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Abstract—Social engagement is a novel business model whose
goal is transforming final users of a service from passive
components into active ones. In this framework, people are
contacted by the decision-maker (generally a company) and they
are asked to perform tasks in exchange for a reward. This paves
the way to the interesting optimization problem of allocating the
different types of workforce so as to minimize costs. Despite this
problem has been investigated within the operations research
community, there is no model that allows to solve it by explicitly
and appropriately modeling the behavior of contacted candidates
through consolidated concepts from utility theory. This work
aims at filling this gap. We propose a stochastic optimization
model including a chance constraint that puts in relation, under
probabilistic terms, the candidate willingness to accept a task and
the reward actually offered by the decision-maker. The proposed
model aims at optimally deciding which user to contact, the
amount of the reward proposed, and how many employees to use
in order to minimize the total expected costs of the operations.
A solution approach is proposed to address the formulated
stochastic optimization problem and its computational efficiency
and effectiveness are investigated through an extensive set of
computational experiments.

I. INTRODUCTION

The social engagement business models is a new busi-
ness paradigm involving the customers of a company in its
operations. More precisely, people agree to perform specific
services for a company in exchange for a reward. The social
engagement business model has been enabled by the increase
of the number of users connected on the web and technologies
able to get people information [1]. This gives to the companies
the possibility to easily communicate with customers and other
people, and then to propose tasks in exchange for a reward.

A concrete example of application of the social engagement
paradigm is the so called crowd-shipping logistics, i.e., rather
than building an entire network of transshipment facilities and
deploying a large number of vehicles for the delivery, the
companies ask the people to collect the packages to a certain
location and deliver it to the final user [2]. By using crowd-
shipping the company does not only decrease its costs, but also
decreases its environmental impact. In fact, people accepting

the delivery usually would take advantage of travels that they
have to do anyhow for other activities, thus avoiding additional
trips.

Another really interesting application of social engagement
occurs in the development of the innovative concept called
Internet of Things (IoT). In the era of smart cities, IoT is
playing a role of considerable importance [3]. However, its
development is considerably slowed down by the difficulty
and costs involved in building telecommunication networks
capable of continuously transmitting large amounts of data
collected by sensors, in an efficient, effective and reliable
way. As an alternative to the construction of this network, in
exchange for a reward, citizens use their devices (e.g., mobile
phones, modems) to share the internet so that the nearby
sensors can exploit it to communicate the gathered data. This
is known as the opportunistic IoT (oIoT) paradigm [4].

In the light of these examples, it is clear that social
engagement will acquire more and more importance in the
future being a corner stone of both smart cities and sustainable
behaviour and that a great variety of applications will soon be
put in practice. In this work, therefore, we do not want to
concentrate on a specific application rather on a very general
social engagement-based setting in order to embrace all the
basic characteristics of such a business model. In the rest of
the paper, we will call a candidate each person that might be
contacted by the company for operation proposal, and a task
each proposed operation.

An effective planning of operations under the social engage-
ment paradigm yields an interesting optimization problem. The
decision-maker must decide how much he is willing to pay to a
candidate for each task, when and where to rely on employees
and on candidates, which tasks to assign to the employees and
for which tasks the candidates must be contacted, in order to
minimize the total operational costs. It is important to note
that the reward paid to a candidate is generally lower on
average than the cost that the company bears for an employee.
However, while an employee is obliged to accept and carry out
the tasks assigned to him, there is no certainty that a candidate



will accept a proposed task. This complicates the underlying
optimization problem as one must correctly address this source
of uncertainty.

A little attention has been devoted to the development of
optimization models aimed at effectively scheduling com-
panies operations that exploit social engagement. Just few
works ([5], [6], [7]) have tried to tackle the problem and,
therefore, there is a large room for improvement of existing
approaches as well as for the design of more innovative and
more complete ones (as claimed regarding crowd-shipping in
[8]). In particular, to the best of our knowledge, there is no
published optimization model that explicitly accounts for indi-
vidual candidate behaviour when planning social engagement-
based operations. As already mentioned, one characteristic that
makes challenging the optimization problems deriving from
the implementation of the social engagement paradigm is the
fact that candidates are not constrained a priori to respect a
contract. This means that, once contacted, the candidate may
not accept the task and, if we assume a pure rational profit-
maximization behavior of the candidate, the reject can happen
because the proposed reward is lower than the candidate
expectation. It is therefore important to integrate tools in the
decision-making process that allow monitoring the individual
behavior of potential candidates.

