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ABSTRACT 

Title of Thesis: A Theoretical Study of Pure and Simple Competi-

tion between two Microbial Species in Configu-

rations of two Interconnected Chemostats 

Cheng-Ming Kung, Master of Science in Chemical Engineering, 1986 

Thesis directed by: Dr. Basil C. Baltzis 

It is known that two microbial populations competing purely 

and simply for a common substrate cannot coexist in a steady 

state in an environment which is spatially homogeneous. Hence 

they cannot coexist in a chemostat something which implies that 

a mixed culture of two pure and simple competitors cannot be 

maintained in a single ideal reactor in a steady state. The 

present study investigates theoretically pure and simple compe-

tition between two populations in two interconnected chemostats. 

Three reactor configurations are considered and analyzed. It is 

proved that two pure and simple competitors can coexist in a 

steady state in both reactors in cases where the conditions are 

such that they favor the growth of one species in one reactor 

and the growth of its competitor in the other vessel. It is then 

concluded that spatial inhomogeneities can lead to steady state 



coexistence of pure and simple competitors. The results of this 

study have been derived analytically and numerically. The 

dynamic behavior of the system at all possible steady states has 

been studied analytically. A number of conditions sufficient 

and/or necessary for the existence of each one of the possible 

steady states have been derived also analytically. The numeri-

cal studies have shown that one can always find a range in the 

operating parameters space where coexistence occurs, that the 

steady states are mutually exclusive and that no steady state 

exhibits multiplicity. The results are presented in series of 

two-dimensional operating diagrams and the effect of all para-

meters on the behavior of the system is studied and discussed in 

detail. It has been also proved that it is not necessary for 

coexistence to externally feed both vessels with nutrient medium 

and that there is a design configuration which makes the envi-

ronment always homogeneous in which case coexistence is im-

possible. 
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INTRODUCTION 

Microorganisms may be most well known as agents that 

cause disease and spoil food. Nevertheless they are pre-

sently employed by man in quite a number of significant 

industrial operations. Fermentation technology—the most 

established branch of biochemical engineering—refers to 

those situations in which the technologist uses the activi-

ties of microorganisms to increase the value of raw mater-

ials. Sanitary or environmental engineering refers to 

those situations in which the technologist uses the activi-

ties of microorganisms in order to decrease the negative 

value of aqueous waste materials discharged to the environ-

ment. The activities of microorganisms can be also employ-

ed by the mining industry on a large scale to leach certain 

elements from their ores. Still another area where man 

might eventually utilize microbial activities on a very 

large scale is that of the capture and conversion of solar 

energy [1], an idea that enjoyed a lot of support in the 

period of oil crisis. 

The fermentation industry uses mainly pure culture 

techniques. Probably the main reason for doing so is that 

in most cases the product is a complicated, valuable orga- 

1 
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nic molecule which can be made by a single microbial popu-

lation, and when such a population has been isolated and 

improved one does not want to introduce other microorga-

nisms which might compete with or be antagonistic to the 

product yielding population. Nevertheless, there are 

reasons for studying the behavior of populations in mixed 

cultures. First, certain industrial operations, notably 

waste disposals, do utilize mixed populations. Second, 

invasion by contaminants or formation of mutants turn a 

pure culture into a mixed one. Third, mixed cultures offer 

some potential advantages, such as (i) ability to perform 

sequences of chemical transformations which no pure culture 

can do, (ii) ability to grow on simpler and hence cheaper 

media, (iii) ability to continue functioning over a wider 

range of environmental conditions, (iv) ability to resist 

invasion by contaminants. Finally, a fourth reason for 

studying mixed cultures is that natural systems always 

involve the activities of mixed cultures [2]. 

The main thing which makes pure culture techniques 

fundamentally different from those of mixed culture is that 

populations of microbial species interact between one 

another when they find themselves in a common environment. 

There are many types of microbial interactions and they 

have been classified [2] into two categories: direct and 

indirect. Parasitism and feeding are two examples of 
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direct interactions. Competition, antagonism, commensalism 

and mutualism are some examples of indirect interactions. 

The present study deals with some aspects of microbial 

competition, an interaction which is discussed in the 

following. 

Microorganisms in order to grow and proliferate need 

chemicals and available energy. The chemicals are used to 

supply elements such as carbon, oxygen, nitrogen, sulfur 

while available energy is used to synthesize molecules and 

to maintain life. These common needs give rise to competi-

tion, which occurs in all but the simplest ecosystems [3]. 

Osmotrophic organisms—such as bacteria, yeasts molds 

and microalgae—obtain chemicals by molecule-by-molecule or 

ion-by-ion transfer of the chemicals across their cell 

membranes. Phagotrophic organisms, such as many protozoan 

populations, obtain chemicals by ingesting and digesting 

particular matter and then absorbing the products of diges-

tion. Evidently, phagotrophic microorganisms are more 

likely to prey on osmotrophic microorganisms than to com- 

pete with them. However, populations of phagotrophic 

microorganisms are likely to compete with one another for 

resources of particular matter, and populations of osmo-

trophic microorganisms are likely to compete for resources 

of chemicals [3]. 
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The different ways microorganisms satisfy their needs 

for carbon divide them into two main categories. Hetero-

trophic microorganisms obtain carbon by uptaking organic 

compounds, phagotrophically or osmotrophically, whereas 

autotrophic microorganisms obtain carbon by uptaking carbon 

dioxide. Synthesis of organic compounds from carbon di-

oxide requires a supply of available energy. Photoauto-

trophs obtain this energy by absorbing light, whereas 

chemoautotrophs or chemolithotrophs obtain it by oxidizing 

certain inorganic compounds. Evidently, heterotrophs that 

are also osmotrophs will compete for organic compounds 

present in their environment, but they will not compete for 

such compounds with chemolithotrophs that are present. 

Photoautotrophs will compete similarly for light. Although 

heterotrophs do not have to compete with autotrophs for 

organic compounds, they may compete with autotrophs for 

other chemicals such as nitrogen or phosphorus [3]. 

Some microbial populations, called generalists, use 

several to many different chemical compounds to satisfy the 

same need in their subcellular economy (e.g. carbon), 

whereas other populations, called specialists, are obli-

gately dependent on one compound or perhaps a few compounds 

to satisfy such a need. Some things that a generalist 

population uses will be most likely exempt from competition 

with a specialist population and this can have important 

effects to the outcome of competition [3]. 
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From the discussion above it follows that there are 

many different patterns of competition that need to be 

classified. But first one needs to give the exact defini-

tion for competition. Populations P1 and P2 compete for 

resource p if and only of (i) both P1 and P2 use, but do 

not necessarily require, p and (ii) resource p has a dy-

namical effect on at least one of the populations, and 

possibly on both of them. Resource p has a dynamical 

effect on a population if its availability at any time has 

a significant effect on the net growth rate of that popula-

tion [3]. It is emphasized that populations P1 and P2 are 

not said to compete for p when neither is dynamically 

affected by it, even though both use it. 

One way to classify the patterns of competition is by 

counting the number of resources competed for: if one 

resource is competed for, competition is single, and if two 

are competed for it is double and so on. If competition is 

the only interaction between two populations, it is called 

pure. 

Pure and simple competition which is the topic of the 

present thesis, arises in the case where the availability 

of a single nutrient affects the growth rate of at least 

two populations. A detailed classification of all patterns 

of competition has been offered by some researchers [3,4] 

with definitions based on the set theory. 
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Continuous culture techniques are based on the use of 

a chemostat. This is a vessel fed at a constant rate with 

sterile nutrient medium of constant composition and from 

which culture is removed at the same volumetric rate at 

which fresh medium is added. The culture is kept spatially 

homogeneous by mixing. 

Most of the existing studies on competition, reviewed 

in the following section, are done for spatially homogene-

ous environments and they have concluded that pure and 

simple competitors cannot coexist in a steady state. 

The present study entails finding if the same conclu-

sion holds when the environment is spatially heterogeneous. 



LITERATURE REVIEW 

Several researchers have examined the dynamics of a 

chemostat in which two populations of microorganisms grow 

competing for the same rate-limiting nutrient. Their 

analysis showed that competition of two populations for a 

single rate-limiting nutrient leads to extinction of one of 

the populations if they are grown in a spatially uniform 

environment that is subject to time-invariant external 

influences. The above statement, or rather a less cau-

tiously worded version of it, is known as the competitive 

exclusion principle [5], and its validity and applicability 

have been the subjects of much discussion among ecologists. 

This nonexistence of a coexistence steady state has been 

amply demonstrated both on microbial and nonmicrobial com-

petitors [6-12]. However, it is commonly observed that 

populations which compete with one another do coexist in 

natural ecosystems; this apparent contradiction to the 

competitive exclusion principle has been called the paradox 

of the plankton by Hutchinson [13]. The paradox may be 

resolved in various ways, among which the most common are 

(i) the environment is not spatially homogeneous and (ii) 

the external conditions influencing the environment are not 

7 
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time-invariant. In such a case one population here or now 

has the competitive advantage, whereas the other population 

there or then has this advantage [14]. 

The paradox of the plankton is that the examination of 

a small volume of water (e.g. 10m1) usually yields a list 

of some tens of species while the competitive exclusion 

principle might lead one to expect only one or a few spe-

cies. Hutchinson [13] believes that the main answer to the 

paradox of the plankton lies in the false assumption of the 

plankton being in an equilibrium state. Since conditions 

change in the plankton habitat, perhaps one, and then 

another, organism is the superior competitor, the succes-

sion of conditions being so rapid that no one organism has 

the advantage long enough to cause the extinction of the 

others. 

Riley [15] offers another explanation to the paradox. 

He believes that natural selection has caused phytoplankton 

to approach asymptotically some upper limit of efficiency 

which makes differences between species so small that 

extinction, even in an equilibrium state, would proceed at 

a very slow rate. 

After examining a series of samples from Castle lake, 

California and Tahoe, California-Nevada, Richerson et al 

[16] proposed the contemporaneous disequilibrium model to 

explain the paradox of the plankton. According to their 
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hypothesis, at any instant of time, many patches of water 

exist in every one of which one species is at a competitive 

advantage relative to the others. These water masses are 

stable enough to permit a considerable degree of patchiness 

to occur in phytoplankton, but are obliterated frequently 

enough to prevent the exclusive occupation of each niche by 

a single species. This hypothesis differs from Hutchinson's 

by stressing the contemporaneous, rather than temporal, 

heterogeneity of the plankton habitat. Yet, these two 

nonequilibrium hypotheses are not contradictory, but they 

rather reinforce one another. 

Grenney et al [17] developed a mathematical model to 

represent phytoplankton growth dynamics. The model which 

incorporates intracellular nutrient storage is used to 

demonstrate the succession of blooms and coexistence of 

species in phytoplankton communities as influenced by 

temporal changes in environmental conditions. Thus, an 

organism's ability to compete at any instant of time is 

based not only on current environmental conditions, but 

also on the past history of nutrient uptake (e.g. storage). 

Based on the idea of repeated alteration of density 

dependent (competition phase) and density independent 

growth (unrestricted growth phase) Koch [18] used computer 

simulation to show that coexistence of two populations was 

possible if one had the advantage on density dependent 
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periods while the other had the advantage on density inde-

pendent periods. This predicted coexistence though, does 

not occur at a steady state but in an oscillatory mode. 

Peterson [19] suggested that an assemblage of coexist-

ing phytoplankton may be limited by several, not a single, 

nutrients each species being principally limited by the 

availability of a different nutrient. The principal assump-

tion of the model is that each species is less effective at 

obtaining the nutrient of which it requires larger amounts 

when this nutrient is present at low concentration. The 

model offered an explanation for the coexistence of asso-

ciated phytoplanktons in a stable equilibrium in continuous 

culture. This approach implied that competition is not 

single (i.e. for one nutrient only). 

Titman [20] ran a series of experiments using mixed 

cultures of Asterionella formosa and Cyclotella meneghinia-

na which are potentially rate-limited by phosphate (PO4) 

and silicate (SiO2) in order to confirm that coexistence 

occurred only when the growth rate of each species was 

limited by a different resource. There were seventy-three 

experiments performed at different flow rates, and at 

various ratios of SiO2 to PO4 concentration so that both or 

either of them was rate-limiting. The results showed that 

if both species were grown together under PO4 limitation A. 

formosa was the dominant species, while under SiO2-limited 
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growth conditions C. meneghiniana was the superior competi-

tor. Under conditions of both PO4 and SiO2 limitation, in 

most cases both species coexisted indefinitely. These 

experiments support the ecological concept that as many 

competing species coexist as there are limiting resources, 

a hypothesis also used to explain the paradox [13). 

Harder and Veldkamp [12] studied the maximum specific 

growth rates of obligate and facultative psychrophiles from 

low to high temperatures. At low temperatures obligate 

psychrophiles have a maximum specific growth rate higher 

than the facultative ones while the opposite is true at 

high temperatures. As a consequence, in a chemostat mixed 

culture obligate psychrophilic Pseudomonas species (L12) 

prevailed at low temperature (-2°C), while facultative 

psychrophilic Spirillum species (L5) always won the compe-

tition at high temperature (16°C). At intermediate tem-

peratures (4 & 10°C), obligates won at high dilution rates, 

while facultatives prevailed at low dilution rates. These 

experiments prove that temperature also plays an important 

role on population dynamics, something which is sometimes 

ignored. In fact if the temperature is cycled between high 

and low values for the system described above the result 

can be coexistence of the two competitors in a state of 

sustained oscillations. In order for this to happen the 

cycling must be done in such a fashion so that one popula- 
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tion has the advantage over a temperature range while the 

other population grows faster over another temperature 

range. 

Powell (21] studied the growth of contaminants and 

mutants in a chemostat having a constant input. The 

interaction between the organism and the contaminant (or 

mutant) was assumed to be pure and simple competition. He 

claimed that either population could survive alone at 

either high or low dilution rates. In mixed culture 

though, if the growth rate of one of the organisms was 

always less than that of its competitor, it never estab-

lished itself. As a result, contaminant organisms or 

mutants which appear in a continuous culture can grow 

successfully only when their maximum specific growth rate 

and saturation constants stand in a certain relation to the 

constants of the native organisms and to the rate of flow 

through the culture vessel. This study then provided 

answers to the following two questions: can the chemostat 

be operated so that two competitors coexist in a steady 

state? If the chemostat is operated in such a way that one 

competitor is excluded, what is it that determines which 

population is excluded? The aforementioned questions have 

been addressed both experimentally and theoretically by 

many other researchers as well. 



13 

Jannasch [10] concluded from his experiments that a 

chemostat inoculated with a mixed population would select 

for the organism that exhibits the fastest growth rate 

under the specific conditions (composition of medium, 

temperature, etc.). In his experiments, 0.1 to 10 mg/liter 

of lactate, glycerol, or glucose were added to filter-

sterilized offshore seawater; ammonium and phosphate were 

added in sufficient concentrations to ascertain growth 

limitation by the carbon and energy source. 

Meers [11] grew Bacillus subtilis var. niger and 

Torula utilis under magnesium-limited conditions in a 

chemostat. The dilution rate used was either 0.005 or 0.08 

h-1, both dilution rates being well below those at which 

the organisms would be washed out from the culture (i.e. 

0.7 and 0.5 h-1, respectively). Bacillus subtilis replaced 

the yeast at the higher dilution rate, but the reverse was 

true at the lower dilution rate. Coexistence was not 

observed. 

Megee et al [8] worked with a mixed culture of Saccha- 

romyces cerevisiae and Lactobacillus casei grown anaerobic-

ally in a chemostat under conditions of relatively low 

glucose concentration. Although the yeast has a slightly 

greater growth rate than L. casei, this advantage of the 

yeast is more than cancelled by its susceptibility to death 

by starvation and by its relatively high Michaelis constant 
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(Ks), which does not allow the yeast to develop its maximum 

specific growth rate except at relatively high substrate 

concentrations. Hence it was observed that the bacteria 

eventually prevailed in the chemostat. 

Jost et al [9] studied the competition between E. coli  

and A. vinelandii for glucose in continuous culture. In 

about two days, Azotobacter got washed out to less than 10% 

of its initial density, and the glucose level dropped to a 

point where it was no longer measurable. Similar data were 

obtained at holding times from 5.6 to 23 hrs. In all 

cases, E. coli displaced Azotobacter. Both species follow-

ed Monod's model for the specific growth rate. The maximum 

specific growth rates for E. coli and Azotobacter were 0.32 

hr-1 and 0.23hr-1 while the values for the saturation cons-

tant (Ks) were 1x10-7 mg/ml and 1.2x10-2 mg/ml, respective-

ly. These values imply a tremendous competitive advantage 

for E. coli in the medium used. 

