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ABSTRACT
Semantic segmentation is one of the popular tasks in computer
vision, providing pixel-wise annotations for scene understand-
ing. However, segmentation-based convolutional neural networks
require tremendous computational power. In this work, a fully-
pipelined hardware accelerator with support for dilated convo-
lution is introduced, which cuts down the redundant zero mul-
tiplications. Furthermore, we propose a genetic algorithm based
automated channel pruning technique to jointly optimize computa-
tional complexity and model accuracy. Finally, hardware heuristics
and an accurate model of the custom accelerator design enable
a hardware-aware pruning framework. We achieve 2.44× lower
latency with minimal degradation in semantic prediction quality
(−1.98 pp lower mean intersection over union) compared to the
baseline DeepLabV3+ model, evaluated on an Arria-10 FPGA. The
binary files of the FPGA design, baseline and pruned models can be
found in github.com/pierpaolomori/SemanticSegmentationFPGA

1 INTRODUCTION
Convolutional neural networks (CNN) are widely used for solving
problems like image classification [1], object detection [2], and se-
mantic segmentation [3]. The deployment of these networks on
resource-limited hardware (HW), such as in-vehicle systems, re-
mains challenging due to high memory requirements and energy
consumption. GPUs are most favorable during training, but often
in case of inference, FPGAs [4] and ASICs [5] outperform GPUs
in terms of power efficiency. In this work, we focus on the de-
ployment of a state-of-the-art semantic segmentation-based CNN,
namely the DeepLabV3+ [3] model, on reconfigurable hardware.
The primary motivation is to design an efficient accelerator using
high-level synthesis (HLS) to meet the high compute and memory
requirements of a substantially complex model like DeepLabV3+.
To further facilitate the efficient execution on HW, we implement
a HW-aware genetic algorithm (GA) to search for Pareto optimal
pruned CNNs. We address the challenge of designing HW-friendly
CNN architectures by integrating a HW model of the designed
semantic segmentation accelerator into the pruning search. We fur-
ther refine the pruning configurations by deriving HW heuristics
to guide the search algorithm while compressing the network.
We summarize our contributions as follows:

* Pierpaolo Morì has contributed to this work during his master thesis at BMW AG..

(1) Accelerator Design for Segmentation. We implement
an end-to-end semantic segmentation application using
DeepLabV3+ [3] on an FPGA. We enable support for 2D
dynamic tiling, 3D unrolling, dilated convolutions, and bilin-
ear upsampling to an existing accelerator design. Our accel-
erator achieves 90%DSP utilization, 183.3 GOPS throughput,
and DRAM accesses reduction by a factor of 2 .33×.

(2) Genetic Algorithm-based Channel Pruning.We formu-
late a non-dominated sorting genetic algorithm (NSGA-II)
to determine Pareto optimal pruning configurations. We
obtain 2.75× reduction in the number of operations with
minimal degradation in prediction quality.

(3) Hardware-Aware Pruning. We formulate an analytical
HW model of our accelerator to steer a latency-driven GA
search and outperform pruning configurations based on
proxymetrics, such as the number of operations. The latency-
driven GA search provides a performance improvement of
2.44×, with minimal degradation in the prediction quality.

The remainder of the paper is structured as follows: Sec. 2 discusses
related work on FPGA acceleration and structured pruning. Sec. 3
introduces our approach to an end-to-end deployment pipeline of
the DeepLabV3+ model on an Arria-10 GX FPGA, which is then
extensively evaluated in Sec. 4. Sec. 5 concludes the paper.

