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Introduction

The proper handling of customer tickets and

maintenance requests is pivotal for enterprises. It

directly impacts customer satisfaction and conse-

quentially it leads to higher economic and brand-

image revenues. Several methods based on Nat-

ural Language Processing (NLP) have been devel-

oped to classify, tag, and prioritize customer sup-

port requests and maintenance tickets. However,

the specific domain of each company, in conjunc-

tion with the different products and services of-

fered, make it difficult to develop generalized so-

lutions.

Purpose

In this work, we propose two approaches to predict

the type of fault from the text of maintenance support

tickets: (i) Kernel Methods in conjunction with Boost

Decision Trees (Spectrumboost), and (ii) Neural Net-

work for Multiple Representation Learning (DeepMRL).

Those models are tested and compared against state-

of-the-art solutions based on Transformers architec-

tures on a real-world set of 131305 tickets in the Ital-

ian language. Results suggest that the proposed mod-

els outperformTransformers both in the prediction ac-

curacy and in the time and computational resources

required for their training.
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Dataset Class 1 Class 2 Class 3
Avg. Seq.

length

Training 42885 29246 22378 59.87±39.47
Validation 4659 3378 2465 59.15±39.40
Test 11888 8113 6293 59.92±38.88

Total
59432 40737 31136

59.82±39.34
(45.3%) (31.0%) (23.7%)

Maintenance tickets sequence length and

division in training, validation and test set.
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The novel Multiple Representation Learn-

ing (MRL) layermimics the logic behindMul-

tiple Kernel Learning by learning a new data

representation Xcomb as a linear or non-

linear combination of base reprentations

φi(x), where φi can be an arbitrary function

(also a kernel one), a BERT encoding, a NN

embedding, or other.

By applying constraints to the learned

weights ωi, it is possible to compute differ-

ent type of combinations, such as Convex

and Affine approaches.

The new representation is then passed

through a fully-connected layerwith L1 and

L2 regularization to learn non-linear depen-

dencies.

SpectrumBoost

SpectrumBoost extracts features from text using the

p-Spectrum kernel with Nyström Approximation. This

kernel counts any possible contiguous sub-sequence of

length p and it focuses on local information. These are

fed into an XGBoost classifier, that provides the label.
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Results

Experiments have been conducted using 2x Nvidia

GTX 1070, with the exception of 2x Nvidia V100 for

Transformer-based models.

Transformers outperform the SGD baseline, but they

require a large training time even employing high-

performance Nvidia V100 GPUs.

Our SpectrumBoost is able to surpass in performance all

the models based on Transformers, achieving a gain of

2.8% with respect to SGD and 1.1% with respect to the

Electra architecture in terms of AUC. It also outperforms

the other models in terms of F1, with a time comparable

with SGD.

The newly proposed DeepMRL outperforms all other

models in all the considered metrics. In terms of AUC,

DeepMRL shows a 3% improvement compared to our

baseline and 1.7% with respect to Electra. Considering

the othermetrics, DeepMRLoutperforms the baseline and

Transformer models, leading to an overall gain of 0.9% for

F1 score, and 1.3% for Balanced Accuracy.
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Algorithm F1 score Balanced Accuracy AUC score Time

SGD (p = 5) 0 .693±0 .004 0 .684±0 .014 0 .837±0 .006 1:05:03 ± 0:00:04

BERT 0.720±0.001 0.716±0.003 0.843±0.005 2:13:25 ± 0:16:07

Electra 0.720±0.002 0.709±0.012 0.850±0.002 5:33:56 ± 0:18:39

Gilberto 0.720±0.003 0.713±0.002 0.838±0.005 5:45:38 ± 1:36:04

Umberto 0.716±0.001 0.713±0.004 0.837±0.002 4:31:53 ± 2:18:46

Alberto 0.717±0.001 0.714±0.001 0.834±0.001 2:23:08 ± 0:07:26

SpectrumBoost (p = 4) 0.726±0.001 0.711±0.001 0.861±0.001 1:13:23 ± 0:00:08

DeepMRL (p = [4, 5, 6]) 0.729±0.001 0.729±0.001 0.867±0.002 3:19:48 ± 0:00:27
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