammari et al. developed an enhanced MapReduce architecture to reduce the

number of blocks to be read for computation and tested it with DNA datasets.

These efforts are focused on independent MapReduce jobs in a single cloud.

9

As streaming data processing gains more attention, we also conduct a survey of

related work on streaming data processing in various computing environments. Note

that different from batch data processing, the scheduling problem in a streaming

data processing framework processes a continuous flow of input instances upon their

arrival.

Many existing efforts have been focused on workflow mapping or job scheduling

in grid environments under different mapping and resource constraints. Agarwalla et

al. proposed Streamline, a workflow scheduling scheme for streaming data, which

places a coarse-grain dataflow graph on available grid resources [16]. mapping

problem we consider: while each module in Condor Similar mapping problems are

also studied in the context of sensor networks. Sekhar et al. proposed an optimal

algorithm for mapping subtasks onto a large number of sensor nodes based on an A∗

algorithm [48].

More recently, as Storm gains its popularity for streaming data processing in big

data systems, a number of improvements have been made to Storm in either physical

or cloud-based clusters. The current Storm platform employs a pseudo-random

round-robin task scheduling and placement scheme without considering resource

availability in the underlying cluster. This default scheme is simple but does not

always yield the best performance in terms of workflow throughput and resource

utilization. Many efforts have been made to improve throughput performance using

resource-aware scheduling. In [25], Peng et al. proposed R-Storm (Resource-Aware

Storm), a system that implements resource-aware scheduling within Storm, which

is designed to increase overall throughput by maximizing resource utilization while

minimizing network latency. In [30], Eskandari et al. considered the data transfer

rate and traffic pattern between Storm’s tasks and assign task pairs with heavy

communication to the same node by dynamically employing two phases of graph

10

partitioning. In [27], Chen et al. presented the design, implementation, and

evaluation of G-Storm, a GPU-enabled parallel system based on Storm, which

harnesses the massively parallel computing power of GPUs for high-throughput

stream data processing.

There also exists some work on Storm scheduling that considers various appli-

cation features such as data transfer, workflow topology, and QoS. In [56], Xu et al.

proposed T-Storm, a traffic-aware online scheduler in Storm, to minimize inter-node

and inter-process traffic for better performance with even fewer worker nodes. In [19],

Aniello et al. proposed two schedulers for Storm to improve performance by adapting

the deployment to application topologies, and by rescheduling the deployment at

runtime based on traffic information. In [26], Cardellini et al. extended the Storm

architecture by designing and implementing the support for distributed QoS-aware

scheduling and run-time adaptivity.

Different from the aforementioned work that considers resources or application

features, we take an orthogonal approach to maximize the throughput performance

of Storm workflows in clouds by deciding an appropriate degree of parallelism for

each component task of the topology and selecting a suitable virtual machine (VM)

type for each component task processing an input instance.

11

CHAPTER 3

COST MODEL CONSTRUCTION

We construct analytical models to quantify workflow performance and cost, which

facilitate a rigorous formulation of a budget-constrained optimization problem for

big data computing workflows in multi-cloud environments.

3.1 A Three-layer Workflow Execution Architecture

As illustrated in Figure 3.1, we consider a three-layer architecture for workflow

execution in multi-cloud environments. This architecture is generic and could be

used to model many computing systems that utilize virtualized resources.

i) the top layer defines a workflow structure comprised of various computing

modules with inter-module data transfer and execution dependency;

ii) the bottom layer defines a number of distributed data centers, which are

organized as clusters of physical machines (PMs) and connected via high-speed

networks;

iii) the middle layer defines a cloud-based network of VMs provisioned on the PMs

located in different data centers.

Depending on the workflow mapping scheme, the execution of a workflow may incur

an intra-cloud data transfer if two adjacent modules are mapped to the VMs within

the same data center and an inter-cloud data transfer, otherwise.

As in the majority of the previous work, in the top layer, we model a scientific

workflow as a weighted directed acyclic graph (DAG) Gw(Vw, Ew), with |Vw| = m

modules and |Ew| directed edges ep,q, which represents the execution dependency

12

Figure 3.1 A three-layer architecture for workflow execution in multi-clouds.

between two adjacent modules wp and wq, and whose weight represents the data

size DS transferred between them. In the bottom physical layer, we model the cloud

infrastructure of each data center as a complete weighted graph Gc(Vc, Ec) consisting

of a limited number of PMs (nodes) connected via a high-speed switch organized as

a typical PC cluster. Each PM is associated with a resource profile that defines

the CPU frequency fCPU , memory size sRAM , I/O speed rI/O, disk capacity cdisk,

and a Network Interface Card (NIC) with uplink bandwidth BWup, and downlink

bandwidth BWdown. We also model a set of multiple interconnected data centers as

a complete weighted graph Gmc(Vmc, Emc). In the middle virtual layer, we model a

set of fully connected VMs as a complete weighted graph G′
mc(V

′
mc, E

′
mc) consisting

of |V ′
mc| VMs interconnected by |E ′

mc| virtual links. Note that the weight of each link

in the above cloud models represents the corresponding link bandwidth BW.

We consider a set of n available VM types V T = {vt1, vt2, ..., vtn}, each of

which is associated with a set of performance attributes including CPU frequency

13

Figure 3.2 Data storage.

f ′
CPU , I/O speed r′I/O, and disk capacity c′disk, as well as a VT pricing model p(vt) =

f(f ′
CPU , r′I/O, c′disk), which determines the financial cost per time unit for using a VM

instance of type vt. Similarly, we consider a set of k available bandwidth types BT =

{bt1, bt2, . . . , btk} to support inter-cloud data transfer and a bandwidth pricing model

p(dt) = f(bt). Note that we ignore the financial cost for intra-cloud data transfer, as

followed by widely adopted cloud services in real-life scientific applications.

To run a computing module on a VM instance of a certain type, the disk

capacity of the selected VM type must be large enough to meet the storage

requirement of the module. Depending on the nature of the data processing, modules

may have different storage requirements. As shown in Figure 3.2, if a module requires

both input data DSi and output data DSo to be stored at the same time, i.e., the

input data cannot be deleted before the output data is produced, the minimum

required storage size is DSi + DSo; otherwise, the minimum required storage size

is max(DSi, DSo). A feasible VM type vt ∈ V T must meet the minimum storage

requirement for a given computing module w, i.e.,

c′disk(vt) ≥






DSi(w) + DSo(w), if DSi and DSo coexist;

max(DSi(w), DSo(w)), otherwise.

(3.1)

14

Figure 3.3 Intra-cloud and inter-cloud data transfer.

3.2 Inter-Module Transfer Time Cost Models

Time Cost of Data Transfer As shown in Figure 3.3, on each PM, the uplink

bandwidth is equally shared if the PM sends data concurrently to multiple other

PMs; similarly, the downlink bandwidth is equally shared if the PM receives data

concurrently from multiple other PMs. The inter-cloud connection bandwidth is

also equally shared by multiple concurrent data transfers between two data centers

at different geographical locations. The time cost Tdt of an intra- or inter-cloud

data transfer is determined by both the data size DS and the sharing dynamics of

bandwidth BW , i.e.,

Tdt =
DS

min(BWup(PMs)

ns
, BWdown(PMr)

nr
, BWic

nic
)
, (3.2)

where ns, nr, and nic is the number of concurrent data transfers from a sender PMs,

to a receiver PMr, and over an inter-cloud connection, respectively.

Equation.

15

CHAPTER 4

SERIAL COMPUTING WORKFLOWS USING DEDICATED VM

4.1 Problem Formulation

In addition to the common cost model provided in Chapter 3, we construct a set of

additional cost models specific to the execution of the serial computing workflows

using dedicated VM instances.

4.1.1 Time and Financial Cost of Module Execution

A computing module may contain multiple code segments that are either CPU bound

or I/O bound. In a CPU -bound segment, the program running time TCPU is mainly

determined by the workload WL of the module w and the CPU speed f ′
CPU of the

mapped VM type vt, i.e.,

TCPU =
WL(w)

f ′
CPU (vt)

. (4.1)

In an I/O-bound segment of module w, the time TI/O spent on I/O operations

depends on the input data size DSi, the output data size DSo, and the I/O speed

r′I/O of the mapped VM type vt, i.e.,

TI/O =
DSi(w) + DSo(w)

r′I/O(vt)
. (4.2)

The total execution time Tme of a module on a mapped VM is:

Tme = TCPU + TI/O. (4.3)

End-to-end Delay of a Workflow The end-to-end delay ED of a workflow Gw

is determined by the critical path (CP), which contains critical modules along the

longest execution path, and is calculated as

16

ED =
∑

for all w∈CP

(Tme(w) + Twait(w)) +
∑

for all ew∈CP

(Tdt(ew)), (4.4)

where Twait(w) is the time a critical module w spends in waiting for its input data

from all of its preceding modules.

Financial Cost Models The total financial cost CTotal of an entire workflow

execution process is calculated as

CTotal =
∑

for all w∈Vw

((Tme(w, vt) + Twait(w, vt)) ∙ p(vt))

+
∑

for all ew∈Ew

Tdt(ew, bt) ∙ p(dt),

(4.5)

where the first term calculates the financial cost of all module executions, and the

second term calculates the financial cost of all inter-cloud data transfers using selected

bandwidth type bt over inter-cloud network links lic.

4.1.2 Problem Formulation

We first define a workflow mapping scheme M as

M : vw → V M(PM, vt), for all w ∈ Vw, (4.6)

where V M(PM, vt) represents a VM instance of type vt provisioned on a PM.

Based on the above mathematical models, we formulate a Budget-Constrained

workflow mapping problem for Minimum End-to-end Delay in Multi-Cloud environments,

referred to as BCMED-MC, as follows.

Definition 1. Given a DAG-structured workflow graph Gw(Vw, Ew), a complete

weighted multi-cloud network graph Gmc(Vmc, Emc), a set BT of available inter-cloud

bandwidth types, a set V T of available VM types, and a fixed financial budget B,

17

we wish to find a workflow mapping scheme M to achieve the minimum end-to-end

delay:

MED = min
all possibleM

ED, (4.7)

while satisfying the following financial constraint:

CTotal ≤ B. (4.8)

The formulated BCMED-MC problem considers inter-cloud data transfers

and I/O operations for big data workflows in multi-cloud environments. This is

a generalized version of the MED-CC problem in [40], which only considers the

execution time of CPU -bound modules in a single cloud site. Since MED-CC,

which is a special case of BCMED-MC, has been proved to be NP-complete and

non-approximable, so is BCMED-MC.

4.2 Algorithm Design

Our work targets data-, network-, and compute-intensive workflows deployed in

multiple cloud-based data centers, where the inter-cloud data transfer time and

financial cost could be significant and must be explicitly accounted for.

4.2.1 Multi-Cloud Workflow Mapping Algorithm

We design a Multi-Cloud Workflow Mapping (MCWM) algorithm to solve BCMED-

MC. The pseudocode of MCWM is provided in Algorithm. 1, which consists of three

key steps.

Step 1) We first sort the available VM types V T according to the disk space, CPU

frequency, and I/O speed, and then call Function AssignV T () in Algorithm. 2,

which in turn calls Function FindCP ()1 to compute an initial critical path

1There exist efficient algorithms for finding a critical path in a weighted DAG-structured
network.

18

(CP) based on the data size and computing workload of each module, and

decides the worst possible VM type vt that meets the minimum storage

requirement defined in Equation. 3.1 for each module.

Step 2) We check the financial cost against the budget: i) if it is already over the

budget, there does not exist a feasible mapping scheme; ii) otherwise, we first

upgrade the VM types for the critical modules prioritized by their execution

time up to the best possible VM types and then the non-critical modules until

the budget is exhausted.

Step 3) In Function SelectPM () in Algorithm. 3, for each VM type vt, we select

a PM in a cloud site to provision a corresponding VM instance. One basic

guideline is to use the same PM in the same cloud whenever possible to avoid

intra- and inter-cloud data transfer. If an inter-cloud data transfer is inevitable,

we assign the smallest bandwidth type bt to the corresponding inter-cloud

connection lic. Once a mapping scheme M is obtained, we calculate the total

financial cost CTotal and check it against the budget B: i) if it is over the

budget, we repeatedly downgrade the VM type vt for each module until the

mapping scheme M becomes feasible; ii) otherwise, we repeatedly upgrade

the bandwidth type bt for each inter-cloud data transfer until the budget is

completely exhausted.

Step 4) If the workflow’s total delay TTotal under the current mapping scheme M is

shorter than that under the previous one, go back to Step 1) where FindCP ()2

computes a new CP based on the module execution/waiting and data transfer

2There exist efficient algorithms for finding a critical path in a weighted DAG-structured
network.

19

time under the current mapping scheme; otherwise, terminate the mapping

process.

In SelectPM (), we choose the PM and cloud site to provision a VM instance

of a selected VM type vt for every module in the workflow. In every cloud, we

check if it can provision the required VM instances one at a time. If some VM

instances cannot be provisioned from this cloud, we move to another cloud. Since we

consider homogeneous PMs in the same cloud, we try to provision the VM instances

on the same PM whenever possible to avoid intra-cloud data transfer. However, the

number and type of VM instances that can be provisioned on one PM is limited

by the available physical resources of that PM. After finding all the cloud sites, we

select the lowest bt between every two of those selected cloud sites for inter-cloud

data transfer. We gradually upgrade the inter-cloud connection bandwidth and check

it against the budget. If there is no budget to support even the worst bandwidth,

we repeatedly downgrade the assigned VM type for each module.

The time complexity of each iteration in MCWM is O(max(m ∙ |Ew|,m ∙ n) +

max(|Ew|2, |Vmc|2 ∙ |Ew| ∙ m)), where m is the number of modules in the workflow, n

is the number of available VM types, and |Vmc| is the number of clouds. is intra- or

inter-cloud data transfer so that we can calculate the shared bandwidth.

4.3 Algorithm Implementation and Performance Evaluation

4.3.1 Simulation Settings

We implement the proposed MCWM algorithm in C++ and evaluate its performance

in comparison with three algorithms, i.e., VM-GREEDY, BW-GREEDY, and

CRITICAL-GREEDY [40]. VM-GREEDY is greedy on VM optimization. It

assigns as many high-performance computers as possible within the budget and

then randomly assigns the modules to the clouds. If the cost is over the budget, it

downgrades the VM type of the modules until within the budget. On the contrary,

20

Algorithm 1: MCWM

Input: a DAG-structured workflow graph Gw(Vw, Ew), a complete weighted

multi-cloud network graph Gmc(Vmc, Emc), a set of available VM types V T [], the

attributes PM [][] of the PMs in each cloud, the workload WL[] of each module,

the inter-cloud bandwidth type BT [], a fixed financial budget B.

Output: the workflow’s end-to-end delay TTotal.
1: sort the VM types V T [] in a decreasing order according to the disk space, CPU

frequency, and I/O speed;

2: PrevTTotal = INF ;

3: while (TRUE) do

4: AssignedV T [] = AssignV T (V T [], Gw,WL[], B);

5: CTotal = SelectPM (Gw, AssignedV T [], BT [], PM [][], V T [], B);

6: if (CTotal > B) then

7: if (PrevTTotal == INF) then

8: return −1;

9: else

10: return PrevTTotal;

11: use Equation. 6.15 to calculate TTotal;

12: if (TTotal < PrevTTotal) then

13: PrevTTotal = TTotal;

14: else

15: break;

16: return PrevTTotal;

21

Algorithm 2: AssignVT

Input: a DAG-structured workflow graph Gw(Vw, Ew), a set of available VM

types V T [], the workload WL[] of each module, and a fixed financial budget B.

Output: the VM type AssignedV T [] assigned to each module.

1: CP [] = FindCP (Gw, V T [],WL[], AssignedV T []);

2: for all (module wi ∈ Vw) do

3: AssignedV T [i] = the worst possible V T [];

4: calculate module execution Tme(wi) and cost C(Tme(wi));

5: calculate the total module execution cost C(Tme(Total));

6: for all (module wj ∈ CP []) do

7: while (C(Tme(Total)) ≤ B) do

8: AssignedV T [j] = the next better V T [] than the one in the previous round;

C(Tme(wj));

9: downgrade AssignedV T [j];

10: for all (module wk /∈ CP []) do

11: while (C(Tme(Total)) ≤ B) do

12: AssignedV T [k] = the next better V T [] than the one in the previous round;

C(Tme(wk));

13: downgrade AssignedV T [k];

14: return AssignedV T [];

22

Algorithm 3: SelectPM

Input: a DAG-structured workflow graph Gw(Vw, Ew), the VM type

AssignedV T [] assigned to each module, the inter-cloud bandwidth type BT [],

the attributes PM [][] of the PMs in each cloud, a set of available VM types V T [],

a fixed financial budget B.

Output: the total cost CTotal.
1: for all (cloud i) do

2: for all (module wj) do

3: if (wj has not been assigned to any cloud) then

4: assign wj to cloud i;

5: update the BW and unit price on each edge;

6: calculate the total workflow execution cost CTotal;

7: if (CTotal < B) then

8: if (there are inter-cloud data transfers) then

9: for all (inter-cloud link lic) do

10: while (lic’s BW type bt is not the best) do

11: upgrade lic’s bt;

12: calculate CTotal;

13: if (CTotal > B) then

14: if (lic’s bt is not the worst) then

15: downgrade lic’s bt;

16: break;

17: else

18: for all (module wj) do

19: while (wj ’s vt is not the worst) do

20: downgrade wj ’s vt;

21: calculate CTotal;

22: if (CTotal < B) then

23: break;

24: return CTotal.

23

BW-GREEDY is greedy on data transfer optimization. It assigns each module with

the worst possible VM type that satisfies its storage requirement, randomly deploys

the modules in the clouds, and assigns the largest bandwidth for inter-cloud data

transfer. CRITICAL-GREEDY was proposed in [40] to solve the MED-CC problem.

We first use this algorithm to determine the VM type for each module, and then

randomly deploy the modules in the clouds using the smallest bandwidth for any

inter-cloud data transfer.

To evaluate the algorithm performance, we consider different problem sizes

from small to large scales. The problem size is defined as a 3-tuple (m, |Ew|, n),

where m is the number of workflow modules, |Ew| is the number of workflow links,

and n is the number of available VM types. We generate workflow instances with

different scales in a random manner as follows: i) lay out all m modules sequentially

along a pipeline, each of which is assigned a workload randomly generated within

range [5, 500], which represents the total number of instructions; ii) for each module,

add an input edge from a randomly selected preceding module and add an output

edge to a randomly selected succeeding module (note that the first module only needs

output and the last module only needs input); iii) randomly pick up two modules

from the pipeline and add a directed edge between them (from left to right) until we

reach the given number of edges.

We compare our MCWM algorithm with VM-GREEDY, BW-GREEDY and

CRITICAL-GREEDY [40], in terms of the total workflow execution time under the

same budget constraint. The MED performance improvement of MCWM over the

other algorithms in comparison is defined as:

Imp(Other) =
MEDOther − MEDMCWM

MEDOther

× 100%,

24

where MEDOther is the MED achieved by the other three algorithms, i.e., VM-

GREEDY, BW-GREEDY, and CRITICAL-GREEDY, and MEDMCWM is the MED

achieved by MCWM.