In this work, to account for individual behaviour, we rely
on the candidate’s willingness to accept a task, i.e., the
minimum reward expected by a candidate to accept a task.
The willingness to accept is a well consolidated concept in
utility theory and has been used since long to explain human
subject preferences in economics [9]. From the decision-maker
point of view, the candidate’s willingness to accept is not
deterministically known, since it depends on some factors that
are intrinsic of the candidates. Therefore, we consider the
candidate willingness to accept as a random variable. Thus,
the probability of acceptance for a candidate will be equal to
the probability that the offered reward is greater or equal to the
willingness to accept of the candidate. Given this knowledge,
the aim of the decision maker is to decide which person to
contact, the amount of the reward proposed, and how many
employees to use in order to minimize the total operations cost
composed expressed as sum between the costs of the employee
and the expected reward for the candidates.

This paper’s contribution is threefold and can be summa-
rized as it follows:

• First, we propose a novel mathematical model for social
engagement-based services optimization. The formula-
tion, which includes probability constraints, results to be
the first one that explicitly accounts for each individual
candidates behaviour.

• Second, since the complexity of the proposed model and
the explicit consideration of stochastic parameters do not
allow to obtain a simple solution, we derive a mixed-
integer quadratic programming model that approximates
the original model. This is done by making some rea-
sonable hypothesis on the probability distribution of the

willingness to accept of each candidate, and by exploiting
the Markov inequality.

• Third, we conduct several computational experiment to
validate and assess the suitability of our proposed model
and of the solution approach and their characteristics.

The rest of the paper is organized as it follows. Section
II discusses the related works appeared in the literature. The
considered optimization problem is defined in Section III,
while the related mathematical model is formulated in Section
IV. Our solution approach is described in Section V. Section
VI presents the computational experiments settings, while the
related results are discussed in Section VII. Fianlly, Section
VIII draws conclusions and highlights future developments.

II. RELATED WORKS

Operation research models and methods have long been
leveraged for cost reduction or profit maximization by compa-
nies. With the advent of the social engagement business model,
the operation research community has naturally focused on the
question of how to effectively plan operations that rely on such
a business model.

As pointed out in the introduction, one of the most in-
teresting implementation of the social engagement business
model is the crowd-shipping paradigm. A recent survey on
operation research approaches to crowd-sourced delivery can
be found in [8]. Among the open research directions listed,
one regards how to determine the minimum value of the
reward guaranteeing that each candidate accepts the proposed
task. In fact, the decision-maker does not know a priori how
many candidates will accept the proposed tasks. As a result,
some papers as [10] assume that the candidates will surely
accept the task proposed. However, such an assumption yields
strong limitations in practice [8]. Others authors, e.g., [11],
[6] have proposed models that better fit practical requirements
by considering the possibility that a contacted candidate may
reject the tasks. In [6], the authors assume that the number
of person willing to perform a task in a given area of the
operational network is a random variable. In this paper, we
adopt a similar perspective. However, instead of relying on a
single random variable describing the number of candidates,
we model each single candidate behavior through a Bernoulli
random variable. The parameter of such a Bernoulli random
variable, i.e. the probability that the candidate accepts the task,
is not fixed but depends by the proposed reward.

To deal with any single candidate’s behaviour, we consider
the concept of willingness to accept from the utility theory
[12]. This is actuality not a peculiarity of this paper since
many authors have relied on utility theory concepts and tools
to model individual behaviours in optimization problems. In
[13] an approach to embed discrete choice models from the
utility theory into mixed integer linear programming models
was presented. Instead, this paper wants to be a first step
toward integrating utility theory tools and concepts also in
optimization models for social engagement-based services, so
to appropriately model individual candidates behaviors.