Taylor and Williams [22] studied competition between 

two species for two substrates in a chemostat. This is a 

case of competition which is not simple. They used a 

multiplicative (interactive) model in order to express the 

specific growth rate of each competitor. They showed that 

coexistence in a steady state is possible provided that 

certain conditions on the yield coefficients are satisfied. 
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Aris and Humphrey [23] studied the dynamics of a 

chemostat where pure and simple competition occurs for the 

case where the resource competed for has an inhibitory 

effect on the growth of the competitors especially when its 

concentration is high [24]; in this case, coexistence 

occurs only for discrete values of the chemostat dilution 

rate something which cannot be achieved in practice. 

Hsu et al [25] studied in a mathematically rigorous 

fashion the case where n species growing according to 

Monod's model compete for a single resource in a chemostat. 

They showed that only one species will eventually survive 

under given conditions of operation. 

From the experimental and theoretical studies discus-

sed above it becomes clear that pure and simple competition 

under conditions of spatial homogeneity and time-invariant 

external influences never leads to coexistence of the 

competing species. Furthermore, the winning species is 

always that which grows faster than all others. 

The constraint of temporally invariant inputs to a 

chemostat has been relaxed in some studies. 

The operation of a periodically forced chemostat in 

which two microbial populations compete for the same 

nutrient was studied by Stephanopoulos et al [26]. It was 

found that the cycling of the concentration of the substra-

te in the feed and/or the dilution rate between two values 
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one of which is very large resulting in washout of both 

populations, cannot give stable cycles. On the contrary, 

the cycling of the dilution rate between two values each 

one of which favors the growth of a different population, 

the periodic harvesting of a certain amount of biomass and 

growing medium and refilling of the chemostat with fresh 

medium and the simultaneous cycling of the dilution rate 

and the concentration of the substrate in the feed, can 

give stable periodic trajectories of coexistence. 

Smith [27] has presented some mathematically rigorous 

proofs for the existence of coexistence limit cycles when 

two species compete for a single nutrient in an environment 

having periodically varying inputs. The results of his 

analysis are local in character and they do not necessarily 

describe the global behavior of the system. 

It becomes now clear that when the constraint of 

temporally invariable inputs to the chemostat is relaxed, 

there are conditions under which pure and simple competi-

tors can coexist. It must be emphasized though that this 

coexistence is in a state of sustained oscillations and not 

in a steady state. 

The question now about the outcome of pure and simple 

competition is modified as following: can pure and simple 

competitors coexist in an environment having temporally 

invariant inputs? The answer is negative if the environ- 
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ment is spatially homogeneous and thus one has to relax 

this constraint in order to give the final answer to the 

question. 



PURE AND SIMPLE COMPETITION IN A SPATIALLY HETEROGENEOUS 

ENVIRONMENT AND niE SCOPE OF THE PRESENT STUDY 

An environment is spatially heterogeneous when it 

consists of a number of subenvironments communicating 

between one another and having different characteristics 

that may imply different growth conditions for any popula-

tion which finds itself in them. 

In the case of biological reactors spatial heteroge-

neity may arise due to a number of reasons e.g. incomplete 

mixing, non-ideality of flow, attachment of cells on the 

walls of the reactor etc., all of which can be viewed as 

deviations from the notion of the ideal chemostat. 

Baltzis and Fredrickson [28] studied the case where 

two populations compete for a single resource in a perfect-

ly mixed chemostat having constant inputs with one of the 

competitors having the ability to attach on the walls of 

the vessel. The attachment of cells on the wall created 

two subenvironments, the suspended culture and the solid 

surface. Their analysis showed that if the population 

which does not attach on the walls has the competitive 

advantage in the liquid the overall result is that the two 

populations always coexist in a stable steady state if the 

18 
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attachment of cells on the solid is irreversible while when 

it is reversible there is again a wide range of the operat-

ing parameters space where stable coexistence occurs in a 

steady state. It must be noted that in this study competi-

tion occurs only in one of the two subenvironments. 

Stephanopoulos and Fredrickson [14] in a short commu-

nication indicated that if pure and simple competition 

occurs in two interconnected vessels both of them fed by 

the rate-limiting nutrient at the same concentration level 

coexistence in a stable steady state is possible provided 

that the conditions are such that one population has the 

competitive advantage in one vessel while its competitor 

has the advantage in the other. This condition implies 

that the conditions prevailing in the two vessels must be 

different and as a consequence the system viewed as a whole 

is a spatially inhomogeneous one. 

The idea for the present thesis came from the afore-

mentioned short communication. The following questions 

were addressed: 

For the system proposed by Stephanopoulos and Fredric- 

kson, how large is the domain in the operating parameters 

space where coexistence occurs? If it is a very narrow 

domain then one could not in reality operate in it at least 

without controlling the system. What is the effect of 

parameters such as the recycle ratio, the splitting ratio 
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of the external feed, the ratio of the volumes of the 

reactors, to the domain of coexistence? 

Furthermore, a basic question is whether the external 

feed to both reactors is a necessary condition for coexist-

ence or not. If not, then the effect of various parameters 

(mentioned also above) on the range of the domain of coex-

istence should be studied, in order to provide an answer to 

the question of which one (splitting or non-splitting of 

the feed) system is better in order to maximize the domain 

of coexistence? 

Finally, suppose that both reactors are externally fed 

with medium containing the rate-limiting substrate at two 

different concentration levels. Does this system lead also 

to coexistence? Is it better or worse than the two 

previously mentioned ones, if the objective is to increase 

the domain of coexistence in the operating parameters 

space? 



I MATHEMATICAL DESCRIPTION OF THE PROBLEM 

AND PRELIMINARY MANIPULATIONS 

CONFIGURATION OF THE SYSTEM 

According to the so-called competitive exclusion 

principle, competition of two populations for a single 

rate-limiting non-renewable nutrient always leads to ex-

tinction of one of the populations if they are grown in a 

spatially uniform environment that is subject to time-

invariant external influences. In order to investigate if 

spatial heterogeneities of the environment lead to coexis-

tence of the two competitors the present thesis studies all 

aspects of pure and simple competition between two popula-

tions in two interconnected chemostats. 

Figure 1: The General system 
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The most general configuration of the system is shown 

in Figure 1. Both chemostats are supplied with nutrients 

and the substrate competed for, from two different sources. 

The effluent of the first vessel is fed to the second one 

while the effluent of the latter is partially recycled to 

the first. Note that it is easy to show that without the 

recycle coexistence in both vessels is impossible. 

The three systems mentioned in the previous section 

arise from the general configuration as following: 

--Sif=S2f, q01  0, and q02#0 system proposed by 

Stephanopoulos and Fredrickson. It will be referred to as 

the splitting system. 

--q02=0, the simplest case. It will be referred to as the 

Ron-splitting system. 

--S1f#S2f,  q010, q020. The most general and complex 

system. 

All three systems will be analyzed in later sections 

of this thesis. 

MODEL EQUATIONS 

Two populations A and B with biomass concentration a 

and b, respectively, competing for a rate-limiting subs-

trate S the concentration of which is s, are considered. 

The specific growth rate of A is 41, while that of B is 42. 

When Monod's model is adopted, the expressions of 41 and u2 

are the following: 



where, 

umi: maximum specific growth rate of species i 

ki: saturation constant of species i 

The equations describing the system for the general 

case are the following: 

For reactor 1: 

For reactor 2: 
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where, 

Vi: volume of the reactor i 

Ya: yield coefficient of species A on the rate- 

limiting substrate, assumed to be constant 

Yb: yield coefficient of species B on the rate- 

limiting substrate, assumed to be constant 

The operating parameters for the system, in dimension- 

less form are the following: 

where, R is the recycle ratio, 0 is the volume ratio of the 

reactors, y is the ratio of external input flow rates (or 

splitting ratio, in the case where S1f=S2f), n is the ratio 

of rate-limiting substrate concentration while D01 is like 

a dilution rate. Using the quantities introduced above, 

one can write the following relationships: 

q20 = (Y+1)q01 

c121 = R(120 = R(.0-1)c101 

q12 = [R(Y+1)+11q01 

q21 q20 = (R-1-1)(Y+1)c101 

s2f = riSif 



And by introducing the following dimensionless quantities: 

equations (1.1) to (1.6) can be written in dimensionless 

form as: 

with, 
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DIMENSIONAL REDUCTION OF THE MODEL 

Adding equations (1.7) through (1.9) one gets 

d(xl+yi+ul) 
 = auf+R(y+l)a(x2+y2+u2) 

de 

- [R(y+1)+1]a(xl+yi+zi) 

while adding equations (1.10) through (1.12) one gets 

d(x2+y2+u2) 
 = cOlnuf+P[R(y+1)+1)a(xl+yl+ul) 

de 

- p(R+1)(y+1)a(x2+y2+u2) 

The above two equations can be also brought to the form 

dZ1 
 - [R(y+1)+1]aZi + R(y+1)Z2 (1.13) 

de 

dZ2 
0[11(y+1)+1]aZi - 0(R+1)(y+1)aZ2 (1.14) 

de 

with, 

R(l+ny)+1 
ZI = xi + yi + ul of 

[R(y+1)+1] 

1-1-ny 
Z2 = x2 + y2 + u2 of 

y+1 

The Jacobian matrix for the system of eqns.(1.13) & 

(1.14) is the following: 
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The characteristic equation of the matrix above is: 

A2 + C[R(y+1)+1]1-0(R+1)(y+1))aA + P[R(y+1)+1](y+1)a2 = 0 

If Al and A2 are the roots of the quadratic above, it is 

easy to see that 

Al A2 < 0 

and, A1A2 > 0 

Furthermore its discriminant A, is positive as it can be 

seen from the expression 

A 

= {[R(y+1)+1]-0(y+1)}2 + 20[R(y+1)+1]R(y+1) 
a2 

02( y4.1)2(R24.2R) 

Thus, Al and A2 are real and negative. Using now arguments 

similar to those of Aris and Humphrey (23], one can use at 

all times the following stoichiometric equations 

The system can now be described by the two (alge-

braic) stoichiometric relations along with any four of the 

differential equations (1.7) through (1.12). The dimension 

of the system then becomes four instead of six, something 

which offers a great simplification for the analysis. In 

the analysis which follows equations (1.7), (1.8), (1.10), 

(1.11), (1.15) and (1.16) have been used in order to 

describe the system. 
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POSSIBLE STEADY STATES 

The system described above has the following steady 

states: 

R(l+rp0+1 l+rly 
SS1: xi=0, yi=0 i=1, 2 ul- uf, u2- of 

[R(y+1)+1) y+1 

Both populations wash out from the system. 

SS2: xi>0, yi=0 i=1, 2 

Population A establishes itself in the system and excludes 

its competitor, population B. 

SS3: xi=0, yi>0 i=1, 2 

Population B establishes itself in the system and excludes 

its competitor, population A. Case symmetric to the pre-

vious one. 

SS4: xi>0, yi>0 i=1, 2 

The two competing populations coexist in a steady state. 

Observe that due to the interconnection of the two 

reactors if a population survives it has to do so in both 

vessels. 



II ANALYSIS OF THE NON-SPLITTING SYSTEM 

MODEL EQUATIONS 

In this section the analysis of the non-splitting 

system is presented. The configuration of the system is 

shown in Fig.2 and its difference from the general system 

(shown in Fig.1) is the fact that the externally fed medium 

goes in one of the two vessels only. Mathematically, this 

implies that the parameters r and y (introduced previously) 

are both equal to zero. 

Figure 2: The Non-Splitting System 

In this case, eqns.(1.7) through (1.12) become: 

dx1 
 = Rax2 - (R+1)axi + f(ui)xl (2.1) 

dO 



dyi 
 - Ray2 - (R+1)ayi + g(ul)yi (2.2) 

de 

dul 
 = auf + Rau2 - (R+1)aul - f(ui)xl - g(ul)yi (2.3) 

do 

dx2 
0(R+1)axi - p(R+1)ax2 + f(u2)x2 (2.4) 

de 

dy2 
 = P(R+1)ayi - 3(R+1)ay2 + g(u2)y2 (2.5) 

de 

du2 
 = P(R+1)aul - 0(R+1)au2 - f(u2)x2 - g(u2)y2 (2.6) 

de 

where, 

ui (pui 
f(11.1)- g(u1)- i = 1, 2 

1 + ui , w + • ul  

As argued in the previous section two differential 

equations can be substituted by two algebraic equations 

(stoichiometric relations). The stoichiometric relations 

given by equations (1.15) and (1.16) become in this case: 

of = xl + yl +u1 (2.7) 

of = x2 + y2 +u2 (2.8) 

In the analysis which follows eqns.(2.1), (2.2), 

(2.7), (2.4), (2.5) and (2.8) are used to describe the 

system. This is the simplest case possible for the problem 

studied in the present thesis. The main question here is 

if this simplest possible case can lead to coexistence of 

the two competitors and if so under what conditions. Fur- 
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thermore, this case can be viewed as a first-crude-approxi-

mation of a tubular reactor with recycle. 

The possible steady states for the system are those 

presented in the previous section. The local stability of 

each one of the possible steady states is studied by ex-

amining the character of the eigenvalues of the Jacobian 

matrix of the system which is the following: 

where, 

a11 = fl - (R+1)a - x1F1 

a12 = -x1F1 

a13 = Ra 

a21 = -y1G1 

a22 = gl - (R+1)a - yiGl 

a24 = Ra 

a31 = (R+1)Pa 

a33 = f2 - (R+1)Pa - x2F2 

a34 = -x2F2 

a42 = (R+1)Pa 

a43 = -y2G2 



a44 = g2 (R+1)13a - y2G2 

a14 = a23 = a32 = a41 = 

with, 

fi = f(ui) gi = g(ui) i = 1, 2 

dfi 1 
Fi = F(u1) -  =  i = 1, 2 

dui (l+ui)2 

dgi (pw 
Gi = G(ui) -  =  i = 1, 2 

dui (w+ui)2 

ANALYSIS OF SS1 (WASHOUT STEADY STATE) 

This steady state implies that xi=yi=0 and ui=uf, 1=1, 

2 and it is always meaningful. 

For this steady state the Jacobian matrix S becomes a 

little simpler since some of its elements become zero. 

Furthermore, all off-diagonal elements of the matrix are 

non-negative and thus the (local)stability criteria for SS1 

can be deduced by using Sevastyanov's lemma [29], and they 

are the following: 

f(uf) - (R+1)a < 0 (2.9) 

g(uf) - (R+1)a < 0 (2.10) 

(f(uf)-(R+1)a][f(uf)-(R+1)pa] - R(R+1)Pa2 > 0 (2.11) 

(g(uf)-(R+1)a][g(uf)-(R+1)pa] - R(R+1)pa2 > 0 (2.12) 

After some algebraic manipulations, the conditions 

(2.9) through (2.12) can be lumped into a single condition 

for the stability of SS1, namely: 
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a > max{ Kfluf), Kg(uf) } (2.13) 

where, 

(R+1) ([3+1) + {(R+1) [R((3+1)2+((3-1)2]} 
K =  (2.13a) 

20(R+1) 

One can easily see that K is a positive number always 

larger than unity. Furthermore, K increases as R increases 

or as p decreases. These observations, coupled with the 

condition (2.13) suggest both design (small 0) and operat-

ing (a small and R large) criteria in order to avoid wash-

out which is totally undesirable. 

ANALYSIS OF SS2 

This steady state arises when xi>0 and yi=0, i=1,2. 

It implies that one population establishes itself in both 

vessels by winning the competition and excluding its compe-

titor. The values of xi and ui, i=1, 2 in this case are 

given as solution(s) of the following equations: 

flui)xl + Rax2 - (R+1)axi = 0 (2.14) 

f(u2)x2 + 0(R+1)axi - p(R+1)ax2 = 0 (2.15) 

ul = of - xl (2.16) 

u2 = of - x2 (2.17) 

This steady state is meaningful if and only if xi>0 

and 0<ui<uf, 1=1, 2. It is obvious from (2.15) that for a 

meaningful SS2 it must be xi<x2 which coupled with (2.16) 

and (2.17) implies that it must also be ul>u2. 