4.3.2 Simulation Results

Comparison with Optimal Solutions First we compare the performance of

MCWM with optimal solutions in small-scale problems with 5, 6 and 7 modules

and VM types. For each problem size, we randomly generate 50 problem instances

with different module workloads and DAG topologies. For each problem instance, we

specify 20 different budget levels. We run all these four algorithms on these instances

and compare the MED results with the optimal ones computed by an exhaustive

search-based approach. Figure 4.1 shows the number of optimal results among 1000

instances (50 workflow instances × 20 budget levels) achieved by MCWM, VM-

GREEDY, BW-GREEDY, and CRITICAL-GREEDY under different problem sizes.

and thus is not visible in the chart. We observe that MCWM is more likely to achieve

the optimality than the other algorithms in a statistical sense, which indicates the

efficacy of MCWM. We also observe that neither VM-GREEDY nor CRITICAL-

GREEDY achieves any optimal results in these cases (no bars are produced for

them in Figure 4.1). Also, the average gap from optimal results for MCWM, VM-

GREEDY, BW-GREEDY and CRITICAL-GREEDY across all 1000 runs are 24%,

90%, 93% and 69%, respectively.

Comparison with VM-GREEDY, BW-GREEDY, and CRITICAL-GREEDY

We further consider 20 problem sizes from small to large scales, indexed from 1 to 20.

In each problem size, we randomly generate 20 problem instances, for each of which,

we choose 20 budget levels with an equal interval of ΔB = (Bmax −Bmin)/20 within

a certain budget range [Bmin, Bmax]. We provide in Table 4.1 the average MED

25

(5,6,5) (6,8,6) (7,12,7)
Problem Index

0

20

40

60

80

100

120

N
um

be
r

of
 O

pt
im

al
 R

es
ul

ts

MCWM
VM-GREEDY
BW-GREEDY
CRITICAL-GREEDY

Figure 4.1 The number of optimal results among 1000 instances (50 workflow

instances × 20 budget levels) produced by MCWM, VM-GREEDY, BW-GREEDY,

and CRITICAL-GREEDY under different problem sizes.

improvement percentages together with standard deviations achieved by MCWM

over VM-GREEDY, BW-GREEDY, and CRITICAL-GREEDY across all the 20

budget levels, which are further plotted in Figure 4.2 for a visual comparison.

Also, for each of the 20 budget levels from low to high values, indexed from 1 to

20, we run the scheduling simulation by iterating through 20 problem sizes from small

to large scales. We provide in Table 4.2 the average MED improvement percentages

together with standard deviations achieved by MCWM over VM-GREEDY, BW-

GREEDY, and CRITICAL-GREEDY across all the 20 problem sizes, which are

further plotted in Figure 4.3 for a visual comparison.

For a better illustration, we plot the overall performance improvement

percentage of MCWM over VM-GREEDY in Figure 4.4, where x axis denotes the

budget increment across 20 levels and y axis denotes the index of 20 problem sizes

from small to large scales. Each point (x, y, imp) in the 3D plot represents the average

26

performance improvement across all 20 problem instances of the same problem size

under the same budget level (the actual budget values may be different in different

instances). at different problem indices for a microscopic examination. These

performance results show that MCWM achieves 50% performance improvement over

VM-GREEDY on average. Similarly, we plot the overall performance improvement

percentage of MCWM over BW-GREEDY in Figure 6.9. These performance results

show that MCWM achieves 55% performance improvement over BW-GREEDY

on average. Also, we plot the overall performance improvement percentage of

MCWM over CRITICAL-GREEDY in Figure 4.6. These performance results show

that MCWM achieves 50% performance improvement over CRITICAL-GREEDY

on average. Such performance improvements are considered significant for workflow

execution in large-scale scientific applications.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Problem Index

0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 M
E

D
 Im

pr
ov

em
en

t P
er

ce
nt

ag
e

Imp(VM-GREEDY)
Imp(BW-GREEDY)
Imp(CRITICAL-GREEDY)

Figure 4.2 The average MED performance improvement percentages (%) with

standard deviations across 400 instances (20 budget levels × 20 random workflow

instances) for each problem size.

Algorithm.

27

Table 4.1 The Average MED Improvement Percentages α = Imp(VM-GREEDY),

β = Imp(BW-GREEDY), and γ = Imp(CRITICAL-GREEDY) of MCWM and the

Corresponding Standard Deviations Across 400 Instances (20 Budget Levels × 20

Random Workflow Instances) at Different Problem Sizes

Idx (m, |Ew|, n) α (%) StdDv β (%) StdDv γ (%) StdDv

1 (5, 7, 5) 43.10 22.06 56.26 14.66 46.84 22.31

2 (8, 14, 6) 33.23 20.58 51.72 13.56 35.52 20.66

3 (10, 18, 6) 37.14 25.37 52.56 13.54 37.56 22.57

4 (13, 30, 7) 41.44 22.38 54.88 8.48 37.78 22.79

5 (15, 60, 7) 43.72 26.83 55.93 7.56 40.73 26.53

6 (18, 80, 8) 49.76 29.31 55.35 8.33 47.24 30.06

7 (20, 100, 8) 40.55 27.90 56.18 9.02 37.22 25.04

8 (23, 150, 9) 60.25 21.02 55.17 19.75 53.71 19.45

9 (25, 200, 9) 47.60 26.67 53.83 15.05 39.92 23.79

10 (28, 250, 10) 57.94 28.05 51.61 16.00 50.31 28.45

11 (30, 300, 10) 64.77 23.31 57.06 5.25 52.96 24.24

12 (33, 380, 11) 57.18 23.93 50.51 15.75 47.89 22.68

13 (35, 400, 11) 57.49 18.22 50.48 16.35 41.60 19.50

14 (38, 450, 12) 56.71 20.88 52.42 8.45 46.21 19.97

15 (40, 500, 12) 48.95 27.89 56.48 4.01 42.78 25.68

16 (43, 550, 13) 54.82 26.80 53.14 6.07 50.86 25.15

17 (45, 580, 13) 55.17 24.64 52.72 6.62 50.83 23.09

18 (48, 600, 14) 52.02 27.54 51.16 4.32 50.16 25.79

19 (50, 650, 14) 62.57 24.95 51.22 4.31 58.81 22.15

20 (53, 700, 15) 39.49 26.61 50.71 5.98 38.31 26.42

28

Table 4.2 The Average MED Improvement Percentages α = Imp(VM-GREEDY),

β = Imp(BW-GREEDY), and γ = Imp(CRITICAL-GREEDY) of MCWM and the

Corresponding Standard Deviations Across 400 Instances (20 Problem Sizes × 20

Random Workflow Instances) at Difference Budget Levels

Budget Level α (%) StdDv β (%) StdDv γ (%) StdDv

1 47.93 20.53 54.47 8.17 47.45 24.01

2 46.95 24.86 54.27 8.45 46.89 24.28

3 47.26 23.85 54.47 8.50 46.73 23.43

4 47.87 25.17 54.83 8.21 47.77 24.73

5 46.15 24.04 53.82 9.09 45.68 23.34

6 47.70 25.09 54.25 8.24 46.99 24.73

7 48.73 24.96 55.04 8.25 49.15 24.42

8 47.64 25.55 55.45 7.86 47.47 24.38

9 47.27 25.31 53.80 8.53 47.26 25.12

10 47.92 24.53 54.46 8.67 47.97 24.36

11 47.15 25.84 54.79 7.89 46.08 25.65

12 48.75 24.97 54.65 8.52 49.14 24.69

13 45.07 23.85 53.96 8.62 44.74 23.58

14 46.43 24.71 54.63 8.25 45.85 24.83

15 48.76 25.61 54.57 8.62 48.89 25.34

16 46.51 23.87 54.47 8.62 46.52 23.62

17 47.37 24.01 54.28 9.10 47.61 23.81

18 48.68 24.56 55.23 8.49 48.48 24.50

19 46.13 24.52 54.10 7.87 45.96 24.42

20 47.19 23.81 54.92 8.17 47.42 23.6529

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Budget Level

0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 M
E

D
 Im

pr
ov

em
en

t P
er

ce
nt

ag
e

Imp(VM-GREEDY)
Imp(BW-GREEDY)
Imp(CRITICAL-GREEDY)

Figure 4.3 The average performance improvement percentages with standard

deviations across 400 instances (20 different problem sizes × 20 random workflow

instances) for each budget level.

20
20

30

40

15 20

Im
p(

V
M

-G
R

E
E

D
Y

)

50

15

Budget Level

60

10

Problem Index

10

70

5 5
0 0

30

35

40

45

50

55

60

Figure 4.4 The overall performance improvement percentages (%) of MCWM over

VM-GREEDY with varying budget levels and problem sizes.

30

40
20

45

50

15 20

Im
p(

B
W

-G
R

E
E

D
Y

)

55

15

Budget Level

60

10

Problem Index

10

65

5 5
0 0

44

46

48

50

52

54

56

58

60

62

Figure 4.5 The overall performance improvement percentages (%) of MCWM over

BW-GREEDY with varying budget levels and problem sizes.

20
20

30

40

15 20

Im
p(

C
R

IT
IC

A
L-

G
R

E
E

D
Y

)

50

15

Budget Level

60

10

Problem Index

10

70

5 5
0 0

30

35

40

45

50

55

60

Figure 4.6 The overall performance improvement percentages (%) of MCWM over

CRITICAL-GREEDY with varying budget levels and problem sizes.

31

CHAPTER 5

SERIAL COMPUTING WORKFLOWS REUSING VM

5.1 Problem Formulation

In addition to the common cost model provided in Chapter 3, we construct a set of

additional cost models specific to the execution of the serial computing workflows

reusing VM instances.

5.1.1 Time and Financial Cost of Module Execution:

A computing module may contain multiple code segments that are either CPU bound

or I/O bound. In a CPU -bound segment, the program running time TCPU is mainly

determined by the workload WL of the module w and the CPU speed f ′
CPU of the

mapped VM type vt, i.e.,

TCPU =
WL(w)

f ′
CPU (vt)

. (5.1)

In an I/O-bound segment of module w, the time TI/O spent on I/O operations

depends on the input data size DSi, the output data size DSo, and the I/O speed

r′I/O of the mapped VM type vt, i.e.,

TI/O =
DSi(w) + DSo(w)

r′I/O(vt)
. (5.2)

The total execution time Tme of a module on a mapped VM is:

Tme = Ts + TCPU + TI/O, (5.3)

where the startup time Ts = 0 if the module is executed on a reused VM instance.

32

End-to-end Delay of a Workflow: The end-to-end delay ED of a workflow

Gw is determined by the critical path (CP), which contains critical modules along

the longest execution path, and is calculated as

ED =
∑

for all w∈CP

(Tme(w) + Twait(w)) +
∑

for all ew∈CP

(Tdt(ew)), (5.4)

where Twait(w) is the time a critical module w spends in waiting for its input data

from all of its preceding modules.

Financial Cost Models The total financial cost CTotal of an entire workflow

execution process is calculated as

CTotal = CTotal(dt) + CTotal(V M), (5.5)

where

CTotal(dt) =
∑

for all ew∈Ew

DS(ew, lic) ∙ p(dt), (5.6)

CTotal(V M) =
∑

for all w∈Vw

((Tme(w, vt) + Twait(w, vt)) ∙ p(vt)), (5.7)

where the CTotal(V M) calculates the financial cost of all module executions, and the

CTotal(dt) calculates the financial cost of all inter-cloud data transfers. DS(∙) is the

data size of edge ew over an inter-cloud network links lic. Again, p(dt) denotes the

volume-based pricing model for inter-cloud data transfer.

5.1.2 Problem Formulation

We first define a workflow mapping scheme M as

M : vw → V M(PM, vt), for all w ∈ Vw, (5.8)

33

where V M(PM, vt) represents a VM instance of type vt provisioned on a PM.

Based on the above cost models, we formulate a Budget-Constrained workflow

mapping problem for Minimum End-to-end Delay in Multi-Cloud environments,

referred to as BCMED-MC, as follows.

Definition 2. Given a DAG-structured workflow Gw(Vw, Ew), a complete weighted

multi-cloud network Gmc(Vmc, Emc), a set BT of available inter-cloud bandwidth

types, a set V T of available VM types, and a fixed financial budget B, we wish to

find a workflow mapping scheme M to achieve the minimum end-to-end delay:

MED = min
all possibleM

ED, (5.9)

while satisfying the following financial constraint:

CTotal ≤ B. (5.10)

BCMED-MC considers inter-cloud data transfers and I/O operations for big

data workflows across multiple clouds. This is a generalized version of the MED-CC

problem in [40], which only considers the execution time of CPU -bound modules in

a single cloud. Since MED-CC, which is a special case of BCMED-MC, has been

proved to be NP-complete and non-approximable, so is BCMED-MC.

5.2 Algorithm Design

Our work targets data-, network-, and compute-intensive workflows deployed in

multiple cloud-based data centers, where the inter-cloud data transfer time and

financial cost could be significant and must be explicitly accounted for.

5.2.1 Multi-Cloud Workflow Mapping Algorithm

We design an iterative critical path (CP)-based multi-cloud workflow mapping

algorithm, referred to as ICPWM, to solve BCMED-MC. This algorithm uses a key

34

Algorithm 4: ICPWM

Input: a DAG-structured workflow graph Gw(Vw, Ew), a complete weighted

multi-cloud network graph Gmc(Vmc, Emc), a set of available VM types V T [], the

attributes PM [][] of the PMs in each cloud, the workload WL[] of each module,

the inter-cloud bandwidth type BT [], a fixed financial budget B, the number NI

of iterations.

Output: the workflow’s minimum end-to-end delay TTotal.

1: sort the VM types V T [] in a decreasing order according to the disk space, CPU

frequency, and I/O speed;

2: LeastTTotal = INF ;

3: for i = 0; i < NI ; i + + do

4: AssignedV T Group[] =

AssignV T (V T [], Gw,WL[], B,AssignedV T Group[]);

5: CTotal =

SelectPM (Gw, AssignedV T Group[], BT [], PM [][], V T [], B);

6: if (CTotal > B) then

7: continue;

8: use Equation. 6.15 to calculate TTotal;

9: if (TTotal < LeastTTotal) then

10: LeastTTotal = TTotal;

11: if LeastTTotal == INF then

12: return −1;

13: return LeastTTotal;

35

concept of module-group, which is defined as a subset of two or more contiguous

modules in the workflow running on the same VM instance (of the same VM type).

The pseudocode of ICPWM is provided in Algorithm. 4, which consists of the

following key steps.

Step 1) We sort the available VM types V T by three hardware resources in the

order of disk space, CPU frequency, and I/O speed, and then call Function

AssignV T () in Algorithm. 5, which in turn calls Function FindCP ()1 to

compute an initial critical path (CP) based on the data size and computing

workload of each module running on the most powerful VM type vt, and decides

the worst possible VM type vt that meets the minimum storage requirement

defined in Equation. 3.1 for each module.

Step 2) On the CP calculated in Step 1), if there exists only one module or one

module-group, we upgrade its vt by one level; if there exist two or more modules

or module-groups, we take the following four steps, each of which calls Function

Grouping in Algorithm. 6 as follows:

– Step a) i) Group all adjacent modules on the CP using the same VM

type vt to a module-group. ii) Check every pair of adjacent modules and

upgrade the module using the worse VM type by one level. iii) Group

all pairs of adjacent modules on the CP using the same VM type to a

module-group.

– Step b) i) Group any module into its adjacent module-group using the

same VM type. ii) For every module-group and its adjacent module, if

the module’s VM type is worse, upgrade it by one level. iii) Group any

1There exist efficient algorithms for finding a CP in a weighted DAG-structured network.

36

module into an adjacent module-group on the CP using the same VM

type.

– Step c) i) For every module-group and its adjacent module, if the module-

group’s VM type is worse, upgrade it by one level. ii) Group any module

into an adjacent module-group on the CP using the same VM type.

– Step d) i) Group all adjacent module-groups using he same VM type to

a module-group. ii) For every pair of adjacent module-groups, upgrade

the module-group with a worse VM type by one level. iii) Group all

pairs of adjacent module-groups on the CP using the same VM type to

a module-group. iv) Remove this current CP , create a new temporary

graph G′
w, compute a new CP , and go back to Step a) until no more CP

is found.

Step 3) In Function SelectPM () in Algorithm. 7, for each VM type vt, we select

a PM in a cloud site to provision a corresponding VM instance. One basic

guideline is to use the same PM in the same cloud whenever possible to avoid

intra- and inter-cloud data transfer. If an inter-cloud data transfer is inevitable,

we assign the smallest BW type bt to the corresponding inter-cloud connection

lic. Once a mapping scheme M is obtained, we calculate the total financial

cost CTotal and check it against the budget B: i) if it is over the budget,

we repeatedly downgrade the VM type vt of the VM instance that runs the

smallest number of modules until the mapping scheme M becomes feasible; ii)

otherwise, we upgrade the BW type bt for each inter-cloud data transfer by

one level.

37

Step 4) Go back to Step 1) until the termination condition is met and output the

minimum end-to-end delay LeastTTotal.

In SelectPM (), we choose the PM and cloud site to provision a VM instance

of a selected VM type vt for every module in the workflow. In every cloud, we

check if it can provision the required VM instances one at a time. If some VM

instances cannot be provisioned from this cloud, we move to another cloud. Since we

consider homogeneous PMs in the same cloud, we try to provision the VM instances

on the same PM whenever possible to avoid intra-cloud data transfer. However, the

number and type of VM instances that can be provisioned on one PM is limited

by the available physical resources of that PM. After finding all the cloud sites, we

select the lowest bt between every two of those selected cloud sites for inter-cloud

data transfer. We upgrade the inter-cloud connection bandwidth by one level. If

there is no budget to support even the worst bandwidth, we repeatedly downgrade

the VM type of the VM instance that runs the smallest number of modules until the

mapping scheme M becomes feasible.

The time complexity of each iteration in ICPWM is O(max(m2 ∙ |Ew|,m ∙ n) +

max(|Ew|2, |Ew| ∙ m ∙ |Vmc|2, |Ew| ∙ m2 ∙ n), where m is the number of modules in the

workflow, n is the number of available VM types, and |Vmc| is the number of clouds.

is intra- or inter-cloud data transfer so that we can calculate the shared bandwidth.

5.3 Algorithm Implementation and Performance Evaluation

5.3.1 Simulation Settings

We implement the proposed ICPWM algorithm in C++ and evaluate its performance

in comparison with three algorithms, i.e., VM-GREEDY, BW-GREEDY, and

CRITICAL-GREEDY [54]. VM-GREEDY is greedy on VM optimization. It

assigns as many high-performance computers as possible within the budget and

then randomly assigns the modules to the clouds. If the cost is over the budget, it

38

Algorithm 5: AssignVT

Input: a DAG-structured workflow graph Gw(Vw, Ew), a set of available VM

types V T [], the workload WL[] of each module, a fixed financial budget B, and the

VM type and module-group index assigned to each module AssignedV T Group[].

Output: the VM type and module-group index assigned to each module

AssignedV T Group[]

1: G′
w = Gw;

2: while |Vw| > 0 do

3: CP [] = FindCP (G′
w, V T [],WL[], AssignedV T Group[]);

4: if (CP [] contains only one module or one module-group) then

5: upgrade its vt by one level;

6: else

7: AssignedV T Group[] =

Grouping(CP [], AssignedV T Group[], V T [], B,

module,module);

8: AssignedV T Group[] =

Grouping(CP [], AssignedV T Group[], V T [], B,

module,module-group);

9: AssignedV T Group[] =

Grouping(CP [], AssignedV T Group[], V T [], B,

module-group,module);

10: AssignedV T Group[] =

Grouping(CP [], AssignedV T Group[], V T [], B,

module-group,module-group);

11: G′
w = G′

w − CP [];

12: return AssignedV T Group[];

39

Algorithm 6: Grouping

Input: a CP , a set of available VM types V T [], a fixed financial budget B, a

group unit GU1, a group unit GU2, the VM type and module-group index assigned

to each module AssignedV T Group[].

