
21 December 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Creating disaggregated network services with eBPF: the Kubernetes network provider use case / Parola, F.; Giovanna,
L. D.; Ognibene, G.; Risso, F.. - ELETTRONICO. - (2022), pp. 254-258. ((Intervento presentato al convegno 8th IEEE
International Conference on Network Softwarization, NetSoft 2022 tenutosi a Milano (IT) nel June 27- July 1, 2022
[10.1109/NetSoft54395.2022.9844062].

Original

Creating disaggregated network services with eBPF: the Kubernetes network provider use case

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/NetSoft54395.2022.9844062

Terms of use:
openAccess

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2970898 since: 2022-09-05T13:01:36Z

Institute of Electrical and Electronics Engineers Inc.



Creating Disaggregated Network Services with
eBPF: the Kubernetes Network Provider Use Case

Federico Parola, Leonardo Di Giovanna, Giuseppe Ognibene, Fulvio Risso
Dept. of Control and Computer Engineering, Politecnico di Torino

24, Corso Duca degli Abruzzi, Torino, 10129, Italy
Email: {federico.parola, leonardo.digiovanna, giuseppe.ognibene, fulvio.risso}@polito.it

Abstract—The eBPF technology enables the creation of custom
and highly efficient network services, running in the Linux kernel,
tailored to the precise use case under consideration. However, the
most prominent examples of such network services in eBPF follow
a monolithic approach, in which all required code is created
within the same program block. This makes the code hard to
maintain, to extend, and difficult to reuse in other use cases.
This paper leverages the Polycube framework to demonstrate
that a disaggregated approach is feasible also with eBPF, with
minimal overhead, introducing a larger degree of code reusability.
This paper considers a complex network scenario, such as
a complete network provider for Kubernetes, presenting the
resulting architecture and a preliminary performance evaluation.

I. INTRODUCTION

The extended Berkeley Packet Filter (eBPF) allows exe-
cuting arbitrary code in different kernel hooks, which are
triggered upon multiple events, such as a syscall or a packet
received. This enables to extend the processing done by the
kernel without changing its source code or loading kernel
modules. eBPF code is sandboxed in order to guarantee that
a user provided program can not compromise the functioning
of the kernel. Several projects leverage eBPF to bring new
functionality to the kernel in the fields of security, moni-
toring and networking. However, most of the networking-
related projects implement new features as monolithic eBPF
programs, making the code hard to maintain, to extend,
and difficult to reuse in other use cases. In this respect,
the Polycube software framework [1] addresses some of the
well-known eBPF limitations when creating complex virtual
network functions [2], and introduces the capability to split
eBPF software in multiple, independent network functions,
which can be arbitrarily connected in order to create a more
complex service graph. This enables the creation of complex
networking services by compositing elementary basic blocks
(e.g., bridge, router, firewall, NAT, load balancer, and more),
with an high degree of reusability.

Container networking is a perfect example of such scenario,
and has gained key importance with the diffusion of the mi-
croservices architecture and the decomposition of applications
in a collection of small, loosely-coupled services running in
containers. Container orchestrators such as Kubernetes (K8s)
must provide a flexible and efficient network infrastructure,
since containers can be created and destroyed at high fre-
quency, must exchange a lot of data and must be easily

accessible from the Internet. However, K8s defines only a
functional networking model and it relies on 3rd party plugins
for the actual implementation of network services.

This paper shows how a K8s network provider can be
created using solely eBPF primitives according to the disag-
gregated services model, i.e., defining a modular architecture
based on traditional network components such as routers, load
balancers and NATs, and without giving up on performance.

This paper is structured as follows. Section II provides an
overview of the K8s networking model and how Polycube
achieves service disaggregation. Section III describes the over-
all node architecture of our solution while Section IV shows
a preliminary performance comparison compared to existing
solutions. Finally, Section V describes the relevant related
work and Section VI draws our conclusions, highlighting the
potential future work.