Solving eqns.(2.14) and (2.15) for x2 and equating the 

two resulting expressions one gets: 

flui) - (R+1)a p(R+1)a 

Ra f(u2) - P(R+1)a 

or [f1-(R+1)a][f2-(R+1)0a] = R(R+1)0a2 (2.18) 

Upon further manipulation eqn.(2.18) yields 

Aul + B 
u2 =  (2.19) 

Cul + D 

where, 

A = p(R+1)(a-a2) 

B = - 3(R+1)a2 

C = (R+1)(0a2-($3+1)a] + 1 

D = (R+1)((3a2-a) 

. Using eqns.(2.14), (2.16), (2.17) and (2.19) one gets 

the following equation in u1: 

M3ui + M2ui + Milli + MO = 0 (2.20) 

where, 

M3 = [-(R+1)a+1]C 

M2 = [ufC+RA-(R+1)(C+D)]a+(D-ufC) 

M1 = [R(A+B)+uf(C+D)-(R+1)D]a - ufD 

MO = (RB+ufD)a 

For any given set of operating and system parameters 

(a,uf,R,O) one can solve eqn.(2.20) to find u1 and then 

expressions (2.19), (2.16) and (2.17) yield the values for 

u2, xl and x2, respectively. In general, the system can 

have up to three different SS2. 
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The (local) stability of SS2 is determined by the 

eigenvalues of the Jacobian matrix, which in this case are 

given as roots of the following quadratics: 

P1(A) = A2 + [Ra 
 x2 

 +(R+1)Pa----  
xi 

+xiFi+x2F2]A 
xi x2 

x2 xi 
+ Ra----x2F2+(R+1)0a----xiFi+xix2F1F2 = 0 (2.21) 

xi x2 

and, 

P2(X) = A2 - [g1-(R+1)a+g2-(R+1)0c0A 

+ [g1-(R+1)a][g2-(R+1)Pa] - R(R+1)Pa2 = 0 (2.22) 

It is easy to show that the quadratic P1(A)=0 has 

always real and negative roots thus the stability of SS2 is 

determined by the roots of P2(A)=0 only. 

If Ai and A2 are the roots of P2(A)=0, then from 

eqn.(2.22) one can easily see that Al  and A2 are always 

real and hence for a stable SS2 the following two inequali-

ties have to be satisfied: 

Al+A2 = [g1-(R-1-1)a] "1" [g2-(11-1-1)0a] < 0 (2.23) 

and, 

A1A2 = [g1-(R+1)a][g2-(R+1)0a]-R(R+1)3a2 > 0 (2.24) 

Actually, upon further manipulation one can show that 

conditions (2.23) and (2.24) can be substituted by the 

following single criterion: 

(R+1)(Pgl+g2) + f(R+1)[(R+1)(13gi+g2)2-4Pg1g2]}I 
a >  

2P(R+1) 

(2.25) 
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One can get some further insight for SS2 by taking 

into consideration the mutual disposition of the f(u) and 

g(u) curves (which are the specific growth rate curves of 

the two populations in dimensionless form). There are four 

possible dispositions as shown in Fig.4 

Case a:  

This case arises when the following conditions are 

met: 

w > tp , cp < 1 

and it implies that f(u)>g(u) for any u. Hence, the fol-

lowing inequalities are true in this case: 

f1-(R+1)a g1-(11+1)a (2.26) 

f2-(R+1)8a > g2-(R+1)8a (2.27) 

It is easy to see from (2.14) and (2.15) that 

fl-(R+1)a < 0 and f2-(R+1)Pa < 0 

Now if the inequalities (2.26) and (2.27) are added they 

yield (2.23) while when they are multiplied and equation 

(2.18) is used they yield (2.24). 

The conclusion then is that if wx1:0 and (p<1, SS2 is 

stable whenever it is meaningful. This result is physi-

cally expected since the mutual disposition of the f(u) and 

g(u) curves considered here implies that the population 

which can survive in SS2 has always the competitive advan-

tage (it grows faster than its competitor) and thus if 

survival is possible (i.e. SS2 is meaningful) it will be 

unconditionally stable. 



Figure 4: The possible mutual dispositions of 

the specific growth rate curves 
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Case b:  

This case arises when the following conditions are 

met: 

w < cp, W > 1 

This case is opposite to case a considered above, and one 

can show following a procedure analogous to the one used in 

case a that SS2 is unstable whenever it is meaningful. 

This again is the result of the fact that the population 

which is predicted to survive in SS2 never has the competi-

tive advantage and hence SS2 is unattainable. 

Case c: 

This case arises when w < p < 1 and the two curves cross 

each other at a value uc  of u with 

w - 
uc  =  (2.28) 

- 1 

If ul>u2>uc, then it is like having case a and SS2 is 

stable provided that it is meaningful. 

If u2<ul<uc, then it is like having case b and SS2 is 

always unstable. 

If ul>uc>u2, then SS2 if meaningful it is also stable 

if and only if the condition (2.25) is satisfied. 

Case d: 

This case arises when w>cp> 1 and the two curves cross each 

other at u=uc  where uc  is again given by the relation 

(2.28). 
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If ul>u2>uc, then it is like having case b and SS2 is 

always unstable. 

If u2<ul<uc, then it is like having case a and SS2 is 

stable whenever it is meaningful. 

If ui>uc>u2, then the condition (2.25) must be satis-

fied in order for a meaningful SS2 to be stable. 

This concludes the analysis of SS2. The only thing 

which has remained unresolved is whether more than one SS2 

are really possible. As it has been shown previously, due 

to the fact that the value of ul is given as the solution 

to the cubic equation (2.20), theoretically up to three SS2 

are possible. Extensive numerical studies with the system 

have never yielded more than one meaningful SS2. It can be 

claimed then, with enough confidence, that SS2 is unique, 

it does not exhibit any multiplicity. 

ANALYSIS OF SS3 

This steady state arises when xi=0 and yi>0, i=1, 2. 

The case is symmetric to SS2 hence the analysis will not be 

repeated. If xi is interchanged with yi and fi is inter-

changed with gi (i=1, 2) in the results of SS2, the results 

of SS3 are obtained. There are only two equations which 

have to be slightly modified, namely: 

A'ul + B' 
u2 =  

C'ui + D' 



where, 

A' = pw(R+1)(cpa-a2) 

B' = -pw2(R+1)a2 

C' = (R+1)[Pa2-((3+1)0a] + (p2 

D' = w(R+1)((3a2-W.) 

and, 

M;ui + M2u + Mlul + M; = 0 

where, 

M3 = [-(R+1)a+40]C' 

M2 = (ufC'+RA1 -(R+1)(C'w+Drna+cp(D'-ufC') 

Ml = [R(A'w+B')+uf(C'w+D')-(R+1)wD']a - cpufD' 

Mo = (RB'+ufD')wa 

Again, theoretically there are up to three possible 

SS3 but extensive numerical studies (as in the case of SS2) 

have never yielded more than one meaningful SS3 hence with 

enough confidence it can be claimed that SS3 (as its ana- 

logue SS2) does not exhibit multiplicity, it is unique. 

It is interesting to note that all eigenvalues of SS2 

and SS3 are always real. Hence no oscillatory phenomena 

are expected during transients, something which has been 

confirmed via computer simulations. 

ANALYSIS OF THE COEXISTENCE STEADY STATE (SS4) 

This is the most interesting steady state as far as 

this study is concerned. For a meaningful SS4 it must be: 



xi > 0, yi > 0, 0 < ui < uf 1=1, 2 

In order to find the values of the six variables one 

has to solve the following system of algebraic equations: 

Rax2 - (R+1)axi + f(ul)xl = 0 (2.29) 

Ray2 - (R+1)ayl + g(ul)yi = 0 (2.30) 

0(R+1)axi - P(R+1)ax2 + f(u2)x2 = 0 (2.31) 

O(R+1)ayi - 3(R+1)ay2 + g(u2)y2 = 0 (2.32) 

of = xl + yi +ul (2.33) 

of = x2 + y2 +u2 (2.34) 

From eqns.(2.29) through (2.32) one can get the following 

relations: 

By multiplying the expressions (2.35) and (2.37) one gets: 

[f1-(R+1)a][f2-(R+1)0a] = R(R+1)(3a2 (2.39) 

Similarly, by multiplying the expressions (2.36) and (2.38) 

one gets: 

[g1-(R+1)a][g2-(R+1)0a] = R(R+1)0a2 (2.40) 



Observe that for a meaningful SS4 all the left hand 

side parts of eqns.(2.35) through (2.38) have to be nega-

tive. Also observe that for a meaningful SS4, eqn.(2.31) 

requires that xl<x2 while eqn.(2.32) requires that yi<y2. 

These two inequalities along with eqns.(2.33) and (2.34) 

imply that it must be ul>u2. The consideration of the 

mutual disposition of the specific growth rate curves f(u) 

and g(u) (shown in Fig.4) can again reveal some important 

information. 

In case a, i.e. when f(u)>g(u) for any u one can get: 

g1-(R+1)a < f1-(R+1)a < 0 (2.41) 

g2-(R+1)8a < f2-(R+1)Pa < 0 (2.42) 

By multiplying the inequalities (2.41) and (2.42) and using 

equality (2.39) one gets 

[g1-(R+1)a][g2-(R+1)0a] > R(R+1)Ra2 

The above inequality implies that the relation (2.40) can 

not be satisfied in case a, in other words coexistence is 

impossible in this case. 

Following a procedure similar to the above one can now 

easily show that coexistence is not possible in the case b 

(Fig.4) either. 

At this point one can conclude that the crossing of 

the specific growth rate curves is a necessary condition 

for coexistence. 



For the cases c and d (Fig.4) one can show easily that 

if ul>u2>uc  or uc>ul>u2 coexistence is impossible. Hence 

the system may have a meaningful coexistence steady state 

only if u2<uc<ul which implies that: 

g2 > f2 and gl < fl (case c) 

or 

g2 < f2 and gl > fl (case d) 

One can conclude then that in order for the system to 

have a meaningful steady state of coexistence not only the 

specific growth rate curves of the two competitors must 

cross each other but also the conditions must be such that 

one population has the competitive advantage (grows faster) 

in one vessel while its competitor has the advantage in the 

other vessel. This finding is in accordance with that of 

Stephanopoulos and Fredrickson [14]. 

The value of ul is a solution to the quadratic 

N(u1) = N2ui + Niul + N0 = 0 (2.43) 

where, 

N2=(R+1)13a3-(R+1)[ac+0(1+T)]a2+NR+1)0T+R(p+(q1+1)ac]a-Tac  

Ni=(R+1)0(w+l)a3-(R+1)(0(w+1p)+(w+1)ac]a2+(w+T)aca 

No=w(R+1)a2(Pcc-ac) 

with, 

w - cp 
ac =  

w - 1 



With u1 known the rest of the variables can be found 

through the following expressions: 

The quadratic (2.43) will yield real values for u1 if 

and only if its discriminant A, is positive. After some 

algebraic manipulations one can show that 

A = 02a2(R4.1)2(w _1%1)2 (a-Klac)(a-Kac)(a-19)(a-H) (2.49) 

where K is given by (2.13a) while, 

with, 



One can easily show that 

8 < Klac  < Kac  < H (2.54) 

Hence a possibly meaningful coexistence steady state re-

quires that a must be chosen such that: 

a < 8 or Klac  < a < Kac or a > H (2.55) 

since each of the inequalities above guarantees that A > 0 

(i.e. ul real). 

In fact, the selection of a for coexistence is more 

restricted than what inequalities (2.55) suggest as it can 

be shown from the following considerations: 

Using eqn.(2.35) and taking into account the fact that 

it must be x2>xl one can conclude that it must be 

f1-(R+1)a < -Ra or fl < a (2.56) 

As it has been shown previously, it must be uc<ul which 

combined with (2.56) leads to the following condition: 

If eqn.(2.36) along with the fact that it must be 

y2>yi is used, it leads again to the condition (2.57). 

Hence ac  is the lower bound for the values of a that may 

lead to coexistence. 

Using eqn.(2.39) and taking into consideration that it 

must be u2<ul (which implies that f2<fl) one concludes that 

it must be: 

(R+1)0a2 - (R+1)(0+1)fla + fi < 0 



or equivalently 

Kifi < a < Kfl (2.58) 

where Kl and K are given by (2.50) and (2.13a), respective-

ly. 

Similarly, using equation (2.40) one can conclude that 

it must be 

Kigi < a < Kg1 (2.59) 

From eqn.(2.35) one can get that 

while from eqn.(2.36) one can get that 

Since it must be x2>xl and y2>yi, eqns.(2.60) and (2.61) 

imply that it must be 

a > max{fl, g1} (2.62) 

Because of the fact that K1<1, one can combine the 

inequalities (2.58), (2.59) and (2.62) into the following 

single condition 

max{fi, gl} < a < min{Kfl, Kgi} (2.63) 

It is interesting to observe that 

max{fi, gi} > ac (2.64) 

and min{Kfl, Kg1} < minfKf(uf), Kg(uf)} (2.65) 

Now, because of (2.63) and (2.64), the inequalities 

(2.55) have to be restricted only to the following: 



ac  < a < Kac or a > H (2.66) 

From eqns.(2.43) and (2.44) one can make two very 

interesting observations. The first is that the values of 

ul and u2 are independent of the value of uf. This implies 

that for a given system of populations (i.e. p and w) and 

for given a, R and 0 when uf varies the values of ul and u2 

remain unchanged while the biomass concentrations (xi, yi, 

i=1,2) do change. This has been repeatedly observed in the 

numerical studies. The second observation is that for the 

special case of p=1 the values of ul and u2 are the two 

roots of the quadratic (2.43) something which implies that 

the coexistence steady state is unique when 0=1. It is not 

really possible to prove analytically whether SS4 is unique 

or not in the case where 0*1. Nevertheless extensive nu-

merical studies have shown that SS4 is unique and further-

more, that coexistence is impossible when a>H. Thus one 

can conclude that SS4 is unique and that the lower and 

upper bounds of values of a yielding coexistence are ac  and 

Kac , respectively. 

As it can be observed from all operating diagrams 

presented (Figures 5-11) and discussed in the following 

section of this part, the point (ufc ,Kac )=[(w-p)/(p-1), 

K(w-(1))/(w-1)] is always a point of the boundary of the 

domain of coexistence. In fact, it can be proved that this 

must be so. For a=Kac , eqn.(2.43) gives ul=(w-p)/(p-1) 



while eqn.(2.44) gives u2=u1 and then eqns.(2.45) through 

(2.48) yield x1=x2 =yi=y2=0, when uf=(w-g))/(g)-1). One can 

say that the point (ufc,Kac) results in a degenerate solu-

tion of coexistence and as it can be seen from all opera-

ting diagrams (ufc,Kac) is a common point for the boun-

daries of coexistence and washout, as expected. Now, since 

it must be ul>uc  and also ul<uf one can conclude that for 

coexistence it is necessary to have 

W - (1) 
Uf > Uc =  (2.67) 

(I) - 1 

The inequality (2.67) indicates how uf, the substrate 

concentration in the feed stream, has to be selected in 

order for coexistence to be possible. The conditions 

(2.63), (2.66) and (2.67) are necessary but not sufficient 

for coexistence. That is, the aforementioned conditions do 

not guarantee that 0<ul<uf, 0<u2<uf, xi>0, yi>0, i=1,2. Due 

to the complexity of the expressions one cannot find analy-

tically the exact boundaries of the domain(s) in which SS4 

is indeed meaningful. One has to rely upon numerical solu-

tions but the analysis presented here provides very good 

guidance as to where one should numerically search for 

coexistence. 

As far as the (local) stability of SS4 is concerned, 

one has to determine the character of the four eigenvalues 

of the Jacobian matrix which in this case are given as the 

roots of the following polynomial: 



A 4  + C3A3 + C2A2 + CiA + Co = 0 (2.68) 

where, 

x2 Y2 , xi Yl 
C3 = Ra(---- + ----) + (R+1)0a(---- + ----) 

xi Y1 x2 Y2 

+ xiFi + yiGi + x2F2 + y2G2 

, Y2 x2 
C2 = Ra((xiFi+x2F2+y2G2)---- + (yiGi+x2F2+y2G2)----] 

Yl xl 

Y1 xi 
+(R+1)Pa((xiFi+x2F2+yiGi)----+(xiFi+yiGi+y2G2)---] 

Y2 x2 

xly2 
x1 
y2 x2y1 

+ R2a2 '- + R(R+1)Pa2( + ) 
xiyi x2y1 xiy2 

+ (R+1)232a2 
xiyi+ 

 xix2F1F2 + xiy2FiG2 
x2y2 

+ x2y1F2G1 + yiy2G1G2 

Y2 x2 
Ci = Ra(x2F2+y2G2)(xiFi---- + yiGi--) 

Y1 xi 

+ (R+1)3a(xiFi+yiGi)(x2F2 
Y1  

---- + y2G2 
xi  

----) 
Y2 x2 

+ R(R+1)13 
xiy2 x2y1

a2[(xiFi+y2G2)  + (x2F2+yiGi) ] 
x2yi xiy2 

+ R2a2(x2F2+y2G2) x2y2 ------+(R+1)202a2(x1F1+YiGi) 
xiyi 

xiyi x2y2 

F1G2 
x2 y1f2g i 

Co = R(R+1)202a4 (1+ )(xiy2-x2y1)2 
x2yifig2 xiy2fig2 



Observe that Co, Cl, C2, C3 are positive when SS4 is 

meaningful. When the Ruth-Hurwitz [30] criteria are 

checked for eqn.(2.68) it turns out that they are always 

satisfied provided that SS4 is meaningful. The algebra is 

fairly extensive and for this reason the proof is not pre-

sented here. One concludes then that SS4 is stable when-

ever meaningful. The Ruth-Hurwitz criteria do not provide,  

information as to whether the eigenvalues are real or com-

plex. Nevertheless, extensive computer simulations have 

never shown any damped oscillatory behavior hence it seems 

that all eigenvalues are real (and negative). 