Output: the VM type and module-group index assigned to each module

AssignedV T Group[].

1: for (adjacent GU1 and GU2 on the CP) do

2: if (AssignedV T Group[GU1].vt ==

AssignedV T Group[GU2].vt

and AssignedV T Group[GU1].Group 6=

AssignedV T Group[GU2].Group) then

3: group GU1 and GU2;

4: if (both GU1 and GU2 are modules or module-groups) then

5: for (adjacent GU1 and GU2 on the CP) do

6: upgrade the worse vt of GU1 and GU2 by one level;

7: else

8: for (adjacent GU1 and GU2 on Path) do

9: if (GU1’s vt is worse than GU2’s vt) then

10: upgrade GU1’s vt by one level;

11: for (adjacent GU1 and GU2 on the CP) do

12: if (AssignedV T Group[GU1].vt =

AssignedV T Group[GU2].vt

and AssignedV T Group[GU1].Group 6=

AssignedV T Group[GU2].Group) then

13: group GU1 and GU2 together;

14: return AssignedV T Group[];

40

Algorithm 7: SelectPM

Input: a DAG-structured workflow graph Gw(Vw, Ew), the VM type and module-

group index assigned to each module AssignedV T Group[], the inter-cloud

bandwidth type BT [], the attributes PM [][] of the PMs in each cloud, a set

of available VM types V T [], a fixed financial budget B.

Output: the total cost CTotal.
1: for all (cloud i) do

2: for all (module wj) do

3: if (wj has not been assigned to any cloud) then

4: assign wj to cloud i;

5: update the BW and unit price on each edge;

6: calculate the total workflow execution cost CT otal;

7: if (CT otal < B) then

8: if (there are inter-cloud data transfers) then

9: for all (inter-cloud link lic) do

10: while (lic’s BW type bt is not the best) do

11: upgrade lic’s bt;

12: calculate CT otal;

13: if (CT otal > B) then

14: if (lic’s bt is not the worst) then

15: downgrade lic’s bt;

16: break;

17: else

18: for all modules and module-groups sorted in an increasing order of module count do

19: while (its vt is not the worst) do

20: downgrade its vt;

21: calculate CT otal;

22: if (CT otal < B) then

23: break;

24: return CT otal.

41

downgrades the VM type of the modules until within the budget. On the contrary,

BW-GREEDY is greedy on data transfer optimization. It assigns each module to

the VM type with the minimum possible resources to satisfy its storage requirement,

randomly deploys the modules in the clouds, and assigns the largest bandwidth

for inter-cloud data transfer. CRITICAL-GREEDY was proposed in [54] to solve

the MED-CC problem. We first use this algorithm to determine the VM type for

each module, and then randomly deploy the modules in clouds using the smallest

bandwidth for any inter-cloud data transfer. For the algorithms in comparison, we

also reuse a VM instance when any contiguous modules are assigned to the same VM

type.

To evaluate the algorithm performance, we consider different problem sizes

from small to large scales. The problem size is defined as a 3-tuple (m, |Ew|, n),

where m is the number of workflow modules, |Ew| is the number of workflow links,

and n is the number of available VM types. We generate workflow instances with

different scales in a random manner as follows: i) lay out all m modules sequentially

along a pipeline, each of which is assigned a workload randomly generated within

range [5, 500], which represents the total number of instructions; ii) for each module,

add an input edge from a randomly selected preceding module and add an output

edge to a randomly selected succeeding module (note that the first module only needs

output and the last module only needs input); iii) randomly pick up two modules

from the pipeline and add a directed edge between them (from left to right) until we

reach the given number of edges.

We compare our ICPWM algorithm with VM-GREEDY, BW-GREEDY and

CRITICAL-GREEDY [40], in terms of the total workflow execution time under the

same budget constraint. The MED performance improvement of ICPWM over the

42

(5,6,5) (6,8,6) (7,12,7)
Problem Index

0

200

400

600

800

1000

N
um

be
r

of
 O

pt
im

al
 R

es
ul

ts
ICPWM
CRITICAL-GREEDY

Figure 5.1 The number of optimal results among 1000 instances (50 workflow

instances × 20 budget levels) produced by ICPWM, VM-GREEDY, BW-GREEDY,

and CRITICAL-GREEDY under different problem sizes.

other algorithms in comparison is defined as:

Imp(Other) =
MEDOther − MEDICPWM

MEDOther

× 100%,

where MEDOther is the MED achieved by the other three algorithms, i.e., VM-

GREEDY, BW-GREEDY, and CRITICAL-GREEDY, and MEDICPWM is the MED

achieved by ICPWM.

5.3.2 Simulation Results

Comparison with Optimal Solutions in Small-Scale Problems We first

compare the performance of ICPWM with optimal solutions in small-scale problems

with 5, 6 and 7 modules and VM types. For each problem size, we randomly generate

43

50 problem instances with different module workloads and DAG topologies. For

each problem instance, we specify 20 different budget levels. We run all these four

algorithms on these instances and compare the MED results with the optimal ones

computed by an exhaustive search-based approach. Figure 5.1 shows the number of

optimal results among 1000 instances (50 workflow instances × 20 budget levels)

achieved by ICPWM, VM-GREEDY, BW-GREEDY, and CRITICAL-GREEDY

under different problem sizes. We observe that ICPWM is more likely to achieve the

optimality than the other algorithms in a statistical sense, which indicates the efficacy

of ICPWM. We also observe that neither VM-GREEDY nor BW-GREEDY achieves

any optimal results in these cases (no bars are produced for them in Figure 5.1).

Comparison with VM-GREEDY, BW-GREEDY, and CRITICAL-GREEDY

We further consider 20 problem sizes from small to large scales, indexed from 1 to 20.

In each problem size, we randomly generate 20 problem instances, for each of which,

we choose 20 budget levels with an equal interval of ΔB = (Bmax −Bmin)/20 within

a certain budget range [Bmin, Bmax]. We provide in Table 5.1 the average MED

improvement percentages together with standard deviations achieved by ICPWM

over VM-GREEDY, BW-GREEDY, and CRITICAL-GREEDY across all the 20

budget levels, which are further plotted in Figure 5.2 for a visual comparison.

Also, for each of the 20 budget levels from low to high values, indexed from 1 to

20, we run the scheduling simulation by iterating through 20 problem sizes from small

to large scales. We provide in Table 5.2 the average MED improvement percentages

together with standard deviations achieved by ICPWM over VM-GREEDY, BW-

GREEDY, and CRITICAL-GREEDY across all the 20 problem sizes, which are

further plotted in Figure 6.7 for a visual comparison.

For a better illustration, we plot the overall performance improvement

percentage of ICPWM over VM-GREEDY in Figure 5.4, where x axis denotes

44

Table 5.1 The Average MED Improvement Percentages α = Imp(VM-GREEDY),

β = Imp(BW-GREEDY), and γ = Imp(CRITICAL-GREEDY) of ICPWM and the

Corresponding Standard Deviations Across 400 Instances (20 Budget Levels × 20

Random Workflow Instances) of Different Problem Sizes

Idx (m, |Ew|, n) α (%) StdDv β (%) StdDv γ (%) StdDv

1 (5, 7, 5) 47.02 16.63 52.20 16.84 42.76 46.38

2 (8, 14, 6) 52.17 23.38 57.22 19.37 42.34 31.86

3 (10, 18, 6) 57.35 12.65 61.49 13.72 54.99 17.38

4 (13, 30, 7) 50.64 23.83 54.76 23.41 40.74 37.80

5 (15, 60, 7) 52.58 25.54 58.56 21.53 51.54 29.80

6 (18, 80, 8) 56.66 20.64 60.75 20.24 61.23 23.33

7 (20, 100, 8) 58.72 18.32 63.36 16.53 62.15 19.65

8 (23, 150, 9) 37.92 27.46 40.55 26.35 55.26 23.30

9 (25, 200, 9) 45.61 25.95 48.37 25.32 65.51 16.78

10 (28, 250, 10) 30.90 26.42 34.51 25.38 52.26 20.57

11 (30, 300, 10) 38.91 28.34 40.33 26.56 54.10 27.17

12 (33, 380, 11) 24.38 21.67 29.69 21.05 51.87 14.60

13 (35, 400, 11) 40.45 26.72 44.13 24.17 65.01 16.18

14 (38, 450, 12) 45.67 27.60 49.29 25.34 62.91 19.68

15 (40, 500, 12) 45.59 32.22 48.07 30.00 41.36 22.88

16 (43, 550, 13) 59.17 27.77 60.56 26.93 65.71 31.86

17 (45, 580, 13) 65.44 18.68 67.96 16.75 70.07 22.89

18 (48, 600, 14) 56.70 26.04 58.37 25.52 55.71 24.64

19 (50, 650, 14) 64.63 15.15 66.22 15.00 62.37 26.66

20 (53, 700, 15) 64.12 19.91 65.56 19.18 49.48 32.51

45

Table 5.2 The Average MED Improvement Percentages α = Imp(VM-GREEDY),

β = Imp(BW-GREEDY), and γ = Imp(CRITICAL-GREEDY) of ICPWM and the

Corresponding Standard Deviations Across 400 Instances (20 problem sizes × 20

Random Workflow Instances) at Difference Budget Levels

Budget Level α (%) StdDv β (%) StdDv γ (%) StdDv

1 57.78 24.00 61.15 21.64 50.45 37.73

2 57.60 23.92 60.53 22.51 51.12 37.63

3 58.97 21.95 62.36 19.57 55.63 29.48

4 57.70 23.91 60.98 21.75 51.73 32.83

5 58.13 22.18 61.29 20.55 52.93 40.95

6 58.65 22.71 61.90 21.04 50.99 40.11

7 59.71 22.90 62.79 20.80 53.85 36.87

8 59.58 25.65 59.75 23.54 50.46 43.33

9 55.14 27.68 58.76 24.35 47.53 46.70

10 56.88 26.38 60.75 21.90 53.29 37.03

11 58.91 22.47 62.16 20.93 53.17 38.17

12 57.20 24.22 60.37 22.26 52.72 36.94

13 59.25 21.96 62.38 20.60 53.49 31.84

14 60.37 20.99 63.37 19.56 55.69 40.20

15 58.42 23.68 61.78 20.60 53.61 36.56

16 57.27 24.88 60.35 22.79 51.61 37.97

17 57.29 23.82 60.40 22.56 50.36 44.12

18 58.05 23.37 61.08 21.37 54.14 32.49

19 57.73 23.81 60.90 21.94 50.26 45.36

20 57.31 24.51 60.51 22.63 51.32 42.72

46

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Problem Index

0

20

40

60

80

100

120
A

ve
ra

ge
 M

E
D

 Im
pr

ov
em

en
t P

er
ce

nt
ag

e
Imp(VM-GREEDY)
Imp(BW-GREEDY)
Imp(CRITICAL-GREEDY)

Figure 5.2 The average MED performance improvements (%) with standard

deviations across 400 instances (20 budget levels × 20 random workflow instances)

for each problem size.

the budget increment across 20 levels and y axis denotes the index of 20 problem

sizes from small to large scales. Each point (x, y, imp) in the 3D plot represents

the average performance improvement across all 20 problem instances of the same

problem size under the same budget level (the actual budget values may be different

in different instances). problem indices for a microscopic examination. These

performance results show that ICPWM achieves 58% performance improvement over

VM-GREEDY on average. Similarly, we plot the overall performance improvement

percentage of ICPWM over BW-GREEDY in Figure 5.5. These performance results

show that ICPWM achieves 62% performance improvement over BW-GREEDY on

average. Also, we plot the overall performance improvement percentage of ICPWM

over CRITICAL-GREEDY in Figure 5.6. These performance results show that

47

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Budget Level

0

20

40

60

80

100

120
A

ve
ra

ge
 M

E
D

 Im
pr

ov
em

en
t P

er
ce

nt
ag

e
Imp(VM-GREEDY)
Imp(BW-GREEDY)
Imp(CRITICAL-GREEDY)

Figure 5.3 The average performance improvements (%) with standard deviations

across 400 instances (20 different problem sizes × 20 random workflow instances) for

each budget level.

ICPWM achieves 55% performance improvement over CRITICAL-GREEDY on

average. Such performance improvements are considered significant for workflow

execution in large-scale scientific applications.

Simulation Using Pegasus Workflows We further evaluate the performance of

our algorithm using five Pegasus workflow types of different topologies, i.e., Montage,

CyberShake, Epigenomics, LIGO’s Inspiral Analysis and Sipht: i) the Montage

workflow is used to combine multiple input images to create custom mosaics of

the sky; ii) the CyberShake workflow is used to characterize earthquake hazards

in a region; iii) the epigenomics workflow is used to automate various operations

in genome sequence processing; iv) the LIGO’s Inspiral Analysis workflow is used

48

25

30

20

35

40

45

15 20

50

Im
p(

V
M

-G
R

E
E

D
Y

)

55

60

15

Problem Index

10

65

70

Budget Level

10

75

5
5

0 0

Figure 5.4 The overall performance improvements (%) of ICPWM over VM-

GREEDY with varying budget levels and problem sizes.

to generate and analyze gravitational waveforms from data collected during the

coalescing of compact binary systems; and v) the Sipht workflow is used to automate

the search for untranslated RNAs (sRNAs) for bacterial replicons in the NCBI

database. Their workflow structures are illustrated in Figures. 5.7, 5.8, 5.9, 5.10,

and 5.11.

We use WorkflowSim to generate simulated workflows, where the number of

nodes (i.e., modules) in each workflow type is set to be 50. The topologies vary from

49

30

20

35

40

45

50

15 20

55

Im
p(

B
W

-G
R

E
E

D
Y

) 60

15

Problem Index

65

10

70

Budget Level

10

75

5
5

0 0

Figure 5.5 The overall performance improvements (%) of ICPWM over BW-

GREEDY with varying budget levels and problem sizes.

type to type and WorkflowSim automatically searches for the closest number of nodes

for each workflow type of a different directed graph density, as shown in Table 5.3.

We set 20 different budget levels and generate 20 workflow instances at each budget

level for each workflow type. After obtaining the mapping schemes from ICPWM,

VM-GREEDY, BW-GREEDY and CRITICAL-GREEDY, we plot the corresponding

average performance improvements of ICPWM over the other three algorithms with

standard deviations across all 20 instances in Figures. 5.12, 5.13, 5.14, 5.15, and 5.16

for five different workflow types, respectively. These results show that ICPWM

50

10

20

20

30

40

15 20

Im
p(

C
rit

ic
al

-G
R

E
E

D
Y

)

50

60

15

Problem Index

10

70

Budget Level

10

80

5
5

0 0

Figure 5.6 The overall performance improvements (%) of ICPWM over CRITICAL-

GREEDY with varying budget levels and problem sizes.

achieves 70-80% performance improvement over VM-GREEDY and BW-GREEDY,

and 25-40% performance improvement over CRITICAL-GREEDY.

Convergence of ICPWM To investigate the convergence property of ICPWM,

we run this algorithm on the problem instance of Index 15 under three different

budget levels, i.e., low, medium, and high. Note that the medium budget level is

used in the above simulations, the low budget level is one third and the high budget

level is three times the medium budget level. We plot the optimization process of

51

Figure 5.7 Montage Figure 5.8 CyberShake Figure 5.9 Epigenomics

Figure 5.10 LIGO’s

Inspiral Analysis

Figure 5.11 Sipht

ICPWM in these three scenarios in Figure 5.17, which shows that ICPWM converges

to the minimum end-to-end delay in about 20 iterations.

5.3.3 Experimental Results

WRF Workflow To evaluate the performance of our algorithm in real computing

environments, we conduct workflow experiments based on the Weather Research

and Forecasting (WRF) model [50], which has been widely adopted for regional

to continental scale weather forecast. The WRF model [9] generates two large

classes of simulations either with an ideal initialization or utilizing real data. In our

experiments, the simulations are generated from real data, which usually requires

preprocessing from the WPS package [10] to provide each atmospheric and static

field with fidelity appropriate to the chosen grid resolution for the model.

52

Table 5.3 The Number of Nodes/Edges and Directed Graph Density in Five

Different Workflow Types

Attribute Montage CyberShake Epigenomics LIGO Inspiral Analysis Sipht

Node count 51 51 47 51 49

Edge count 109 94 54 61 58

Graph density 0.04275 0.03686 0.02498 0.02392 0.02466

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Budget Level

0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 M
E

D
 Im

pr
ov

em
en

t P
er

ce
nt

ag
e

Imp(VM-GREEDY)
Imp(BW-GREEDY)
Imp(Critical-GREEDY)

Figure 5.12 The average performance improvements (%) with standard deviations

across 20 instances at each budget level for the Montage workflow.

The structure of a general WRF workflow is illustrated in Figure 7.13,

where the WPS consists of three independent programs: geogrid.exe, ungrib.exe,

53

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Budget Level

0

10

20

30

40

50

60

70

80

90

100
A

ve
ra

ge
 M

E
D

 Im
pr

ov
em

en
t P

er
ce

nt
ag

e
Imp(VM-GREEDY)
Imp(BW-GREEDY)
Imp(Critical-GREEDY)

Figure 5.13 The average performance improvements (%) with standard deviations

across 20 instances at each budget level for the CyberShake workflow.

and metgrid.exe [54]. The geogrid program defines the simulation domains and

interpolates various terrestrial datasets to the model grids. The user can specify

information in the namelist file of WPS to define simulation domains. The

ungrib program “degrib” the data and stores the results in a simple intermediate

format. The metgrid program horizontally interpolates the intermediate-format

meteorological data that are extracted by the ungrib program into the simulation

domains defined by the geogrid program. The interpolated metgrid output can then

be ingested by the WRF package, which contains an initialization program real.exe

for real data and a numerical integration program wrf.exe. The postprocessing model

54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Budget Level

0

10

20

30

40

50

60

70

80

90

100
A

ve
ra

ge
 M

E
D

 Im
pr

ov
em

en
t P

er
ce

nt
ag

e
Imp(VM-GREEDY)
Imp(BW-GREEDY)
Imp(Critical-GREEDY)

Figure 5.14 The average performance improvements (%) with standard deviations

across 20 instances at each budget level for the Epigenomics workflow.

consists of ARWpost and GrADs. ARWpost reads-in WRF-ARW model data and

creates output files for display by GrADS.

Experimental Settings We set up a Hadoop 1.2.1 cluster in a multi-cloud

environment involving both Google Cloud Platform (GCP) [11] and Amazon Web

Services (AWS) [12]. As shown in Table 7.1, the cluster consists of four VM

instances of different CPU speeds, two from AWS and two from GCP, each of which

has sufficient RAM size and disk space for WRF execution. We launch the VM

instances in advance before actually running workflow modules. When data transfer

is inevitable, different bandwidths may be used over different links, as shown in

55

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Budget Level

0

10

20

30

40

50

60

70

80

90

100
A

ve
ra

ge
 M

E
D

 Im
pr

ov
em

en
t P

er
ce

nt
ag

e
Imp(VM-GREEDY)
Imp(BW-GREEDY)
Imp(Critical-GREEDY)

Figure 5.15 The average performance improvements (%) with standard deviations

across 20 instances at each budget level for the LIGO’s Inspiral Analysis workflow.

Table 6.5, and the volume-based pricing policy for inter-cloud data transfer is shown

in Table 5.6.

We duplicate three WRF pipelines each from ungrib.exe to ARWpost.exe, and

group these programs into different aggregate modules to simulate real-life workflow

clustering and provide various module parallelism, as shown in Figures. 5.19 and 7.15.

