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Abstract

Cancer results from dysregulation of multiple steps of gene expression programs. We review how transcriptome profiling
has been widely explored for cancer classification and biomarker discovery but resulted in limited clinical impact.
Therefore, we discuss alternative and complementary omics approaches.
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Introduction

Each step of the gene expression program is tightly controlled
by regulatory circuits [1]. Cancer is a disease resulting from dys-
regulation of these circuits, which can occur at any point of the
control [2, 3]. Hence, each of the ‘molecular portraits’ of cancer
obtained through high-throughput profiling (omics) technolo-
gies (Figure 1) bears fingerprints, which in principle can be ex-
ploited to identify biomarker genes for diagnosis and prognosis,
and to find suitable therapeutic targets.

In the nearly 15 years from when the first cancer portrait
was painted as an early outcome of the microarray technology
[4], the great majority of the subsequent analyses have been
limited to the first two levels of gene expression, the linear DNA
sequence and the steady-state levels of mRNAs (i.e. genome
and transcriptome profiling). Despite continuous advances in
the affordability of microarrays to quantify copy number vari-
ations and mRNA levels, the transition to the massively parallel
sequencing technology, which has an improved resolution, a

greater dynamic range and an increased sensitivity depending on
the depth of sequencing [5–7], has rendered sequencing-based
cancer portraits definitely more informative than those relying
on hybridization to probes. In the meanwhile, public repositories
of high-throughput analysis of biological data have been heavily
loaded with profiles of virtually every cancer type, following a
rapid pace of accumulation (Figure 2) also owing to multisite and
international projects such as TGCA [8] and ICGP [9]. As a result,
our understanding of the anatomy of cancer genomes and tran-
scriptomes has substantially improved. We now map precisely
point mutations, copy number aberrations, translocations, splic-
ing defects, alterations of transcription start or end and differen-
tial expression [2, 7].

Looking retrospectively, despite this increased mapping abil-
ity of genomic and transcriptomic aberrations, the usefulness of
omics assay in the distinct tasks of classifying tumor subtypes,
predicting clinical outcome (clinical validity) as well as treat-
ment response (clinical utility) [10] appears rather
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unsatisfactory. At the basis of the poor clinical usefulness of the
molecular portraits produced until now could lie the inability to
account for the biological complexity of cancer [11, 12]. It is
still out of reach to comprehend in an informative way the
multiplicity of processes in the path from DNA to protein, which
are known to be dysregulated [13], and the underlying intra-
tumor variation poses great difficulties [14–16]. Moreover,
tumors bear both ‘driver’ and ‘passenger’ mutations that are dif-
ficult to distinguish [17], and are characterized by the tendency
to undergo a Darwinian evolution and to evolve with time and
treatment [18–20]. Admittedly, the major challenge in cancer re-
search is the heterogeneity of this disease, not only between dif-
ferent tissues and cancer types, but also within the same cancer
type among the different patients and temporally in the same

patient. Additional hurdles related to technical approaches in-
clude the analysis of complex biological materials, insufficient
sample size and improper composition of study cohorts, lack of
clear objectives and thoughtful statistical design upfront of the
experiments and an improper subsequent data analysis includ-
ing the application of arbitrary thresholds [21, 22]. Finally, to
understand highly interconnected mechanisms that drive can-
cer and to impact on oncology practice, we have to evaluate the
still largely unknown potential of protein levels and protein
posttranslational modifications, as well as integrative views of
molecular mechanisms at multiple regulatory levels.

In this review, we examine the possible reasons of the failure to
substantially improve clinical practice using the currently avail-
able, predominantly transcriptome-based molecular portraits, and
identify recent advancements that could lead to more success in
the future as well as present current limitations in the field.

Transcriptome-based portraits: the case of
breast cancer

Breast cancer is heterogeneous, consisting of cases that are sub-
stantially different in their molecular and clinical characteris-
tics. Owing to this inherent diversity, attempts at class
discovery, prediction and management of breast cancer pa-
tients pose significant challenges [23]. Breast cancer heterogen-
eity also prevents the establishment of a multistep model of
carcinogenesis, which has been possible in other cancer types,
such as colorectal or pancreatic cancer [24, 25]. Despite such
complexity, a nearly 15 years long examination of breast cancer
transcriptome profiles resulted in substantial contributions into
subtyping and assessment of the prognostic (providing informa-
tion on the likely outcome of the cancer disease in an untreated
individual) and predictive (providing information on the likely
benefit from treatment) value of gene signatures. Therefore, we
use this tumor type as a paradigm of how transcriptome profiles
have contributed to the clinical management of this disease.