II. BACKGROUND

A. Kubernetes networking

Kubernetes is an open-source orchestrator for containerized
applications and defines a functional network architecture
organized in three levels. (i) Pods, the basic scheduling
concept, execute containerized applications that are connected
to a default virtual network, whose outreach is limited to
a single server (node, in the Kubernetes terminology). Pods
are ephemeral entities that can be destroyed and re-spawned
if needed, even on another node. Each server can host a
maximum number of pods, usually organized in a contiguous
and private address space (e.g., consecutive /24 networks
on different nodes). (ii) Physical nodes, which inherit their
addressing space from the physical datacenter network; for
scalability reasons, this usually includes switched and routed
portions. (iii) Services, a higher-level concept that enables the
reachability of one or more (homogeneous) pods by means of
the same network identifier (e.g., IP address). This primitive
guarantees the decoupling between the service IP endpoint,
which remains stable, from the actual pod(s) that provides the
service, whose IP can change (e.g., in case the pod is restarted
in another location) or it may be present in multiple replicas
(hence, multiple IPs could be used). Services leverage a third
addressing space, disjoint from pod and datacenter addresses.

Kubernetes foresees three types of services. A ClusterIP
identifies a service that is reachable only from pods within
the cluster, or by an application that runs on the cluster



nodes. A NodePort service, instead, is reachable from out-
side the datacenter: a TCP/UDP port <nport> is allo-
cated to the service itself, and all packets directed to any
<node_ip_address:nport> will be redirected to one of
the pods associated to the given service. NodePorts are not
widely used because they require (i) nodes with reachable
(e.g., public) IP addresses; (ii) external users to know the IP
addresses of the nodes and (even worse) (iii) the port that
has been allocated. Finally, a LoadBalancer service allocates
a public IP address associated to the given service, which
is achieved by interacting with an external entity in charge
of the above public addresses; all packets directed to the
LoadBalancer IP address will be delivered to one of the
corresponding pods.

Basic connectivity between pods is provided through the co-
operation of datacenter networking and plugins implementing
the CNI (Container Network Interface) [3], a specification that
enables changeable modules that configure network interfaces
in Linux containers. The CNI specification is very simple,
dealing only with network connectivity of containers and
removing allocated resources when the container is deleted.
Instead, packets to services are by default handled by a
dedicated Kubernetes component, kube-proxy, which con-
figures iptables with the proper rules to translate service
IP addresses into pod IP addresses, and to implement load-
balancing policies.

Most of the so-called CNI providers (e.g., Cilium, Calico,
Flannel, etc) implement more than just the base CNI spec-
ification and include (i) data-center wide networking (either
using an overlay model, e.g., through vxlan interfaces, or
direct routing, hence interacting with the datacenter physical
infrastructure to push the proper routes that satisfy K8s reach-
ability rules) and (ii) IP address management (IPAM module).
Instead, most of the CNI providers rely on kube-proxy for
services: a packet coming from a pod and directed to a service
is delivered by the CNI to kube-proxy, which operates the
proper transformation on IP addresses and ports and returns it
again to the network plug-in, which takes care of delivering it
to the target pod, possibly traversing the datacenter network.

K8s adopts a functional model for networking, defining a
set of behavioral rules for network connectivity1 but without
specifying how those must be implemented by the specific
network provider. In addition to rules already mentioned for
services, it adds the following ones for basic connectivity: (i)
all pods can communicate with all other pods without NAT;
(ii) agents on a node can communicate with all pods on that
node; (iii) pods in the host network of a node can communicate
with all pods on all nodes without NAT. It turns out that
network providers have full freedom to choose their own
implementation strategy, hence privileging e.g., the easiness
of use, performance, scalability, and more.

However, this freedom is widely recognized as a nightmare,
being very difficult to understand how each network provider
works under the hood, hence severely impairing the capability

1https://kubernetes.io/docs/concepts/services-networking/.

of a network engineer to debug a problem. This is exacerbated
by the complexity of the Kubernetes networking, which overall
includes functions such as bridging and routing (for pod-
to-pod connectivity), load balancing and NAT (for pod-to-
service and Internet-to-service), and masquerading NAT (for
pod-to-Internet), not to mention the necessity of security
policies (hence, firewalls) to protect both pod-to-everything
and external-to-everything communications.

Finally, all the above networking components must be inte-
grated with a control plane, which interact with K8s and detect
any change in the status of the cluster (e.g., a node/pod/service
is added/removed, a service is scaled up/down, etc.), hence
propagating the required configurations in all involved compo-
nents (e.g., adding a new node requires configuring a new route
toward that node in the routing table of all existing nodes).