Figure 7.15 is a high-level view of grouped workflow in Figure 5.19, where w0 and

w7 are the start and end modules [54].

Performance Comparison We store the entire WRF workflow as well as the

input data on each VM instance before execution. To estimate the module execution

56

Table 5.4 Hadoop Cluster and VM Specifications of Different VM Types in AWS

and GCP

VM Cloud Core CPU RAM Disk I/O read I/O write Price

Type count (GHz) (GB) (GB) (MB/s) (MB/s) (USD/hour)

V T1 AWS 1 2.5 × 1 2 80 10702 80 0.026

V T2 GCP 2 2.3 × 2 8 80 9581 124 0.074

V T3 GCP 8 2.3 × 8 30 80 8856 125 0.284

V T4 AWS 16 2.3 × 16 64 80 10288 132 0.958

Table 5.5 Bandwidth Matrix BW

BW (Mb/s) V T1 V T2 V T3 V T4

V T1 — 32.6 32.6 97.7

V T2 16.3 — 97.7 32.6

V T3 14.0 97.7 — 48.8

V T4 97.7 32.6 32.6 —

Table 5.6 Data Transfer Price Matrix price

price (USD/GB) AWS GCP

AWS 0.000 0.155

GCP 0.120 0.000

57

Table 5.7 Execution Time Matrix TE

Ti,j (ms) w1 w2 w3 w4 w5 w6

V T1 1743 881 2960 6220 1534260 777022

V T2 1595 746 2953 5912 714140 349283

V T3 1470 736 2887 5644 57909 34606

V T4 1323 661 2735 5487 43831 21251

Table 5.8 Execution Cost Matrix CE

Ci,j (cents) w1 w2 w3 w4 w5 w6

V T1 45.4 22.9 79.96 161.7 39890.8 20202.6

V T2 118.0 55.2 218.5 437.5 52846.4 25846.9

V T3 417.5 209.0 819.9 1602.9 16446.2 9829.1

V T4 1267.4 633.2 2620.1 5256.5 41990.1 20358.5

58

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Budget Level

0

10

20

30

40

50

60

70

80

90

100
A

ve
ra

ge
 M

E
D

 Im
pr

ov
em

en
t P

er
ce

nt
ag

e

Imp(VM-GREEDY)
Imp(BW-GREEDY)
Imp(Critical-GREEDY)

Figure 5.16 The average performance improvements (%) with standard deviations

across 20 instances at each budget level for the Sipht workflow.

time, we run each module on each VM instance for multiple times and measure the

corresponding execution time. We observe that the module execution time remains

relatively stable on the same type of VM. Based on these performance measurements,

we construct the execution time matrix TE in unit of milliseconds in Table 5.7 and

execution cost matrix CE in US cents in Table 5.8.

Since the adjacent modules along an execution path in the workflow always

have execution precedence constraints (i.e., execution dependencies), their execution

times do not overlap. Therefore, when such adjacent modules are mapped to the

same VM instance, we execute them one at a time in the workflow experiments. The

59

0 10 20 30 40 50
Iteration

100

150

200

250

300

350

400

450

500

550

T
T

ot
al

Low Budget Level
Medium Budget Level
High Budget Level

Figure 5.17 The optimization process of ICPWM running the problem instance of

Index 15 under three different budget levels.

60

Figure 5.18 A general structure of the executable WRF workflow.

Figure 5.19 The WRF workflow of three pipelines in the experiments.

Figure 5.20 The WRF workflow after grouping.

schedules generated by these algorithms and their corresponding MED measurements

at different budget levels are tabulated in Table 5.9 and further plotted in Figure 5.21

for comparison. These performance measurements show that the proposed ICPWM

algorithm outperforms the other three algorithms in comparison. In addition, we

61

implement an optimal solution based on exhaustive search for these small-scale

workflow instances and observe that ICPWM achieves the optimal results in most of

the test cases.

Note that BW-GREEDY only considers bandwidth in its mapping process and

assigns a workflow module to a VM instance with the minimum required resources.

In these experiments, since every VM instance has sufficient resources to execute

every module, the mapping scheme of BW-GREEDY does not change as the budget

level increases. Also, the execution cost of the last two modules (w5 and w6) is much

higher than that of the rest modules, the mapping scheme may not change until the

budget has been increased significantly over multiple budget levels, which explains

the stair-like performance shape, especially at lower budget levels.

We would like to point out that ICPWM considers different pricing models

for inter-cloud data transfer. However, since the testbed in these experiments has

a limited scope based on GCP and AWS, there is only one pricing model available

between these two clouds. We believe that ICPWM would yield more performance

gains over other algorithms in larger-scale experiments, as demonstrated by the

simulations results.

62

Table 5.9 The Average MED Measurements (in Milliseconds) by ICPWM,

VM-GREEDY, BW-GREEDY, CRITICAL-GREEDY and Optimal Solution at

Difference Budget Levels Using the WRF Workflow in GCP-AWS Environments

Budget Level ICPWM VM- BW- CRITICAL- OPT

GREEDY GREEDY GREEDY

1 1623871 1623871 2329125 1623871 1623871

2 812881 1623871 2329125 1623871 812881

3 812881 1623871 2329125 1623871 812881

4 812881 1623871 2329125 1623871 812881

5 812881 1623871 2329125 1623871 812881

6 812881 1623871 2329125 812881 812881

7 812881 812881 2329125 812881 812881

8 100031 812881 2329125 100031 100031

9 99750 100031 2329125 100031 99750

10 97431 100031 2329125 99750 97431

11 97431 100031 2329125 99750 97431

12 97431 100031 2329125 99750 97431

13 58165 97431 2329125 97431 58156

14 58156 97431 2329125 58156 58156

15 53412 58165 2329125 58156 53412

16 53412 53412 2329125 53412 53412

17 53412 53412 2329125 53412 53412

18 53412 53412 2329125 53412 53412

19 53412 53412 2329125 53412 53412

20 53412 53412 2329125 53412 53412

63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Budget Level

0

500

1000

1500

2000

M
E

D
 (

in
 s

ec
on

d)

ICPWM
VM-GREEDY
BW-GREEDY
Critical-GREEDY
OPT

Figure 5.21 The MED comparison (in seconds) between ICPWM, VM-GREEDY,

BW-GREEDY, CRITICAL-GREEDY and optimal solution at different budget levels

using the WRF experiment workflow in GCP-AWS environments.

64

CHAPTER 6

MAPREDUCE-BASED WORKFLOWS

6.1 Problem Formulation

6.1.1 Time and Financial Cost Models

In addition to the common cost model provided in Chapter 3, we construct a set of

additional cost models specific to the execution of MapReduce workflows.

Time Cost Models

• Time Cost of Data Transfer

A MapReduce job has three phases of data processing: Map, data copying from

Map tasks to Reduce tasks, and Reduce [59]. Generally, the MapReduce process

for scientific computing is both data- and compute-intensive, and hence both I/O

and CPU time must be considered. In a real Hadoop system, the Map tasks from

a MapReduce job may not fit at once in the system memory and hence may be

processed on a round basis. Each MapReduce job in the workflow has an input data

size DSi and an output data size DSo. Generally, DSi is evenly split and processed

by a number nM of Map tasks, followed by a number nR of Reduce tasks. By default,

each split is a data block in Hadoop Distributed File System (HDFS). The input data

size of a Reduce task is subject to the (key, value) distribution. We only need to

consider the Reduce task with the largest input since all Reduce tasks start running

at the same time. We use TM and TR to denote the total time in the Map and Reduce

phase, respectively, and use TCP to denote the total data copying time over network

from Map tasks to Reduce tasks. The makespan TE of a MapReduce job is upper

limited by:

TE 6 TM + TCP + TR. (6.1)

65

Figure 6.1 A single MapReduce job execution.

Each Map task contains two time cost components: CPU time and I/O time.

There are two phases of I/O: it first performs sequential reading to load data from

disk to memory, and then spills data from memory to disk after each Map task is

completed. The time cost TsingleM of a single Map task can be calculated as:

TsingleM =
DSi

nM ∙ r′Mslot

+
(1 + γ) × DSi

nM

r′I/O

, (6.2)

where r′Mslot =
N ′

c∙f
′
CPU

Sm(vt)
is the CPU processing speed of each Map slot, and γ denotes

its output/input ratio. As illustrated in Figure 6.1, the total time cost of the Map

phase is calculated as:

TM = TsingleM ×
nM

Sm(vt) ∙ n(vt)
, (6.3)

66

where n(vt) is the number of VM instances of the same VM type vt allocated to the

workflow user in the cloud.

The time cost TsingleCP for copying the output of a single Map task over network

to nR Reduce tasks in the same cloud is calculated as:

TsingleCP =

γ∙DSi

nM

BWup

. (6.4)

Note that during the shuffling phase, we monitor the data transfer from mappers

to reducers upon the completion of mappers in order to account for the sharing of

BWup. However, since this is a dynamic process measured in real time, there is no

explicit analytical form for such measurement-based bandwidth sharing during this

phase. If the corresponding reducer is determined for each mapper, we may be able

to estimate bandwidth sharing in advance. during shuffling phase.

The total time cost TCP of the data copying phase is calculated as:

TCP =
nM

Sm(vt) ∙ n(vt)
∙ TsingleCP . (6.5)

In the Reduce phase, we consider a random distribution of the (key, value)

pairs in the input file (i.e., the output file of a Map task). Let C i
r denote the input

data size of Reduce task i. Thus, according to the Central Limit Theorem [35], C i
r

follows a normal distribution N ∼ (μ, σ), i = 1, 2, ..., b, where μ is determined by

DSi ∙ γ. As per the “Three-Sigma” rule [35], the largest input data size of a Reduce

task is:

C∗
r =

DSi ∙ γ
b

+ 3σ. (6.6)

Therefore, the time cost of the Reduce phase is :

TR =
C∗

r

r′Rslot

+
C∗

r

r′I/O

, (6.7)

67

Figure 6.2 Execution of MapReduce jobs in the same cloud.

where r′Rslot =
N ′

c∙f
′
CPU

Sr(vt)
is the CPU speed of a Reduce slot.

The makespan TE of a single MapReduce job running in a mapped cloud is:

TE =






TM + TsingleCP + TR, if TsingleM > TsingleCP ,

TsingleM + TCP + TR, if TsingleM < TsingleCP .

(6.8)

• Concurrent Execution of MapReduce Jobs

As shown in Figure 6.2, modules with execution dependencies are executed

sequentially, such as Module 1 and Module 2. However, modules that are independent

of each other are placed in a First-In-First-Out (FIFO) ready queue Q, such as

Module 3 and Module 4. If Module 3 is ahead of Module 4, during the Map phase

of Module 3, whenever there is an empty Map slot available, Module 4 can use that

slot to run its Map task, which means that the Map phases of independent Modules

3 and 4 may partially overlap.

• Start and Finish Time of a MapReduce Module

68

We calculate the start time Ts and the finish time Tf of the i-th MapReduce

module in the workflow as

T i
f = T i

s + T i
MC + T i

R + T i
WR, (6.9)

T i
s =






0, i = 0.

max(max
(j,i)∈Ew

(T j
f + Tdt(j, i)), t

PreQ(i)
MA)), otherwise.

(6.10)

tiMA =






ni
M

Sm(vt)∙n(vt)
∙ T i

singleM + T i
s , i = Q[0],

t
PreQ(i)
MA +

ni
M

Sm(vt)∙n(vt)
∙ T i

singleM , i 6= Q[0], S
PreQ(i)
Avail = 0,

t
PreQ(i)
MA +

ni
M−S

P reQ(i)
Avail

Sm(vt)∙n(vt)
+ 1 ∙ T i

singleM , otherwise.

(6.11)

Si
Avail = Sm(vt) ∙ n(vt) −






ni
M % (Sm(vt) ∙ n(vt)), i = Q[0],

(ni
M − S

PreQ(i)
Avail) % (Sm(vt) ∙ n(vt)), otherwise.

(6.12)

T i
MC =






T i
singleM + T i

CP , T i
singleM > T i

singleCP

T i
M + T i

singleCP , otherwise.

(6.13)

T i
WR =






0, T
PreQ(i)
f < T i

s + T i
MC

T
PreQ(i)
f − T i

s − T i
MC , otherwise

(6.14)

Here, we use PreQ(i) to denote the index of the module preceding the i-th

module in the ready queue Q. As illustrated in Figure 6.3, T i
MC denotes the time cost

of the Map and data copying phases of the i-th MapReduce module; T i
WR denotes the

time the i-th MapReduce module spends on waiting for PreQ(i) to finish its Reduce

phase; and t
PreQ(i)
MA denotes the time point when Map slots are made available, either

69

Figure 6.3 Illustration of the start time and finish time of a MapReduce module in

a ready queue.

at the completion time of module PreQ(i), or at the beginning of executing the last

round of Map tasks of module PreQ(i), as illustrated in Figure 6.4.

• Workflow Makespan

The makespan MS of workflow Gw is determined by the finish time of the last

module and the start time of the first module in the workflow, and is the sum of

module execution time TE defined in Equation. 6.8, module waiting time Twait, and

data transfer time Tdt defined in Equation. 3.2, on the critical path (CP):

MS =
∑

for all w∈CP

(TE(w) + Twait(w)) +
∑

for all ew∈CP

(Tdt(ew)). (6.15)

Note that the waiting time Twait of a critical module is the amount of time it spends

in waiting for the inputs from all of its non-critical preceding modules.

70

Financial Cost Models The total financial cost CTotal of an entire workflow

execution process is calculated as

CTotal = CTotal(dt) + CTotal(V M), (6.16)

CTotal(dt) =
∑

for all ew∈Ew

DS(ew, lic) ∙ p(dt). (6.17)

CTotal(V M) =
∑

for all w∈Vmc

p(vt) ∙ n(vt) ∙ (max
i∈Vw

T i
f − min

i∈Vw

T i
s + TSU + Trd), (6.18)

Here, DS(∙) is the data size of edge ew over an inter-cloud link lic, and CTotal(dt)

and CTotal(V M) are the financial cost spent on all inter-cloud data transfers and on

the use of all VMs, respectively. Again, p(dt) is the volume-based pricing model

for inter-cloud transfer. In CTotal(V M), TSU denotes the VM’s startup time and

Trd denotes the time the VM spends in receiving all input data from its preceding

modules.

6.1.2 Problem Formulation

We define a MapReduce workflow mapping scheme M as

M : vw → V M(PM, vt), for all w ∈ Vw, (6.19)

where V M(PM, vt) represents a VM instance of type vt provisioned on a PM.

Based on the above mathematical models, we formulate a budget-constrained

MapReduce workflow mapping problem for minimum makespan in multi-cloud

environments, referred to as MinMRW-MC, as follows.

Definition 3. Given a DAG-structured workflow graph Gw(Vw, Ew), a complete

weighted multi-cloud network graph Gmc(Vmc, Emc), a set V T of available VM types,

71

Figure 6.4 The last round of Map tasks of the i-th Module with Si
Avail Map slots

(Si
m = Sm(vt) ∙ n(vt)).

and a fixed financial budget B, we wish to find a MapReduce workflow mapping

scheme M to achieve the minimum makespan:

MinMS = min
all possibleM

MS, (6.20)

while satisfying the following financial constraint:

CTotal ≤ B. (6.21)

The formulated MinMRW-MC problem considers inter-cloud data transfers

and I/O operations for big data workflows in multi-cloud environments. This is

a generalized version of the MED-CC problem in [40], which only considers the

execution time of CPU -bound serial modules in a single cloud. Since MED-CC,

which is a special case of MinMRW-MC, has been proved to be NP-complete and

non-approximable, so is MinMRW-MC.

72

6.2 Algorithm Design

Our work targets network- and compute-intensive big data workflows deployed in

multiple cloud-based data centers, where the inter-cloud data transfer time and

financial cost could be significant and must be explicitly accounted for.

6.2.1 MapReduce Workflow Mapping Algorithm in Multi-Clouds

We design a MapReduce Workflow Mapping (MRWM) algorithm in multi-clouds to

solve MinMRW-MC. The pseudocode of MRWM is provided in Algorithm. 8, which

consists of the following key steps.

Step 1) We first sort the VM types in an increasing order according to the number

of virtual cores. If there is a tie, we further consider memory size, CPU speed,

I/O speed, and so on. Initially, the entire workflow is assigned to the worst

V T in the worst cloud.

Step 2) Call Function AssignV T () in Algorithm. 9, which in turn calls Function

CalculateT ime in Algorithm. 10, whenever there exists a module that needs to

be processed. We put this module in the ready queue Q[] in its corresponding

cloud when all of its preceding modules are finished. If there is only one

module in the ready queue Q[], we process this module right away and mark

it as finished as soon as it is done. We calculate the inter- or intra-cloud

data transfer time from this module to its succeeding modules and update

the ReadyT ime upon the receival of input data from one of its preceding

modules. Once all of its preceding modules are marked as finished, we put this

module in the FIFO ready queue Q[] in its corresponding cloud based on the

last updated ReadyT ime. Note that ReadyT ime is not necessarily the actual

StartT ime, which depends on the scheduling order and the execution status of

73

those modules ahead of it in the ready queue. After processing the modules in

Q[], we are able to determine the actual StartT ime and FinishT ime of each

module. The makespan is then calculated as the finish time of the last module

in the workflow.

Step 3) After calculating the makespan, call Function FindCP () in Algorithm. 11

to compute the critical path CP .

Step 4) If all the critical modules on CP are assigned to the same V T , we upgrade

the V T of the critical modules along with other modules using the same V T

by one level. If the upgraded V T is provided in a better cloud, it means that

all the modules are processed in that particular cloud; otherwise, we identify

the best V T among the critical modules and upgrade those critical modules

using a worse V T and those non-critical modules using the same V T to the

best V T within the budget B. If there is budget left, we upgrade the V T of

the rest modules by one level until the budget is exhausted. We provision as

many VMs as possible on the same PM.

Step 5) Go back to Step 2), and repeat the above process for a certain number of

iterations and record the minimum makespan MinMS.

The time complexity of each iteration in MRWM is O(max(m ∙ |Ew|,m ∙ n) +

max(|Ew|2, |Vmc|2 ∙ |Ew| ∙ m)), where m is the number of modules in the workflow, n

is the number of VM types, and |Vmc| is the number of clouds.

74

Algorithm 8: MRWM

Input: a DAG-structured workflow graph Gw(Vw, Ew), a set of available VM

types V T [], the input data size of each module DSi, a fixed financial budget B,

and the number ITR of iterations.

Output: the minimum workflow’s makespan MinMS.

1: sort the VM types V T [] in an increasing order according to the number of

virtual cores, memory size, CPU speed, and I/O speed;

2: MinMS = INF ;

3: for all (module wi ∈ Vw) do

4: AssignedV T [i] = the worst V T [];

5: while (ITR– – ≥ 0) do

6: [AssignedV T [],MS] = AssignV T (Gw, V T [], DSi, B);

7: if (MS < MinMS) then

8: MinMS = MS;

9: return MinMS;

75

Algorithm 9: AssignVT

Input: a DAG-structured workflow graph Gw(Vw, Ew), a set of available VM

types V T [], the input data size of each module DSi, and a fixed financial budget

B.