The initial molecular classification of breast cancer was
based on transcriptome profiling and resulted in five subgroups,

Figure 1. Obtaining molecular portraits of cancer. Different omics fields are listed together with the main methods used to obtain results. DNA-seq—DNA sequencing;

RNA-seq—RNA sequencing.

Figure 2. The increase in the number of cancer transcriptome profiling studies.

ArrayExpress was queried for human cancer data sets acquired from at least 30

samples by RNA microarray or sequencing assays. Main bar plot:data sets acqui-

red from any cancer type; insert plot: data sets from breast cancer studies only.
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namely, Luminal A, Luminal B, Basal-like, Normal-like and
HER-2 positive, which were subsequently proven to be associ-
ated with distinct clinical outcomes [4, 26]. Following the dis-
covery of the initial subgroups, further subtyping has been
proposed by several studies. A meta-analysis approach on tran-
scriptome signatures derived from 42 breast cancer gene
expression studies yielded a set of 117 genes that were common
to 12–36% of the studies [27]. The low number of genes common
to the meta-analyzed breast cancer signatures did not prevent
the meta-signature from improving breast cancer patient strati-
fication. The difficulty of developing transcriptome-based mod-
els in breast cancer was also recently typified by a study that, by
showing that most random gene lists associate with patient prog-
nosis, questioned the implicit assignment of biological signifi-
cance to the variables found in association with patient
prognosis [28]. Such justified critiques are helping the research
community to evolve improved analytical methodologies to iden-
tify biologically informative cancer prognostic signatures [29].

One of the biggest hurdles for researchers in this field is the
sample size that needs to be increased to obtain meaningful re-
sults for such a complex disease as breast cancer. The recent
METABRIC (Molecular Taxonomy of Breast Cancer International
Consortium) study, using 2000 breast cancer patients with long-
term clinical outcome information, is the latest wide-scale
effort in producing a molecular classification of the tumor [30].
Therein, integrated analysis of genome and transcriptome
portraits resulted in the robust identification of 10 subgroups,
each being reproducible in the validation cohort and thus repre-
senting trustable tumor subtypes. METABRIC findings may
help the researchers to better define future studies and plan
clinical trials, as each subtype is likely to need a different treat-
ment strategy to overcome the disease [23]. Furthermore, an
assessment of the clinical validity of the integrative subtypes
derived from METABRIC has been undertaken [31], even if it is
worth noting that the METABRIC subtypes were solely con-
ceived with the intention of best representing breast tumor biol-
ogy and identifying potential molecular drivers. In general, the
clinical potential of breast tumor subtyping warrants further
study. At the moment, the descriptive power to define breast
cancer subtype is being gained with limited translation into the
clinic.

Out of the vast number of proposed breast cancer signatures,
only a few of them have been licensed for use in the clinic, the
most prominent ones listed in Table 1. The evidence base for
these assays develops primarily through observational studies
of limited sample sizes in diverse settings. As a matter of fact,
unmet minimum sample size of study cohorts hampers the

assessment of statistical performances, and prediction strength
is known to vary considerably depending on which patient
populations and what end point the assay was optimized for.
Nonetheless, major conclusions were conveyed by previous sys-
tematic reviews and meta-analyses [37]. Evidence of analytic
validity (technical performance characteristics) and reproduci-
bility was found limited for all assays. Overall, these assays
showed clinical validity and utility, albeit to a different extent.
OncotypeDX, in particular, positions at the most advanced point
in the development pathway, being the only assay that can pre-
dict treatment benefit [38, 39]. Recently, the Oncotype DX assay
was modified to predict local recurrence risk and to guide indi-
vidualized selection of treatment after surgical excision for
women with newly diagnosed ductal carcinoma in situ of the
breast who meet the ECOG E5194 criteria [40]. The cost-effect-
iveness of the assays remains inconclusive [41]. For all tests, the
relationship of predicted to observed risk in different popula-
tions and their added value over conventional predictors, opti-
mal implementation and relevance to patients receiving current
therapies need further study, in particular in large cohorts.
These should prove key to understanding whether we can rely
on these assays rather than on standard clinicopathological fea-
tures for treatment decisions [42, 43]. For now, they remain only
complementary to the traditional tests. A comparative study of
gene signatures showed that predictions of distinct assays were
similar despite the limited overlap between the genes underly-
ing the assays [44]. It is worth noting that observing a low over-
lap across gene signatures is not relevant from a purely clinical
point of view because it can be due to the presence of multiple
genes with similar moderate correlation to the clinical outcome.
This scenario was highlighted in a study where different lists of
survival prognostic biomarkers were generated from a single
breast cancer data set [45].