2 RELATED WORK
2.1 CNN Acceleration with FPGA
Different approaches try to overcome the limitations of constrained
FPGA platforms, improving inference efficiency [6–9]. Zhang et
al. [6] formulate a uniform matrix multiplication based represen-
tation for convolutional and fully-connected layers. They perform
batch processing to tackle the memory bandwidth problem in fully-
connected layers. Wang et al. [7] proposed PipeCNN, that adopts a
pipelined data structure using multiple functional units. The input
features and weights are fetched from DRAM in a double buffer by
sliding a 3D window. Although PipeCNN achieves high through-
put, there is no further optimization to reduce DRAM access and
minimize memory stalls. Ma et al. [8] exploit loop optimization tech-
niques such as tiling and unrolling. The schedule for optimal data
reuse patterns depends on the CNN’s layer dimensions and tiling
factors. The unrolling (or parallelization) factors directly impact
the compute utilization, improving the latency of the convolution
execution. Bai et al. [9] designed an FPGA accelerator for semantic
segmentation to speed up inference time of SegNet-basic model [10].
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They implemented transpose convolution efficiently to avoid re-
dundant zero multiplications. However, loop tiling optimization is
limited to the input channel dimension, and the processing element
is suitable only for 3 × 3 and 2 × 2 kernels, restricting the flexibility
of the accelerator. We extended the work of PipeCNN [7] by adding
support to bilinear upsampling and dilated convolutional layers
to accelerate segmentation models. We improve the performance
using 3D loop unrolling and dynamic tiling techniques to increase
resource utilization and reduce DRAM accesses.

2.2 Structured CNN Pruning
Han et al. [11] determined the saliency of weights based on their
magnitude. Pruning individual weights, referred to as irregular
pruning, leads to inefficient memory accesses, requiring special-
ized implementations. Regularity in pruning becomes an important
criterion when considering accelerator-aware optimization. He et
al. [12] proposed structured channel pruning, where the saliency
of individual channels is determined through Lasso regression. The
pruning rate for each layer is based on handcrafted heuristics, which
target lower proxy metrics such as OPs and Params. The reinforce-
ment learning (RL) agent in AMC [13] automates the search for
optimal pruning rates in each layer. The RL-agent produces pruning
configurations based on real latency measurements on smartphone
devices, i.e. necessitating a HW-in-the-loop (HIL) setup. Although
the RL-agent in AMC reduces the dependency on human experts,
it still requires a handcrafted reward function due to its single-
objective search approach. In this work, we propose a GA-based
pruning method to improve on existing techniques and determine
Pareto optimal compressed solutions. We remove the necessity of a
HIL-based approach, which is not always feasible when the HW is
not synthesized or readily available. To maintain HW-awareness,
we develop an analytical HW model to replace the HIL, providing
a HW model-in-the-loop approach. Additionally, we use the multi-
objective search algorithm, NSGA-II, to relieve the requirement
of handcrafting a reward function, which may not always fairly
balance all objectives (accuracy, latency, parameter count, etc.).

2.3 Evolutionary Channel Pruning
Yang et al. [14] proposed a GA search for CNN channel pruning.
Each individual in the population represents a slim variant of the
pretrained CNN model, pruned with different combinations. Indi-
viduals are selected for the next population according to a multi-
objective trade-off among accuracy degradation, number of oper-
ations, and pruned values. At every search step, the individual is
fine-tuned to compensate for the loss of accuracy. Hardware metrics
are not considered in the GA search, and the investigation is lim-
ited to small-scale datasets such as MNIST. Hu et al. [15] presented
a pruning procedure based on a layer-wise GA, which identifies
redundant filters. The CNN model is pruned layer by layer sequen-
tially using fixed compression ratios based on sensitivity heuristics.
At each iteration, fine-tuning based on knowledge distillation is
performed to restore the model accuracy. However, their approach
is not scalable to huge models, such as DeepLabV3+, due to the
need for many GPU hours during the search phase. Instead, our
GA searches for effective compression ratios and reduces the GPU
hours by relying on a magnitude-based heuristic. Wang et al. [16]

introduced APQ, a methodology to jointly perform neural archi-
tecture search, pruning, and quantization. A quantization-aware
accuracy predictor and a lookup table containing hardware metrics
for each layer is used to estimate accuracy and latency respectively.
Although the approach reduces the number of operations, the HW
optimization techniques are not considered to reduce latency. For
example, specialized layers required for semantic segmentation,
such as dilated convolutions, require novel dataflows to optimize
memory demand and latency. In our work, we incorporate special-
ized HW blocks for semantic segmentation and perform HW-aware
pruning to reduce latency with minimal degradation of mIOU.