Before concluding the analysis of the steady states 

for the non-splitting system there are two things that have 

to be mentioned: 

1. The stability analysis of each steady state is based 

on the eigenvalues of the Jacobian matrix hence theoreti-

cally the results hold locally only, computer simulations 

though have indicated that the same results hold globally 

as well. 

2. It cannot be shown analytically if for a given set of 

parameters more than one of SS1 through SS4 is meaningful 

and stable. Numerical studies have indicated that this is 

not possible, i.e. the steady states are mutually exclu-

sive. 



OPERATING DIAGRAMS AND THE EFFECT OF THE PARAMETERS 

The analysis which has been presented in the previous 

sections of this thesis has yielded a number of conditions 

which when satisfied imply that the system will be at one 

of the possible steady states (SS1 through SS4). The con-

ditions in most of the cases and especially in the case of 

the coexistence steady state, are very complicated and thus 

one cannot by simply inspecting them provide an answer to 

the following questions: 

Can one really find values in the parameter space for 

which the conditions are satisfied? 

If there are values of the parameters which satisfy the 

conditions, are these values discrete or do they form a 

subspace (range) in the parameters space? In the former 

case, due to the ever existing fluctuations in some para-

meters (e.g. flow rate) the steady state predicted is prac-

tically unattainable while in the latter case the system 

can indeed be operated at the predicted steady state. 

What changes does the system undergo when some para-

meters are adjusted to different values, i.e. what is the 

effect of the various parameters on the behavior of the 

system? 

In order to answer the foregoing questions one has to 

perform numerical studies. 



The model has six parameters, namely a, uf, R, 0, cp, 

and w. The parameters cp and w can be called system para-

meters in the sense that given the type of organisms and 

the identity of the rate-limiting substrate, their values 

are fixed (provided that the temperature is constant and 

that the substrate transferred from one chemostat to the 

other is qualitatively similar to the fresh one, assump-

tions that are made throughout this study). In the results 

presented here, cp and w have been fixed at 0.4 and 0.125, 

respectively and the reason for not presenting results for 

other values of cp and w is that they are qualitatively the 

same as those obtained for the adopted values. The para-

meter 0 can be classified as a design parameter in the 

sense that its value depends on the selection of the volume 

of the two tanks. Keeping the values of all other para-

meters constant and varying 0 one gets a comparison among 

design alternatives. The parameters a, R and uf are the 

operating parameters in the sense that they can be freely 

and easily adjusted in a given system in order to get one 

behavior or the other. It is interesting to present the 

results in the form of operating diagrams, an idea first 

introduced by Jost et al [31]. In this case the operating 

diagrams should be 3-dimensional (a, R, uf) or even 4-

dimensional if one wants to study simultaneously the effect 

of the parameter 0. Although 3-dimensional diagrams can be 



constructed it is not easy to read them due to their com-

plexity, and for this reason the operating diagrams pre-

sented here are projections in the a-uf plane. 

Operating diagrams for the non-splitting system are 

presented in Figures 5 through 11. In all figures the 

values for p and w are 0.4 and 0.125, respectively as 

stated also previously. In Figures 5 through 8, R is fixed 

at 0.1 while the values for 0 are 0.2, 0.25, 0.6 and 1.0, 

respectively. Figure 9 is for the case where 0=0.2 and R=3 

while Figures 10 and 11 are for the cases where 0=1.5 and R 

is 0.01 and 1.0, respectively. 

The first thing to observe from the diagrams is that 

the coexistence steady state (SS4) arises for ranges of 

values in the operating parameters space hence such a re-

sult is practically attainable and not only a mathematical 

possibility. One can also observe that the crossing point 

of the curves Kfluf) and Kg(uf) (i.e. the point (ufc, Kac)) 

is always a point of a boundary of SS4 and furthermore, 

that coexistence does not occur for values of of less than 

ufc. These two things have been predicted from the analy-

sis and they have been discussed in the previous section. 

In Figure 5 there are in fact two separate regions of 

coexistence but the upper one is so narrow that it can be 

considered as a curve rather than a region. Practically 

one cannot operate the system there and obtain coexistence. 



This "curve" can be viewed as a locus of switching 'points 

between SS2 and SS3. If one operates in the (lower and 

actual) region of coexistence there is a range of values of 

of (up to 2.84) where a substantial change in a, either an 

increase (known as shift-up experiment) or decrease (known 

as shift-down experiment) leads to the exclusion of the 

same species (i.e. there is a transition from SS4 to SS3). 

For values of of larger than 2.84 and starting from the 

domain of coexistence, shift-up and shift-down experiments 

will lead to the exclusion of either one or the other 

species. 

In all diagrams other than the one shown in Figure 5, 

there is a single region of coexistence the complexity of 

which varies, for example it becomes less complex as one 

goes from Figure 6 to Figure 8. 

The diagrams shown in Figures 6 and 9 have the follow-

ing common features: starting from the domain of coexis-

tence there is a range of values of uf for which either a 

shift-up or a shift-down in the value of a will lead to 

SS3, a range of values of of for which either a shift-up or 

a shift-down in the value of a will lead to SS2 and finally 

there is a range of values of of for which a shift-up in 

the value of a will lead to the exclusion of the species 

that will survive in a shift-down experiment. 



In the diagrams shown in Figures 8, 10 and 11 the 

boundaries of the region of coexistence always separate 

different steady states and the same is true except for a 

very narrow range of values of of slightly higher than 1, 

for the diagram shown in Figure 7. In the diagram shown in 

Figure 10, the domain of coexistence is so narrow that one 

can say that in this case coexistence is practically im-

possible. 

The sequence of diagrams shown in Figures 5 through 8 

shows the typical behavior of the system when the value of 

the recycle ratio R is fixed and the value of the volume 

ratio p increases. One can say that at fixed R, large 

values of p lead to a decrease in the range of values of a 

which yield coexistence. In fact, for any value of R, 

values of 0 larger than 1 yield unsatisfactory results as 

it can be seen from the diagrams shown in Figures 10 and 

11. From the same diagrams it can be seen that when is 

fixed at a value larger than 1, very small values of R make 

coexistence practically impossible (Figure 10). However 

for any value of R larger than 1 (but not too high) the 

picture does not improve from what is shown in Figure 11. 

Keeping p fixed at a value less than 1 and varying the 

value of R one gets the behavior shown in Figures 5 and 9. 

When the value of R is further increased the shape of the 

coexistence region remains the same as that shown in Figure 



9 with the only difference being that the S-shaped parts of 

the curves move to the right (i.e. to higher uf values). 

In the case where the value of R is very large, re-

gardless of the values for the other parameters one expects 

that coexistence is impossible (except for discrete values 

of a) since a very large R practically implies a homo-

geneous environment (like in a single reactor). Numerical 

studies at very large values of R have indicated that in 

fact there is a region in the parameter space where coexis-

tence occurs but this region arises for extremely large 

values of uf. Hence the existence of the coexistence 

region is a mathematical rather than a physical result 

since at very large values of uf one cannot really talk 

about rate limitation by the substrate fed at a concentra-

tion uf and in that case either there is no competition or 

the case is of no interest in the sense that the values of 

uf are not physically possible. In fact for reasonable 

values of uf the model does predict the impossibility of 

coexistence at very large values of R. 

Numerical studies for other values of w and T, always 

satisfying the condition w<T<1, have indicated that the 

results are the same with those presented here. Numerical 

studies for the case where w>T>1 have not been performed 

but the results will be the same since by naming population 

A as population B and vice-versa one falls again in the 

case where w<T<1. 



In conclusion there are two things that need to be 

emphasized: 

Coexistence is indeed possible in the case of the non-

splitting system, and 

For a wider range of coexistence it is better to se-

lect values of 0 being less than 1, that is the smaller 

vessel must be the one in which the growth medium is fed. 



Table 1: Parameter Values used for the Operating 

Diagrams shown in Figures 5-11 

Fig. No. 40 to PI R 

5 0.4 0.125 0.2 0.1 

6 ►► ►►  0.25 ►►  

7 ►► ►►  0.6 ►►  

8 ►► ►►  1.0 ►►  

9 ►► ►►  0.2 3.0 

10 ►► ►►  1.5 0.01 

11 ►► ►► ►►  1.0 



Figure 5. 



Figure 6. 



Figure 7. 



Figure 8. 



Figure 9. 



Figure 10. 



Figure 11. 



III ANALYSIS OF THE SPLITTING SYSTEM 

MODEL EQUATIONS 

In this section the case where both reactors (chemo-

stats) are fed with fresh medium is studied. It is assumed 

that the fresh medium going in either reactor has the same 

composition hence it can be thought as splitting a single 

external feed stream between the two vessels, and this is 

why the term "Splitting System" has been adopted. 

Figure 3: The Splitting System 

The configuration of the system is shown in Figure 3. 

It must be noted that Stephanopoulos and Fredrickson [14] 

in a short communication, have showed that this system can 



lead to coexistence and they have given some conditions 

under which coexistence arises. The reasons for studying 

the same system here are to provide a detailed analysis of 

the possible steady states, to construct operating diagrams 

and to compare this system with the non-splitting case 

analyzed in the previous part of this thesis (a case which 

had not been studied previously). 

The equations describing the system are equations 

(1.7) through (1.12) when the parameter r is set as equal 

to unity. The equations then take the following form: 



Two of the differential equations above can be rep-

laced by the two stoichiometric equations described by 

eqns.(1.15) and (1.16) which now become 

of = x1 + y1 + ul (3.7) 

of = X2 + y2 + u2 (3.8) 

It is interesting to notice here that the stoichio-

metric relations for the splitting and the non-splitting 

system are identical. 

In the analysis which follows eqns.(3.1), (3.2), 

(3.7), (3.4), (3.5) and (3.8) are used to describe the 

system. The possible steady states for the system are 

those presented in the section I of the thesis. The local 

stability of each possible steady state is studied by 

examining the character of the eigenvalues of the Jacobian 

matrix of the system which is the following: 

where, 

all = fl ER(Y+1)+13a x1F1 

a12= -x1F1 

a13 = R(y+l)a 



a21 = -y1G1 

a22 = gl [R(y+1)+1]a - y1G1 

a24 = R(Y+1)a 

a31 = [R(-y+1)+1]Pa 

a33 = f2 - (R+1)(y+1)Da - x2F2 

a34 = -x2F2 

a42 = [R(y+1)+1]0a 

a43 = -y2G2 

a44 = g2 (R4-1)(Y+1)0a Y2G2 

a14 = a23 = a32 = a41 = 0 

with, 

fi = f(ui), gi = g(ui) i = 1, 2 

dfi 1 
Fi = F(ui) -  i = 1, 2 

dui (l+ui)2 

dgi (Pw 
Gi = G(ui) -  =  i = 1, 2 

dui (w+ui)2 

ANALYSIS OF SS1 (WASHOUT STEADY STATE) 

This steady state implies that xi=yi=0 and ui=uf, 1=1, 

2 and it is always meaningful. 

All off-diagonal elements of the Jacobian matrix 

evaluated at SS1 are non-negative and hence, using Sevas-

tyanov's lemma [29] (as on p.32) one obtains the following 

conditions for the (local) stability of SS1 

f(uf) - [R(y+1)+1]a < 0 (3.9) 



g(uf) - [R(y+1)+1]a < 0 (3.10) 

{fluf)-[R(y+1)+1]a}[f(uf)-(R+1)(y+l)3al 

- R(y+1)[R(y+1)+1]0a2 > 0 (3.11) 

(g(uf)-(R(y+1)+1]a)(g(uf)-(R+1)(y+1)Pa] 

- R(y+1)[R(y+1)+1]0a2 > 0 (3.12) 

It must be stated here that conditions (3.11) and 

(3.12) are exactly opposite to those published in the 

literature [14], something which most probably has to be 

attributed to a printing error. 

After some algebraic manipulations the four conditions 

above can be substituted by a single condition, namely 

a > max( Kfluf), Kg(uf) } (3.13) 

where, 

with, 

A = {3(y+1) -[R(y+1)+1])2+[f3R(Y+1)]2 

+ 2131t(Y+1)[0(y+1)+R(i+1)+1] 

It can be easily seen that K decreases as y increases. 

This observation coupled with condition (3.13), suggests 

that when all parameters except a and y are kept constant, 

an increase in the splitting ratio results in a wider range 

of values of a under which washout occurs, something surely 

undesirable. 



One can also observe that the relation of the value of 

K to unity, strongly depends on the product of the values 

of 0 and y. Namely, 

If Py > 1, then K < 1 

If ay = 1, then K = 1 

If ay < 1, then K > 1 

The relation of the value of K to unity influences 

significantly the behavior of the system, something which 

is discussed later in this section. 

ANALYSIS OF SS2 

This steady state arises when xi>0 and yi=0, i=1, 2. 

It implies that one population establishes itself in both 

vessels by winning the competition and excluding its com-

petitor. The values of xi and ui, i=1, 2 in this case are 

given as solution(s) of the following equations: 

f(ui)xl + R(y+1)ax2 - [R(y+1)+1]axi = 0 (3.14) 

f(u2)x2 + 0[R(y+1)+1]axl - 0(R+1)(y+1)ax2 = 0 (3.15) 

u1 = of - xl (3.16) 

u2 = of - x2 (3.17) 

In the case of the non-splitting system it has been 

shown that for a meaningful SS2 it must be ul>u2 and xl>x2. 

These conditions do not have necessarily to hold in order 

to get a meaningful SS2 in the case of the splitting sys-

tem. This can be seen both mathematically and physically 

as following: 



Mathematically, from eqn.(3.15) one can write: 

f2 - aoY 
x2 - xi -  x2 

Pa[R(y+1)+1] 

In the case of the non-splitting system (i.e. y=0), 

the right-hand side of the equality above has to be posi-

tive for a meaningful SS2 hence it must be x2>xi which, via 

the stoichiometric relations, implies that ui>u2. If y is 

not zero (i.e. for the splitting system) there is nothing 

to necessarily force the right-hand side of the equality 

above to be positive hence one may have either x2>xi or 

xi>x2 and correspondingly (via the stoichiometric relations 

again) either u2<ui or ui<u2. 

Physically, when the splitting ratio is high one ex-

pects that the amount of fresh rate-limiting substrate go-

ing in the second vessel may (because it will also depend 

on the volumes of vessels) be higher than that going in the 

first vessel and this would most probably result in u2>ui 

and x2<xi which is opposite of what happens in the non-

splitting system. 

Based on the results of extensive numerical studies, 

the following have been observed (for a meaningful SS2): 

when (3y>1 then u2 > ui and x2 < xi (3.18) 

when 3y<1 then u2 < ui and x2 > xi (3.19) 

In the special case where Py=1 it will be proved in 

the following that ui=u2 and x1=x2. 
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Rearranging steady state eqns.(3.14) & (3.15) one 

gets: 

or ffl-[R(y+1)+1]a){f2-0(R+1)(y+1)a}=OR(y+1)[R(y+1)+1]a2 

(3.20) 

Upon further manipulation eqn.(3.20) yields 

where, 

Al = p(y+1){(R+1)a-[R(y+1)+1]a2} 

B1 = -O(y+1)[R(y+1)+1]a2 

C1 = 0(y+1)[R(y+1)+1]a2-0(y+1)(R+1)+[R(y+1)+1])a+1 

Di = [R(i+1)+1][0(y+l)a2-a] 

Using eqns.(3.14), (3.16), (3.17) and (3.21) one gets 

the following equation in u1: 

J3ui + J2ui + Jiul + Jo = 0 (3.22) 

where, 

J3 = {-[R(y+1)+11a+1}C1 

J2 = rufC1+R(y+1)A1-[R(y+1)+1](Ci+Di)]a + Di - ufCi 

JI = {R(y+1)(Al+B1)+uf(Ci+D1)-[R(y+1)+1]D1}a - ufDi 

J0 = [R(y+1)131+ufDi]a 

After ul is calculated from equation (3.22) for a 

given set of parameter values (a,uf,p,y,R) its value(s) can 

be used to calculate u2, xi, and x2 via equations (3.21), 



(3.16) and (3.17), respectively. Due to the cubic nature 

of equation (3.22), theoretically up to three different SS2 

are possible. Numerical studies though, have indicated 

that if a meaningful SS2 is possible it is unique. 

