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Abstract—Recent developments have resulted in multiple tech-
niques trying to explain how deep neural networks achieve their
predictions. The explainability maps provided by such techniques
are useful to understand what the network has learned and
increase user confidence in critical applications such as the
medical field or autonomous driving. Nonetheless, they typically
have very low resolutions, severely limiting their capability of
identifying finer details or multiple subjects. In this paper we
employ an encoder-decoder architecture with skip connection
known as U-Net, originally developed for segmenting medical
images, as an image classifier and we show that state of the art
explainable techniques applied to U-Net can generate pixel level
explanation maps for images of any resolution.

I. INTRODUCTION

The problem of understanding neural network decisions,
circumventing their black-box nature, is what we call in-
terpretability, or explainability. Traditionally, interpretability
works focus on visualization techniques revealing the input
stimuli that excite individual feature maps at any layer in the
model (a.k.a heatmaps, attention maps or explanation maps).
Early examples were either very computationally expensive
[1] or provided very noisy maps [2]. On the other hand, Class
Activation Mapping (CAM), leveraging linear combination
of activation maps based on the weights of the last fully
connected layer, generates explainability maps that are easier
to understand and noise-free, but requires the architecture
to end with a Global Average Pooling layer followed by a
linear classifier. By employing different techniques to calculate
the weights, researchers have recently proposed CAM based
techniques which remove this requirement, while still im-
proving the quality of the maps generated and interpretability
of deep neural networks (e.g. GradCAM [3], GradCAM++
[4] and ScoreCAM [5]). While the resistance to noise and
low computational overhead have made these techniques the
de facto standard for explaining CNN classifiers, the low
resolution of the heatmaps remains their most significant
weakness [6].

In this work we show that by employing an encoder-decoder
architecture with skip connections, CAM-based techniques can
obtain explainability maps of arbitrary high resolutions. To do
so, we test GradCAM, GradCAM++ and ScoreCAM with a U-
Net [7] architecture. We also show that the obtained heatmaps
allow a better understanding of the learned features.

II. METHODS

We employ the 2012-2017 ILSVRC ImageNet Dataset [8], fea-
turing 1000 classes and 1.281.167 training images, 50.000 val-
idation images, 100.000 test images. We obtain heatmaps on
the validation set after training a ResNet50 [9], a VGG16 [10]
and a U-Net [7] architecture on the training set.

Our aim is to show that the encoder-decoder architecture
of U-Net can generate pixel level explanation maps, with
extra details that are useful for a better understanding of the
network’s decision. We specifically compare the results of
following CAM-based explainability techniques:
(i) GradCAM [3] “uses the gradients of any target concept
flowing into the final convolutional layer to produce a coarse
localization map highlighting the important regions in the
image for predicting the concept”. The gradients of the last
convolutional layer are averaged over the spatial dimensions
to linearly combine the activation maps. This generates a
grayscale map of the areas which contributed to the prediction;
(ii) GradCAM++ [4] improves GradCAM by weighing the
activation maps with a different coefficient for each pixel,
which significantly improves the ability to identify multiple
areas of interest in a single image;
(iii) ScoreCAM [5] generates gradient-free explanation maps
by perturbing the input with upsampled activation maps and
computing linear combination coefficients from the difference
in the logit for the desired class.

All such techniques are not tied to a specific CNN architecture.
In our experiments, we used:
(i) ResNet50 [9], a 50 convolutionals layers deep net, followed
by a global average pooling layer and a fully connected layer
to obtain the logits.
(ii) VGG16 [10], which features higher resolution activation
maps and hence it is the default architecture in most of the
CAM-based literature.
(iii) U-Net [7], which is a fully convolutional encoder-decoder
architecture traditionally used for semantic segmentation, with
skip connections between the encoder and decoder block to
maintain spatial information. In this work we add global
average pooling layer followed by fully connected layer at
the end, in order to use U-net as a classifier.
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Fig. 1. Explanation maps generated through GradCAM, GradCAM++ and
ScoreCAM, respectively using (a) non-ablated and (b) ablated U-Net network.

The choice of architecture has a direct impact on the obtained
explanation maps. Since CAM methods linearly combine the
activations in the last convolutional layer, they can only pro-
vide information as fine as the spatial resolution of such layer.
For visualization purpose, the activation maps are typically
upscaled to the original image size using bilinear interpolation,
which typically implies issues identifying multiple subjects
and fine details and localization errors. While VGG16 can
typically obtain higher resolution than ResNet, this resolution
is still limited to 16x16 pixels. On the other hand, being U-Net
a segmentation network, the output layer is of the same size
as the input layer, which allows more detailed and accurate
explanation maps.

III. RESULTS

The rationale of this study is to evaluate whether skip con-
nections between encoder and decoder have a measurable
effect on the localization ability of the network. To do so,
we remove skip connections from a U-Net architecture, in a
process known as ablation, and we compare the localization
ability to an identical non-ablated network. To this date there
is still no generally agreed upon metric to evaluate the quality
of explanation maps in a quantitative way [11]. In our study,
we consider the combination of network and CAM technique
which provides the broadest explanation map (ResNet50 with
GradCAM++). In this map, the low energy pixels are reason-
ably the ones with the lowest relevance possible to the classifi-
cation task. Then, we obtain a localization score s as follows.
We calculate a binary reference mask M by thresholding the
explanation map of ResNet50 and GradCAM++. Then, we
compute the portion of the energy of A, the explanation map
to be evaluated, that is located within the reference mask M :

s =

∑
i

∑
j Aij ·Mij∑

i

∑
j Aij

The higher s, the higher the localization ability of A.

From Table I we can see localization scores almost 10% higher
for the non-ablated network (U-Net with skip connections)
compared to the ablated counterpart, for every CAM method
employed. The reduced localization ability of the ablated

TABLE I
LOCALIZATION SCORES OF U-NET AND ABLATED COUNTERPART.

GradCAM GradCAM++ ScoreCAM
U-Net 53.55% 72.47% 71.52%

Ablated U-Net 47.81% 63.04% 64.36%

network is also evident from the examples in Fig. 1. To further
demonstrate the high localization capability of our solution,
Fig.2 shows more representative examples from the ImageNet
Validation Set, respectively generated using GradCAM++ with
ResNet50, VGG16 (the de-facto default architecture for high-
resolution explainability maps) and U-Net.

In standard semantic segmentation tasks the spatial relation-
ship between input and output of the U-Net is maintained
through a specific supervised loss term pushing the output
towards the ground truth segmentation mask, which is clearly
absent in a classification tasks. Through the ablation study and
the obtained heatmaps, we show that the skip connections be-
tween encoder and decoder preserve such spatial relationship
without additional loss terms or regularizations. While VGG16
does a fairly good job of localizing the subject in the images,
the higher resolution map generated by U-Net provides finer
information about which features are decisive for the clas-
sification task. For example, in the last column of Fig. 2 it
allows us to infer that the network has learned to identify the
sticker on the apples rather than the apples themselves. This is
information that is impossible to obtain with lower resolution
maps, and can be very useful in identifying wrong predictions
and unexpected behaviours in CNNs.

IV. CONCLUSIONS

CAM-based techniques with encoder-decoder architectures
generate high resolution explanation maps, where skip connec-
tions preserve the spatial relationship with the original image.
This provides better insights on how CNNs operate and what
they focus on when learning.

Fig. 2. GradCAM++ explanation maps: (I) ResNet50 , (III) VGG16, (III) U-
Net.
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