3 ACCELERATING SEMANTIC
SEGMENTATION

We propose a specialized FPGA accelerator with an end-to-end
compression pipeline using structured channel pruning to reduce
the latency of semantic segmentation, as shown in Fig. 1. The word
length of weights and activations is set to 16-bit to maximize the
DSP’s capabilities and limit the numerical error introduced by low-
bit quantization. In Sec. 3.1, we introduce the architecture descrip-
tion of the accelerator design. In Sec. 3.2, a theoretical model of
our accelerator is detailed to predict latency. Finally, in Sec. 3.3,
we highlight an automated channel pruning framework using a
genetic algorithm, which determines suitable compression ratios
for a semantic segmentation based CNN.
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Figure 1: End-to-end CNN deployment pipeline on an FPGA
platform using genetic algorithm-based channel pruning.

3.1 FPGA Accelerator Design
The high-level design description of the proposed FPGA accelerator
is presented in Fig. 2.
Data Buffers and Dynamic Scheduling: The accelerator design
employs input, weight, and output buffer subsystems directly con-
nected to the external DRAM. The complexity of the accelerator
depends on the unrolling factors 𝑃𝑜 𝑓 , 𝑃𝑖 𝑓 , 𝑃𝑘𝑥 for the output filters,
input channels, and kernel dimension, respectively. At every clock
cycle, 𝑃𝑖 𝑓 input features and 𝑃𝑘𝑥 × 𝑃𝑖 𝑓 × 𝑃𝑜 𝑓 weights are fetched
from the external DRAM and stored in the on-chip input and weight
buffers, respectively. 𝑃𝑜 𝑓 output features are written back. Perform-
ing three global memory accesses at each MAC operation would
cause a huge degradation in accelerator performance due to limited
bandwidth. Loading all the needed data into on-chip memory is
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generally not possible due to the limited storage size. Since the
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Figure 2: Overview of semantic segmentation based FPGA
design: Two dimensional tiling factors𝑇𝑖𝑥 ,𝑇𝑖𝑦 are determined
dynamically for a CNN layer to improve the reuse of input
features. PE array performs unrolling in three dimensions
with 𝑃𝑜 𝑓 × 𝑃𝑖 𝑓 × 𝑃𝑘𝑥 multipliers.

neighboring outputs of the convolution operations share input fea-
tures, redundant data accesses can be avoided by performing the
convolution in tiles (loop tiling). According to 𝑇𝑜𝑥 and 𝑇𝑜𝑦 , dynam-
ically defined in real time for each layer, the proposed accelerator
tiles 𝑇𝑖𝑥 ×𝑇𝑖𝑦 ×𝐶𝑖 input feature maps, 𝑘𝑥 × 𝑘𝑦 ×𝐶𝑖 × 𝑃𝑜 𝑓 weights,
generating 𝑇𝑜𝑥 ×𝑇𝑜𝑦 × 𝑃𝑜 𝑓 output features. Here, 𝑇𝑖𝑥 ,𝑇𝑖𝑦,𝑇𝑜𝑥 ,𝑇𝑜𝑦
represent the tiling factors for input and output feature maps, 𝐶𝑖
represents the number of input channels, 𝑘𝑥 and 𝑘𝑦 represent the
kernel matrix dimensions.

Processing Element Array: The parallel convolutions are per-
formed in the PE array consisting of interconnected DSPs. The
convolution operation can be unrolled in three dimensions, as
demonstrated in Fig. 2. Partial sums are stored in a shift regis-
ter with configurable depth 𝑑 , representing the latency of the MAC
operation (in cycles). Each partial sum 𝑆𝑛 generated at cycle 𝑛 is
accumulated with the partial sum 𝑆𝑛−𝑑 , 𝑑 cycles before. For the
16-bit CNN inference on the Intel Arria 10 board, 2 MACs can be
mapped to a single DSP block, therefore 1

2 ·𝑃𝑖 𝑓 ·𝑃𝑜 𝑓 ·𝑃𝑘𝑥 DSP blocks
are needed. For lower data bit-width, the amount of DSP utilization
does not change. The PE array generates 𝑃𝑜 𝑓 independent partial
sums at each clock cycle of the accelerator.