Given this complexity, it becomes evident that the capa-
bility to rely on well-known (disaggregated) functions (e.g.,
bridging, routing, load balancers), each one running with their
configurations and state, would greatly simplify day-by-day
monitoring and debugging operations compared to network
providers created according to the monolithic model.

B. Service disaggregation with Polycube

Polycube [1] is an open-source software framework based
on eBPF that enables the creation of arbitrary network function
chains, adopting the same model (boxes connected through
wires) currently used in the physical world. Polycube network
functions, called cubes, are composed by an eBPF-based data
plane running in kernel (actually one or more eBPF programs)
and a control/management plane running in user space. A
user space daemon (polycubed) provides a centralized point of
control, allowing to access the configuration and state of cubes
through a RESTful API. Cubes can be seamlessly connected
to each other or to network interfaces through virtual ports,
an abstraction that is implemented through an eBPF wrapping
program that performs some pre- and post- processing in order
to receive/send packets from the previous/to the next compo-
nent in the chain. To implement this redirection mechanism,
each port is identified by a unique ID inside the cube, and each
cube maintains a forward chain map containing information
about the peer associated to each port. This information is used
by the post-processor to apply the correct action to forward the
packet, that could be either a tail call to the eBPF data plane
of the next cube or a bpf_redirect() to a destination
interface. Figure 1 shows an example of this mechanism for
a simple topology composed of one router and one bridge.
Chaining capabilities of Polycube represent a suitable way to
create disaggregated services; however, this solution has never
been validated in a complex scenario such as K8s networking.

III. ARCHITECTURE

Our proposed architecture targets the entire K8s networking,
including also services and, potentially, network policies,
hence replacing also kube-proxy, i.e., the component that
provides cluster-wide service-to-pod translation and load bal-
ancing. Our network provider supports ClusterIP and NodePort



Router

Bridge

port1

port2

eth1

Polycube Wrapper

port1

Pre-processor

Post-processor

Bridge
data plane

Port ID Peer Info

1 ---

2 ---

Forward chain

eth1

Router

Bridge
data plane

Bridge
data plane

Fig. 1: Chaining and ports in Polycube.

services and relies on a VxLAN overlay network to support
inter-node communication. The current version of the pro-
totype does not support security policies but, thanks to the
modular approach, this and other functionalities can easily
be added without any change in the other components. The
architecture (shown in Fig. 2) leverages four Polycube-based
independent network services, while it relies on the kernel to
handle the lifecycle of VxLAN tunnels.

A. Main components

K8s vs Linux Stack Discriminator and NAT (DISC-NAT).
This service performs source NATting for the pod-to-Internet
traffic, replacing the address of the pod with the address of
the node. For incoming packets, it distinguishes among traffic
directed to the host (either directly or because it needs VxLAN
processing) and traffic directed to pods (an external host trying
to contact a NodePort service or the return traffic of a pod).
This is done by checking that the packet (i) does not belong
to a NATted session (i.e., a lookup in the NAT session table
of the service), and (ii) that is not directed to a NodePort
service (i.e., a check against the TCP/UDP destination port of
the packet). In case both lookups fail, the packet is sent to the
Linux network stack. Vice versa, in the first case we apply
the reverse NAT rule and the packet continues its journey
towards the pods. In the second case, different actions can
be applied according to the ExternalTrafficPolicy of the rule.
If the policy is local, the traffic is allowed to reach only
backend pods located on the current node, hence the packet
can proceed towards the pod without modifications. In case
the policy is cluster, the packet can also reach backend pods
located on other nodes. Since later in the chain the packet will
be processed by a load balancer and we must guarantee that
the return packet will transit through the same load balancer,
we apply source NAT replacing the source IP address with the
address of a fictitious pod belonging to the PodCIDR of the
current node (currently the first address of the range is used).
External Load Balancer (ELB). This element maps new
sessions coming from the Internet and directed to a NodePort
service to a corresponding backend based on the 5-tuple of
the first packet. This load balancing decision is stored in a
session table, implemented as a Least Recently Used (LRU)
eBPF map, and reused for all subsequent packets. Old sessions
are automatically purged by the LRU map. Incoming packets
are updated with destination/port of the backend, while source
fields are restored to service values for outgoing traffic.