In the special case where py=1 (which leads to K=1) 

the situation becomes much simpler as it is shown in the 

following: 

Using equations (3.14) and (3.15) and after some alge-

braic manipulations one obtains 

xl 
{[R(y+1)+1](0+1)a-f2+ }(u2-u1) = 0 (3.23) 

(l+ui)(1+u2) 

Furthermore, form eqn.(3.15) it can be seen that for a 

meaningful SS2 it must be: 

P(R+1)(y+1)a > f2 or (R+1)(3+1)a > f2 (3.23a) 

One can also easily see that 

[R(y+1)+1]((3+1) > (R+1)(0+1) (3.23b) 

Combining the inequalities (3.23a) and (3.23b) one con-

cludes that it must be: 

[R(Y-I-1)+1)(0+1)a > f2 

The last inequality implies that the quantity in the 

braces in equation (3.23) is positive for any meaningful 

SS2. Hence, equation (3.23) cannot be satisfied unless 

u1=u2. This implies, through equations (3.16) and (3.17) 

that it must also be x1=x2. These two equalities imply 

that when 5y=1 and the system is at SS2, the environment is 
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identical in both vessels, i.e. the environment is not 

spatially heterogeneous. In this case the steady state 

equations (3.14) through (3.17) reduce into a system of two 

equations, namely 

a 
a-f(u)= 0, from which one gets u =  

1 - a 

and, x = of - u 

where, x = xl = x2 and u = ul = u2 

It should be noted here that the value for u is inde- 

pendent of uf, something which is not true if Oy#1. 

The (local) stability of SS2 is determined by the 

eigenvalues of the Jacobian matrix, which in this case are 

given as roots of the following quadratics: 

and, 

Q2(A) = A2 - {g1-[12(y+1)+1]a+g2-p(R+1)(y+1)a)A 

+(g1-(R(y+1)+1)a}[g2-p(R+1)(y+l)a)-OR(y+1)[R(y+1)+1]a2=0 

(3.25) 

It is easy to show that the quadratic Ql(A)=0 has 

always real and negative roots thus the stability of SS2 is 

determined by the roots of Q2(A)=0 only. 
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If Al and A2 are the roots of Q2(A)=0, then from eqn. 

(3.25) one can see that Al and A2 are always real and hence 

for a stable SS2 the following two .inequalities have to be 

satisfied: 

A1+A2 = gl - [R(y+1)+1]a + g2 - p(R+1)(y+1)a < 0 (3.26) 

and, 

A1A2 = (gl-DR(Y+1)+1JaMg2-0(R+1)(y+1)a] 

- 012(y+1)[R(y+1)+1]a2 > 0 (3.27) 

Actually, upon'further manipulation one can show that 

conditions (3.26) and (3.27) can be substituted by the 

following single criterion: 

a > 
p(R+1)(y+1)gi+[R(y+1)+1]q2 + 02 

(3.28) 
20(y+1)[12(y+1)+1] 

with, 

A = 0(y+1)gl-[R(y+1)+1]g2)2+02R(R+2)(y+1)2gi 

+ 20R(y+1)[R(y+1)+1]gig2 > 0 

One can get some further insight for SS2 by taking 

into consideration the mutual disposition of the f(u) and 

g(u) curves. There are four possible dispositions as shown 

in Fig.4. Following the same procedure as in the case of 

the non-splitting system one can easily see the following: 

When the specific growth rate curves do not cross, in 

the case where w>(17) and p<1 (Fig.4a), SS2 is always stable 

if meaningful. While in the case where w<q and q,>1  (Fig. 

4b), it is always unstable. 
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When the specific growth rate curves cross each other, 

something which occurs at the value uc  of u given by 

then, 

if lxp>w (Fig.4c), SS2 is stable if meaningful and if 

both ul and u2 are larger than uc: SS2 is unstable if both 

ul and u2 are less than uc  while if either ul>uc>u2 or 

u2>uc>ul and SS2 is meaningful its stability cannot be 

determined right away and the criterion given by (3.28) has 

to be checked. 

if 1<qxw (Fig.4d), SS2 is stable if meaningful and if 

both u1 and u2 are less than uc. SS2 is unstable if both 

ul and u2 are larger than uc, while for any other relation-

ship among u1, u2 and uc  the stability of a meaningful SS2 

will again be determined via the condition (3.28). 

ANALYSIS OF SS3 

This steady state arises when xi=0 and yi>0, i=1,2. 

The case is symmetric to SS2 hence the analysis will not be 

repeated. If xi is interchanged with yi and fi is inter-

changed with gi (i=1, 2) in the results of SS2, the results 

of SS3 are obtained. There are only two equations which 

have to be slightly modified, namely: 
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where, 

AI = Ow(y+1){(R+1)(pa-(12(y+1)+11a2} 

B1 = ...0.w2(y+1)[R(y+1)+1]a2 

Ci = p(y+1)[R(y+1)+1]a2-(0(y+1)(R+1)+[R(y+1)+1])(pa+p2 

Di = w[R(y+1)+1][0(y+1)a2-w] 

and, 

J;ui + + Jiul + J; = 0 

where, 

J3 = {-[R(y+1)+1]a + (p)C1 

J2 = {ufC1+R(y+1)A1 - [R(y+1)+1](Ciw+Di)}a 

+ p(Di-ufCi) 
I I I 

Jl = (RN -4-1)(AlW431)+Uf(C1W+D*M(Y+1)+1]Wpi/a 

cpufD1 
1 

JO = w[R(y+1)Bi+ufD1]a 

Again as in the case of SS2, numerical studies have 

shown that whenever a meaningful SS3 arises, it is unique 

despite the fact that mathematically the equations do not 

exclude the possibility for multiple SS3. 

In the special case where Oy=1 the values for the 

variables are given by the expressions: 

wa 
ul = u2 -  = u 

- a 

and, Y1 = Y2 = of u = 

As in the case of SS2, when Oy=1 the environment is 

homogeneous if the system is at SS3. 
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One should note that all eigenvalues of SS2 and SS3 

always real. Hence no oscillatory phenomena are expected 

during transients, something which has been confirmed by 

computer simulations. The same behavior is exhibited by 

the non-splitting system as it has been discussed in part 

II of the thesis. 

ANALYSIS OF THE COEXISTENCE STEADY STATE (SS4) 

For a meaningful SS4 it must be: 

xi > 0, yi > 0, 0 < ui < uf i=1, 2 

In order to find the values of the six variables one 

has to solve the following system of algebraic equations: 

R(y+1)ax2 - [R(y+1)+1]axi + flui)xi = 0 (3.30) 

R(Y4-1)aY2 - ER(y+1)+1laY1 g(u1)y1 = 0 (3.31) 

P[R(y+1)+1]axi - p(R+1)(y+1)ax2 + f(u2)x2 = 0 (3.32) 

p[R(y+1)+1)ayi - P(R+1)(y+1)aY2 g(u2)y2 = 0 (3.33) 

of = xi + yi + ui (3.34) 

of = x2 + y2 + u2 (3.35) 

From eqns.(3.30) through (3.33) one can get the following 

relations: 

x2 
fi - [R(y+1)+1]a = -R(x+1)a---- (3.36) 

xi 

gi - [R(y+1)+1]a = -R(y+l)a—— (3.37) 
Y1 

xi 
f2 - P(R+1)(y+1)a = -0[R(y+1)+1]a---- (3.38) 

x2 
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g2 - B 
Yl

(R+1)(y+l)a = -0[R(y+1)+1la---- (3.39) 
Y2 

By multiplying the expressions (3.36) and (3.38) one gets: 

{f1-[R(y+1)+1]a}[f2-0(R+1)(y+1)a] = PR[R(y+1)+1](y+l)a2 

(3.40) 

Similarly, by multiplying the expressions (3.37) and (3.39) 

one gets: 

{gl-[R(y+1)+1)a)[g2-P(R+1)(y+1)al = PR[R(y+1)+1](y+l)a2 

(3.41) 

Observe that for a meaningful SS4 all the left hand 

side parts of eqns.(3.36) through (3.39) have to be nega-

tive. 

Using a procedure similar to that followed for the 

case of the non-splitting system (see part II) one con-

cludes that the two competitors cannot coexist unless their 

specific growth rate curves cross each other (Fig.4c & 4d). 

If the specific growth rate curves cross each other, co-

existence cannot be excluded only in the case where either 

ul>uc>u2 or u2>uc>ul. These two conditions imply physical-

ly that in each one of the two vessels a different micro-

bial species has the competitive advantage. This result 

(which is in accordance with what has been published in 

[14]), is identical with the result found in part II. The 

only difference between the splitting and the non-splitting 

systems is that the condition u2>uc>ul cannot lead to a 
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meaningful coexistence steady state for the non-splitting 

case. 

The value of ul is a solution to the quadratic 

I(u1) = I2ui + Ilui + I0 = 0 (3.42) 

where, 

I2=3.(y+1)[R(y+1)+1]2a3 - [R(y+1)+1)a20(Y+1)(R+1)(T+1) 

+[12(y+1)+1]ac}+{13(y+1)(R+1)2T+[R(/+1)+1][Rcp+(l+T)ac ]}a 

- (R+1)(pac  

Ii=[R(1+1)+1)0(y+1)ER(y+1)+1)(w+l)a3 - WY41)(R+1)(w+T) 

+ [R(y+1)+1)(w+l)ac ]ct2 + (w+T)aca.} 

Io=w[R(y+1)+1]2a2[13(Y+1)a-ac ] 

with, 

With ul known the rest of the variables can be found 

through the following expressions: 

where, 

W1 = P(Y+1)aff(R+1)-M(y+1)+11cOul-[R(y+1)+1]a) 

W2 = (13(y+1)[R(y+1)+1]a2-[P(i+1)(R+1)+[R(y+1)+1]]a+1)ul 

+ [R(y+1)+1][P(y+1)a2-a] 
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In the special case where Oy=1 and if a=ac, where ac  

is given by (3.43), equation (3.42) yields as solution 

ul=uc, where uc  is given by (3.29). When a=ac  and ul=uc, 

equation (3.44) yields that u2 is also equal to uc. Hence 

it is u1=u2=uc. In this case equations (3.30) and (3.31) 

or equations (3.32) and (3.33) imply that it is xi=x2 and 

yi=y2. Obviously in this case the environment is homo-

geneous. It must be noted that in this case x and y cannot 

be exactly specified since they have to satisfy a single 

equation only, namely: 

x + y = uf -uc  

Mathematically, the system has one degree of freedom in 

this case. 

Extensive numerical studies for the case where Oy=1 

have indicated that except for a=ac  there is no other value 

of a resulting in a meaningful coexistence steady state. 

Since coexistence occurs for a discrete value of a 

only, it is practically unattainable as in the case where 

pure and simple competition takes place in a single vessel. 

At this point one can conclude that Oy=1 implies a 

spatially uniform environment regardless of the steady 
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state the system is at. In the present study the use of 

two vessels was exactly in order to make the environment 

heterogeneous and hence make the coexistence of the two 

competitors possible. It is then a very important finding 

that 0 and y must be always selected in a way such that 

0y#1 if one is interested in the coexistence steady state. 

This is a new finding, it is not mentioned in [14]. 

The quadratic (3.42) will yield real values for ul if 

and only if its discriminant A, is positive. After some 

algebraic manipulations one can show that 

A = 02a2(y4.1)2(R(y4.1)+134(w_1)2(a_e, )(a-Klac)(a-Kac)(a-H') 

(3.49) 

where K is given by (3.13a) while, 

with, 

Ai = 03(y+1)-ER(y+1)+1])2+M(y+1)]2 

+ 2012(-0-1)[0(y+1)+R(Y+1)+1] 

''2 = f(R2+2R)p2(y4.1)2+2RO(Y+1)[R(y+1)+1]+[0(y+1) 

-[R(y+1)+1]]2)(w-1)44 + 160(y+1)[R(Y+1)+1] 

(w-1)2Rcpw (3.53) 
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One can easily show that 

8' < Kiac  < Kac  < H' (3.54) 

Hence a possibly meaningful coexistence steady state re-

quires that a must be chosen such that: 

a < 8' or Klac  < a < Kac or a > H' (3.55) 

since each of the inequalities above guarantees that A > 0 

(i.e. ul real). 

In fact from the numerical studies performed for this 

system, it turns out that the selection of a for coexis-

tence is much more restricted than what the inequalities 

(3.55) suggest. Namely, 

ac 
if f3),  > 1 it must be - < a < Kac  

Po( 

while, 

If Py < 1 it must be ac  < a < Kac  

The numerical studies have also indicated that 

whenever SS4 arises it does not exhibit any multiplicity. 

Furthermore, when Dy>1 it turns out that u2>uc>ul while 

when Py<1 it is u2<uc<ul. 

The aforementioned observations from the numerical 

studies cannot, unfortunately, be proved analytically due 

to the complexity of the system equations. 

From eqns.(3.42) and (3.44) one can observe that the 

values of ul and u2 are independent of the value of uf. 
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This implies that for a given system of populations 

(i.e. cp and w) and for given a, R, and y, when of varies 

the values of ul and u2 remain unchanged while the biomass 

concentrations (xi, yi, i=1,2) do change. This has been 

always observed in the numerical studies and the same thing 

happens in the non-splitting system as well. 

As in the case of the non-splitting system, one can 

observe from all operating diagrams (which are discussed in 

detail in the next section) for the system studied here 

that the point 

is always a point of the boundary of the domain of coexis-

tence. One can in fact show that this has to be so. 

Assume that ul=uc  is a solution to the steady state 

equations. If ul=uc  then it must be f1=g1=ac. Using the 

last equality and combining (3.30) and (3.32) one gets: 

Comparing the equations (3.56) and (3.57) one can easily 

conclude that it must be f2=g2, something which is true 

only if f2=g2=ac. The last equality implies that u2=uc. 

Substituting f2=ac  in eqn.(3.56) (or equivalently, g2=ac  in 
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eqn.(3.57)) one gets a quadratic in a which when solved 

yields a=Kac. When the equalities a=Kac, u1=u2=uc, and 

fi=g1=ac  are substituted in equation (3.3) the following 

equation is obtained: 

(K - 1)(uf - uc)ac  = 0 (3.58) 

At this point one has to distinguish between two 

cases: 

Case I. K = 1 (which arises only if (3y = 1) 

In this case equation (3.58) is always satisfied. 

Case II. K x  1 

In this case equation (3.58) is satisfied only if uf=uc  

For the case where a=Kac  and uf=uc  equations (3.30) 

through (3.32) yield x1=x2=y1=y2=0. 

From the foregoing analysis one can conclude that the 

point (ufc,Kac) results in a degenerate case of coexistence 

and that it must be a common point of the boundaries of SS1 

and SS4 something which is in fact observed in all opera-

ting diagrams. Mathematically speaking the point (ufc,Kac) 

is a bifurcation point from SS1 to SS4, 

Since for a meaningful SS4 it must be true that uc< 

max{ul,u2}<uf one can conclude that for coexistence it is 

necessary to have 

w - Cp 
of > Uc  

 

(3.59) 

 

(p - 1 
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The condition (3.59) provides guidance as to how of 

has to be selected if one hopes to get coexistence of the 

competitors (in numerical or experimental studies). 

As far as the (local) stability of SS4 is concerned, 

one has to determine the character of the four eigenvalues 

of the Jacobian matrix which in this case are given as the 

roots of the following polynomial: 

A4 + D3A3 + D2A2 + DiA + Do = 0 (3.60) 

where, 

D3 = R(y+l)a( 
x2  

---- + — 
Y2  
---) + D[R(y+1)]a( xi ---- + — 

Yl  
---) 

xi y1 x2 Y2 

+ xiFi + y1G1 + x2F2 + y2G2 

x2y2 x1y1 D2 = R2(y4.1)2a2  + p2m(y4.1)4.132a2  
xiyi x2y2 

, x2yi xiy2 
+ R(y+1)0[R(y+1)+1]a4(  + ) 

xiy2 x2yi 

, Y2 
J
, 

+ R(y+l)a[(x2F2+yiGi4T2G2)---- 
x2 

+(xiFi+x2F2+y2G2/ ---- 
xi Y1 

xi 
+DER(Y+1)+1la[(xiFi+yiGi+y2G2)---- + (xiFi+x2F2 

x2 

Y1 
+y1G1)----]+xix2FiF2+xiy2FiG2+x2y1F2G1+yiy2GiG2 

Y2 

x2y2 xiyi 
Di = R2(y+1)2a2 (x2F2+y2G2)+ 02[R(y+1)+1]2a2  

xiyi x2y2 

(x1F1+yiGi)+R(y+1)a20[R(y+1)+1][(x1F14-Y2G2) 
x1y2 

x2yi 



+ (x2F2+y1G1) 
x2y1 

1+R(y+1)a(x2F2+Y2G2) 
xiy2 

Y2 x2 
(x1F1 + yiGi----) 

Y1 xl 

+ P 
Y1 xi 

[R(y+1)+1]a(xiFi+yiGi)(x2F2---- + y2G2----) 
Y2 x2 
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D0 = R(1,4.1)202a4[R( y+1).4.1]2 

     

(1) x1y2 (u1u2)2 

xiy2 
( f1g2 + f2g1)(x1y2-x2y1)2 

x2yi 

Observe that D0, Di, D2, D3 are positive when SS4 is 

meaningful. When the Ruth-Hurwitz [30) criteria are check-

ed for eqn.(3.60) it turns out that they are always satis-

fied provided that SS4 is meaningful. The algebra is very 

extensive and for this reason the proof is not presented 

here. One concludes then that SS4 is stable whenever mean-

ingful. The Ruth-Hurwitz criteria do not provide informa-

tion as to whether the eigenvalues are real or complex. 