Additional HW and Semantic Segmentation: The pooling
logic (Max and Average) consists of comparator, adder and divider
units. It buffers the first rows or partial pooling results until the
whole needed input window is received and can directly fetch

data from DRAM. The batch normalization kernel unit receives
16-bit fixed-point inputs from the convolution kernel. These are
converted to floating-point, normalized using the layer parameters
(mean, variance, gamma, and beta, directly loaded from DRAM),
and converted back to fixed-point. In order to improve flexibility,
we implemented batch normalization as a dedicated unit, instead
of fusing it with convolution. For semantic segmentation, dilated
convolution is commonly used to encode multi-scale contextual
information. The weight kernels are inflated with dummy zeros
to get a larger projection area for the dilated convolutions on the
input feature map. For higher dilation rates, the weight buffer size
explodes, demanding large on-chip memory to implement that
particular layer. Therefore, instead of extending the weight kernel
dimensions, our dataflow selects specific activation values based
on the dilation rate. In order to resize the downsampled features
to the original image, we designed an upsampling implementation
using bilinear interpolation. Based on the description of the CNN
model and the requirements for each layer, the HW connections
in the FPGA are reconfigured. This allows to hugely increase the
flexibility of our accelerator and speed up the inference of several
CNN models (e.g., ResNet18, ResNet34, DeepLabV3+) for different
applications (e.g., image classification, semantic segmentation).

3.2 Theoretical Hardware Model
We model the FPGA-based accelerator design to determine real-
time metrics such as latency and DRAM accesses, and facilitate
the CNN pruning process without requiring the synthesized FPGA
design in the genetic algorithm loop.

Optimal Tiling Factors: For estimating the latency of the con-
volution with stride 𝑠 , it is important to determine if the layer
execution is compute or memory bounded. Using Eq. 1, we maxi-
mize 𝑇𝑜𝑥 and 𝑇𝑜𝑦 dynamically such that the tiled input features fit
on the allotted input buffer Buf𝑖𝑛 , thereby reducing DRAM accesses.

argmax
𝑇𝑜𝑥 ,𝑇𝑜𝑦

(
𝑇𝑜𝑥 ·𝑇𝑜𝑦 · 𝑘𝑥 · 𝑘𝑦 · 𝑃𝑜 𝑓

((𝑇𝑜𝑥 − 1)𝑠 + 𝑘𝑥 ) ·
(
(𝑇𝑜𝑦 − 1)𝑠 + 𝑘𝑦

) )
∋ ((𝑇𝑜𝑥 − 1)𝑠 + 𝐾𝑥 ) × ((𝑇𝑜𝑦 − 1)𝑠 + 𝐾𝑦) ×𝐶𝑖 ≤ Buf𝑖𝑛

(1)

Compute Bounded Latency: The required number of cycles
𝐿𝑎𝑡𝑐𝑜𝑚𝑝𝑢𝑡𝑒 for the unrolled computation per layer is given by Eq. 2.
Here,𝑊𝑜 and 𝐻𝑜 represent the spatial dimensions of the output
feature maps.

𝐿𝑎𝑡𝑐𝑜𝑚𝑝𝑢𝑡𝑒 =

⌈
𝐶𝑖

𝑃𝑖 𝑓

⌉
·
⌈
𝑘𝑥

𝑃𝑘𝑥

⌉
·
⌈
𝐶𝑜

𝑃𝑜 𝑓

⌉
· 𝑘𝑦 ·𝑊𝑜 · 𝐻𝑜 (2)

Memory Bounded Latency:We estimate the number of DRAM ac-
cess for input, weights and output to calculate the memory bounded
latency 𝐿𝑎𝑡𝑚𝑒𝑚 . Our accelerator reduces the DRAM accesses by
tiling𝑇𝑖𝑥 ·𝑇𝑖𝑦 ·𝐶𝑖 input features in the on-chip buffer. The total num-
ber of input DRAM accesses is formulated as product of number of
tiles and tile size as shown in Eq. 3.