In our optimization problem, the link between the offered
reward, the minimum expectations of a candidate, and his/her
probability to accept the task is expressed under probabilistic
terms, naturally yielding an optimization model including
chance constraints. Optimization problems involving chance
constraints have been largely considered and studied in lit-
erature [14]. Although some approaches have been proposed
to deal with these problems [15], [16], there is a common
agreement that they are in general too complex to solve
directly and thus the design of ad-hoc solution approaches
might be required.

III. THE SOCIAL ENGAGEMENT OPTIMIZATION PROBLEM

The social engagement optimization problem that we want
to study considers a decision-maker (in general a company)
whose goal is to use people, in the following called candidate,
in addition to employees in order to perform a set of tasks. In
particular, we consider a urban environment divided in several
geographical areas such as mobile phone cells, neighborhoods
of different market or just geographical areas. Each of these
areas is characterized by a number of tasks to perform and
each tasks is characterized by different workloads, thus a
single task may requires more candidates to be done. This
is frequently the case in oIoT applications in which the tasks
can be associated to share the internet connection with more
sensors in the same area, thus requiring more candidates.

For example, in the crowd shipping setting these tasks are
the delivery required by customers out of the store, while in
the oIoT application these tasks consist in sharing the internet
connection with smart sensors in the city.

Each task can either be performed by using an employee
or a candidate. Employee are more expensive, are available
in a small number but they execute the tasks assigned. In-
stead, candidates are less expensive, their quantity is virtually
unlimited (since the number of people considered for social
engagement is far greater than the number of tasks) but they
can refuse to perform a task with a given probability. We
assume that the acceptance probability increases as the offered
reward increase. Please notice that the employee have greater
productivity than the candidates.

The goal of the decision-maker is to minimize the total
operative costs while enforcing that with high probability all
the tasks must be performed.

In the next sections, we will consider the following sets:
• I: set of tasks.
• M: set of candidates.

Moreover, we define the following parameters:
• ci: cost of using an employee for task i.
• Wi: workload required to perform task i.
• r > 1: ratio between the productivity of an employee

with respect to that of a candidate, i.e., the workload that
a single employee can afford as compared to a candidate
in the same time frame.

• αi: required probability for tasks i to be performed.
• ∆m

i : random variable representing the willingness to
accept of candidates m for task i.

• B: maximum number of available employees.

IV. MATHEMATICAL MODEL

In this section we formulate the mathematical model for
the social engagement optimization problem. We consider the
following decision variables:

• Qm
i ∈ R: reward offered to candidate m to accept task i;

• zi ∈ N: number of employee assigned to tasks i;
and the following auxiliary variables:

• xm
i ∈ [0, 1]: probability for candidate m to accept task i.

• Y m
i are a random variables distributed according to a

Bernoulli distribution of probability xm
i , i.e.,

Y m
i =

{
1 if candidate m accepts to perform task i

0 otherwise
.

Thus the Social Engagement Optimization Problem (SEOP )
can be formulated as follows:

min
∑
i∈I

∑
m∈M

Qm
i xm

i +
∑
i∈I

cizi (1)

subject to

xm
i = P[Qm

i ≥ ∆m
i ], i ∈ I,m ∈ M (2)

P[Y m
i = a] = (xm

i )a(1− xm
i )(1−a), i ∈ I,m ∈ M (3)

a ∈ {0, 1} (4)

P

[ ∑
m∈M

Y m
i + rzi ≥ Wi

]
≥ αi, i ∈ I (5)

∑
i∈I

zi ≤ B (6)

zi ∈ N, i ∈ I,
Qm

i ∈ R+, xm
i , Y m

i ∈ [0, 1], i ∈ I,m ∈ M.
(7)

The objective function (1) is the total cost expressed as the
summation between the expected costs offered as a reward
(the reward Qm

i is paid with probability xm
i ), and the sum

of the costs from the employee. Constraints (2) define the
variables xm

i as the acceptance probability, while constraints
(3) and (4) ensure Y m

i to follow a Bernoulli distribution.
Constraints (5) are chance constraints enforcing a minimum
probability of doing a given task either by using employee or
candidates. It is worth noting that ensuring that each task is
satisfied with a given probability is less strict than requiring
that all the tasks will be satisfied with a given probability.
Nevertheless enforcing this second condition would lead to
too conservative solutions. Finally, constraint (6) limits the
number of employees.