Nevertheless, extensive computer simulations have never 

shown any damped oscillatory behavior hence it seems that 

all eigenvalues are real (and negative). 

Before concluding the analysis of the steady states 

for this part the remarks made for the non-splitting system 

have to be repeated: 
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1. The stability analysis of each steady state is based 

on the eigenvalues of the Jacobian matrix hence theoreti-

cally the results hold locally only, computer simulations 

though have indicated that the same results hold globally 

as well. 

2. It cannot be shown analytically if for a given set of 

parameters more than one of SS1 through SS4 is meaningful 

and stable. Numerical studies have indicated that this is 

not possible, i.e. the steady states are mutually exclu-

sive. 

OPERATING DIAGRAMS AND THE EFFECT OF THE PARAMETERS 

The analysis of the splitting system has indicated 

that provided that a number of conditions (sometimes nece-

ssary and sufficient, sometimes necessary but not suffi-

cient) are satisfied, each one of the possible steady 

states of the system can be meaningful and stable (hence 

practically realizable). The questions raised in the case 

of the non-splitting system as to whether there is a range 

(or ranges) of values in the parameters space where all the 

conditions concerning a steady state are simultaneously 

satisfied and as to what are the effects on the system when 

the parameter values are varied arise in the case of the 

splitting system as well, and more intensely so since the 

expressions for the conditions are more complicated due the 
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the extra parameter, y which is needed in order to describe 

the splitting system. 

In this section the results of numerical studies, 

performed in order to answer the aforementioned questions, 

are presented in the form of the operating diagrams shown 

in Figures 12 to 38. 

The values used for the system parameters w and p are 

0.125 and 0.4, respectively. They are the same as those 

used in the numerical studies for the non-splitting system 

something which helps the comparison of the results obtain-

ed for the two systems. The reasons for not presenting 

results for other values of w and p are those stated when 

the non-splitting system was discussed. 

The parameter 3 (the ratio of the volumes of the two 

chemostats) is the design parameter while a, uf, R and y 

are the operating parameters in the sense that they can be 

easily adjusted for a given system (i.e. w and p) and de-

sign (i.e. (3). The operating diagrams in this case are in 

reality 4-dimensional or even 5-dimensional if one wants to 

simultaneously compare alternate designs (i.e. the effect 

of 3). The diagrams presented here are 2-dimensional pro-

jections of the actual operating diagrams in the a-uf 

plane, for various values of 0, R and y. 

As it has been discussed in the analysis presented in 

the previous sections of this part, the value of the pro- 
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important for this system and for this reason the operating 

diagrams presented here are grouped in three categories, 

namely: 

1. Oy < 1 Figures 12-23 

2. Oy > 1 Figures 24-37 

3. py = 1 Figure 38 

Within each of the two first groups mentioned above, the 

diagrams form three series in each one of which two of the 

parameters R, y and p are held at fixed values while the 

third one varies from diagram to diagram. 

The diagram shown in Figure 38 is for the case where 

0x=1. Regardless of the value of the recycle ratio and the 

specific values of 0 and y the diagram remains qualitative-

ly the same. In this case, as it was shown in the analy-

sis, the system in spatially homogeneous and it is like 

having a single chemostat only. Coexistence occurs for any 

value of of such that uf>ufc  but only for the special (dis-

crete) value of a equal to Kac. In this case coexistence 

is practically unattainable since the slightest perturba-

tion in the value of a (unavoidable with even a perfect 

control device) leads to the exclusion of either one or the 

other of the competitors. The line (parallel to the axis) 

at which coexistence occurs is nothing more than the 

boundary between SS2 and SS3. Mathematically, on this line 
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one of the eigenvalues of the coexistence steady state is 

equal to zero something which implies that it is a steady 

state bifurcation point. This is a very important finding 

of this study, indicating that there is a special case for 

which the environment is not heterogeneous. In reality, 

due to perturbations in the values of p and (mainly) y it 

will be difficult to have Oy=1 but the finding is important 

in the sense that Oy should not be chosen close to unity 

because the coexistence region will be so narrow that it 

will be practically non-existing. 

All the diagrams which are shown in Figures 12 through 

37 have some common features (most of which have been 

either discussed or proved in the analysis presented ear-

lier). They are the following: 

1. No matter how big or how small it is, there is always 

a region in which SS4 is meaningful and stable, hence with 

the configuration of the system discussed here one can 

really achieve (in most of the cases where the region is 

not negligibly small) coexistence of the two competing 

species in a steady state. 

2. The boundary (or one of the boundaries) of the co-

existence steady state always starts from the crossing 

point of the Kf(uf) and Kg(uf) curves [i.e. the point 

(ufc,Kac)]. 
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3. Coexistence never occurs for values of of such that 

uf<ufc• 

4. The upper bound of the domain of coexistence never 

exceeds the value a=Kac, which is the crossing point of the 

Kf(uf) and Kg(uf) curves. 

5. The lower bound of the domain of coexistence when 

Oy<1 is a=ac  the value of which in all diagrams presented 

here is (w-(0/(w-1)=0.314 while when Oy>1 the lower bound 

of a is ac/Ox. 

There are some more observations that one can make 

from the diagrams that are the same with observations made 

earlier for the non-splitting system. In most of the cases 

there is a single domain of coexistence the shape of which 

varies in complexity from very simple (Figures 15,19,20,24, 

28,32,35,37) to intermediate (Figures 14,18,23,25,29,33,36) 

to very complex (Figures13,17,22,26,34). The common fea-

ture of the diagrams that were called very simple is that 

starting from any point of the domain of coexistence, 

shift-up experiments lead eventually to the exclusion of 

the population which survives in shift-down experiments. 

Namely, shift-up experiments force the system to eventually 

go to SS2 while shift-down experiments force the system to 

eventually go to SS3. The diagrams of intermediate com-

plexity exhibit the feature of the very simple diagrams 

discussed above but in addition they have a range of values 
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of uf either narrow (e.g. Figure 25) or extended (e.g. 

Figure 29) for which both shift-up and shift-down experi-

ments force the system to eventually go to SS3. The very 

complex diagrams exhibit the features of the diagrams of 

intermediate complexity but in addition they have a range 

of uf values either narrow (e.g. Figure 34) or extended 

(e.g. Figure 13) for which both shift-up and shift-down 

experiments will force the system to eventually go to SS2. 

All the considerations discussed above are valid only when 

one starts from the domain of coexistence. 

There are also diagrams that have two domains of 

coexistence (Figures 12,16,21,27,30,31). In all of them 

the upper region is so narrow that it can be viewed as a 

curve and hence it is of no practical interest as far as 

coexistence is concerned. This upper domain or curve is 

always separating SS2 from SS3. It must be emphasized 

though that this domain or curve is not parallel to the uf 

axis as in the case of the diagram shown in Figure 38. The 

lower (which is also the actual for practical purposes) 

domain of coexistence, has (with the exception of the dia-

gram of Figure 30) the characteristics of the diagrams of 

intermediate complexity discussed previously, as far as the 

response of the system to shift-up and shift-down experi-

ments is concerned. 
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In the following, the effects of the various parame-

ters on the behavior of the system are discussed in a sys-

tematic fashion. 

Case I. Py < 1 (Figures 12-23) 

The effect of the parameter y (the splitting ratio) on 

the system can be viewed from the diagrams shown in the 

sequence of Figures 12-15, for which the respective values 

of y are 0.1,0.3,1.0 and 3.0 while the values of 0 and R 

are fixed at 0.2 and 0.1, respectively. These diagrams can 

be also compared with the diagram of Figure 5 which is for 

the case where y=O. It can be observed that initially as 

the value of / increases the area of the domain of coexist-

ence increases but for large values of y the area of the 

domain of coexistence becomes small. This indicates that 

when all other parameters 0 and R) are fixed there is an 

optimal value of y which maximizes the domain of coexist-

ence in the a-uf plane. It can be also seen that for small 

values of y (even y=0) the domain of coexistence is satis-

factorily large while for large (past the optimum) values 

of y the width (in a values) of the domain of coexistence 

becomes very small or even prohibitive for operation. It 

must be stated though that the comments for the domain of 

coexistence being satisfactorily large or not depend also 

on the actual values of D and R. As an example, in the 

diagram shown in Figure 20 although y is small the domain 

of coexistence is extremely narrow. 
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The diagrams of the Figures 16-19 show the effect of 

the parameter 0 which has the value 0.1, 0.25, 0.35 and 

1.0, respectively while R is fixed at 0.1 and y is fixed at 

0.2. In general, one can say that as 5 increases the do-

main of coexistence decreases and the decrease is dramatic 

when p reaches unity. At this point it has to be noted 

that when comparing the diagrams one has to be careful and 

properly take into account the scale of the axes since they 

are not the same in all diagrams. In the case where 0 is 

larger unity, when one varies the value of y, good results 

are never obtained, see for example Figure 20 for which the 

values of the parameters p, R and y are 1.5, 1.0 and 0.2 

respectively. If one compares the diagrams of Figures 17 

and 6 one can conclude that the domain of coexistence is 

wider when y=0.2 than when y=0 although in the latter case 

and for of larger than about 7 coexistence can occur for 

values of a much higher than when y=0.2. In fact, the 

system is too complex for safely generalizing any observa-

tions. 

The diagrams shown in Figures 21-23 are for R being 

0.01,1.0 and 3.0, respectively while both p and y are fixed 

at 0.2. One can observe that the domain of coexistence 

becomes wider as R increases. Nevertheless, as it was 

discussed also in the case of the non-splitting system, one 

has to observe that when R increases the domain of coexist- 
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tence shifts to high of values for which one does not real-

ly expect to have rate-limitation (and consequently compe-

tition). In fact, one should observe that for low of va-

lues, coexistence becomes more and more difficult as R 

increases, something which is indeed expected since as the 

recycle ratio increases, the environment becomes more and 

more homogeneous. 

Case II.  Py > 1 (Figures 24-37) 

In the diagrams of Figures 24-27 the value of y is 

2.0, 5.0 15.0 and 20.0, respectively while 0 is fixed at 

0.6 and R is fixed at 0.1. One can say that as in the case 

of Figures 12-15, the domain of coexistence initially in-

creases with y while for large values of y the domain of 

coexistence becomes narrower as y keeps increasing. Hence 

it seems that there is an optimal value of y. An implica-

tion of increasing y is that the actual dilution rate for 

both vessels increases and as a result the possibility of 

washing out the culture is higher. One should then select 

a low value of a for survival of one or possibly both spe-

cies. It is interesting to observe that the change in the 

shape of the domain of the domain of coexistence as y in-

creases in the diagrams of Figures 24-27 is exactly oppo-

site (or a mirror image) of the change occurring in Figures 

12-15. The diagrams of Figures 28-31 which are for y va-

lues 1.0, 2.0, 20.0 and 35.0, respectively and for which 0 
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is fixed at 1.5 and R is fixed at 0.1 show again the effect 

of the parameter y. The difference between the sequences 

of Figures 24-27 and 28-31 is that in the former 0 is fixed 

at a value less than 1 while in the latter 0 is fixed at a 

value larger than 1. One can observe that the width of the 

domain of coexistence in terms of a values is larger when 

0-01 and p<1 than when 0y>1 and p>1. Furthermore, one can 

observe that when p<1 it is preferable to have Oy<1 rather 

than 0y>1 while when p>1 the opposite is true. The latter 

observations refer mainly to the maximum possible range of 

a values. 

In the diagrams of Figures 32-34, 27 and 30 the value 

of p is 0.2, 0.35, 0.5, 0.6 and 1.5, respectively while R 

is fixed at 0.1 and y is fixed at 20.0. One can observe 

that the domain of coexistence initially increases with 0 

but then it decreases (drastically in the case of Figure 

30). For the values of R and y used for the diagrams pre-

sented here, the optimal value of 0 was found to be 0.5 for 

maximizing the domain of coexistence in the a-uf plane. 

For the diagram shown in Figure 35 the values of p, y 

and R are 0.2, 8.0 and 0.1, respectively. It was found 

that for any other value of R the shape of the coexistence 

region remained the same and always its width is very nar-

row. One has to observe that 0 is less than one. When p 

is larger than 1, as in Figures 30, 36 and 37 where p=1.5, 
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y=20.0 and R is equal to 0.1, 1.0 and 5.0, respectively, 

one can observe that the domain of coexistence increases 

with R but it also shifts to higher uf values and the re-

marks made earlier for Figures 21-23 are valid here as 

well. 

It has been shown in the analysis that the value of K 

depends on the value of the product of the parameters p and 

y and in fact K decreases as 3y increases. This implies 

(and it can be seen from all diagrams) that the smaller Oy 

is the lower are the values of a at which total washout 

occurs for the system. Furthermore, since coexistence 

never occurs for a>Kac, a large K value (or low 0y) increa-

ses the range of a values where the system is expected to 

exhibit the behavior of interest. 

In general one can say that Sy<1 is preferable to 

3y >1, but for Dy<1 one cannot say that the smaller Py the 

better, since comparisons made between the non-splitting 

system where Oy=0 and the splitting system have indicated 

that in most of the cases the splitting system offers a 

wider domain of coexistence. 



Table 2: Parameter Values used for the Operating 

Diagrams shown in Figures 12-38 

Fig. No. (4) w 13 R Y 

12 0.4 0.125 0.2 0.1 0.1 

13 ►► ►► ►► ►►  0.3 

14 ►► ►► ►► ►►  1.0 

15 ►► ►► ►► ►►  3.0 

16 ►► ►►  0.1 0.1 0.2 

17 ►► ►►  0.25 ►► ►►  

18 ►► ►►  0.35 ►► ►►  

19 ►► ►►  1.0 ►► ►►  

20 ►► ►►  1.5 1.0 0.2 

21 ►► ►►  0.2 0.01 0.2 

22 ►► ►► ►►  1.0 ►►  

23 ►► ►► ►►  3.0 ►►  

24 ►► ►►  0.6 2.0 0.1 

25 ►► ►► ►►  5.0 ►►  

26 ►► ►► ►►  15.0 ►►  

27 ►► ►► ►►  20.0 ►►  

28 ►► ►►  1.5 1.0 0.1 

29 ►► ►► ►►  2.0 ►►  

30 ►► ►► ►►  20.0 ►►  

31 ►► ►► ►►  35.0 ►►  

100 



Table 2 continued 

Fig. No. 4) w β R Y 

32 0.4 0.125 0.2 0.1 20.0 

33 " " 0.35 " " 

34 " " 0.5 " " 

35 " " 0.2 0.1 8.0 

36 " " 1.5 1.0 20.0 

37 " " " 5.0 20.0 

38 " " βγ = 1 
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Figure 13. 



Figure 14. 
 



Figure 15. 
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Figure 17. 
 



Figure 18. 
 



Figure 19. 
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Figure 31. 
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Figure 33. 
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Fi gure 37. 



Figure 38. 



IV ANALYSIS OF THE GENERAL SYSTEM 

In this part the general system shown in Figure 1 

(p.21) is discussed. The only difference between the gen-

eral and the splitting system is that in the case of the 

general system the concentration of the rate-limiting 

substrate in the feed to the two vessels is not the same 

(i.e. The two systems are highly similar and for the 

most part the analysis needs not to be repeated. It is the 

effect of the parameter not being equal to unity that 

this part focuses on. 

Mathematically, the system is described by equations 

(1.7) through (1.12) presented in part I of the thesis, 

and as it has been discussed there any two of the differ-

ential equations can be substituted by the stoichiometric 

relations (1.15) and (1.16). In fact, in studying this 

system equations (1.7), (1.8), (1.10), (1.11), (1.15) and 

(1.16) were used. Dynamically the system is again 4-dimen-

sional and its Jacobian matrix, through which the local 

stability analysis of all possible steady states is inves-

tigated, is exactly the same as that of the splitting sys-

tem (see pp.68-69). As a matter of fact the only differ-

ence between the splitting and the general system is in 



their stoichiometric relations, which of course become 

identical for 9=1. 