𝐷𝑅𝐴𝑀𝑖𝑛 =

⌈
𝑊𝑜

𝑇𝑜𝑥

⌉
·
⌈
𝐻𝑜

𝑇𝑜𝑦

⌉
·
⌈
𝐶𝑜

𝑃𝑜 𝑓

⌉
︸                      ︷︷                      ︸

number of tiles

·𝑇𝑖𝑥 ·𝑇𝑖𝑦 ·𝐶𝑖︸        ︷︷        ︸
input tile size

where, 𝑇𝑖𝑥 = (𝑇𝑜𝑥 − 1)𝑠 + 𝑘𝑥 𝑎𝑛𝑑 𝑇𝑖𝑦 = (𝑇𝑜𝑦 − 1)𝑠 + 𝑘𝑦

(3)
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We maximize the reuse of weights and output features on-chip
to prevent re-fetching/writing these data types onto the external
DRAM. The DRAM accesses due to weights is given by 𝐷𝑅𝐴𝑀𝑤 =

𝑘𝑥 · 𝑘𝑦 ·𝐶𝑖 ·𝐶𝑜 and outputs is given by 𝐷𝑅𝐴𝑀𝑜𝑢𝑡 =𝑊𝑜 · 𝐻𝑜 ·𝐶𝑜 .
The resulting memory bounded latency due to DRAM access is
expressed in Eq. 4.

#𝐷𝑅𝐴𝑀𝐴𝑐𝑐𝑒𝑠𝑠 = 𝐷𝑅𝐴𝑀𝑖𝑛 + 𝐷𝑅𝐴𝑀𝑤 + 𝐷𝑅𝐴𝑀𝑜𝑢𝑡

𝐿𝑎𝑡𝑚𝑒𝑚 =
#𝐷𝑅𝐴𝑀𝐴𝑐𝑐𝑒𝑠𝑠

MemoryBandwidth

(4)

We set 𝑇𝑜𝑥 = 1, 𝑇𝑜𝑦 = 1 for convolutional layers with dilation rate
> 1, to avoid prohibitive input buffer requirements. Due to limited
bandwidth (9.5 GB/s) on the Arria-10 FPGA, the memory bounded
latency in dilated convolutional layers dominates the compute la-
tency. Therefore, we avoid a huge memory demand for dilated
convolutional layers.
Overall Latency: We calculate the total latency 𝐿𝑎𝑡𝑡𝑜𝑡 of convolu-
tional layers by estimating the maximum number of cycles required
for compute and memory transfer as shown in Eq. 5.

𝐿𝑎𝑡𝑡𝑜𝑡 = max(𝐿𝑎𝑡𝑐𝑜𝑚𝑝𝑢𝑡𝑒 , 𝐿𝑎𝑡𝑚𝑒𝑚) (5)

Estimating Latency for the Upsampling Layer: We estimate
the latency of bilinear upsampling layers by performing linear inter-
polation with different number of output channels 𝑁𝑜 𝑓 , as shown
in Fig. 3. Based on predictions of the linear interpolation (shown in
blue), we estimate the latency of the two bilinear upsampling lay-
ers with various filter choices. Linear interpolation-based latency
estimation is also leveraged for the average pooling layer in the
ASPP module of the DeepLabV3+.
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Figure 3: Linear regression-based latency estimation for the
upsampling layer.

3.3 Genetic Algorithm-based Channel Pruning
We formulate the channel pruning process as a search problem,
where redundant filters are pruned based on layer-wise compres-
sion ratios and a magnitude-based heuristic. The pruning rates re-
sult in an integer number of remaining channels for each layer. Prun-
ing certain filters leads to large degradation in accuracy (mIOU),
highlighting different sensitivities for various pruning choices.
Moreover, pruning makes large portions of the total computations
possible in a single tile, leading to schedule-dependent improve-
ments in latency. These aspects make the search space discrete
and non-differentiable. We leverage genetic algorithms (GAs) to
tackle this search problem, as they are resilient to noisy search
spaces, quick to prototype, and do not need smooth, continuous
search spaces to perform well (gradient-free). We also relieve the
burden of handcrafting a cost function to combine the multiple
criteria (mIOU, latency, OPs) by using NSGA-II, which follows a
multi-objective Pareto-optimal selection approach. This ultimately
facilitates better design space exploration and maintains diverse

non-dominated trade-off solutions P𝑜𝑝𝑡 , which may fit different
deployment scenarios.