Output: the VM types AssignedV T [] that each MapReduce module is assigned

to and the makespan MS.
1: MS = CalculateT ime(Gw, AssignedV T [], DSi);

2: CP [] = FindCP (Gw, AssignedV T [], DSi);

3: calculate the total financial cost CTotal;

4: for all (module wj ∈ CP []) do

5: if (all modules on CP have the same V T [j] in the same cloud) then

6: upgrade AssignedV T [j] and non-critical modules

with the same V T [j] by one level;

7: if (CTotal > B) then

8: downgrade AssignedV T [j] and non-critical

modules with the same V T [j] by one level;

9: break;

10: else

11: while (AssignedV T [j] is worse than the best V T []

on CP) do

12: upgrade AssignedV T [j] and non-critical modules with the same V T [j] to the best V T [];

13: if (C(Total) > B) then

14: downgrade AssignedV T [j] and non-critical modules with the same V T [j] by one level;

15: break;

16: for all (module wk /∈ CP [] not yet upgraded) do

17: upgrade AssignedV T [k] and modules with the same

V T [] by one level;

18: if (CTotal > B) then

19: downgrade AssignedV T [k] and modules with the

same V T [] by one level;

20: return [AssignedV T [], MS];

76

Algorithm 10: CalculateTime

Input: a DAG-structured workflow graph Gw(Vw, Ew), the VM types

AssignedV T [] of each module, and the input data size of each module DSi.

Output: makespan MS.

1: while (there exists a module that needs to be executed) do

2: for all (module wk that need to be executed) do

3: if (all of wk’s preceding modules are marked as finished) then

4: add wk to the ready queues Q[] in its corresponding cloud;

5: for (Q[] of each cloud) do

6: if (there is only one module in Q[]) then

7: execute it right away and mark it as finished once done;

8: update the ReadyT ime of its succeeding modules;

9: else

10: sort Q[] by FIFO according to their last updated ReadyT ime; calculate

the actual StartT ime and FinishT ime of each module in Q[] using

Eqs. 6.9 and 6.10, and mark it as finished once it is done;

11: update the ReadyT ime of its succeeding modules;

12: return makespan MS.

77

Algorithm 11: FindCP

Input: a DAG-structured workflow graph Gw(Vw, Ew), the VM type

AssignedV T [] of each module, and input data size DSi of each module.

Output: the critical path CP [].

1: wj = the last executed module in Gw;

2: while (wj 6= the first executed module in Gw) do

3: add wj into CP [];

4: wj = the last preceding module that updates wj ’s ready time;

5: add wj into CP [];

6: return CP [];

6.3 Algorithm Implementation and Performance Evaluation

6.3.1 Simulation Results

Simulation Settings We implement MRWM on the CloudSim platform and

evaluate its performance in comparison with three algorithms, i.e., VM-GREEDY,

MCMA [53], and CRITICAL-GREEDY [40]. VM-GREEDY, which is greedy on

VM optimization, assigns as many high-end computers as possible within the

budget. If the cost (including data transfer cost) is over the budget, it downgrades

the VM type of the modules until the budget is satisfied. MCMA, as proposed

in [53] to solve BCMED-CC, determines the VM type for each MapReduce module.

CRITICAL-GREEDY, as proposed in [40] to solve MED-CC, determines the VM

type for each module. Since it does not consider data transfer cost, we also need to

downgrade the VM type of each module until the budget is satisfied.

For performance evaluation, we consider different problem sizes from small to

large scales in a multi-cloud environment consisting of five clouds, where the inter-

cloud data transfer takes time and incurs financial cost based on our cost models.

78

The problem size is defined as a 2-tuple (m, |Ew|), where m is the number of workflow

modules, and |Ew| is the number of workflow links. We generate workflow instances of

different scales in a random manner as follows: i) lay out all m modules sequentially

along a pipeline, each of which is assigned a workload randomly generated within

range [5, 500], which represents the total number of instructions; ii) for each module,

add an input edge from a randomly selected preceding module and add an output

edge to a randomly selected succeeding module (note that the first module only needs

output and the last module only needs input); iii) randomly select two modules from

the pipeline and add a directed edge between them (from left to right) until we reach

the given number of edges.

We compare MRWM with VM-GREEDY, MCMA [53] and CRITICAL-

GREEDY [40], in terms of the workflow makespan under the same budget constraint.

The MinMS performance improvement of MRWM over the other algorithms in

comparison is defined as:

Imp(Other) =
MinMSOther − MinMSMRWM

MinMSOther

× 100%,

where MinMSOther is the MinMS achieved by the others, i.e., VM-GREEDY,

MCMA, and CRITICAL-GREEDY, and MinMSMRWM is the MinMS achieved by

MRWM.

Comparison with Optimal Solutions We compare MRWM with optimal

solutions in three small-scale problems of size (5, 6), (5, 7), and (6, 8). For each

problem size, we randomly generate 50 problem instances with different module

workloads and DAG topologies. In each problem instance, we specify 20 different

budget levels. We run all these four algorithms on these instances and compare

the MinMS results with the optimal ones computed by an exhaustive search-based

79

(5,6) (5, 7) (6,8)
Problem Index

0

50

100

150

200

250

N
u

m
b

e
r

o
f
O

p
tim

a
l R

e
su

lts

MRWM
VM-GREEDY
MCMA
CRITICIAL-GREEDY

Figure 6.5 The number

of optimal results

among 1000 instances

(50 workflow instances

× 20 budget levels)

produced by MRWM,

VM-GREEDY,

MCMA, and

CRITICAL-GREEDY

under different problem

sizes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Problem Index

0

20

40

60

80

100

120

A
ve

ra
g

e
 M

in
M

S
 I
m

p
ro

ve
m

e
n

t
P

e
rc

e
n

ta
g

e

Imp(VM-GREEDY)

Imp(MCMA)

Imp(CRITICAL-GREEDY)

Figure 6.6 The average

MinMS performance

improvement

percentages (%) with

standard deviations

across 400 instances

(20 budget levels ×

20 random workflow

instances) under 20

problem sizes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Budget Level

0

20

40

60

80

100

120

A
ve

ra
g

e
 M

in
M

S
 I

m
p

ro
ve

m
e

n
t

P
e

rc
e

n
ta

g
e

Imp(VM-GREEDY)
Imp(MCMA)
Imp(CRITICAL-GREEDY)

Figure 6.7 The average

MinMS performance

improvement

percentages (%) with

standard deviations

across 400 instances (20

different problem sizes

× 20 random workflow

instances) at 20 budget

levels.

approach. Figure 6.5 shows the number of optimal results among 1000 instances

(50 workflow instances × 20 budget levels) achieved by MRWM, VM-GREEDY,

MCMA, and CRITICAL-GREEDY under different problem sizes. We observe that

MRWM is more likely to achieve the optimality than the others in a statistical sense,

which indicates the efficacy of MRWM. However, since these are small-scale problem

instances, the absolute values of the differences from the optimal results are not

significant.

Performance Comparison with Other Heuristics We further consider 20

problem sizes from small to large scales, indexed from 1 to 20. For each problem size,

80

we randomly generate 20 problem instances, in each of which, we choose 20 budget

levels with an equal interval of ΔB = (Bmax−Bmin)/20 within a certain budget range

[Bmin, Bmax]. We provide in Table 6.1 the average percentage of MinMS improvement

together with standard deviations achieved by MRWM over VM-GREEDY, MCMA,

and CRITICAL-GREEDY across all the 20 budget levels, which are further plotted

in Figure 6.6 for a visual comparison.

Also, for each of the 20 budget levels from low to high values, indexed from 1 to

20, we run the scheduling simulation by iterating through 20 problem sizes from small

to large scales. We provide in Table 6.2 the average MinMS improvement percentages

together with standard deviations achieved by MRWM over VM-GREEDY, MCMA,

and CRITICAL-GREEDY across all the 20 problem sizes, which are further plotted

in Figure 6.7 for a visual comparison. We set the budget levels to ensure that

the largest problem instance has a feasible solution. Hence, the budget levels

are sufficient especially for smaller problem instances, which explains the stable

performance across different budget levels.

For a better illustration, we plot the overall performance improvement

percentage of MRWM over VM-GREEDY, MCMA, and CRITICAL-GREEDY in

Figures. 6.8, 6.9, and 6.10, respectively, where x axis denotes the budget increment

across 20 levels and y axis denotes the index of 20 problem sizes from small

to large scales. Each point (x, y, imp) in the 3D plot represents the average

performance improvement across all 20 problem instances of the same problem size

under the same budget level (the actual budget values may be different in different

instances). These results show that MRWM achieves about 90%, 70%, and 45%

performance improvement over VM-GREEDY, MCMA, and CRITICAL-GREEDY

on average, respectively. Such performance improvements are considered significant

for large-scale workflow execution. In these simulations, MRWM takes less than 2

81

40
20

50

60

15 20

70

Im
p(

V
M

-G
R

E
E

D
Y

)

80

15

Budget Level

10

90

Problem Index

10

100

5 5
0 0

60

65

70

75

80

85

90

95

Figure 6.8 The overall

performance improvement

percentages (%) of MRWM

over VM-GREEDY with

different budget levels and

problem sizes.

40
20

50

60

15 20

70

Im
p(

M
C

M
A

) 80

15

Budget Level

10

90

Problem Index

10

100

5 5
0 0

45

50

55

60

65

70

75

80

85

Figure 6.9 The overall

performance improvement

percentages (%) of MRWM

over MCMA with different

budget levels and problem

sizes.

35
20

40

15 20

Im
p(

C
R

IT
IC

A
L-

G
R

E
E

D
Y

)

45

15

Problem Index

10

Budget Level

10

50

5 5
0 0

39

40

41

42

43

44

45

46

47

48

Figure 6.10 The overall

performance improvement

percentages (%) of MRWM

over CRITICAL-GREEDY

with different budget levels

and problem sizes.

seconds to run on large-scale problem instances, which makes it possible to perform

real-time scheduling of big data workflows.

Convergence of MRWM To investigate the convergence property of MRWM,

we run this algorithm on the problem instance of Index 11 under three different

budget levels, i.e., low, medium, and high. Note that the high budget level is used

in the above simulations, the low budget level is 2/5 and the medium budget level is

half of the high budget level. We plot the optimization process of MRWM in these

three scenarios in Figure 7.9, which shows that MRWM converges to the minimum

makespan in about 30 iterations. Hence, We use 40 iterations in the simulations and

also later in the experiments to ensure a satisfactory mapping scheme.

6.3.2 Experimental Results

MapReduce Workflow For evaluation in real systems, we conduct workflow

experiments to compute statistics on 22 years of global flight datasets of about 12GB

82

Table 6.1 The Average MinMS Improvement Percentages α = Imp(VM-GREEDY),

β = Imp(MCMA), and γ = Imp(CRITICAL-GREEDY) and the Corresponding

Standard Deviations Across 400 Instances (20 Budget Levels × 20 Random Workflow

Instances) with Different Problem Sizes

Idx (m, |Ew|) α (%) StdDv β (%) StdDv γ (%) StdDv

1 (5, 7) 71.98 18.57 62.90 10.36 42.28 6.79

2 (8, 14) 77.86 7.36 53.23 15.10 45.80 3.54

3 (10, 18) 80.64 5.19 48.03 14.25 46.75 2.07

4 (13, 30) 82.10 4.22 55.69 15.97 46.09 3.36

5 (15, 60) 87.61 4.30 75.08 8.44 45.78 3.24

6 (18, 80) 87.94 4.45 71.90 13.48 43.58 16.06

7 (20, 100) 90.34 3.05 71.37 5.10 47.30 1.37

8 (23, 150) 92.10 1.31 79.27 6.32 46.49 2.63

9 (25, 200) 93.20 1.74 77.18 8.88 44.48 3.82

10 (28, 250) 93.95 1.80 81.13 5.23 46.77 2.51

11 (30, 300) 94.58 0.94 81.24 8.75 46.35 1.87

12 (33, 380) 94.80 1.15 80.67 9.34 46.40 2.55

13 (35, 400) 95.55 0.83 79.63 5.75 45.76 2.10

14 (38, 450) 95.92 0.94 80.49 9.82 45.84 2.61

15 (40, 500) 95.98 0.57 83.18 5.23 45.50 3.01

16 (43, 550) 96.17 0.73 81.41 5.83 46.37 1.93

17 (45, 580) 96.64 0.58 81.02 6.74 47.44 2.14

18 (48, 600) 96.66 0.57 79.06 6.12 45.62 2.41

19 (50, 650) 96.91 0.37 72.30 10.55 46.16 2.36

20 (53, 700) 97.46 0.31 76.48 7.74 46.44 1.89

83

Table 6.2 The Average MinMS Improvement Percentages α = Imp(VM-GREEDY),

β = Imp(MCMA), and γ = Imp(CRITICAL-GREEDY) and the Corresponding

Standard Deviations Across 400 Instances (20 problem sizes × 20 Random Workflow

Instances) at Different Budget Levels

Budget

Level α (%) StdDv β (%) StdDv γ (%) StdDv

1 92.70 10.11 74.62 13.63 45.81 2.95

2 92.53 11.31 74.63 12.18 46.12 2.96

3 92.51 11.14 73.96 13.54 46.27 2.65

4 92.65 9.82 73.43 13.13 45.96 3.08

5 93.00 9.08 73.69 12.84 45.75 3.10

6 92.24 12.27 74.00 12.76 45.77 3.76

7 92.90 8.59 73.80 13.28 46.11 3.08

8 92.61 9.62 75.04 13.31 46.00 3.11

9 92.77 11.35 74.40 12.56 45.97 2.89

10 92.63 10.39 73.80 13.33 46.14 3.02

11 92.81 9.28 74.32 14.07 45.73 3.38

12 92.72 10.01 74.61 12.33 45.98 2.73

13 92.31 12.51 74.29 12.63 45.87 3.45

14 93.05 9.17 73.86 13.52 46.15 2.77

15 92.68 10.23 74.16 12.89 46.11 2.87

16 92.63 10.63 73.97 13.75 45.79 2.99

17 92.79 10.01 73.50 14.58 46.04 2.76

18 92.46 10.79 73.71 13.99 45.89 3.43

19 92.64 10.17 73.34 13.80 45.94 2.96

20 92.37 11.35 74.30 13.18 46.20 2.61

84

Table 6.3 VM Instances Provisioned by Different Cloud Computing Platforms in

the Experiment

VM Platform Instance Availability Number of

Type Type Zone Instances

V T1 AWS t2.small us-west-2c 20

V T2 AWS t2.medium us-east-2a 20

V T3 GCP n1-highmem-2 us-central1-a 12

V T4 GCP n1-standard-4 us-east1-c 6

V T5 GCP n1-standard-8 us-west1-a 3

Table 6.4 System Specifications of Different VM Types in the Experiment

VM CPU RAM Disk I/O read I/O write Price

Type (GHz) (GB) (GB) (MB/s) (MB/s) (USD/min)

V T1 2.40 × 1 2 50 290 95 0.000433

V T2 2.39 × 2 4 50 918 253 0.000867

V T3 2.60 × 2 13 50 820 470 0.001167

V T4 2.30 × 4 20 50 851 579 0.002333

V T5 2.20 × 8 40 50 1024 585 0.004666

from 1987 to 2008 at Statistical Computing [14]. The workflow structure is shown

in Figure 7.14, where every module is a MapReduce job: w0 filters out the headline

in each data file; w1 calculates the frequency of each “Flight Cancellation Reason”;

Experimental Settings We set up 3 homogeneous clusters of Hadoop 2.7.3 [20]

in Google Cloud Platform (GCP) and 2 homogeneous clusters of Hadoop 2.7.3 in

Amazon Web Services (AWS) [18]. Table 7.3 tabulates the VM instances provisioned

in the availability zone of each platform, and Table 7.1 tabulates the system

85

Table 6.5 Bandwidth Matrix BW

BW V T1 V T2 V T3 V T4 V T5

(Mb/s)

V T1 — 16.7 33.3 20.0 33.3

V T2 3.2 — 16.7 11.1 7.7

V T3 8.5 33.3 — 50.0 50.0

V T4 4.2 14.3 50 — 25.0

V T5 10.0 7.7 50 25.0 —

Table 6.6 Data Transfer Price matrix price

price AWS GCP

(USD/GB)

AWS 0.000 0.155

GCP 0.120 0.000

86

specification and pricing model (in US dollar/minute) of each VM type. In GCP,

since each user is limited to 24 virtual cores in each availability zone, we set up 3

clusters as follows: 12 VM instances with 2 virtual cores, 6 VM instances with 4

virtual cores, and 3 VM instances with 8 virtual cores. In AWS [18], since there is a

limit of 20 on the number of VM instances of each type we select in the experiments,

we set up 2 clusters with 20 VM instances each. The data transfer throughput

between each pair of VM instances of different VM types is estimated through active

bandwidth measurements as shown in Table 6.5, and the volume-based data transfer

pricing model under 1 TB is shown in Table 6.6.

Performance Comparison We run the statistical analysis workflow on three

different scales of flight data: i) small scale from 1987 − 1994 (8 years of 3433MB),

ii) medium scale from 1987 − 2002 (16 years of 7627MB), and iii) large scale from

1987 − 2008 (22 years of 11473MB). Under each scale, we choose 6 budget levels

within the range [Bmin, Bmax] at an equal interval of ΔB = (Bmax − Bmin)/6,

where Bmin is 20% more than the minimum budget to run the entire workflow on

the worst cluster (i.e., VT1 on AWS), and Bmax is 20% more than the maximum

budget to run the entire workflow on the best cluster (i.e., VT5 on GCP). We plot

the minimum makespan (MinMS) measurement produced by the proposed MRWM

algorithm and the three algorithms in comparison across 6 budget levels on the three

scales of datasets in Figures. 6.13, 6.14, and 6.15. These experimental results clearly

illustrate the performance superiority of MRWM over the other three algorithms in

real multi-cloud environments. At level 6, since there is more than sufficient budget

(20% more than the maximum budget to run the entire workflow on the best cluster),

all the algorithms achieve the optimal results. Since the problem is NP-complete and

non-approximable, these algorithms are all heuristic in nature without performance

guarantee. In very few cases, MRWM does not perform as well as others. Also,

87

we observe about 15% discrepancy between our theoretical estimates and real-world

experimental measurements, which validates the correctness of our models and also

ensures accurate workflow mapping in real systems.

Performance Analysis The problem we tackle is a multi-cloud workflow mapping

problem, where the inter- and intra-cloud data transfer plays a very important role in

both financial cost and time cost. The performance superiority of MRWM comes from

a careful design that follows two critical guidelines: i) reuse a cluster whenever it is

possible to avoid inter- and intra-cloud data transfer, and ii) prioritize the upgrading

of the VM selection for the modules on the critical path. VM-GREEDY neither

considers inter-cloud data transfer nor handles critical modules; MCMA updates the

VMs of critical modules to the best one and resets the VM selection at the beginning

of each iteration, while MRWM updates those VMs gradually and records the VM

selection from the previous iteration; CRITICAL-GREEDY only focuses on VM

selection without considering inter-cloud data transfer.

88

0 10 20 30 40 50
Iteration

0

5

10

15

20

25

30

35

M
in

M
S

Low Budget Level
Medium Budget Level
High Budget Level

Figure 6.11 The optimization process of MRWM

running the problem instance of Index 11 under three

different budget levels.

Figure 6.12 The structure of the MapReduce

workflow.

89

1 2 3 4 5 6
Budget Level

0

10

20

30

40

50

60

70

80

90

100

M
in

M
S

MRWM
VM-GREEDY
Critical-GREEDY
MCMA

Figure 6.13 The MinMS

performance in minutes

across 6 budget levels on

small-scale datasets.

1 2 3 4 5 6
Budget Level

0

20

40

60

80

100

120

M
in

M
S

MRWM
VM-GREEDY
Critical-GREEDY
MCMA

Figure 6.14 The MinMS

performance in minutes

across 6 budget levels on

medium-scale datasets.