In conclusion, it is worth noting that the SEOP model is
quite general, embracing all the possible applications based on
a social engagement business model.



A. An analytical solution for the single-candidate SEOP

It is worth noting that it is reasonable to apply social engage-
ment if |M| is large. However, in the particular case where
there is a single candidate it is possible to derive an analytical
expression of the optimal solution. In this section we derive
such an expression since it provides some preliminary insights
into how the candidate’s behavior is related to the decision-
maker’s expectations in terms of how likely he performs the
task. In particular, we consider |M| = 1|, and for the sake of
simplicity we also assume that:

• just one task requiring a unitary effort has to be per-
formed, i.e. |I| = 1 , W1 = 1

• each employee can perform just one task, namely r = 1.
The resulting model is

min
z,Q

QF∆(Q) + cz (8)

subject to

P[Y = a] = (F∆(Q))a(1− F∆(Q))(1−a) (9)

a ∈ {0, 1} (10)

P[Y ≥ 1− z] ≥ α (11)

z ∈ {0, 1}, Q ∈ R+, x ∈ [0, 1]. (12)

where F∆ denotes the cumulative probability distribution (cdf)
of the willingness to accept (i.e. ∆). To obtain Model (8)–(12)
from SEOP , we drop the index i for ease of notation, we
rearrange the terms in constraint (11), we set z ∈ {0, 1} due
to the characteristic of the instance and we set x = F∆(Q) due
to constraint (2). Since Y in Eq. (11) is a Bernoulli random
variable and the 1− z ∈ {0, 1}, we have that{

if z = 1, P[Y ≥ 0] ≥ α =⇒ 1 ≥ α

if z = 0, P[Y ≥ 1] ≥ α =⇒ F∆(Q) ≥ α.

Hence, if z = 1 constraint (11) is always satisfied, else it must
hold that F∆(Q) ≥ α or, equivalently that Q ≥ F−1

∆ (α).
Since the goal of the problem is to minimize the total costs,
the optimal solution will consider Q = F−1

∆ (α). Hence, the
optimal solution to the problem can be obtained by considering
the relation between the cost c (the cost paid to the employee)
and αF−1

∆ (α) (the expected costs for the candidate’s reward).
In particular, if c ≤ αF−1

∆ (α), the optimal solution is z =
1, Q = 0 with value c, otherwise it is z = 0, Q = F−1

∆ (α),
with value of αF−1

∆ (α).
In other words, in this simple example the company uses

social engagement if αF−1
∆ (α) ≤ c. Hence, the higher is

α, the more convenient are the employees since F−1
∆ (α) is

increasing. This claim is also verified in the real field in which
social engagement is used for tasks that are not safety critical.

Unfortunately, the insights obtained for SEOP in the
single-candidate case cannot be generalized in more complex
scenarios involving more candidates, since the chance con-
straint is coupling the related variables. In fact, considering

two candidates (|M | = 2), a task requiring W1 = 2, and
considering two employee (B = 2), we have that

if z = 0 P[Y1 + Y2 ≥ 2] ≥ α =⇒ F∆1(Q
1)F∆2(Q

2) ≥ α

if z = 1 P[Y1 + Y2 ≥ 1] ≥ α =⇒
F∆1

(Q1)(1− F∆2
(Q2)) + (1− F∆1

(Q1))F∆2
(Q2) ≥ α

if z = 2 P[Y ≥ 0] ≥ α =⇒ 1 ≥ α.

This means that, even for |M| = 2, we lose an easy
interpretation and, in turn, an easy solution for the problem.

V. SOLUTION APPROACH

The optimization problem (1)-(6) is difficult to solve due to
the definition of the xm

i in constraints (2), of Y m
i in constraints

(3) and (4), and of the chance constraints in constraint (5).
Hence, we approximate these constraints in order to get a
model which can be readily solved with off-the-shelf solvers.