Explicit, bijective encoding is used to create the genomes of
potential solutions. A single genome represents a potential CNN
pruning strategy and has as many genetic loci as layers in the CNN.
Each genetic locus encapsulates a pruning rate at the correspond-
ing layer. Sparsity-to-layer encoding can be captured intuitively
in sequential genomes, providing a one-to-one application of GA
operators onto the CNN layer sequence. Neighboring CNN lay-
ers have higher feature correlation than distant layers, therefore,
pruned layer relationships encoded in neighboring genetic loci
can survive in a population and be reused through single-point
crossover to create more efficient offspring. The fitter the parents
become throughout the generations, the better genetic localities
they will have, potentially leading to better offspring. Mutation
further allows offspring to escape local minima of their parents.

The GA search initially starts with a population size |P |. Each
individual in the population P is a CNN, with randomly selected
pruning rates 𝑟 of its layers. These networks are evaluated to obtain
their mIOU and HW estimates. The mIOU values during the search
are obtained by evaluating the pruned model on random samples
of the train set, to maintain an unbiased population w.r.t. the vali-
dation set. The HW-related optimization criterion can either be the
number of operations in the CNN, or the latency values which are
calculated using the HW model discussed in Sec. 3.2. The individu-
als in the population then undergo crossover (with probability 𝑝𝑐 )
and mutation (with probability 𝑝𝑚) to produce offspring. We evalu-
ate the mIOU and HW estimate values of each offspring. Based on
their Pareto-optimality, selected parents and offspring survive into
the next generation. This process is continued for 𝑔 generations.
The GA based pruning procedure is detailed in Alg. 1.

Algorithm 1: Channel Pruning using NSGA-II.
Initialize :Genome encoding, Population size |P |, crossover

probability 𝑝𝑐 , mutation probability 𝑝𝑚 , random
pruning rates 𝑟 , and maximum generation number 𝑔.

Input :Random initial population P, pre-trained CNN.
Output :Pareto-optimal pruned solutions P𝑜𝑝𝑡 , balancing

accuracy and hardware estimates.
for gen in range(1, 𝑔) do

Evaluation :Apply magnitude-based pruning. Evaluate the
fitness of each individual in P according to mIOU
and HW latency.

Selection :Non-dominated sorting and crowding distance
selection.

Crossover :Select two individuals and perform single-point
crossover with probability 𝑝𝑐 .

Mutation :Perform replace mutation on each offspring with
probability 𝑝𝑚 .

Update population P.
end

4 EXPERIMENTS
To evaluate the FPGA design and the mIOU, we use DeepLabV3+ [3]
with ResNet18 [1] backbone trained on the CityScapes dataset [17]
consisting of 2974 train and 500 validation images with a resolution
of 1024 × 2048 pixels. We downsample the CNN’s input resolution
to 960 × 960 pixels. For the DeepLab-based CNN architecture, the
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bottleneck layers consist of two residual blocks with a dilation rate
of 2 and an Atrous Spatial Pyramid Pooling (ASPP) block with dila-
tion rates {1, 8, 12, 18}. Total 19 classes were used for annotating
segmentation output and the resulting baseline mIOU is 67.27%.
If not otherwise mentioned, all hyper-parameters specifying the
task-related training were adopted from the CNN’s base model.
The FPGA platform used is the Arria 10 GX 1150 with a 2GB DDR4
DRAM, where Intel OpenCL SDK 19.4 is used to synthesize and
generate the bitstream. The host program is compiled and executed
on Intel Xeon Gold 5222 processor which is responsible for prepar-
ing images and weights and loading them onto the FPGA’s DRAM
to perform CNN inference.