Difficulties to acquire robust cancer subtypes as well prog-
nostic and predictive biomarkers could depend on the limita-
tions of transcriptome-based profiling as the technology of
choice. One of the reasons could be that transcriptome-based
molecular profiles are not true portraits of the diseased state
but mere shadows, as mRNA and protein levels tend to be ra-
ther poorly correlated (see below) and depend on genomic
lesions in a complex way.

The discordance of information contained in
different molecular portraits

The expression of many genes predicted to drive cancer pheno-
types is weakly correlated with their copy number, and protein

Table 1. Most prominent signatures used in breast cancer clinical practice

Assay name (producer) Description Number of
genes assayed

Reference

MammaPrint (Agedia) Assesses the risk of metastasis of early-stage breast
cancer, and whether a patient will benefit from
chemotherapy.

70 [32]

Oncotype DX (Genomic Health) Assesses the chances of disease recurrence in women
with early-stage estrogen receptor positive breast
cancer and the benefit from certain types of
chemotherapy.

21 [33]

MapQuant Dx (Ipsogen) Assesses the histological grade and thus predicts the
benefit from chemotherapy.

97 [34, 35]

THEROS CancerTYPE ID
(Biotheranostics)

Identifies the origin of cancers with unknown or
uncertain primary site.

92 [36]
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levels are poorly predicted by transcript levels, both in tumor
samples and cell lines [46–48]. As the proteome is believed to
more closely represent the physiological state of the cell than
the genome or the transcriptome, the discordance between
transcriptome and proteome data should draw attention to the
limits of many cancer studies that use transcriptome as a surro-
gate for proteome to reconstruct molecular portraits and to
identify cancer signatures.

The low estimates of correlation between transcriptome and
proteome data could be partially owing to technical reasons,
such as different scalability between platforms, detection bias,
different kinetics of synthesis and degradation between tran-
scripts and proteins or side effects resulting from the use of
drugs that inhibit transcription and translation [49, 50]. In add-
ition, the partial correlation between transcript and protein lev-
els was not mitigated when the quantification was addressed in
optimal experimental conditions on a genome-wide scale in un-
perturbed mammalian cells [51]. In this study, transcript levels
could explain only 40% of the variance in protein levels, which,
albeit higher than in previous reports [49, 50], is limited. An esti-
mate of the correlation between transcript and protein levels
was also addressed computationally. Combining steady-state
mRNA and protein levels with the analysis of the sequence fea-
tures related to translation and protein degradation, allowed to
demonstrate that the transcript levels and structural features
together could explain two-thirds of the variation in protein
levels, whereas transcript levels alone could explain only
25–30% of it [52].

The relative importance of variation in the transcriptome
and the translatome (the latter being a subfraction of the tran-
scriptome composed of mRNAs engaged in translation) on
treatment with different stimuli was assessed in another study
[53], which showed an extensive uncoupling of mRNA transcrip-
tome and translatome fluctuations, with up to 90% of signifi-
cant changes being limited to the translatome. These results,
together with others [54, 55], support the notion that the machi-
neries responsible for regulating mRNA levels as well as mRNA
translation can remain largely independent of each other. In
line with this view, protein levels are more conserved during
evolution than the corresponding mRNA levels [56], as assessed
looking at seven different species and identifying a selective
pressure to maintain protein abundances during evolution even
when mRNA abundances diverge. Taken together, the currently
available evidence suggests that the process of translation and
the abundance of proteins might provide better molecular por-
traits of healthy and disease states than the transcriptome.

The use of translatome profiling

Cancer characterization and biomarker development could now
take advantage from advances in translatome profiling, which
examines translation by characterizing mRNA transcripts
engaged in interaction with active ribosomes. Polysome profil-
ing, relying on the analysis of polysomal mRNAs that are first
fractionated by sucrose gradient centrifugation, is commonly
used to assess the translational efficiency of transcripts. To
date, no studies have been conducted to assess the utility of the
translatome in the clinical context, with only one report on
polysome profiling from solid tissues [57]. More recently, ribo-
some profiling data have also been proposed as a proxy for pro-
tein abundance [58, 59], and this method is proving useful to
evaluate translation deregulation in diseased states [60–62].
Nevertheless, the broad application of polysome and ribosome
profiling is limited by the lack of high-throughput settings of

the procedures. All in all, translation profiling techniques can
be helpful to uncover cancer cell behaviors specifically steered
by disarranged translation, and therefore to suggest novel
therapeutic targets. However, this field certainly needs further
advancements and better standardization of protocols to fulfill
its full promise in the clinics.