Constraints (2) involve the cdf of the random variable ∆m
i .

We approximate it by means of a piece-wise linear function
with J breakpoints. In particular, instead of constraints (2) we
add a set of constraints of the form

xm
i ≤ kjQ

m
i + qj , j = 1, . . . , J, i ∈ I,m ∈ M, (13)

where kj and qj are obtained by imposing proper conditions
(e.g. the passage in J points of the cdf). This choice is equiv-
alent to enforce xm

i ≤ min[1,m1Q
m
i + q1, . . . ,mJQ

m
i + qJ ],

where the first term of the minimum comes form the xm
i

definition. Since the approximation proposed in Eq. (14) just
lead to concave functions (being the pointwise minimum of
affine functions) and since the a general cdf may be convex
in some portion of the domain, the proposed approximation is
not guarantee to converge to the cdf for all the distributions.
In the following, for the sake of simplicity, we consider just
J = 1 and we impose the passage for the point (0, 0) meaning
that with 0 reward the probability that the candidate will
perform the task is 0 and (Q̄m

i , 1) where Q̄m
i is a quantity of

reward such the candidate is willing to perform the task with
a probability that we may approximate to be 1. By making
this choice, the obtained approximation is:

xm
i ≤ Qm

i /Q̄m
i , i ∈ I,m ∈ M. (14)

This choice leads to the approximation of the cdf depicted in
red in Figure 1. Considering Eq. (14) is equivalent to suppose
that ∆m

i is distributed according to a uniform distribution.
Thus, adding more functions is equivalent to approximate the
density function with a function that is piece-wise constant.

In order to deal with constraints (5) we notice that by split-
ting the random variable from the deterministic components,
the probability that we aim to compute is

P[
∑

m∈M
Y m
i ≥ Wi − rzi] ≥ αi, i ∈ I. (15)



p

Qm
i

Q̄m
i

1

Fig. 1. Eq. (2) approximation In red simple piece-wise approximation, in
dashed blue a more finer approximation.

By using Markov inequality (i.e., the fact that if X is a
nonnegative random variable and a > 0, it holds that P[X ≥
a] ≤ E[X]

a ), we can write:

E[
∑

m∈M Y m
i ]

Wi − rzi
≥ P

[ ∑
m∈M

Y m
i ≥ Wi − rzi

]
≥ αi, i ∈ I.

(16)

Hence, since

E

[ ∑
m∈M

Y m
i

]
=
∑

m∈M
E[Y m

i ] =
∑

m∈M
xm
i ,

Eq. (16) leads to the following constraint:∑
m∈M

xm
i ≥ αi(Wi − rzi), i ∈ I. (17)

Eq. (17) is enforcing that the expected workload form the
candidates must be greater than the αi percent of the people
needed. Moreover, by considering the bound provided by Eq.
(17), we are reducing the feasible set, thus the condition in
(15) will be satisfied for greater value of αi.

Then, the resulting approximation of the Social Engagement
Optimization Problem (SEOPap) is the following model:

min
∑
i∈I

∑
m∈M

Qm
i xm

i +
∑
i∈I

cizi (18)

subject to

xm
i ≤ Qm

i

Q̄m
i

, i ∈ I,m ∈ M (19)

∑
m∈M

xm
i ≥ αi(Wi − rzi), i ∈ I (20)

∑
i∈I

zi ≤ B (21)

zi ∈ N, i ∈ I,
Qm

i ∈ R+, xm
i ∈ [0, 1], i ∈ I,m ∈ M.

(22)

SEOPap is a mixed integer quadratic problem that can be
solved in an exact way by using off the shelf solvers such as
GUROBI.

VI. EXPERIMENTAL SETTING

In this section, we present some computational experiment
considering SEOPap. Since space limitations preclude the
description of a full-fledged experimental design, we prefer
to give some glimpse in order to get a feeling for the problem
and the impact of its features.