4.1 CNN Accelerator Design
Reducing External Memory Access: Reducing off-chip data
movement and increasing utilization of the PEs results in improved
energy efficiency and throughput. To reduce the number of DRAM
accesses, we improve the reuse of input feature maps by dynami-
cally selecting tiling factors for each layer or increasing the on-chip
buffer size as detailed in Sec. 3.2. To understand the importance of
different tiling schemes, we synthesize an accelerator with 128KB
of BRAM to buffer input features and 1024 DSP blocks to perform
convolution operations in the PE array.
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Figure 4: Evaluating different tiling schemes for convolu-
tional layers with different spatial input dimensions.

We report DRAM accesses (bar graph) and latency (line graph) in
Fig. 4 for different types of convolutional layers in the DeepLabV3+
model. We also highlight the effectiveness of the dynamic tiling
scheme leveraged by our FPGA accelerator. We observe that the 2D
dynamic tiling produces lower DRAM accesses for all the layers.
Using the 2D tiling scheme, we reduce the overall DRAM accesses
in the DeepLabv3+ model by a factor of 1.23× and 2.33× compared
to the configuration with static and no tiling schemes respectively.
We simulate the theoretical compute latency considering a target
clock frequency of 200MHz for each layer based on Eq. 2. We
observe that the 2D tiling scheme produces similar measurement as
compute bounded latency for non-dilated convolutional layers. We
also observe that the dilated convolutional layers (RES511, RES521,
ASPP2) do not obtain benefits in DRAM accesses using various
tiling schemes as we set 𝑇𝑜𝑥 = 1 and 𝑇𝑜𝑦 = 1.

Unrolling the Convolution: Table 1 shows the resource uti-
lization overhead of our accelerator that supports semantic segmen-
tation w.r.t. our standard implementation for image classification
for different unrolling configurations (𝑃𝑜 𝑓 , 𝑃𝑖 𝑓 , and 𝑃𝑘𝑥 ) on the
Arria 10 FPGA. We observe greater HW utilization (+6% logic, +14%
BRAM and 2% DSP) to accelerate DeepLabV3+ due to the additional
layers supported (described in Sec. 3.1). We also report the inference

latency for ResNet18 and DeepLabV3+ for different unrolling config-
urations. Using the unrolling factors 𝑃𝑖 𝑓 = 16, 𝑃𝑜 𝑓 = 32, 𝑃𝑘𝑥 = 4, we
obtain a latency of 16.4ms and 1.6s for ResNet18 and DeepLabV3+
respectively.
Table 1: Resource utilization and latency of segmentation
and classification accelerators for different unrolling config-
urations.

Unroll config
𝑃𝑖 𝑓 , 𝑃𝑜 𝑓 , 𝑃𝑘𝑥

Segmentation (DeepLabV3+) Classification (ResNet18)
Logic DSP BRAM Lat Logic DSP BRAM Lat
Util blocks M20K (%) (s) Util blocks M20K (%) (ms)

16, 16, 1 41% 394 (26%) 35% 3.9 33% 321 (21%) 23% 51.8
16, 32, 1 58% 690 (46%) 64% 2.5 46% 569 (37%) 32% 28.3
16, 16, 4 51% 778 (51%) 49% 2.2 43% 704 (46%) 41% 25.1
16, 32, 4 72% 1362 (90%) 75% 1.6 66% 1336 (88%) 61% 16.4