The use of proteome profiling

The ability to understand proteomes brings us a step closer to
the physiological state of a cell, and therefore proteomics prom-
ises to provide enhanced ability to predict the disease course, to
promote insights in cancer deregulated pathways and associ-
ated mechanisms of resistance to treatment. Proteomics has
now advanced sufficiently to allow us to observe the variation
of thousands of proteins [63]. However, proteome determination
still lags behind transcriptome assays in terms of sensitivity,
accuracy and scalability. Proteomics-based cancer studies are
inherently more complicated, owing to large dynamic range of
concentrations of molecular species and the absence of means
to amplify them, low relative abundance of many biomarkers
and the extent of protein variability owning to splicing and pro-
tein modifications [64]. Recent advances in technology plat-
forms relying on mass spectrometry (MS), sample handling and
bioinformatics solutions for data analysis have delivered high-
coverage surveys of the proteome [65]. Over 4 years, a 100-fold in-
crease in throughput has been achieved [66, 67], which brings the
analysis of complete proteomes within reach. Several initiatives,
such as the Human Proteome Map, ProteomicsDB, the
Chromosome-Centric Human Proteome Project, have demon-
strated the feasibility of complementing available genome and
transcriptome normal data by comprehensively exploring the
proteome on progressively larger scale in the near future [68–70].
In addition, the Cancer Proteome Atlas (TCPA) provides ready ac-
cess to cancer proteome data, which were generated using 3467
TCGA tumors and 439 cell line samples by using reverse-phase
protein arrays [71]. As a proof of concept, a preliminary analysis
of TCPA data has recently proved the association of several pro-
teins with clinical outcome [72], but the limitation of this assay is
that it targets only 181 proteins [71]. Furthermore, the Clinical
Proteomic Tumor Analysis Consortium, launched by the
National Cancer Institute, has released a public repository of
well-characterized, MS-based, targeted proteomic assays, includ-
ing a growing number of cancer types [73].

The proteomes of human blood serum and plasma contain a
vast amount of useful information about the cancer state. Blood
collection is simple and minimally invasive, making it a me-
dium of choice for diagnostic tests. Until recently, the exploit-
ation of blood proteome for discovery of protein biomarkers has
been challenging because of the large number of unique pro-
teins, their degradation products and the broad range of protein
concentrations. Nonetheless, advances in proteomic technolo-
gies are possibly turning the serum proteome diagnostics into a
clinical reality [74, 75]. For instance, the VeriStrat serum prote-
omic test status was found predictive of differential benefit in
terms of overall survival for non-small-cell lung cancer patients
treated with second-line erlotinib versus chemotherapy [76].

Proteome-based cancer portraits unfortunately suffer from
some pitfalls that are specific to proteomic approaches. Typical
challenges in the proteomics workflow include inconsistent
proteolysis of samples and protease bias [77], the limited work-
ing concentration range of species detectable by the instrumen-
tation, the need for reduction in sample complexity, which
otherwise is not directly compatible with MS analysis, and the
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error-prone association between spectral data, peptides and
proteins [78]. Proteomics data interpretation could benefit from
evolving methods to model experiment-specific peptide detect-
ability trends, to enable comparative evaluation of protein iden-
tification methods and to standardize and expand database
annotations that are crucial, being the source used for MS spec-
tra matching. Thus far, a small number of studies performed
suitable validation of protein biomarkers derived by proteomics,
i.e. in clinical samples with patients’ follow-up data [79–81].
Although proteomics holds many promises, considerable work
still lies ahead to accelerate the progress in distinguishing be-
tween cancer types in the clinic as well as in defining suitable
treatment regimens.