1 2 3 4 5 6
Budget Level

0

20

40

60

80

100

120

140

160

M
in

M
S

MRWM

VM-GREEDY

Critical-GREEDY

MCMA

Figure 6.15 The MinMS

performance in minutes

across 6 budget levels on

large-scale datasets.

90

CHAPTER 7

STORM-BASED STREAM DATA PROCESSING WORKFLOWS

7.1 Problem Formulation

In addition to the common cost model provided in Chapter 3, we construct a set of

additional cost models specific to the execution of Storm-based workflows (topology)

for streaming data processing.

We begin with the construction of cost models used for problem definition.

We consider a Storm topology as a directed acyclic graph (DAG) Gtp(Vtp, Etp) with

|Vtp| modules1 and |Etp| edges, each of which represents the execution dependency

and data movement between two neighbor modules. A Storm-based streaming

application is executed in a heterogeneous cluster deployed in a cloud with n

virtual machine (VM) types V T = {vt1, vt2, ∙ ∙ ∙ , vtn}, for each, there may exist

multiple VM instances. Each VM type vt has a set of performance attributes

including CPU frequency fCPU (vt), number of virtual cores nc(vt), and memory

capacity m(vt), as well as a commonly used “pay-as-you-go” VT pricing model

p(vt) = f(fCPU (vt), nc(vt),m(vt)), which determines the financial cost per time unit

for using a VM instance of that type. Note that the actual computing or processing

power of a given core is typically measured in unit of MIPS (million instructions per

second). In this work, we consider a single cloud environment and the cost for data

transfer is not accounted as in most real-life public clouds.

1We refer to the smallest computing entity in a general workflow (or more specifically,
spout/bolt in a Storm topology) as a computing module, which represents either a serial
computing task or a parallel processing job such as a typical MapReduce program in
Hadoop.

91

We define a Storm topology mapping scheme M as

M : vtp(DoP) → V M(vt), for all vtp ∈ Vtp, (7.1)

where V M(vt) represents the VT selection and DoP represents the degree of

parallelism for module vtp, which denotes a spout or a bolt Bolt in the Storm

topology.

In Storm [24], a data stream is comprised of tuples. As a source of data streams

in a topology, a spout reads tuples from an external source and emits them into the

topology. A bolt represents a data processing unit in the topology, such as filtering,

aggregation, join, communicating with databases, etc. Based on a pre-specified DoP ,

each spout or bolt executes multiple tasks concurrently across the cluster, each of

which corresponds to one thread of execution, and stream groupings define how to

send tuples from one set of tasks to another. Note that DoP determines the number

of VM instances of vt selected for executing vtp. In other words, for each vtp, we

create a number DoP of worker instances that are launched on different VMs. In

this work, a single worker is created on each VM instance with a single executor to

process one tuple of input data.

We define the gap time of module vtp as the time interval between the finish

time of two adjacent tuples processed by two copies of vtp. Note that the gap time of

each module may or may not be uniform during the entire streaming data processing.

We have the following theorem on the pattern of the module gap time.

Theorem 1. The gap time of any module vtp in the Storm topology occurs

periodically.

Proof. We prove Theorem 1 by mathematical induction. In the base case, we analyze

the first bolt Bolt1 with N1 = m copies running in parallel. As shown in Figure 7.1,

the gap time (i.e., t1, t2, etc.) between m workers of the first bolt in the topology

92

Figure 7.1 Execution dynamics of the first bolt of the topology with DoP = m, i.e.,

there are m concurrent workers executing the first bolt.

is the same as the time interval of two adjacent tuples emitted from the spout.

T1 denotes the execution time of one copy of Bolt1. Obviously, the base case is

established.

Suppose that Bolti’s gap time occurs periodically. Basically, there are three

cases of Bolti+1:

• Case 1: when Ni+1 = Ni, i.e., Bolti and Bolti+1 have the same number of

workers. Let Ti denote the execution time of a worker of Bolti processing one

tuple. Figure 7.2 shows the case when Ti = Ti+1, so for Bolti, worker j of

Bolti+1 always has a delay of Ti after worker j of Bolti, where j = 1, 2, ∙ ∙ ∙ , Ni.

Hence, Bolti+1 has the same cyclic pattern as Bolti. Figure 7.3 shows the case

when Ti > Ti+1. Similar to Figure 7.2, there is still a delay of Ti between Bolti

and Bolti+1 on each corresponding worker, which means that Bolti+1 has the

same cyclic pattern as Bolti. Figure 7.4 shows the case when Ti < Ti+1. Each

93

Figure 7.2 Execution dynamics in Case 1: the gap time when Ti = Ti+1.

94

Figure 7.3 Execution dynamics in Case 1: the gap time when Ti > Ti+1.

95

Figure 7.4 Execution dynamics in Case 1: the gap time when Ti < Ti+1.

96

(a) The gap time when Ti < Ti+1.

(b) The gap time when Ti > Ti+1.

Figure 7.5 Execution dynamics in Case 2.

97

corresponding worker has a delay of Ti+1. Since Ti < Ti+1, the gap time is

different from that of Bolti. However, there is a one-to-one mapping between

the finish time of Bolti and Bolti+1, as well as the gap time of Bolti and

Bolti+1. Therefore, Bolti+1’s gap time sequence can be mapped to Bolti’s gap

time sequence, and Bolti+1 should have the same cyclic pattern as Bolti.

• Case 2 when Ni > Ni+1. Figure 7.5(a) shows the case when Ti < Ti+1. We

assign the k-th worker of Bolti+1 to process the next tuple emitted from the

j-th worker of Bolti. There is a one-to-one mapping from the finish time of

each tuple processed by Bolti to the finish time of the same tuple processed by

Bolti+1. Since the gap time of Bolti has a cyclic pattern, so does the gap time

of Bolti+1. Figure 7.5(b) shows the case when Ti > Ti+1, where the situation is

similar to Figure 7.5(a). The only difference is that there may exist a certain

waiting time between the first tuple’s start time in the next cycle and the last

tuple’s finish time of each worker of Bolti+1. Since the tuple mapping and the

corresponding delay time remain the same in each cycle, so the cyclic pattern

carries on in Bolti+1. When Ti = Ti+1, it is obvious that Bolti+1 exhibits a

cyclic pattern.

• Case 3 when Ni < Ni+1. The execution dynamics analysis is similar to Case 2

and hence is omitted.

Note that Bolti may have multiple upstream bolts. Assume that there are n

upstream bolts Boltk, where k = i − n, ..., i − 2, i − 1. Since the number of workers

for each bolt may be different, we consider the lowest common multiple LCMi of all

Nk as the number of workers for each bolt. These n upstream bolts can be treated as

a single virtual bolt with LCMi workers. The j-th worker, j = 1, 2, ..., LCMi, emits

a tuple at the latest time when Boltk emits the j-th tuple. After the transformation,

based on the above case, we can prove that the gap time of any bolt has a cyclic

98

Figure 7.6 Illustration of gap time for throughput calculation.

pattern.

Proof ends.

This cyclic pattern is critical to modeling the throughput of any module vtp,

which denotes either a spout or a bolt Bolt in the Storm topology. According to

Theorem 1, we plot the relationship between tuple index and processing time for

each tuple on module vtp in Figure 7.6, which shows two cycles for illustration.

To calculate throughput, we consider a period of time and the number of tuples

processed during this period. Since the gap time of Bolti has a cyclic pattern, we

calculate the throughput by counting the number of tuples processed per cycle. The

first cycle is from time 0 to n and the second one is from time n + 1 to 2n, where n

is the end time of the first cycle in ms (time unit). Hence, the cycle time CTvtp = n.

99

In each cycle, vtp processes m tuples, defined as tuple count per cycle TCPCvtp . We

define the throughput T (M , vtp) of module vtp under the mapping scheme of M as

the inverse of the average processing time for each tuple during each cycle:

T (M , vtp) =
1

CTvtp

TCPCvtp

=
TCPCvtp

CTvtp

. (7.2)

A bottleneck is a process in a chain of processes whose computing power limits

the computing capacity of the whole execution chain, and may result in stalls in

execution. A global bottleneck module is the one with the smallest T (M , vtp), and

the throughput of the entire topology is determined by the bottleneck module’s

throughput, defined as:

GT (M) = min
vtp∈Vtp

T (M , vtp). (7.3)

Based on the above mathematical models, we formulate a Storm Topology

Mapping problem for maximum throughput in clouds under Budget Constraint,

referred to as STM-BC, as follows.

Definition 4. Given a DAG-structured Storm topology Gtp(Vtp, Etp), a set V T of

available VM types, and a fixed financial budget b per time unit, we wish to find a

topology mapping scheme M to achieve the Maximum Throughput (MT):

MT = max
all possible M

MT (M), (7.4)

while satisfying the following budget constraint:

C ≤ b, (7.5)

100

where C is the total financial cost of VMs used for the Storm topology execution per

time unit, calculated as

C =
∑

V Ms(vt) used in M

p(vt), (7.6)

where vtp is mapped to V M(vt), for each vtp ∈ Vtp.

The problem formulated above is a generalized version of the MFR-ANR

problem in [28], which only considers a pipeline structured workflow without parallel

computing for each module. Specifically, in MFR-ANR, the authors consider a linear

computing pipeline consisting of a number of sequential modules and a computer

network represented as a directed arbitrary graph. They aim to find a one-on-one

mapping scheme between a module and a computing node to achieve maximum frame

rate. Note that a pipeline is a special case of workflow, and one-on-one mapping

does not allow parallel computing as one module must be processed exclusively by

one computing node. In our work, we formulate STM-BC, which supports parallel

computing since one module (either a spout or a bolt in Storm) can be processed by

multiple workers. Since MFR-ANR, which is a special case of STM-BC, has been

proved to be NP-complete and non-approximable, so is STM-BC. Hence, we focus

on the design of heuristic solutions to our problem.

We would like to point out that our cost models can be adapted to other stream

data processing platforms, such as Spark Streaming [3] workflows where each module

in the workflow is a Spark Streaming job. Such adapted cost models can be used

to find the mapping of Spark jobs in the workflow to a set of physical or virtual

computing nodes.

7.2 Algorithm Design

We design a bottleneck-oriented topology mapping (BOTM) algorithm in Storm to

solve STM-BC. BOTM determines not only the VT selection but also the degree of

101

parallelism (DoP) for each module in the topology. The key idea is to iteratively

identify the global bottleneck module and strategically compute an appropriate

adjustment for this module’s VT selection and degree of parallelism to achieve

the maximum increase of the global workflow throughput. Note that the default

scheduler in Storm assigns executors in a round-robin manner without considering

the global bottleneck.

7.2.1 Bottleneck-Oriented Topology Mapping

The pseudocode of BOTM is provided in Algorithm.12, which consists of the

following key steps.

Step 1) Sort the available VM types V T according to the total CPU frequency of all

virtual cores, which determines the aggregate computing power in unit of MIPS

(million instructions per second), memory space, and I/O speed. Initially,

every module in the workflow is assigned to the worst vt in the cloud. If this

mapping scheme exceeds the budget, there is no feasible solution; otherwise,

continue.

Step 2) Calculate the throughput for each module in the workflow based on the

initial mapping scheme from Step 1. The module with the smallest throughput

determines the global bottleneck.

Step 3) Call Function SelectV T () in Algorithm.13, check if it is possible to adjust

the degree of parallelism and upgrade the type of VMs in order to achieve

a higher global throughput within the budget. There are multiple options

to determine the degree of parallelism and the vt for the global bottleneck

module: add one more VM of the current vt within Nvt, which denotes the

number of VM instances of the current vt; try to upgrade vt one level up at a

time until reaching the best vt, and for each vt, gradually decrease the degree

of parallelism from the degree of the current vt selection to 1. Every time

102

we try to make an adjustment, we first eliminate the options that exceed the

budget, and then compare the new global throughput after the adjustment.

The option that results in the maximum increase in the global throughput is

selected. Note that after each adjustment, the global bottleneck module may

change.

Step 4) If any upgrade adjustment within the budget does not lead to a better

global throughput, the algorithm terminates. Otherwise, update the degree of

parallelism and the vt for the current bottleneck module, as well as the current

global throughput.

Step 5) Go back to Step 2, and repeat the above process until no feasible upgrade

adjustment option is available.

After identifying the global bottleneck module in Step 2, we try to increase

the throughput of the current global bottleneck module by making an adjustment

to the VT selection and the degree of parallelism of this module within the budget

in Step 3. We consider several adjustment options and select one that leads to the

maximum increase of the global workflow throughput. We would like to point out

that the global bottleneck may shift to a different module after the adjustment, and

therefore, it does not always yield the best performance if we only maximize the

throughput increase of the current bottleneck module.

To increase the throughput of the current bottleneck module, there are two

ways to make adjustments: i) increase the number of VM instances of the current vt

by one; ii) choose a more powerful vt and vary the module’s DoP from its current

DoP to one. Any option that exceeds the budget constraint is ruled out. Among the

feasible options within the budget constraint, we select the option that maximizes

the throughput increase of the entire workflow. Note that in some cases adding

103

Algorithm 12: BOTM

Input: a DAG-structured topology Gtp(Vtp, Etp), a set V T of VM types, the

number Nvt of available VM instances of each vt, and a fixed financial budget b.

Output: the max throughput MT of the topology.
1: curTH = 0;

2: MT = 0;

3: sort the VM type V T in an increasing order of system resources;

4: Assign every module vtp ∈ Vtp to a VM instance of the worst vt for the topology;

5: if the cost > b then

6: throw ERROR(“budget insufficient.”);

7: Calculate curTH and assign MT with curTH

8: while true do

9: tIndex = the index of the bottleneck module with the smallest throughput curTH;

10: {tType, tNum} = selectV T (tIndex, V T, Nvt, b, curTH);

11: if (tType == −1) then

12: break;

13: update tType and tNum for this bottleneck module;

14: MT = curTH;

15: return MT .

104

Algorithm 13: SelectVT

Input: the index of the bottleneck module tIndex, the VM type V T with the

available number Nvt of VM instances of each vt, a fixed financial budget b, and

the current topology throughput curTH .

Output: the VT type tType and the degree tNum of parallelism for the

bottleneck module.
1: tType = −1;

2: tNum = −1;

3: curType = VT type of tIndex;

4: curNum = the degree of parallelism for the bottleneck module of tIndex;

5: for all vt ∈ V T do

6: if vt is the same as curType and one more VM instance of vt is available then

7: assign one more VM instance of vt to module of tIndex;

8: calculate the topology throughput TH after the adjustment;

9: if cost ≤ b and TH > curTH then

10: tType = vt;

11: curTH = TH;

12: tNum = curNum + 1;

13: else if vt is better than curType then

14: tmpNum = curNum;

15: while tmpNum > 0 do

16: assign tmpNum VM instances of vt to module of tIndex;

17: calculate the topology throughput TH after the adjustment;

18: if cost ≤ b and TH > curTH then

19: tType = vt;

20: curTH = TH;

21: tNum = tmpNum;

22: tmpNum −−;

23: return {tType, tNum}.

105

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Problem Index

0

0.5

1

1.5

T
hr

ou
gh

pu
t (

tu
pl

es
/m

s)

BOTM
VM-GREEDY
STORM

(a) The average throughput

with standard deviations across

400 instances (20 different

problem sizes × 20 random

workflow instances) at budget

level 1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Problem Index

0

0.5

1

1.5

T
hr

ou
gh

pu
t (

tu
pl

es
/m

s)

BOTM
VM-GREEDY
STORM

(b) The average throughput

with standard deviations across

400 instances (20 different

problem sizes × 20 random

workflow instances) at budget

level 3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Problem Index

0

0.5

1

1.5

T
hr

ou
gh

pu
t (

tu
pl

es
/m

s)

BOTM
VM-GREEDY
STORM

(c) The average throughput

with standard deviations across

400 instances (20 different

problem sizes × 20 random

workflow instances) at budget

level 5.

Figure 7.7 Performance measurements for simulations under different budget levels.

106

resources may result in reduced cost. Hence, we calculate the financial cost every

time when we make a change to the selection of virtual machines.

In Storm, users are allowed to change the DoP for each module of the topology,

but it is generally difficult for them to decide the most suitable DoP for each module.

In many cases, users may specify an arbitrary DoP based on their empirical study.

Our work not only selects the suitable vt but also determines the suitable degree of

parallelism for each module of the workflow.

The time complexity of BOTM is O(|Vtp| ∙max(Nvt) ∙ |V T |), where |V T | is the

number of VM types, max(Nvt) denotes the largest number of VM instances for all

vt ∈ V T . is intra- or inter-cloud

7.3 Simulation-based Performance Evaluation

7.3.1 Simulation Settings

We implement the proposed BOTM algorithm in C++ and evaluate its performance

in comparison with the default Storm configuration, denoted as STORM DEFAULT,

and a heuristic algorithm VM-GREEDY. By comparing with Storm’s default

scheduler, which is used by many real-life applications, we are able to examine

the benefits of BOTM to both service providers and end users when executing

budget-constrained workflows. VM-GREEDY is a commonly used benchmark

method that takes a greedy strategy for VM optimization to assign as many

high-end VM instances as possible within the budget. The source code of BOTM

implementation is available for download in GitHub Repository [13].

The problem size (reflected by the problem index) is defined as a 2-tuple

(|Vtp|, |Etp|), where |Vtp| is the number of Storm topology tasks, and |Etp| is the

number of topology links. We generate topology instances of different scales in a

random manner as follows [52]: i) lay out all |Vtp| modules sequentially along a

pipeline, each of which is assigned a workload randomly generated within the range

107

[5, 500], which represents the total number of million instructions; ii) for each module,

add an input edge from a randomly selected preceding module and add an output

edge to a randomly selected succeeding module (the first spout module only needs

output and the last bolt module only needs input); iii) randomly select two modules

from the pipeline and add a directed edge between them (from left to right) until

reaching the given number of edges.

We compare BOTM with the other two algorithms in comparison in terms of

workflow throughput under the same budget constraint.

Comparison with Optimal Solutions We compare BOTM with optimal solutions

in three small-scale problems of (3, 3, 2), (4, 4, 3), and (4, 5, 4), each in the form of

(number of modules, number of edges, number of VTs). For each problem size, we

randomly generate 10 problem instances with different module workloads and DAG

topologies. In each problem instance, we specify five different budget levels. We run

all three algorithms on these instances and compare the throughput measurements

with the optimal ones computed by an exhaustive search-based approach. Figure

7.8 shows the number of optimal results among 50 instances (10 workflow instances

× 5 budget levels) achieved by BOTM, VM-GREEDY, and STORM DEFAULT,

respectively, under different problem sizes. In (3, 3, 2), STORM DEFAULT does not

produce any optimal solution and thus is not visible in the chart. We observe that

BOTM is more likely to achieve the optimality than the others in a statistical sense,

which indicates the efficacy of BOTM. However, since these are small-scale problem

instances, the absolute values of the differences from the optimal results are not

significant.

7.3.2 Comparison with Other Methods

In the simulation, we consider 16 virtual machine types with their respective

system specifications and in-cloud financial costs randomly selected from a range

108

(3,3,2) (4,4,3) (4,5,4)
Problem Index

0

5

10

15

N
um

be
r

of
 O

pt
im

al
 R

es
ul

ts

BOTM
STORM_DEFAULT
VM-GREEDY

Figure 7.8 The number of optimal results among 50 instances (10 workflow instances

× 5 budget levels) produced by BOTM, VM-GREEDY and STORM

DEFAULT, respectively, under different problem sizes.

corresponding to commonly used virtual machines provisioned by Amazon Web

Services (AWS) [18]. We consider 20 problem sizes from small to large scales, indexed

from 1 to 20. For each problem size, we randomly generate 20 problem instances, in

each of which, we choose 6 budget levels with an equal interval of Δb = (bmax−bmin)/6

within a certain budget range [bmin, bmax], where Bmin is 10% more than the minimum

budget to run the entire workflow on the worst cluster, and Bmax is 10% more than

the maximum budget to run the entire workflow on the best cluster. For each of the

6 budget levels from low to high levels, indexed from 1 to 6, we run the scheduling

simulation by iterating through 20 problem sizes from small to large scales. We

measure the average throughput with a standard deviation achieved by BOTM,

VM-GREEDY, and STORM DEFAULT, respectively. These measurements show

the performance superiority of BOTM at each of the six budget levels. The results

at levels 1, 3 and 5 are plotted in Figure 7.7 for a visual comparison.