4.2 Channel Pruning using Genetic Algorithm
We conduct a hyper-parameter study for NSGA-II to understand
the characteristics of the pruning search space, and the relationship
between layer-wise sparsity, number of operations and mIOU. For
all experiments, we set mutation (𝑝𝑚) and crossover (𝑝𝑐 ) proba-
bilities to 0.4 and 1, respectively. In Fig. 5, we study the pruning
performance by varying the hyper-parameters of the population
size |P | and number of generations𝑔. Increasing |P | and𝑔 demands
more GPU hours to obtain Pareto optimal pruning configurations
(indicated by the red line). For example, the GA search with (|P |, 𝑔)
= (10, 10) requires a search time of 0.7 hours using a single NVIDIA
Volta GPU. For comparison, (|P |, 𝑔) = (50, 50) requires a search time
of 16 hours. Analysing the resulting Pareto-fronts of each experi-
ment in Fig. 5, we notice that the (10, 10) configuration produces
a limited Pareto-front, with larger gaps between the solutions. In-
creasing the size of the experiment to (25, 25) produces a much
wider and dense Pareto-front. Beyond that, experiments of (25, 50)
and (50, 50) result in less impressive improvements, making the
(25, 25) configuration a good trade-off in terms of GPU hours and
resulting Pareto-front. For (|P |,𝑔) = (25, 25), we fine-tune uniformly
sampled Pareto optimal solutions (indicated by the green dots), and
obtain a 2.75× reduction in number of operations with minimal
degradation in the mIOU (-1.5pp).

Further, we compare the pruning configurations of the GA search
with a state-of-the-art RL-based pruning [13] in Fig. 6. For the sake
of comparison, we modify the accuracy guaranteed reward function
in [13] to obtain different convergence regions for the DDPG-based
RL agent. We observe that the NSGA-II based GA search obtains
Pareto dominant solutions, whereas RL-based search focuses only
on a specific region in the search space. For most of the compression
ratios in Fig. 6, we observe that the GA-based pruned solutions
dominate RL search in terms of mIOU and operations.

4.3 Hardware aware pruning
Proxy HW metrics, such as operation count (OPs), does not always
guarantee tangible improvements on measured hardware estimates.
Thus, we incorporate the latency estimate produced by the the-
oretical model explained in Sec. 3.2 into the GA based pruning
search. We also improve hardware benefits by ensuring the same
channel pruning rate to the layers with common input features (e.g.
shortcut layers in the residual blocks and parallel convolutions in
ASPP blocks). This facilitates maximum utilization of DRAM band-
width and compute throughput of the FPGA accelerator towards
producing optimal semantic prediction quality.
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Figure 5: NSGA Search using OPs w/o compression con-
straints. Grey to black shades represent older to newer gen-
erations, red points belong to the final generation.
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Figure 6: Comparison of our proposed GA-based channel
pruning with RL search [13]. Our approach generates domi-
nating Pareto optimal configurations compared to RL search.
Crossed points are fine-tuned Pareto-optimal samples.
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Figure 7: NSGA Search using HWModel Latency with com-
pression constraints.

Fig. 7 illustrates the dominating pruning configurations for the
two GA search scenarios. The hardware model latency values are
shown on the left whereas measured latency values are shown on
the right. The graphs on the left and the right portray the same
trend, indicating the high fidelity of our hardware model to guide

the GA-based pruning search. Our HW-aware pruning configura-
tions yield a better trade-off between mIOU and latency compared
to OPs-based pruning search. We fine-tune (dotted line) the pruning
configurations (solid line) and perform inference of compressed
DeepLabV3+ on our accelerator (Table 1, unrolling configuration
16, 32, 4 ). We observe a latency of 0.67s (2.44× lower than baseline)
and a mIOU of 65.29% (-1.98 pp). Analyzing the layer-wise com-
pression ratios, we observe that the HW-aware pruning removes
more filters in dilated convolutions compared to OPs-based pruning
configurations. This can be attributed to the higher latency caused
by DRAM accesses. Compared to OPs-based pruning, HW-aware
pruning achieves 1.3× lower latency with similar mIOU.
5 CONCLUSION
In this work, the problem of accelerating a state-of-the-art semantic
segmentation network is successfully tackled by an FPGA-based
accelerator exploiting a HW-aware channel pruning technique.
We improve the DRAM accesses and latency of the accelerator by
exploiting loop tiling and unrolling techniques. Our baseline accel-
erator (before channel pruning) gives 183.3 GOPS throughput. We
proposed a novel framework for automated channel pruning using
GA search. We incorporated a theoretical HW model simulating
the latency of the FPGA accelerator during the GA search. Using
the HW-aware channel pruning, we obtain 2.44× lower latency
with minimal degradation in semantic prediction quality.
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