ANALYSIS OF SS1 (WASHOUT STEADY STATE) 

This is the trivial steady state in which none of the 

two competitors survives, thus xi=yi=0, i=1, 2 while the 

values of u1 and u2 are given by the expressions: 

It is clear from the expressions above that u1 and u2 

will not be equal unless q=1 (splitting system) or y=0 

(non-splitting system). Hence it is only the general sys-

tem which exhibits spatial heterogeneity when it is at the 

washout steady state. 

The criteria for the (local) stability of SS1 are once 

again found by using Sevastyanov's lemma [29] since all 

off-diagonal elements of the Jacobian matrix are non-

negative. The criteria are the following: 

f1 - [R(y+l)+1]a < 0 (4.2) 

gi - [12(y+1)+1]a < 0 (4.3) 

P[R(y+1)+1](y+l)a2 - CO(R+1)(y+1)fi 

+ [R(y+1)+1]f2}a + fif2 > 0 (4.4) 

0[R(y+1)+1](y+l)a2 - {0(R+1)(Y+1)gl 

+ [R(y+1)+1]g2)a + glg2 > 0 (4.5) 

where fi and gi, i=1,2 are the functions f and g (dimen- 



sionless specific growth rates) evaluated at uif which are 

given by (4.1). The difference between the conditions 

(4.2) through (4.5) and the conditions (3.9) through (3.12) 

is that in the latter set it is f1=f2 and g1=g2. 

After some algebraic manipulations the criteria (4.2) 

through (4.5) can be combined into a single condition, 

namely: 

a > max { of , ag } (4.6) 

where, 

with, 

6f = {13(y+1)fl-[R(y+1)+1 )f2)2+D2R(R+2)(Y+1)2fi 

+ 20R(y+1)[R(y+1)+1]fif2 > 0 

and, 

Ag = WY-1-1)grqR(Y+1)+1 ig2)24.02R1R+ t 2)(y+1)2gi 

+ 20R(N+1)(R(Y+1)+1]gig2 > 0 

Because of the fact that fif2 and gig2 it can be 

easily seen that the expression (4.6) in terms of the 

parameters of the system is much more complicated than the 

corresponding expression for (3.13), (the complexity comes 

through of and Ag). This complexity presents the following 

problem: in the case of the splitting and the non-splitting 



systems considered earlier, if the f(u) and g(u) curves [or 

equivalently f(uf) and g(uf) curves] cross each other, it 

is obvious that the curves Kf(uf) and Kg(uf) cross each 

other as well; in the present case it is practically im-

possible to prove that the crossing of the f(uf) and g(uf) 

curves implies the crossing of the of and ag curves al-

though extensive numerical studies have indicated that this 

Figure 39: The locus of the crossing point of of and ag 

as a function of u for various values of 

is so. The crossing point of f(uf) and g(uf) occurs at a 

value ufc  of of given by equation (2.28) and then Kfluf) 

and Kg(uf) cross also at ufc  and their value is Kac  where 

ac  is given by equation (3.43), as it has been discussed in 

the previous parts of this thesis. In the case of the gen-

eral system it has been observed that the crossing of the 

of and ag curves occurs for a value of of less than ufc  if 

n>1 or for a value larger than ufc  if n<1. The relation- 



ship between the value of of at which the crossing occurs 

and the corresponding value of of and ag at the crossing 

point is shown in Figure 39 from which it is interesting to 

observe that the maximum of of and ag at the crossing point 

occurs for n=1. The diagram shown on Figure 39 is a quali-

tative one and it represents observations from numerical 

studies performed for the general system. 

ANALYSIS OF SS2 

SS2 is the steady state at which one of the two com- 

peting populations washes out of the system, namely xi>0 

and yi=0, i=1, 2. The values of xi and ui, 1=1, 2 are 

given as solution(s) of the system of equations (3.14), 

(3.15) and, 

xi = uif - u1 (4.7) 

x2 = u2f - u2 (4.8) 

where uif and u2f are the expressions given by (4.1). The 

relationship between ui and u2 is that given by equation 

(3.21) while ui is given by the roots of the following 

cubic equation: 

L3ui + L2ui + Liui + L0 = 0 (4.9) 

where 

L3 = {-[R(y+1)+1]a + 1}C1 

L2 = (R(y+1)Ai - [R(y+1)+1](Ci+Di) + u1fC1 

- R(y+1)Ci(u2f-uif)}a + Di - ulfCi 



L1 = {R(y+1)(A1+k) + ulf(Ci+Di) - [R(y+1)+1]D1 

- R(y+1)(Ci+Di)(u2f-ulf)}a - ulfDi 

Lo = [R(y+1)131 + ulfDi - DiR(y+1)(u2f-ulf)]a 

After u1 is found via (4.9) the values of xl, x2 and 

u2 are easily calculated from equations (4.7), (4.8) and 

(3.21) respectively. SS2 will be meaningful if and only if 

xi>0, and 0<ui<uif, i=1,2. 

As in the case of the splitting and the non-splitting 

system, SS2 in the general case does not exhibit multipli-

city as numerical results indicate. 

In the case of the non-splitting system it was proved 

that in a meaningful SS2 it is always ul>u2 while in the 

splitting system this is not necessarily true. It has been 

found numerically, that in the case of the general system 

as in the case of the splitting system the relationship 

between ul and u2 is not always such that ul>u2. 

In the case of the splitting system it was found that 

the relationship between ul and u2 depends on the relation 

of the product of the parameters R  and y to unity [see 

relations (3.18) and (3.19)]. The same thing cannot be 

claimed for the general system. The numerical results were 

not conclusive in this case, it can be said though that the 

relationship between ul and u2 depends on (among other 

things) the value of the parameter r. 

The criterion for the (local) stability of SS2 is the 



one given by the relation (3.28). As it was discussed in 

part III, the stability criterion is always satisfied 

If w > cp and cp < 1 

If 1 > T > w and uc  < max{ul,u2} 

If 1 < cp < w and uc  > max{ul,u2} 

while (3.28) is never satisfied 

If w < T and T > 1 

If 1 > cp > w and uc  > max{ul,u2} 

If 1 < cp < w and uc  < max{ul,u2} 

while for any other situation it cannot be concluded be- 

forehand (or analytically) whether the criterion is satis- 

fied or not. 

ANALYSIS OF SS3 

This steady state is symmetric to SS2 and it arises 

when xi=0 and yi>0, i=1, 2. 

The value of ul in this case is given as a solution to 

the following cubic equation: 

L;ui + Lui + Liul + L; = 0 (4.10) 

where, 

L3 = {-[R(y+1)+1]a + T)Ci 

= (R(y+1)A1 - [R(y+1)+1](C1w+D1) + u1fC1 

- R(y+1)C1(u2f-ulf)}a + T(Di - ulfCi) 

Li = {R(y+1)(A1w+B1) + ulf(Ciw+Di) - [R(y+1)+1]wDi 

- R(y+1)(Ciw+Di)(u2f-ulf)}a - TulfDi 



1 1 1 

LO = W[R(.1"4-1)B1 + 11101 '-' DiR(y+1)(u2f-uif)]a 

with ulf and u2f given by the expressions (4.1), and Al, 

Bl, Cl, Di given by the expressions, after equation (3.29a) 

in part III. 

Once ul is determined by solving equation (4.10) the 

value of u2 is calculated via equation (3.29a) while y1 and 

y2 are given by the following equations 

Y1 = ulf ul 

Y2 = u2f u2 

SS3, as its analogue SS2, does not exhibit multi-

plicity. The criterion for the stability of SS3 is given 

by (3.28) provided that gi are substituted by fi, i=1,2. 

The eigenvalues of both SS2 and SS3 are always real 

hence no (damped) oscillatory phenomena are expected during 

transients, something confirmed via computer simulations. 

ANALYSIS OF THE COEXISTENCE STEADY STATE (SS4) 

The coexistence steady state arises when both competi-

tors establish themselves in both chemostats. It is mean-

ingful if and only if xi>0, yi>0 and 0<ui<uif, i=1,2. The 

steady state equations in this case are equations (3.30) 

through (3.33) and 

ulf = xl + y1 + ul (4.11) 

u2f = x2 + y2 + u2 (4.12) 

where ulf and u2f are given by the expressions (4.1). 



In the analysis of SS4 for the splitting system it has 

been proved that a necessary condition for a meaningful 

coexistence steady state is that the specific growth rate 

curves f(u) and g(u) cross each other. The proof is based 

on equations (3.30) through (3.33) that are valid for the 

general case considered here as well. Hence, the necessity 

of the crossing of the f(u) and g(u) curves continues being 

a condition here and at this point one can conclude that 

this condition is necessary for coexistence in all confi-

gurations studied in the present thesis. 

The value of ul is given as a solution to the quadra-

tic (3.42) and once found, the value of u2 can be calcu-

lated from the expression (3.44). As it was discussed in 

part III, the values of u1 and u2 are independent of the 

value of of and hence they are not affected by the value of 

the parameter T1 appearing in the general case. When u1 and 

u2 are known the values of the remaining four variables can 

be calculated from the following expressions: 



Observe that when 71=1, ulf=u2f and the expressions 

(4.13) through (4.16) reduce to the expressions (3.45) 

through (3.48) of the splitting system. 

Since the values of ul and u2 are independent of the 

parameter n, their relation to uc  will be exactly the same 

as in the case of the splitting system, namely: 

if 3y > 1 then u2 > uc  > ul 

if 3y < 1 then ul > uc  > u2 

The restrictions on the values of a given by (3.55) 

are still valid for the general system but in reality, as 

numerical results indicate, the range of values of a for 

coexistence is much more narrow than what conditions (3.55) 

indicate. 

Numerical results indicate that a should be selected 

as following if one is to expect to get coexistence: 

In the special case where 13y=1 and for (uf,a)=(ufc, 

Kac), it is u1=u2 as in the case of the splitting system. 

But, under the same conditions the values of xi, yi, i=1,2 

are meaningless unless 9=1. Hence if T11 the general sys-

tem does not lead to a homogeneous environment as the 

splitting system does when 0y=1. 



From the numerical studies performed for the general 

system the following things have been observed: 

If the values of ul and u2 are such that fi>gi and 

f2<g2, an increase in the value of ri results in the follow-

ing: 

yi, y2 and y2-y1, increase while, 

xi, x2 and x2-xl, decrease. 

If the values of ul and u2 are such that fi<gi and 

f2>g2, an increase in the value of n results in the follow-

ing: 

yi, y2 and y2-171, decrease while, 

xl, x2 and x2-xl, increase. 

The observations above, suggest that the parameter n 

can be used in order to affect and control the population 

balances (or their ratio) in order to achieve a desired 

populations distribution in the system. 

The results of the (local) stability analysis, per-

formed by using the Ruth-Hurwitz criteria, indicates that 

SS4 is stable if meaningful. Damped oscillations have 

never been observed during transients of the system, some-

thing which implies that the eigenvalues are real and nega-

tive whenever SS4 is meaningful. 

The remarks made at the end of the analyses for the 

splitting and the non-splitting system are valid for the 

general system as well, namely the results of the local 



stability analysis hold also globally and SS1 through SS4 

are mutually exclusive. 

OPERATING DIAGRAMS AND THE EFFECT OF THE PARAMETERS 

In this section some operating diagrams for the ge-

neral system are presented. They are projections on the a-

uf plane of the actual 5-dimensional (a,uf,R,y,n) or 6-

dimensional (a,uf,R,y,n,0) operating diagrams. The dia-

grams of the non-splitting system can be also viewed as 

diagrams of the general system for y=n=0. The diagrams of 

the splitting system are also diagrams for the general 

system for n=1. In fact, the general and the splitting 

systems are very similar and the effects of the parameters 

0, R and y for a fixed are the same in both systems and 

their study is not repeated here. It is only the effect of 

the parameter ri which is investigated and discussed in the 

present section. The values for the parameters (1) and w are 

0.4 and 0.125, respectively, the same as those used for all 

the earlier presented diagrams. 

The common features of all diagrams are the following: 

—In most of the cases one can find a wide enough domain 

in the a-uf plane in which coexistence occurs. 

—The crossing point of the of and ag curves is always a 

point on a boundary of the domain of coexistence. However 

this point is not (ufc, Kac) as in the cases of the two 

systems considered earlier. 



—The upper bound of a values for coexistence is always 

Kac  as in the two systems considered earlier. The value of 

a=Kac  is higher than the value of a at which the of and ag 

curves cross each other. Hence, the domain of coexistence 

may extend above the point of crossing of the of and ag 

curves (e.g. Figure 45) although this may not be obvious 

from the diagrams because for the parameters chosen, Kac  

is very close to the a value at which af=ag. 

—The lower bound of a values for coexistence is 

where ac=0.314 for (1)=0.4 and w=0.125 

The diagrams are such that starting from a point in 

the domain of coexistence they show that shift-up and 

shift-down experiments can cause the system to exhibit all 

possible kinds of behavior discussed in the cases of the 

splitting and non-splitting system. 

The values of 0, R and y have been chosen so that one 

can compare the diagrams presented here with those present-

ed for the splitting system (where n=1). 

The diagrams are shown in Figures 40-54 and they can 

be divided in three categories: 

1. Py < 1 Figures 40-45 



2. pi > 1 Figures 46-53 

3. Py = 1 Figure 54 

For the diagram shown in Figure 54 the values of the 

parameters are R=0.1, 0=0.5, y=2.0 and n=3.0. The inter-

esting thing is that despite the fact that Oy=1 there is a 

domain (although very narrow in terms of the a values 

range) where coexistence occurs. This is a difference with 

the splitting system in which if 3y=1 the environment is 

spatially homogeneous and coexistence occurs for a discrete 

value of a only. 

Case I. Oy < 1 (Figures 40-45) 

For the diagrams shown in Figures 40 and 41 the value 

of n is 0.2 and 6.0, respectively while for both diagrams 

R=0.1,.0=0.1 and y=0.2. It is interesting to observe that 

as n increases the coexistence region shifts to higher of 

values. It can be also said that as n increases the domain 

of coexistence also increases not really in terms of the 

width of the range of a values but due to the fact that SS2 

does not appear for low a values. For the diagrams shown 

in Figures 42 and 43 the value of n is 0.2 and 3.0, respec-

tively, while for both cases 0=0.2, R=1.0 and y=0.2. Again 

it can be observed that as n increases the coexistence 

domain both increases and shifts to higher of values. It 

should be observed that in all diagrams of Figures 40-43 it 

is 0<1. When 0>1 as in the diagrams of Figures 44 and 45 



where 0=1.5, R=0.1, y=0.2 and n=0.2 and 6.0, respectively, 

the results are disappointing as far as coexistence is 

concerned and this happens in all configurations examined 

in this study. 

It was also observed that the value of ri does not 

affect the shape of the domain of coexistence. From the 

diagrams shown previously it became obvious that changing 

R, y or p the coexistence domain changed from the S-shaped 

type to the type where there is a domain at low a values 

and practically a curve at a higher a value. Such a change 

does not happen when n changes which implies that the shape 

of the domain of coexistence in the a-uf plane is decided 

by all parameters but n. 

Case II. Oy > 1 (Figures 46-53) 

For the diagrams shown in Figures 46 and 47 the value 

of ri is 0.2 and 3.0, respectively, while for both cases 

R=0.1, 0=0.6 and y=20.0. It can be observed that as 71 

increases the domain of coexistence shifts to lower of 

values and its extent decreases in the sense that by in-

creasing 9, SS2 appears at low a values. In the diagrams 

of Figures 48 and 49 9 is 0.2 and 6.0, respectively while 

R=0.1, 0=0.35 and y=20.0 in both cases. Again the domain 

of coexistence becomes smaller and it shifts to smaller of 

values. In all diagrams 46-49 it is p<1. It can be ob-

served that the trend is opposite of that of diagrams 40-43 



where β<1 and βγ<1. It can also be observed that the range 

of a values yielding coexistence when βγ<1 is much wider 

than that when βγ>1. 

In the diagrams shown in Figures 50 to 53 it is β>1, 

actually in all of them it is 13=1.5, also for all of them 

it is R=0.1. In the diagrams of Figures 50 and 51 the 

value of η is 0.2 and 3.0, respectively, while for both, 

Y=20.0. It can be observed that the trend is again for a 

decrease in the coexistence region and for a shift to smal-

ler uf values. These trends are reversed in Figures 52 and 

53 for which r  is 0.2 and 3.0, respectively, while in both 

Y=1.0. The only difference between Figures 50-51 and 52-53 

is in the value of Y.  It should be clearly stated that the 

range of a values for coexistence when 13>1 is extremely 

small and sometimes even practically non-existing. 