Datacenter physical network

Node 1

Pod1 PodN
192.168.1.2/32

Physical node IP: 10.1.1.1/24

Node 2 

VxLAN overlay 
network

Linux 
networking 

stack 
(host traffic)

eB
P

F

vxlan0
10.18.0.1/16Router

(pcn-router)

K8s vs Linux Stack 
Discriminator and NAT

(pcn-k8sdisp)

Internal Load Balancer
(pcn-k8slbrp)

192.168.1.3/32

External Load Balancer
(pcn-k8slbrp)

Node 3 

eth0

Pod CIDR: 
192.168.1.x/24

Pod CIDR: 
192.168.2.x/24

Pod CIDR: 
192.168.3.x/24

P
o

ly
cu

b
ed

PolyKube
Operator

192.168.1.254/24

Kubernetes 
master 
node

to_host

Fig. 2: Overall architecture of the eBPF K8s network provider.

Router. Since K8s requires that (i) all the pods in the cluster
can communicate with all pods without NAT and (ii) different
network addresses (PodCIDR) are allocated to pods on each
node, a routing component is required. To facilitate the op-
erations of the Internal Load Balancer (see later), we do not
use a bridge between pods, hence forcing all pod traffic to
be always delivered to the router. In fact, our network plugin
assigns a /32 network to each pod and adds an ARP static
entry for the gateway; hence all the packets are sent directly
to the gateway, with pods never issuing any ARP request. The
router is configured with four ports: (1) towards the physical
interface of the node; (2) towards local pods, configured with
the proper PodCIDR (e.g., /24); (3) to enable the reachability
of K8s processes and pods running in the host network (e.g.,
kubelet); (4) connected to a kernel VxLAN interface, which
is used for inter-node pod-to-pod communication.
Internal Load Balancer (ILB). This load balancer operates
on traffic coming from local pods and directed to ClusterIP ser-
vices; all the other traffic is forwarded as is. This module has
two types of ports; ‘edge’ ports are connected to entities that
generate new sessions (hence, pods), while the ‘server’ port is
the one used to reach the final servers, hence is connected to
the router. Edge ports are configured with the IP address of the
pod in order to be able to forward packets coming from the
router to the correct destination. The load balancing logic is the
same of the ELB, with a service-specific InternalTrafficPolicy
attribute determining which backends (local or cluster-wide)
are configured in the load balancer.
K8s Control Logic. A K8s operator is in charge of reacting
to the cluster events and reconfigure the required network
parameters in the controlled cluster. The operator has to react
to events related to the following three Kubernetes resources.
(1) Nodes: when a node joins/leaves the cluster, a route is
added/removed in the Router to update the reachability of the
given PodCIDR through the VxLAN overlay network, and the
node address is added to the VxLAN configuration.



(2) Services: the operator watches events regarding ClusterIP
and NodePort services. ClusterIP services trigger an update
of the ILB, while a NodePort triggers an update of the ELB
and DISC-NAT module for the obvious reasons, as well as the
ILB because of the creation of the ClusterIP address that is
associated with the NodePort service.
(3) Endpoints: the operator watches any event that refers to
Endpoints associated to Services. For each pair (address, port)
extracted from the endpoints object, the corresponding service
backend is updated on the proper Load Balancer: the ILB for
ClusterIP services and both for NodePort services.

This component is deployed as a K8s DaemonSet, which
ensures it runs on any node; K8s adopts a distributed con-
figuration, in which each node has its own agent in charge
of the node network configuration. This DaemonSet runs as
privileged pod, and it includes the polykube-operator
container (running the actual K8s control plane) and the
polycubed container (running the Polycube daemon). The
two communicate through the node loopback interface.