The use of multi-omic approaches

Improvements in the accuracy and precision of high-through-
put technologies have set the stage for the integration of mul-
tiple data types. In addition to the mostly investigated
transcriptomes and proteomes, additional molecular profiles
have been shown informative; for instance, metabolic profiles
have an important theoretical advantage in that they are sensi-
tive to both genetic and environmental influences, and can be
translated into clinical tools for application to personalized
medicine [82–84]. The advantages of integrative analyses of
multiple assays are arguably manifold: more fundamental
understanding of the complex biology of cancer in its multiple
and interrelated facets, power and robustness in tumor classifi-
cation and prediction of outcome, which cannot be reached by
each assay in isolation. A drawback of the integrative methods
is a considerable dimensionality issue owing to the increasing
of the number of variables without increasing the number of
samples. However, an array of techniques are amenable to inte-
grative analysis, such as the preliminary identification of prin-
ciple components, which are defined as latent axes that
maximally capture the variance in the data set, or the impos-
ition of variable sparsity through LASSO constraints [85] or elas-
tic net constraints [86]. To enable the access to multi-assay data
and the exchange of integrative analysis methods, storage and
informatics platforms such as Rembrandt [87], Synapse [88] and
IntOGen [89] have been already established as public resources
for open data-driven collaborative research. The methodo-
logical choice of the computational analysis depends on the
objectives set by the integration of multi-assay data [90, 91]. For
example, a number of approaches used different technologies to
confirm the findings based on one assay with an additional one
[92, 93]. Tumor stratification has been usually addressed
by applying clustering-based approaches to multi-assay data
types. The most common approach to subtype discovery across
multiple data types is to sequentially cluster each type and
finally to integrate the results. For instance, integrating six
assays by this approach demonstrated the ability to molecularly
define the major breast cancer subtypes [13]. Already some at-
tempts to conduct proteogenomic characterization of human
cancers are resulting in improved characterization of candidate
driver genes and genomic abnormalities [47]. Alternative clus-
tering approaches, performing joint inference from distinct
assays and generating a single integrated cluster assignment,
were equally useful in characterizing breast cancer and glio-
blastoma subtypes starting from genome and transcriptome
data [30, 94]. Other attempts integrated molecular profiles with
previous knowledge captured in gene interaction networks to
stratify ovarian, uterine and lung cancer patients [95]. Multi-

assay biomarker discovery relies on integrative regression
approaches, which differ from one another in the use of data of
different types to construct the predictor [96, 97], and on net-
work analysis approaches, which have so far included correl-
ation- and mutual information-based networks [98], Bayesian
and graphical models [99]. With the growing interest in
approaches that combine primary tumor data such as transcrip-
tome profiles with networks and pathways, several initiatives
provide tools to objectively evaluate the improvement in out-
come prediction performances [100]. Although the outlined
techniques are fast evolving, their widespread use beyond a few
worldwide projects has so far been hindered by the relatively
low availability of omic data sets involving more than one data
type measured in the same set of cancers, the theoretical and
computational hardship of analytical frameworks allowing joint
inference from multi-assay data, the high dimensionality of
high-throughput multi-assay data and the incomplete annota-
tion and partial compatibility of different genomic features.

Conclusions

The past 15 years have seen an amazing growth in the ability to
generate molecular data at multiple complementary levels of
gene expression, therefore enabling the generation of molecular
portraits in unprecedented detail in a variety of cancer contexts.
However, with a few exceptions, these investments have failed
to substantially improve diagnosis, prognosis or treatment of
cancer. A fundamental reason for this discrepancy between
data generation and clinical improvement is the relatively im-
mature use of experimental designs and analytical methodolo-
gies to handle and meaningfully interpret high-throughput data
types. The majority of attempts to stratify tumors or to predict
clinical outcome to date have used transcriptome-based data
without consideration of the effects in protein levels or have
postulated linear correlation of data across these levels. Future
advances will focus on increasing the information content of
each data type, reducing the amount of input biological mater-
ial, getting relevant data in less analysis time and improving
mathematical modeling to uncover relationships between
diverse and complementary data types and clinical phenotypes.
Continuous attempts to fully describe the functional alterations
at the multiple levels of gene regulation in cancer will be instru-
mental to the effective interpretation of cancer molecular data
and to their translation into the clinic.

Key Points
• Transcriptome profiling has resulted in limited clinical

utility despite tremendous efforts.
• The potential prognostic and predictive value of

profiling protein levels of gene regulation is pitifully
unexplored and deserves careful assessment.

• Multiple types of ‘omic’ data provide complementary
information of which integration might be crucial to
improve the assessment of tumor prognosis.

• Effective feature selection and mathematical modeling
strategies should be developed in the analysis of indi-
vidual data types and in the integration thereof.
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