Comparing the diagrams of Figures 44 and 45 with those of 

Figures 50 to 53 one can say that 3>1 is not a good choice 

but if it has to be made it is better to have 13y>1  than 

βγ<1 

One can conclude that the proper selections are 13<1, 

13y<1 and n at an intermediate value. 



Table 3: Parameter Values used for the Operating 

Diagrams shown in Figures 40-54 

Fig.No. φ w β R Y n 

40 0.4 0.125 0.1 0.1 0.2 0.2 

41 " " " " " 6.0 

42 " " 0.2 1.0 0.2 0.2 

43 " " " " " 3.0 

44 " " 1.5 0.1 0.2 0.2 

45 " " " " " 6.0 

46 " " 0.6 0.1 20.0 0.2 

47 " " H " " 3.0 

48 " " 0.35 0.1 20.0 0.2 

49 " " " " " 6.0 

50 " " 1.5 0.1 20.0 0.2 

51 " " " " " 3.0 

52 " " 1.5 0.1 1.0 0.2 

53 " " " " " 3.0 

54 " " 0.5 0.1 2.0 3.0 
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Figure 54. 



DISCUSSION AND CONCLUSION 

As it has been discussed in the beginning of this 

thesis, despite the predominance of pure culture techniques 

in the fermentation industry, there are reasons for which 

mixed culture techniques offer potential advantages and 

hence studying the dynamics as well as the ways for main-

taining a culture of mixed species becomes important. 

Competition is a very common interaction between microbial 

populations and its simplest pattern is pure and simple 

competition. From the literature survey presented, one can 

see that it is impossible to maintain a mixed culture of 

pure and simple competitors in a steady state if the envi-

ronment is homogeneous. However, in a homogeneous environ-

ment with properly varying inputs, pure and simple competi-

tors can coexist in an oscillatory mode. Nevertheless 

steady state (or at least non-oscillatory) operation is 

usually preferable, and hence the investigation of possible 

steady state coexistence of pure and simple competitors 

becomes important. 

The present study has shown that in a system of two 

interconnected chemostats, it is possible to get steady 

state coexistence of two pure and simple competitors. The 
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idea for this thesis originated from a short communication 

published in the literature, but various aspects of the 

problem either not treated or even not mentioned there have 

been studied here. 

The main necessary (but not sufficient) condition for 

coexistence is that the conditions in the two vessels must 

be different and such that in one vessel they favor the 

growth of one competitor and in the other vessel they favor 

the growth of the other competitor. 

The interconnection of the two vessels is important 

because it implies that any species surviving in one reac-

tor has to do so in the other as well. If the effluent of 

the first reactor goes into the second, but there is no 

recycle from the second to the first, then steady state 

coexistence may occur but it will be for the second chemo-

stat only. In fact, if both reactors (without recycle) are 

initially inoculated with both species, and the conditions 

are picked in such a way that they favor the growth of 

species A in the first vessel and species B in the subse- 

quent vessel, what will happen is that species A will ex-

clude species B from the first vessel, but in the second 

vessel there will be coexistence, since species B will 

never be able to exclude species A (although B grows fas-

ter) due to the continuous inoculation of the second vessel 

with species A coming from the first vessel. This result 
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though is not really optimal because in a sense, part of 

the volume of the system has to be underused (for growing 

one of the competing species). One wants to have the mixed 

culture in the entire volume used and thus, recycle becomes 

important and necessary. Furthermore, this general confi-

guration provides further insight as to why coexistence 

occurs. Since coexistence proved to be possible, one can 

easily attribute it to the spatial heterogeneity of the 

environment. Spatial heterogeneities may arise in many 

other cases as well; for example due to incomplete mixing 

in a single reactor, due to the non-ideality of flow in a 

reactor or even in a distributed medium (e.g. a tubular 

reactor). Hence, the findings of the present study suggest 

that there are other reactor configurations that may lead 

to steady state coexistence, something which of course has 

to be investigated in future studies. 

There are some (implicit or explicit) assumptions made 

in this study and they have to be stated here clearly. 

(i) Each of the two reactors is assumed to be perfectly 

mixed. Hence each of the two subenvironments is homo-

geneous. 

(ii) No cell attachment occurs on any solid surface, i.e. 

neither on the walls of the vessels or on the walls of the 

interconnecting tubes. 
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(iii) The tubes are assumed to be short enough or the flow 

fast enough, so that no growth occurs in them, and as a 

result the composition in the exit of one vessel is the 

same as the composition entering the following vessel. 

(iv) It is also assumed that the rate-limiting substrate 

entering a vessel is the same as in the fresh medium, which 

implies that the maximum specific growth rate and the satu-

ration constant of either population are the same in both 

vessels. 

(v) The temperature in both vessels is assumed to be the 

same and not changing. 

(vi) The competing species grow according to the Monod 

model. 

Monod's model was used for two reasons: a very large 

number of populations are known to grow according to it, 

and it is the simplest model for expressing the specific 

growth rate. Since most of the existing expressions for 

the specific growth rate can under certain conditions re-

duce to the Monod expression, it is expected that any model 

for the specific growth rate will predict coexistence of 

two pure and simple competitors in a configuration of re-

actors like the ones considered here. This is only a 

statement concerning the qualitative and not the quantita-

tive behavior of other models. Specific studies have to be 

performed. Nevertheless, in some cases like the Andrews 
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[24] substrate inhibition model, one should expect that 

under low concentrations and for comparable values of the 

model parameters, even the quantitative results will be the 

same (or analogous) with those obtained in this study with 

Monod's model. 

The general configuration of the system involved two 

interconnected vessels being externally fed with nutrient 

medium containing the rate-limiting substrate at different 

concentration levels;this was called the general system. 

Two special cases of the general system were also studied 

in detail. The splitting system in which both reactors are 

externally fed at the same concentration level and the non-

splitting system in which the externally fed medium goes in 

one reactor only. In all configurations it was found that 

there is a domain in the operating parameters space in 

which stable coexistence in a steady state occurs. Given 

the fact that in continuous operation each reactor must 

have an input and an output stream, analyzing the non-

splitting system and showing that coexistence does occur 

the study provided an answer to the following question: 

given two reactors, how many additional streams are needed 

in order for the coexistence of two pure and simple compe-

titors to be possible throughout the system? The answer is 

one, the recycle stream. Additional external streams are 

not needed although they may be desirable in order to ex- 
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tend the domain of coexistence in the parameters space. 

Furthermore, additional external streams with no recycle 

can never lead to coexistence throughout the system. For a 

configuration involving more than two vessels the findings 

of the present study suggest that two pure and simple com-

petitors will be able to coexist in all vessels provided 

that they are properly interconnected (the answer to what 

is proper interconnection is not an obvious one) and that 

in some of the vessels one population grows faster while in 

the remaining vessels the other competitor has the advan-

tage. 

It should be emphasized that it is not the reactors 

configuration alone that makes coexistence possible. The 

type of organisms plays an important role also. That is if 

one of the two competing species grows faster than the 

other under all conditions then there is no reactors con-

figuration leading to coexistence unless the slower growing 

population has another advantage, for example it exhibits 

wall attachment [28]. 

The model equations were written in a dimensionless 

form something which drastically reduced the number of 

parameters to eight from the thirteen appearing in the 

original dimensional equations. The eight parameters are 

w, (P, Or a, uf, R,  Y and r. The type of the organisms and 

the identity of the rate-limiting substrate determine the 
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values of w and cp that were called system parameters (by 

system implying the physical one). The parameter 0 was 

called the design parameter since it stands for the ratio 

of the volumes of the two reactors. It is realized of 

course that in reality 13 stands for the ratio of the vo-

lumes of the culture in the two reactors rather than for 

the ratio of the physical volumes of the two vessels. 

Since usually a reactor is filled with liquid up to a cer-

tain extent so that the vessel does not overflow and so 

that sufficient room for effective mixing is allowed, if 

both vessels are filled at same percentage of their physi-

cal volume then 0 is indeed the ratio of the physical vo-

lumes of the two reactors. In any case though 0 is a para-

meter that is determined mainly by the design of the sys-

tem. The parameter of is a dimensionless concentration of 

the externally fed substrate which is the actual concen-

tration in the feed in the cases of the splitting and the 

non-splitting system; the recycle ratio is R; the ratio of 

the flow rates of the external feed streams is y; the ratio 

of the concentrations of the rate-limiting substrate in the 

external feed streams is n. The parameter a stands for a 

dilution rate in the first vessel based on the external 

feed stream; it is not the actual dilution rate even though 

it is refereed to as such sometimes for simplicity (e.g. in 

labeling the y axis of the operating diagrams). In the 
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case of the non-splitting system the number of parameters 

reduce further since y=n=0. In the case of the splitting 

system, there is one parameter less than in the general 

case since it is n=l. 

By using arguments similar to those of Aris and 

Humphrey [23] the dynamical dimension of the system was 

shown to be actually four instead of six. What this im-

plies is that if the initial conditions in the two vessels 

are chosen in such a way that they satisfy the stoichio-

metric equations then the system is indeed 4-dimensional at 

all times; if the initial conditions are randomly chosen 

then the trajectories of the system very quickly (relative 

to the duration of the transients) fall on a 4-dimensional 

manifold of the 6-dimensional space. This reduction offers 

a substantial simplification for the analysis. 

Despite the complexity of the system the local stabi-

lity of all possible steady states was studied analytical-

ly. Furthermore, a number of conditions (sometimes both 

necessary and sufficient, sometimes only necessary) which 

need to be satisfied so that a possible steady state arises 

and is meaningful were also analytically derived. The 

results of the analysis provided a very good guidance for 

reducing the amount of numerical work and for judging if 

some features of the numerical results were general and 

expected or due to the values used for the parameters. The 
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numerical results are presented in the form of operating 

diagrams, actually projections of them in the a-uf plane. 

Although not presented, a large number of computer simula-

tions (integration of the model equations) were performed 

in order to check if the results of the local stability 

analysis hold globally as well, and this was confirmed. 

The results of the simulations showed also that the system 

never exhibits any type of damped oscillatory behavior 

something which the analysis could not exclude only in the 

case of the coexistence steady state. The numerical re-

sults also revealed that none of the possible steady states 

exhibits any multiplicity and that all steady states are 

mutually exclusive. 

It was found that in the case of the splitting system, 

if Py=1 the environment becomes spatially homogeneous and 

hence if the specific growth rate curves have the proper 

mutual disposition (i.e. they cross each other), coexis-

tence is only a mathematical possibility since it arises 

for a discrete value of a only. The results in this case 

are exactly the same as those of the single chemostat case. 

An interesting finding (analytical result) is that in 

the coexistence steady state the values of the substrate 

concentrations are independent of the concentrations at 

which the substrate is supplied to the environment while 

this is not true for the biomass concentrations (or equiva- 
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lently the population densities). Although the results of 

this study should be very cautiously (if at all) extended 

to the very complex ecological systems one could at least 

raise the following question. In many cases the judgement 

as to whether a chemical is dangerous (or harmful) for a 

liquid habitat or not, is based on the concentration level 

in that habitat. This, according to the aforementioned 

finding of this study, could be misleading since it could 

be possible that the concentration level of the chemical 

remains constant while the population densities change and 

possibly one (or some) of them decreases so much that it is 

practically extinct while one (or some) other population 

grows too much. If one relies on concentration measure-

ments only (and does not monitor the population densities) 

he will not realize a catastrophy before it is too late. 

This could be a possible explanation for the situations 

where in marine habitats accepting water containing phos-

phorus from fertilizers an ubrupt and unexpected increase 

in the algal growth occurs. Again, the thoughts above are 

presented with a lot of reservation but one wonders if 

measurements of the concentration levels of the chemicals 

only, are safe or enough for environmental purposes. 

The results of the analysis have indicated what are 

the ranges of a values that could lead to coexistence. 

These results proved to be much less strict for the a 
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values than what they should. This was expected to be so 

since they were derived on the basis that the values of the 

variables must be real. Further restrictions on the a 

values are needed so that xi>0, yi>0 and 0<ui<uif, i=1,2 

but these could not be analytically derived due to the 

complexity of the expressions. The results of the numeri-

cal studies have indicated that the upper bound of a values 

for coexistence is always Kac  while the lower bound of 

values of a for coexistence depends on the particular 

system. More specifically it was found that the lower 

bound is, 

ac for the non-splitting system 

ac 
for the splitting system when r3y>1 

0Y 

ac for the splitting system when Oy<1 

ac 
for the general system when 3y>1 

0(y+1) 

R+1 
 ac  for the general system when Og<1 

[R(/-1-1)+1] 

It was possible only for the boundary of the domain of 

SS1 in the a-uf plane to be analytically derived. This 

boundary is formed by segments of the Kf(uf) and Kg(uf) 

curves for the splitting and the non-splitting systems 

while for the general system the boundary is formed by 

segments of the af and ag curves. It was proved that the 
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Kf(uf) and Kg(uf) curves cross each other while the cros-

sing of the af and ag curves it was found numerically but 

an analytical proof as to whether they always have to cross 

was not possible to obtain. In all cases the crossing 

point of the Kf(uf) and Kg(uf) or the af and ag curves is 

also a point on the boundary of the domain of coexistence. 

Except for the case of the general system, it was proved 

that this has to be so. Hence the crossing point of the 

two curves in all cases is a steady state bifurcation 

point. 

When the recycle ratio becomes very large one expects 

that the environment tends towards homogeneity and hence 

coexistence must become very difficult (if not impossible) 

to get. The operating diagrams suggest that at low uf 

values this is so. On the other hand, it was found that at 

large recycle ratios and large of values the model still 

predicts coexistence to be possible in a domain of the 

operating parameters space. This result is not really 

contradictory to the theory if one takes into account that 

very high of values are not necessarily physically possible 

and if they are one cannot talk about substrate limitation 

of the growth rate (the substrate is present in abundance) 

and hence competition does not really occur and there is 

nothing prohibiting the coexistence of species using a 

common substrate but not being rate-limited by it. In 
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fact, at high concentrations of the substrate, Monod's 

model reduces to a constant and the original equations 

reduce to linear ones and it is obvious from them that the 

two populations do not interact. In reality though at very 

high of values it is certain that some other substrate 

becomes rate-limiting and the original formulation of the 

problem is no longer valid. Hence the results at very high 

of values of the present study are mathematical rather than 

possibly physical 

The effects of the various parameters were discussed 

in detail in each one of the three parts of this thesis. 

Some of the general observations made are that in general 

it is preferable to choose a p such that it is 3<1 along 

with Py<1; if a 0>1 is chosen after all it is better to at 

least also have Dy>1. More detailed observations are not 

repeated here. There is one thing which needs to be clari-

fied at this point. By "preferable" those sets of para-

meters are characterized that result in a broad domain of 

coexistence in the a-uf plane, and they are not necessarily 

optimal. The present study was not really on the optimal 

design and optimization in this case may have a number of 

different (and possibly conflicting) objectives such as 

high substrate utilization (low u2), high biomass producti-

vity, comparable population densities of the two species 

etc.. Because of the large number of parameters (up to 
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six) the answer to the optimization problem is not expected 

to be either simple or unique (due to the large number of 

objectives). 

From the foregoing discussion it is clear that it is 

repeated with emphasis that the results of coexistence 

refer to two competing species. An obvious question is if 

in the reactor configurations considered here it is possi-

ble to get coexistence of three or more species. The 

answer seems to be no but some work has to be done in order 

to really prove it. 

Taking into consideration the fact that this study 

showed that whenever coexistence occurs each one of the 

competitors grows faster in one of the two vessels it sug-

gests ,the following problem for study: Can three pure and 

simple competitors coexist in a steady state throughout a 

configuration of three interconnected vessels? This prob-

lem will be more complicated than the one solved here not 

only due to the increase in the number of equations but 

also due to a number of different possible recycle streams 

for interconnection. If coexistence proves to be possible 

one would be able to safely generalize for the case of n-

species and it will be a proof to the claim made by ecolo-

gists that "one prevailing competitor per nitch (or patch) 

leads to an overall coexistence". 
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There is one more problem that the present study 

suggests. It is the problem of studying pure and simple 

competition in a tubular reactor (distributed medium). A 

tubular reactor requires in many cases a smaller volume in 

order to perform the same duty with a number of stirred 

tank reactors. There is little doubt that the existence of 

some recycle from the exit to the entrance will lead to 

coexistence under some conditions. The interesting thing 

will be to investigate if the recycle is necessary. Micro-

organisms are known to posses sensors for detecting the 

available nutrients and in some cases they exhibit chemo-

taxis, that is movement towards regions of high nutrient 

concentration. Chemotaxis will imply a movement of micro-

organisms towards the entrance of the tubular reactor and 

such a movement provides a degree of backmixing. The ques-

tion is if the backmixing due to chemotaxis is enough to 

lead to coexistence in which case the recycle will prove to 

be not necessary even when there is plug flow. 
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