B. Communication scenarios

The main communication scenarios of a typical K8s cluster,
as shown in Fig. 3, are implemented as follows.
Pod-to-pod. The originating pod sends its packets to the
ILB, which transparently forwards them to the Router. If
the destination is on the same node, the traffic is sent back
immediately and the ILB forwards it to the destination. If the
destination pod is on another node, the router redirects the
packets to the VxLAN interface, where they are encapsulated
by the kernel and forwarded to the destination node. On the
remote node, the DISC-NAT passes the traffic to the kernel,
which decapsulates it and sends it to the router and then to
destination pod.
Pod-to-Internet. The traffic traverses the ILB, then the router
forwards it towards the physical interface of the node, hence
transparently crossing also the ELB. The NAT, instead, applies
a source NATting rule, hence replacing the address of the pod
with the one of the node, as well as the source port with a
new available one. This allows the return traffic to reach the
correct node without the necessity to advertise the PodCIDR
on the external network. On the return path, the NAT checks
if the packet belongs to a translated session; if so, it replaces
the destination address and port of incoming packets with the
ones of the original pod.
Pod-to-service. The pod traffic toward a ClusterIP service is
first processed by the ILB, which selects a proper backend pod
and updates the destination address and port of packets. Traffic
is then handled by the router in the same way as with the
pod-to-pod communication. For return traffic, the ILB checks
if the packet belongs to a translated session; if so, it restores
the original source service address and port.
Internet-to-service. When a remote host wants to contact a
NodePort service, the packet is first processed by the DISC-
NAT, that identifies it as targeting a NodePort service (based on
the destination port). If the ExternalTrafficPolicy of the service
is cluster, the DISC-NAT updates the source address of the

Datacenter physical network

Pod1 PodN

eB
P

F

Router

DISC-NAT

ILB

ELB

Pod1

Network 
stack

eB
P

F

Router

DISC-NAT

ILB

ELB

PodN

Network 
stack

eB
P

F

Router

DISC-NAT

ILB

ELB

a. Single node b. Multiple nodes

Pod-to-pod
Pod-to-Internet

Pod-to-Service
Internet-to-Service

VxLAN tunnel

Fig. 3: Modules involved in single (a) and multi-node (b) communi-
cations.

packet with the one of the fictitious pod, to guarantee that the
return packet will come to the same node. The packet is then
forwarded to the ELB, which (i) selects a proper backend pod,
(ii) updates the destination address and port with the ones of
the backend, and (iii) forwards the packet to the router, that
can handle it such as in normal pod-to-pod communications.

IV. EVALUATION

This section presents an assessment of the performance
provided by our network provider under different circum-
stances, to determine whether the disaggregated approach
would introduce any noticeable performance penalty. We run
the tests using the iperf3 tool, configured with the default
parameters; the server was always running in a pod, while
the client was either in a physical machine or in another pod
depending on the test. Tests were carried out on a cluster
of 2 nodes, each one featuring a CPU Intel® Xeon® CPU
E3-1245v5@3.50GHz (4 cores plus HyperThreading), 64GB
RAM, and a dualport 40 GbE Ethernet XL710 QSFP+ card,
all running Linux kernel v5.4.0 and K8s v1.23.5. Tests involve
other two eBPF-based solutions (namely, Cilium and Calico)
and a widely used ‘traditional’ approach such as Flannel [4].
All providers were deployed using the VxLAN overlay model;
Cilium and Calico were configured with their eBPF kube-
proxy replacement, hence enabling a complete eBPF data
plane such as in our solution.

We considered the following communication scenarios:
pod-to-pod: a pod client connects to the actual IP address of
a pod server, showing the performance of the base networking
without load balancing; pod-to-service: a pod client connects
to a pod server using its ClusterIP service, to evaluate the
performance of the load balancer as well as the L3 routing;
internet-to-service: the client is executed in an external host
and the pod server is accessed through its NodePort service.
Tests were performed with pods running both on a single node
and on multiple nodes, with the latter adding the overhead of
the VxLAN encapsulation and the limitation of the physical
network (link speed, PCI bus) and requiring to cross the phys-
ical network twice ((i) client to receiving node; (ii) receiving



Polycube Cilium Calico Flannel

pod
2pod

pod
2svc

internet
2svc

0

20

40

60

80

T
hr

ou
gh

pu
t

(G
bp

s)

Single node

pod
2pod

pod
2svc

internet
2svc

0

10

20

30

Multiple nodes

Fig. 4: Throughput comparison (TCP).

scale-up

scale-down

Kubernetes Operator CNI plugin

Time since operation issued (s)

0.41 1.91 2.01
0.01

0.06

0.01

variable (pod termination) 1.56

Fig. 5: Reaction time in case of scale up/down events.

node to backend node) for the internet-to-service tests. Results
are depicted in Fig. 4, with the red dashed lines representing
the baseline achieved running bare metal iperf3 on localhost
(in case of single node) or between two nodes. As expected,
the throughput decreases when the traffic traverses a larger
number of network components. However, despite the dis-
aggregated architecture, our solution provides always better
performance compared to other solutions, with even higher
margins when considering multiple nodes. While this result
may be impacted by other providers supporting more features
than our PoC code, such as network policies, these have not
been used in the tests, hence providing the ground for a fair
comparison. Overall, this suggests how disaggregation does
not introduce performance penalties compared to a traditional
monolithic approach.