109

These performance results show that BOTM achieves performance improvement

over VM-GREEDY and STORM DEFAULT. Such performance improvements are

considered significant for stream data processing in large-scale scientific applications.

On average, the simulation results show that BOTM achieves a throughput that is 2.3

times of VM-GREEDY and 50% higher than STORM DEFAULT. This is considered

to be a significant improvement when dealing with large-scale stream data.

7.3.3 Convergence of BOTM

To investigate the convergence property of BOTM, we run this algorithm on the

problem instance of Index 5 under three different budget levels, i.e., low, medium,

and high. The low budget level is 10% more than the budget that is sufficient for

the workflow to be executed using the worst virtual machines; the high budget level

is 10% less than the budget that is sufficient for the workflow to be executed using

the best virtual machines; the medium budget level is 50% of the budget that is

sufficient for the workflow to be executed using the best virtual machines. We plot

the optimization process of BOTM in these three scenarios in Figure 7.9, which

shows that BOTM converges to the maximum throughput after 30 iterations within

less than one second. For problem index 10 and above, we observe that BOTM

converges after at most 50 iterations.

7.4 Experiment-based Performance Evaluation

In this section, we conduct two sets of experiments on two real-life datasets. Different

data volumes (12GB and less than 1GB data) are tested for scalability evaluation.

7.4.1 Experiment 1 with Flight Data

Storm Topology We conduct Storm experiments for streaming data processing

to compute various statistics on 22 years of global flight datasets of about 12GB

from 1987 to 2008 at Statistical Computing [14]. The topology structure is shown

110

0 5 10 15 20 25 30
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
hr

ou
gh

pu
t (

tu
pl

es
/m

s)

Low Budget Level
Medium Budget Level
High Budget Level

Figure 7.9 The optimization process of BOTM running the problem instance of

Index 5 in the simulations under three different budget levels.

Figure 7.10 The structure of the Storm topology for flight data processing.

in Figure 7.10, where every module is a task (spout/bolt): w0 emits streaming data

instances every 1 ms; w1 filters out the headline in each data file; w2 and w5 calculate

the average taxi in/out time at each airport, where w2’s key is the airport name and

value is the taxi time, w5’s key is the airport name and value is the average taxi time;

111

Table 7.1 System Specifications of Different VM Types in the Experiment

VM InstanceAvailability CPU RAM Num of Price

Type Name Zone (GHz) (GB) Instances ($/min)

vt1 t2.small US West

(Oregon)

2.5×1 2 9 0.0230

vt2 t2.mediumUS West

(Oregon)

2.5×2 4 4 0.0464

vt3 t2.xlarge US West

(Oregon)

2.4×4 16 4 0.1856

vt4 t2.2xlarge US West

(Oregon)

2.4×8 32 4 0.3712

w3 and w6 calculate the average delay frequency of each flight, where w3’s key is the

flight number and value is the delay frequency, w6’s key is the flight number and value

is the average delay frequency; w4 and w7 calculate the frequency of each “Flight

Cancellation Reason” over all of the years, where w4’s key is the cancellation code

and w4’s value is 1, w7’s key is the cancellation code and w7’s value is the cancellation

frequency. w8 collects all the results in each category, where key is the ranking type

(cancellation code, airport name, and flight number), and value is the result (the

average taxi time, the average delay frequency, the cancellation frequency).

Experimental Settings We consider four VM types in Amazon Web Services

(AWS) [18] and construct three different heterogeneous clusters. Table 7.1 tabulates

the system specification and pricing model (in unit of US Dollar per minute) of each

VM type, and the number of available VM instances of each VM type. In each

112

Table 7.2 Execution Time Matrix Te in ms

w0 w1 w2 w3 w4 w5 w6 w7 w8

vt1 1.85 46.21 53.44 105.83 97.19 12.56 17.39 55.70 11.23

vt2 1.47 26.79 6.57 12.04 39.98 1.09 4.18 3.52 2.05

vt3 1.38 14.58 5.63 11.06 26.18 1.08 4.09 3.47 1.54

vt4 1.21 13.33 3.13 6.42 24.77 1.07 3.37 2.62 1.41

Table 7.3 The VM Instances of the Storm Cluster Provisioned under Different

Mapping schemes in AWS

Cluster vt1 vt2 vt3 vt4 Total number of

Inst. Inst. Inst. Inst. VM instances

C1: under BOTM 4 2 0 4 10

C2: under VM-GREEDY 6 1 1 4 12

C3: randomly generated 4 4 3 2 13

Table 7.4 Mapping Schemes Obtained by BOTM and VM-G (VM-GREEDY) in

Experiment 1, Where Each Cell Stores (vt,DoP) for the Corresponding Module

w0 w1 w2 w3 w4 w5 w6 w7 w8

BOTM (1, 1) (2, 1) (2, 1) (4, 2) (4, 1) (1, 1) (4, 1) (1, 1) (1, 1)

VM-G (1, 1) (2, 1) (4, 4) (1, 1) (1, 1) (3, 1) (1, 1) (1, 1) (1, 1)

113

Table 7.5 Throughput Measurements in Tuples/min of BOTM, VM-G (VM-

GREEDY), and STORM (STORM DEFAULT) in Experiment 1 on Flight Data,

Where Each Run Lasts for 10 Hours

Algorithm. Idx w0 w1 w2 w3 w4 w5 w6 w7 w8 Thruput Average

(average number of tuples processed by each module within a 10-min window) Thruput

BOTM 1 25180 24800 24760 24940 24060 49040 24700 23980 97660 2398

C1 2 24640 24420 24360 24580 23640 48280 24300 23560 95900 2356 2389

3 25620 24880 24820 25240 24240 49200 25000 24140 97880 2414

VM-G 1 19340 19340 19360 19300 18860 38360 19100 18860 76160 1886

C2 2 22660 22660 22620 22600 21920 44720 22360 21920 89020 2192 1682

3 11460 11460 11440 11440 9680 22620 11320 9680 43580 968

STORM 1 15940 15920 15900 15880 15100 31460 15720 15120 62300 1510

C1 2 16700 16700 16660 16680 15900 32980 16500 15900 65380 1590 1573

DoP=1 3 16680 16660 16660 16660 16180 32980 16480 16180 65520 1618

STORM 1 20200 18640 18600 18600 17700 36780 18400 17700 72880 1770

C1 2 18140 18140 18140 18120 16860 35860 17940 16860 70640 1686 1765

DoP=2 3 20300 20200 20160 20160 18380 39940 19960 18340 78260 1838

STORM 1 2140 1440 1420 1440 720 2860 1440 720 5000 72

C2 2 3480 1600 1540 1540 660 3020 1500 680 5220 66 68

DoP=1 3 2740 1580 1560 1580 660 3120 1560 680 5320 66

STORM 1 7160 2180 1480 1500 820 2880 1500 840 5200 82

C2 2 7380 1660 1260 1280 640 2440 1240 640 4300 64 74

DoP=2 3 7540 1480 1460 1460 760 2880 1440 740 5020 76

STORM 1 9640 2080 1360 1480 760 2720 1440 800 4860 76

C2 2 7980 2400 1380 1420 680 2660 1360 640 4700 64 74

DoP=3 3 9760 2180 1380 1320 820 2700 1300 840 4760 82

STORM 1 10280 2120 1340 1360 780 2640 1280 780 4720 78

C2 2 11700 1880 1360 1340 740 2620 1360 720 4660 72 82

DoP=4 3 10960 2200 1360 1300 960 2600 2600 2600 2600 96

STORM 1 20440 19560 19500 19500 18920 38620 19320 18920 76860 1892

C3 2 16700 16720 16660 16660 15860 33040 16520 15860 65420 1586 1673

DoP=1 3 16680 16120 16080 16080 15400 31840 15920 15420 63180 1540

STORM 1 22260 21040 21000 21000 19900 41580 20800 19880 82280 1988

C3 2 19220 17160 17140 17140 16220 33940 16960 16200 67140 1620 1320

DoP=2 3 7060 4440 4440 4440 3520 8800 4420 3540 16720 352

STORM 1 5380 5140 5160 5160 2300 10260 5100 2300 17700 230

C3 2 5540 4860 4860 4860 2380 9580 4800 2420 16760 238 236

DoP=3 3 5520 4880 4840 4840 2420 9600 4780 2400 16800 240

STORM 1 6520 4160 4100 4120 2180 8200 4100 2160 14420 216

C3 2 7120 4960 4960 4960 2320 9800 4920 2340 17040 232 228

DoP=4 3 6660 4360 4320 4320 2360 9560 4280 2380 15260 236

114

Table 7.6 Execution Time Matrix Te in ms for WRF

w0 w1 w2 w3 w4 w5 w6 w7

vt1 100.17 6889.82 3434.38 8854.28 17591.02 55361.93 65107.75 1007.06

vt2 100.21 3592.12 1813.37 4069.33 7821.38 29563.50 28720.50 586.00

vt3 100.28 1868.93 1710.83 2145.80 4163.83 15309.33 11885.50 491.67

vt4 100.26 1119.35 554.91 1358.38 2595.86 3960.33 11646.00 141.50

cluster, we install STORM 1.0.0 on the VM instances, and install Zookeeper 3.4.8 on

the VM instance where Nimbus is installed. As shown in Table. 7.9 and Table. 7.5),

since the processing time of each tuple by any module of the workflow is on the order

of seconds, their performance is not affected by the degradation of the virtual CPU

performance, as experienced by some users running long-time jobs in AWS.

Performance Comparison We first execute the entire topology on one VM

instance for each of four VT types in stand-alone mode to obtain the execution

time matrix for one tuple on the module, as shown in Table 7.2. For w1 to w4, the

time complexity of each task is O(n), where n is the size of the record. For w5 to

w8, the time complexity of each task is O(1).

In the experiment, the time interval for emitting two contiguous tuples is set to

be a random value within a range of [0.5ms, 1.5ms], and the budget is set to be five

times p(vt4). We run BOTM and VM-GREEDY to obtain two mapping schemes,

as tabulated in Table 7.4, where each cell stores (vt,DoP) for the corresponding

module. For example, (4, 2) for module w3 in the mapping scheme produced by

BOTM means that 2 VM instances of VM type vt4 are used to run 2 instances of

w3.

Based on the mapping schemes produced by BOTM and VM-GREEDY, we

set up two corresponding clusters C1 and C2. The C1 cluster produced by BOTM

contains 10 VM instances, while the C2 cluster produced by VM-GREEDY contains

115

12 VM instances. We also set up a randomly generated cluster C3 that contains

13 VM instances satisfying the budget constraint. The configurations of these three

clusters are provided in Table 7.3.

We run the Storm topology for flight data processing in C1 and C2 produced by

BOTM and VM-GREEDY, respectively, for three times. Also, we run the topology

in the default Storm system in clusters C1, and set the DoP for each module from 1

to the highest DoP in the mapping scheme achieved by BOTM, which is 2. Similarly,

we run the topology in the default Storm system in clusters C2, and set the DoP

for each module from 1 to the highest DoP in the mapping scheme achieved by VM-

GREEDY, which is 4. In the randomly generated cluster C3, we set the DoP for each

module from 1 to 4. Note that for each DoP , we run the experiment for three times.

The performance measurements in all of these experiments are tabulated in Table 7.5,

where the underlined throughput performance measured within a 10-minute window

corresponds to the global bottleneck module. We provide such microscopic behaviors

in every experiment to study the stability of each algorithm. These measurements

show that the proposed BOTM algorithm achieves consistent performance in three

runs while the other algorithms in comparison lack such stability.

We calculate the average throughput with standard deviation across different

DoP based on these performance measurements, and plot them in Figures. 7.11 and

7.12 for a visual comparison. We observe that BOTM consistently outperforms the

other algorithms in comparison.

Both BOTM and VM-GREEDY decide the VT selection and the DoP for each

module of the workflow. In default Storm, we vary the DoP for every module from 1

to the highest DoP among all modules in the mapping scheme produced by BOTM

and VM-GREEDY. These results show that a higher DoP does not always yield a

116

C1_
BOTM

C1_
STORM_D

EFAULT
_D

oP
=1

C1_
STORM_D

EFAULT
_D

oP
=2

C2_
VM-G

REEDY

C2_
STORM_D

EFAULT
_D

oP
=1

C2_
STORM_D

EFAULT
_D

oP
=2

C2_
STORM_D

EFAULT
_D

oP
=3

C2_
STORM_D

EFAULT
_D

oP
=4

C3_
STORM_D

EFAULT
_D

oP
=1

C3_
STORM_D

EFAULT
_D

oP
=2

C3_
STORM_D

EFAULT
_D

oP
=3

C3_
STORM_D

EFAULT
_D

oP
=4

Cluster Configuration

0

500

1000

1500

2000

2500

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

tu
pl

es
/m

in
)

Figure 7.11 The average throughput with standard deviation of the Storm topology

across different degrees of parallelism (DoP) in clusters C1 and C2 produced by

BOTM and VM-GREEDY, respectively, and a randomly generated C3 under a given

budget.

117

C1_
BOTM

C1_
STORM_D

EFAULT
_D

oP
=1

C1_
STORM_D

EFAULT
_D

oP
=2

C2_
VM-G

REEDY

C2_
STORM_D

EFAULT
_D

oP
=1

C2_
STORM_D

EFAULT
_D

oP
=2

C2_
STORM_D

EFAULT
_D

oP
=3

C2_
STORM_D

EFAULT
_D

oP
=4

C3_
STORM_D

EFAULT
_D

oP
=1

C3_
STORM_D

EFAULT
_D

oP
=2

C3_
STORM_D

EFAULT
_D

oP
=3

C3_
STORM_D

EFAULT
_D

oP
=4

Cluster Configuration

0

500

1000

1500

2000

2500
A

ve
ra

ge
 T

hr
ou

gh
pu

t (
tu

pl
es

/c
or

e-
m

in
)

Figure 7.12 The average throughput (per core) with standard deviation of the

Storm topology across different degrees of parallelism (DoP) in clusters C1 and C2

produced by BOTM and VM-GREEDY, respectively, and a randomly generated C3

under a given budget.

Figure 7.13 A general structure of the executable WRF workflow.

118

Table 7.7 Storm Cluster VM Instances Provisioned Under Different Mapping

Schemes in AWS

Cluster vt1 vt2 vt3 vt4 Total number of

Inst. Inst. Inst. Inst. VM instances

C4: under BOTM 4 2 0 2 8

C5: under VM-GREEDY 4 2 1 3 10

C6: randomly generated 0 2 3 3 8

Table 7.8 Mapping Schemes Obtained by BOTM and VM-G (VM-GREEDY) in

Experiment 2, Where Each Cell Stores (vt,DoP) for the Corresponding Module

w0 w1 w2 w3 w4 w5 w6 w7

BOTM (1, 1) (1, 1) (1, 1) (1, 1) (2, 1) (4, 1) (4, 1) (2, 1)

VM-G (1, 1) (2, 1) (4, 3) (1, 1) (1, 1) (3, 2) (2, 1) (1, 1)

better workflow throughput performance as the default scheduler in Storm does not

consider the global bottleneck.

7.4.2 Experiment 2 with Climate Data

WRF Workflow To evaluate the performance of our algorithm in real computing

environments, we conduct Storm experiments based on the Weather Research and

Forecasting (WRF) model [50], which has been widely adopted for regional to

continental scale weather forecast. The WRF model [9] generates two large classes

of simulations either with an ideal initialization or utilizing real data. In our

experiments, the simulations are generated from real data, which usually requires

preprocessing from the WPS package [10] to provide each atmospheric and static

field with fidelity appropriate to the chosen grid resolution for the model.

The structure of a general WRF workflow is illustrated in Figure 7.13,

where the WPS consists of three independent programs: geogrid.exe, ungrib.exe,

119

and metgrid.exe [54]. The geogrid program defines the simulation domains and

interpolates various terrestrial datasets to the model grids. The user can specify

information in the namelist file of WPS to define simulation domains.that typically

contain more fields than needed to initialize WRF. The ungrib program “degrib”

the data and stores the results in a simple intermediate format. The metgrid

program horizontally interpolates the intermediate-format meteorological data that

are extracted by the ungrib program into the simulation domains defined by the

geogrid program. The interpolated metgrid output can then be ingested by the WRF

package, which the data by WPS, we will run the programs in WRF model.contains

an initialization program real.exe for real data and a numerical integration program

wrf.exe. The postprocessing model consists of ARWpost and GrADs. ARWpost

reads-in WRF-ARW model data and creates output files for display by GrADS.

We duplicate three WRF pipelines each from ungrib.exe to ARWpost.exe, and

group these programs into different aggregate modules to simulate real-life workflow

clustering and provide various module parallelism, as shown in Figures. 7.14 and 7.15.

Figure 7.15 is a high-level view of grouped workflow in Figure 7.14, where w0 and

w7 are the start and end modules [54].

We execute the WRF topology in the same computing environment as the

experiments for flight data processing.

Performance Comparison We first execute the entire topology on one VM

instance of each of four VT types in the stand-alone mode to obtain the execution

time matrix for one tuple on the module, as shown in Table 7.6.

Similarly, in this set of experiments, the time interval for emitting two

contiguous tuples is set to be a random value within a range of [0 .5ms, 1.5ms]. The

budget is set to be five times p(vt4). We run BOTM and VM-GREEDY to obtain

two mapping schemes as tabulated in Table 7.8. Similar to Table 7.4, each cell stores

120

Figure 7.14 The WRF Storm workflow of three pipelines in the experiments.

Figure 7.15 The WRF Storm workflow after grouping.

(vt,DoP) for each corresponding module. Based on the mapping schemes produced

by BOTM and VM-GREEDY, we set up two corresponding clusters C4 and C5.

The C4 cluster produced by BOTM contains 8 VM instances, while the C5 cluster

produced by VM-GREEDY contains 10 VM instances. We also set up a randomly

generated cluster C6 that contains 8 VM instances satisfying the budget constraint.

The configurations of these three clusters are provided in Table 7.7.

We run the Storm topology for WRF workflow in C4 and C5 produced by

BOTM and VM-GREEDY, respectively, for three times. Also, we run the topology

in the default Storm system in clusters C4, and set the DoP for each module to be

1, which is the highest DoP in the mapping scheme achieved by BOTM. Similarly,

121

Table 7.9 Throughput Measurements in tuples/hour of BOTM, VM-G (VM-

GREEDY), and STORM (STORM DEFAULT) in Experiment 2 on WRF Workflow,

Where Each Run Lasts for 10 Hours

Algorithm Idx w0 w1 w2 w3 w4 w5 w6 w7 Thruhput Average

(average number of tuples processed by each module Thruput

within a 10-min window)

BOTM 1 960 440 900 400 200 60 40 100 240

C4 2 940 460 920 400 200 40 40 100 240 240

3 940 440 900 380 220 40 60 100 240

VM-G 1 875 482 71 393 196 54 36 120 216

C5 2 893 429 321 339 339 36 36 89 216 210

3 810 479 397 380 380 33 50 99 198

STORM 1 480 21 42 10 10 10 10 10 60

66C4 2 920 60 140 60 60 20 20 40 120

DoP=1 3 137 9 24 9 23 3 3 3 18

STORM 1 531 11 23 34 34 11 11 22 66

36C5 2 133 9 17 9 9 3 3 3 18

DoP=1 3 164 7 14 7 7 4 4 4 24

STORM 1 261 20 38 14 6 3 6 6 18

22C5 2 209 5 9 5 9 2 5 5 12

DoP=2 3 564 58 122 58 38 13 6 13 36

STORM 1 485 4 11 4 20 4 4 8 24

24C5 2 631 28 42 19 14 14 14 5 30

DoP=3 3 380 20 12 12 3 3 6 3 18

STORM 1 375 17 25 8 17 8 8 8 48

28C6 2 143 3 3 3 6 3 3 6 18

DoP=1 3 120 5 8 3 10 3 3 3 18

STORM 1 297 13 30 13 13 3 7 7 18

18C6 2 281 24 46 17 12 4 3 6 18

DoP=2 3 245 3 11 5 11 3 5 5 18

STORM 1 812 18 36 18 61 18 24 48 108

48C6 2 137 2 4 1 5 3 3 7 6

DoP=3 3 345 8 16 10 23 8 5 13 30

122

we run the topology in the default Storm system in clusters C5, and set the DoP

for each module from 1 to the highest DoP in the mapping scheme achieved by

VM-GREEDY, which is 3. In the randomly generated cluster C6, we set the DoP

for each module from 1 to 3. For each DoP , we run the experiment for three times.

All performance measurements are tabulated in Table 7.9, where the underlined

throughput performance measured within a 10-min window corresponds to the global

bottleneck module.

We calculate the average throughput with standard deviation across different

degrees of parallelism based on these performance measurements, and plot them in

Figures. 7.16 and 7.17 for a visual comparison. Again, we observe that BOTM

consistently outperforms the other algorithms in comparison. In Figure 7.18, we

also illustrate the resource consumption (number of cores × memory size × time

unit) for WRF data processing across different degrees of parallelism (DoP) in

clusters C4, C5, and randomly generated cluster C6 by BOTM, VM-GREEDY and

STORM DEFAULT, respectively, under a given budget.

In this experiment, we observe that the DoP for each module in the mapping

scheme produced by BOTM is only 1. However, we still run Storm in its default

setting in the cluster provided by BOTM and increase the DoP from 1 to the highest

degree decided by VM-GREEDY. These results show that even without parallel

processing, BOTM still outperforms the other algorithms with parallel processing.

7.4.3 Summary

The performance superiority of BOTM is brought by a careful design that follows

two important guidelines: i) it is bottleneck-oriented as the global bottleneck

module determines the overall throughput of the entire workflow, and ii) it is

bottleneck-adaptive as the global bottleneck may shift to a different module after

each adjustment and the most suitable adjustment is adopted to maximize the global

123

C4_
BOTM

C4_
STORM_D

EFAULT
_D

oP
=1

C5_
VM-G

REEDY

C5_
STORM_D

EFAULT
_D

oP
=1

C5_
STORM_D

EFAULT
_D

oP
=2

C5_
STORM_D

EFAULT
_D

oP
=3

C6_
STORM_D

EFAULT
_D

oP
=1

C6_
STORM_D

EFAULT
_D

oP
=2

C6_
STORM_D

EFAULT
_D

oP
=3

Cluster Configuration

0

50

100

150

200

250

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

tu
pl

es
/h

ou
r)

Figure 7.16 The average throughput with standard deviation of the Storm topology

for WRF data processing across different degrees of parallelism (DoP) in clusters

C4 and C5 produced by BOTM and VM-GREEDY, respectively, and randomly

generated cluster C6 under a given budget.

throughput of the workflow instead of the local throughput of any component module.

Storm’s default scheduler (STORM DEFAULT) neither considers the bottleneck

module nor performs selective resource allocation; VM-GREEDY also neglects the

bottleneck and only allocates resources to modules in a topologically sorted order.

124

C4_
BOTM

C4_
STORM_D

EFAULT
_D

oP
=1

C5_
VM-G

REEDY

C5_
STORM_D

EFAULT
_D

oP
=1

C5_
STORM_D

EFAULT
_D

oP
=2

C5_
STORM_D

EFAULT
_D

oP
=3

C6_
STORM_D

EFAULT
_D

oP
=1

C6_
STORM_D

EFAULT
_D

oP
=2

C6_
STORM_D

EFAULT
_D

oP
=3

Cluster Configuration

-10

0

10

20

30

40

50

60

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

tu
pl

es
/c

or
e-

ho
ur

)

Figure 7.17 The average throughput (per core) with standard deviation of the

Storm topology for WRF data processing across different degrees of parallelism (DoP)

in clusters C4 and C5 produced by BOTM and VM-GREEDY, respectively, and

randomly generated cluster C6 under a given budget.

125

0 1 2 3 4 5 6 7 8 9
Average Throughput (tuples/hour) 108

0

20

40

60

80

100

120

140

R
es

ou
rc

e
C

on
su

m
pt

io
n

(#
 o

f c
or

es
 *

 m
em

or
y

*
tim

e
un

it)

C4_BOTM
C4_STORM_DEFAULT_DoP=1
C5_VM-GREEDY
C5_STORM_DEFAULT_DoP=1
C5_STORM_DEFAULT_DoP=2
C5_STORM_DEFAULT_DoP=3
C6_STORM_DEFAULT_DoP=1
C6_STORM_DEFAULT_DoP=2
C6_STORM_DEFAULT_DoP=3

Figure 7.18 The resource consumption for WRF data processing across different

degrees of parallelism (DoP) in clusters C4, C5, and randomly generated cluster

C6 by BOTM, VM-GREEDY and STORM DEFAULT, respectively, under a given

budget.

126

CHAPTER 8

CONCLUSION

In this work, we focus on improving performance of big data computing workflows

for batch and stream data processing in multi-clouds. We have worked on serial-

computing workflows, MapReduce workflows and Storm-based streaming processing

workflows.

For serial computing workflows, we constructed rigorous mathematical models

to analyze the intra- and inter-cloud execution process of scientific workflows

and we formulated a budget-constrained workflow mapping problem to minimize

the makespan of scientific serial-computing workflows in multi-cloud environments,

referred to as BCMED-MC, which was shown to be NP-complete. For each of the

two senarios: mapping using dedicated VM, and mapping reusing VM, we designed

a heuristic algorithm that incorporates the cost of inter-cloud data movement into

workflow scheduling.

As we enter the big data era, several efforts have been made to develop workflow

engines for Hadoop ecosystem in clouds with virtual resources. We expanded

our work to Hadoop environments and formulated a budget-constrained workflow

mapping problem to minimize the makespan of MapReduce workflows in multi-cloud

environments, referred to as MinMRW-MC, which was shown to be NP-complete. We

designed a heuristic algorithm for MinMRW-MC that adapts the execution dynamics

of MapReduce programs..

Streaming data processing has become increasingly important due to its

impacts on a wide range of use cases, such as real-time trading analytics, malfunction

detection, campaign, social network, log processing and metrics analytics. To

meet the demands of streaming data processing, many new computing engines

127

have emerged, including Apache Storm and Apache Spark (Spark Streaming). We

formulated a budget-constrained Storm topology mapping problem to maximize the

throughput in cloud environments, referred to as STM-BC, which was shown to be

NP-complete. We designed a heuristic algorithm BOTM for STM-BC.

The performance superiority of all solutions over other methods are demon-

strated through extensive simulations and real-life experiments in public clouds.

It would be of our future interest to refine and generalize the mathematical

models to achieve a higher level of accuracy for workflow execution time measurement

in real-world cloud environments. For example, the actual execution time of different

programs on different types of VMs is dependent on many factors such as program

structures and machine configurations. Particularly, when provisioning multiple VMs

on the same physical server, the performances of those VMs are correlated and

constrained by the physical machine. Moreover, in real networks, physical servers

may fail under a certain probability and the actual workload of workflow modules

may be subject to dynamic changes.

128

REFERENCES

[1] Information Sciences Institute, University of Southern California. Pegasus in the
cloud. http://pegasus.isi.edu/cloud. Access in 2016.

[2] Flink. https://flink.apache.org/. Access in 2017.

[3] Spark Streaming. https://spark.apache.org/streaming/. Access in 2017.

[4] Samza. http://samza.apache.org/. Access in 2017.

[5] Apex. https://apex.apache.org/. Access in 2017.

[6] Google Cloud Dataflow. https://cloud.google.com/dataflow/. Access in 2017.

[7] Jstorm. http://jstorm.io/. Access in 2017.

[8] Heron. https://twitter.github.io/heron/. Access in 2017.

[9] Weather Research and Forecasting (WRF) Model. http://wrf-model.org/index.php.
Access in 2017.

[10] WRF Preprocessing System (WPS). http://www2.mmm.ucar.edu/wrf/users/wpsv2/wps.html.
Access in 2017.

[11] Google Cloud. https://cloud.google.com/. Access in 2017.

[12] Amazon Web Services (AWS). https://aws.amazon.com/. Access in 2017.

[13] Bottleneck-Oriented Topology Mapping (BOTM).
https://github.com/BigDataCenter/BOTM.

[14] ASA Sections on:Statistical Computing Statistical Graphics.

[15] S. Abrishami and M. Naghibzadeh. Deadline-constrained workflow scheduling in
software as a service cloud. Scientia Iranica, (0), 2012.

[16] B. Agarwalla, N. Ahmed, D. Hilley, and U. Ramachandran. Streamline: a scheduling
heuristic for streaming application on the grid. In Proc. of the 13th Multimedia
Comp. and Net. Conf., San Jose, CA, 2006.

[17] H. Alshammari, J. Lee, and H. Bajwa. Improving current hadoop mapreduce
workflow and performance. Int. Journal of Computer Applications,
116(15):0975–8887, 2015.

[18] Amazon, 2016. EC2. http://aws.amazon.com/ec2/. Access in 2016.

129

[19] L. Aniello, R. Baldoni, and L. Querzoni. Adaptive online scheduling in storm. In
Proceedings of the 7th ACM international conference on Distributed event-
based systems, pages 207–218, 2013.

[20] Apache, 2016. Hadoop. http://hadoop.apache.org. Access in 2017.

[21] Apache, 2016. Tez. https://tez.apache.org. Access in 2017.

[22] Apache, 2016. Oozie. https://oozie.apache.org. Access in 2017.

[23] Apache, 2016. Spark. http://spark.apache.org. Access in 2017.

[24] Apache, 2016. Storm. http://storm.apache.org. Access in 2017.

[25] Z. Hong R. Farivar B. Peng, M. Hosseini and R. Campbell. R-storm: Resource-
aware scheduling in storm. In Proceedings of the 16th Annual Middleware
Conference, pages 149–161. ACM, 2015.

[26] V. Cardellini, V. Grassi, F. L. Presti, and M. Nardelli. Distributed qos-aware
scheduling in storm. In Proceedings of the 9th ACM International Conference
on Distributed Event-Based Systems, pages 344–347. ACM, 2015.

[27] Z. Chen, J. Xu, J. Tang, K. Kwiat, and C. Kamhoua. G-storm: Gpu-enabled high-
throughput online data processing in storm. In Big Data (Big Data), 2015
IEEE International Conference on, pages 307–312. IEEE, 2015.

[28] C. Wu and G. Yi. Optimizing end-to-end performance of data-intensive computing
pipelines in heterogeneous network environments. Journal of Parallel and
Distributed Computing, 71(2):254–265, 2011.

[29] N. Rosa D. Oliveira, A. Brinkmann and P. Maciel. Performability evaluation and
optimization of workflow applications in cloud environments. Journal of Grid
Computing, 17:749 – 770, 2019.

[30] L. Eskandari, Z. Huang, and D. Eyers. P-scheduler: Adaptive hierarchical scheduling
in apache storm. In Proceedings of the Australasian Computer Science Week
Multiconference, page 26. ACM, 2016.

[31] H. Takabi F. Abazari, M. Analoui and S. Fu. Mows: Multi-objective workflow
scheduling in cloud computing based on heuristic algorithm. Simulation
Modelling Practice and Theory, 93:119 – 132, 2019.

[32] T. Hacker and K. Mahadik. Flexible resource allocation for reliable virtual cluster
computing systems. In Proc. of the ACM/IEEE Supercomputing Conference,
pages 48:1–48:12, 2011.

130

[33] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman, and J. Good.
On the use of cloud computing for scientific workflows. In Proc. of the 4th
IEEE Int. Conf. on eScience, pages 640–645, Washington, DC, USA, 2008.

[34] A. Gleave R.N.M. Watson I. Gog, M.Schwarzkopf and S. Hand. Firmament: Fast,
centralized cluster scheduling at scale. In Proc. of Operating Systems Design
and Implementation, pages 99–115, Savannah, GA, November 2016. USENIX
Association.

[35] E. Thompson J. and G.L. Bretthorst. Probability theory : the logic of science.
Cambridge University Press, Cambridge, UK, New York, 2003.

[36] Q. Jiang, Y.C. Lee, and A.Y. Zomaya. Executing large scale scientific workflow
ensembles in public clouds. In Proc. of the 44th Int. Conf. on Para. Proc.,
Beijing, China, September 1-4 2015.

[37] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. Berman, and P. Maechling.
Data sharing options for scientific workflows on amazon ec2. In Proc. of the
ACM/IEEE Supercomputing Conf., pages 1–9, Washington, DC, USA, 2010.

[38] P. Cong P. Lu T. Wei J. Zhou, T. Wang and M. Chen. Cost and makespan-aware
workflow scheduling in hybrid clouds. Journal of Systems Architecture,
100:101631, 2019.

[39] L. Bao, C. Wu, X. Bu, N. Ren and M.Shen. Performance modeling and workflow
scheduling of microservice-based applications in clouds. IEEE Transactions
on Parallel and Distributed Systems, 30:2114 – 2129, 2019.

[40] X. Lin and C.Q. Wu. On scientific workflow scheduling in clouds under budget
constraint. In Proc. of the 42nd Int. Conf. on Para. Proc., Lyon, France, Oct.
1-4 2013.

[41] Y. Xie Y. Tan J. Walda Z. Zhao L. Li, J. Tan and D. Gajewski. Waveform-based
microseismic location using stochastic optimization algorithms: A parameter
tuning workflow. Computers Geosciences, 124:115 – 127, 2019.

[42] Z.A. Mann. Allocation of virtual machines in cloud data centers – a survey of problem
models and optimization algorithms. ACM Computing Surveys, 48(1):Article
No. 11, Sept. 2015.

[43] M. Mao and M. Humphrey. Auto-scaling to minimize cost and meet application
deadlines in cloud workflows. In Proc. of Supercomputing Conf., pages 49:1–
49:12, 2011.

[44] M. Mao, J. Li, and H. Marty. Cloud auto-scaling with deadline and budget
constraints. In Grid Computing, pages 41–48, Oct. 2010.

131

[45] S. Moon, J. Lee, X. Sun, and Y. Kee. Optimizing the hadoop mapreduce framework
with high-performance storage devices. The Journal of Supercomputing,
71(9):3525–3548, 2015.

[46] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. Yahoo s4: Distributed stream
computing platform. In Data Mining Workshops (ICDMW), 2010 IEEE
International Conference on, pages 170–177, 2010.

[47] M.A. Rodriguez and R. Buyya. Deadline based resource provisioning and scheduling
algorithm for scientific workflows on clouds. IEEE Trans. on Cloud
Computing, 2(2), 2014.

[48] A. Sekhar, B.S. Manoj, and C.S.R. Murthy. A state-space search approach for
optimizing reliability and cost of execution in distributed sensor networks.
In Proc. of Int. Workshop on Dist. Comp., pages 63–74, 2005.

[49] J. Shi, J. Luo, F. Dong, J. Zhang, and J. Zhang. Elastic resource provisioning for
scientific workflow scheduling in cloud under budget and deadline constraints.
Cluster Computing, 19(1):167–182, 2016.

[50] W.C. Skamarock, J.B. Klemp, J. Dudhia, D.O. Gill, D.M. Barker, M.G. Duda,
X. Huang, W. Wang, and J.G. Powers. A description of the advanced research
wrf version 3. Technical Report NCAR/TN-475+STR, National Center for
Atmospheric Research, Boulder, Colorado, USA, June 2008.

[51] W. Tian, G. Li, W. Yang, and R. Buyya. Hscheduler: an optimal approach
to minimize the makespan of multiple mapreduce jobs. The Journal of
Supercomputing, 72(6):2376–2393, 2016.

[52] I. Gupta V. Singh and P.K. Jana. An energy efficient algorithm for workflow
scheduling in iaas cloud. Journal of Grid Computing, 18:357 – 376, 2020.

[53] C.Q. Wu and H. Cao. Optimizing the performance of big data workflows in multi-
cloud environments under budget constraint. In Proc. of the 13th IEEE SCC,
San Francisco, USA, June 27 - July 2 2016.

[54] C.Q. Wu, X. Lin, D. Yu, W. Xu, and L. Li. End-to-end delay minimization for
scientific workflows in clouds under budget constraint. IEEE Trans. on Cloud
Comp., 3(2):169–181, 2015.

[55] H. Xu X. Ma, H. Gao and M. Brian. An iot-based task scheduling optimization
scheme considering the deadline and cost-aware scientific workflow for cloud
computing. Journal on Wireless Communications and Networking, 249:1687
– 1499, 2019.

[56] J. Xu, Z. Chen, J. Tang, and S. Su. T-storm: Traffic-aware online scheduling in storm.
In Distributed Computing Systems (ICDCS), 2014 IEEE 34th International
Conference on, pages 535–544, 2014.

132

[57] Y. Wang Y. Cheng R. Xu A.S. Sani D. Yuan Y. Xie, Y. Zhu and Y. Yang. A
novel directional and non-local-convergent particle swarm optimization based
workflow scheduling in cloudedge environment. Future Generation Computer
Systems, 97:361 – 378, 2019.

[58] L. Zeng, V. Bharadwaj, and X. Li. Scalestar: Budget conscious scheduling
precedence-constrained many-task workflow applications in cloud. In Int.
Conf. on Advanced Information Networking and Applications, volume 0, pages
534–541, Los Alamitos, CA, USA, 2012.

[59] X. Zhang, L. Chen, and M. Wang. Efficient multi-way theta-join processing using
mapreduce. In Proc. of VLDB Endow, volume 5, pages 1184–1195, July 2012.

[60] W. Yu, Y. Lin J. Zhang, T. Gu, Z. Wang, Z. Zhan and J. Zhang. Dynamic group
learning distributed particle swarm optimization for large-scale optimization
and its application in cloud workflow scheduling. IEEE Transactions on
Cybernetics, 50:2715–2729, 2020.

133

	Performance optimization of big data computing workflows for batch and stream data processing in multi-clouds
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Content (1 of 2)
	Table of Content (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Related Work
	Chapter 3: Cost Model Construction
	Chapter 4: Serial Computing Workflows Using Dedicated VM
	Chapter 5: Serial Computing Workflows Reusing VM
	Chapter 6: Mapreduce-Based Workflows
	Chapter 7: Storm-Based Stream Data Processing Workflows
	Chapter 8: Conclusion
	References

	List of Tables (1 of 2)
	List of Tables (2 of 2)

	List of Figures (1 of 5)
	List of Figures (2 of 5)
	List of Figures (3 of 5)
	List of Figures (4 of 5)
	List of Figures (5 of 5)