Figure 5 shows the reaction time of our operator and CNI
plugin when requiring to scale up/down the pods of a service,
compared with time required by other Kubernetes components
until connectivity to the target pod is available/disabled. Re-
sults show that the time taken by our components is negligible
compared to the overall time required by K8s to react.

V. RELATED WORK

Among the many eBPF-based network services, we cite here
only the ones that are most representative in this space.

Katran [5] represents a software solution to offer scalable
network load balancing to layer 4 that leverages eBPF/XDP to
provide fast packet processing. While being very sophisticated,
it has been engineered to be the sole (monolithic) network
function active on the network path, hence preventing the
deployment of other functions operating on the same traffic.

Cilium [6] provides networking, security and observability
for cloud-native environments such as Kubernetes clusters.
Cilium is based on eBPF, which allows for the dynamic
insertion of powerful network security, visibility and control
logic into the Linux kernel. In Cilium, eBPF is used to provide
high-performance networking, multi-cluster and multi-cloud
capabilities, advanced load balancing, transparent encryption,
extended network security features, and much more. While
providing observability primitives through its Hubble module,
its internals are rather complex and made with a monolithic
approach. Cilium defines a set of six logical objects (Prefilter,
Endpoint Policy, Service, etc.), based on six different features
offered by the provider (DoS mitigation, network policies, load
balancing, etc.). However, these objects are not mapped into
clearly separated modules, neither for the data plane (their
logic is scattered among different intertwined eBPF programs),
nor from a topological point of view (cannot track the path
of a packet or capture the traffic flowing from one object
to another), nor from a control plane perspective (cannot
configure and inspect these objects independently). Similar
characteristics can be found in Calico [7], which recently
adopted the eBPF/XDP technology as well.

VI. CONCLUSIONS

We presented a network provider for Kubernetes based
on disaggregated eBPF services, which improves monitoring
and debugging as well as how code can be maintained,
extended and reused. Our open-source solution2 demonstrates
the feasibility of the disaggregated approach in eBPF and
our preliminary evaluation shows no particular overhead in-
troduced by our model with respect to another state-of-the art
monolithic solution. As a future work we plan to introduce
support for (i) direct routing and (ii) network policies.

ACKNOWLEDGMENT

Authors thank Hamza Rhaouati for his initial work on this
topic, all the people who contributed to the Polycube project,
and Roberto Procopio and Yunsong Lu for their support.
Finally, Federico Parola acknowledges the support from TIM
S.p.A. through the PhD scholarship.

REFERENCES

[1] S. Miano, F. Risso, M. V. Bernal, M. Bertrone, and Y. Lu, “A framework
for ebpf-based network functions in an era of microservices,” IEEE
Transactions on Network and Service Management, vol. 18, no. 1, pp.
133–151, 2021.

[2] S. Miano, M. Bertrone, F. Risso, M. Vásquez Bernal, and M. Tumolo,
“Creating complex network service with ebpf: Experience and lessons
learned,” in High Performance Switching and Routing (HPSR). IEEE,
2018.

[3] “Cni – the container network interface,” https://github.com/
containernetworking/cni, (Accessed on: Jan. 30, 2022).

[4] “Flannel,” https://github.com/flannel-io/flannel, (Accessed on: Apr. 12,
2022).

[5] “Katran,” https://github.com/facebookincubator/katran, (Accessed on:
Feb. 8, 2022).

[6] “Cilium,” https://github.com/cilium/cilium, (Accessed on: Feb. 8, 2022).
[7] “Calico,” https://github.com/projectcalico/calico, (Accessed on: Feb. 8,

2022).

2Code and docs available at https://github.com/polycube-network/polykube.