A. Data generation

Social engagement is a relatively new topic of research
and very few data related to instances generation is available.
Moreover, different applications are characterized by different
magnitude of the parameters describing the instances. Since
crowd-shipping and oIoT are the domains of application
characterized by more data available, we start by some avail-
able data for these two settings to define general benchmark
instances.

In crowd-shipping applications, the number of tasks |I| is
generally considered between 5 and 20 and Wi = 1,∀i ∈
I, since each task is a single delivery [2]. Instead, in oIoT
applications, it is reasonable to consider much greater number
for |I| and Wi. Within a use case related to the collection
of data from smart waste collection sensors [6], the authors
consider |I| = 100, with Wi = 10,∀i ∈ I. We, therefore, will
consider |I| = {5, 10, 20, 50, 100}.

The number of candidates is the most difficult parameter
to tune since it may be arbitrarily large: we can assume
it to be equal to the number of people that has agreed to
receive information related to social engagement possibilities.
Nevertheless, we suppose that to be |M| = 4|I| because the
goal of the paper is to present a model and its properties rather
then solution methods able to solve big instances.

Concerning the parameters, we set wi = W ∗ (0.8+0.4U),
where W is proportional to the hourly wage, and U is a
uniform random variable between [0, 1]. We set W = 7 e
(being 14 e the average hourly wage for a non skilled worker)
[17]. By making this assumption we are the implicit assuming
that the time unit for the work effort will be a half an hour. In
the crowd-shipping application this means that we assume that
one employee will take half an hour to bring r = 1 parcels
and to make deliveries, while in the oIoT we consider that to
be the time for going in one area and to collect the data from
r = 10 sensors. Given a number of task r that each employee
can do, we consider the maximum number of employee to be
B = 20/r in the crowd-ship application and B = 20/r in the
oIoT one. With this choice, we assume that the instances have
no feasibility problems being the employee enough to perform
all the tasks.

The required probability for the task i to be performed is αi.
In general, we expect that to be different for all the tasks. For
example, in crowd-shipping applications, an higher probability
would be set for more important customers while in the oIoT
application higher probability must be associated with sensors
which information is more valuable. Since setting the αi would
be totally arbitrarily, we suppose that to be equal for all the
tasks, i.e., α1 = α2 = · · · = α|I| := α. Since the application
is not safety critical and it is always possible to perform all



the task with the employee, the values of α are considered in
the interval [0.6, 0.9].

Finally, ∆m
i is the willingness to accept, i.e.,the minimum

monetary quantity that a person is willing to accept to sell a
good or service, or to bear a negative externality. In our case
it is the minimum amount of money for which a candidate is
willing to accept to make a task. While no study are available
in the oIoT framework, in the crowd-shipping applications this
quantity has been shown to depend by the size of the parcel,
the sex of the person and by the time of the day [18], [19],
[20]. Since modelling all these aspects require ad-hoc work,
we postpone this topic in future study and we consider ∆m

i

to be a simple random variable. Since ∆m
i can be assumed

to be an unobserved utility, we consider it to be distributed
according to a Gumbel (or Extreme Value distribution type
I) [21]. The cdf of this distribution is: F (s) = e−e−s

and
by twice differentiating it is possible to observe that it is a
concave function, thus leading the approximation proposed in
Section V to converge to the exact cdf. Another hypothesis
done in utility theory is that unobserved utility are normally
distributed, we left this assumption for future work since it
does not have the same concave property of the Gumbel cdf.
For calibrating the distribution, we consider the average reward
for crowshipping operations. In particular, in [22] it is reported
that reward are usually in the interval between 5-7 dollars
equivalent to 4 to 6 e. Thus, we fix the average of the Gumbel
to be equal to 5 e, with a standard deviation of 1 e. By using
this distribution we then compute Q̄m

i to be Q̄m
i = F−1

∆m
i
(0.99).

VII. RESULTS AND ANALYSES

In this section we report the computational experiments.
All the experiments were performed on a Intel(R) Core(TM)
i7-5500U CPU@2.40GHz computer with 16GB of RAM and
running Ubuntu v20.04. The exact solver used is Gurobi v9.1.1
via its Python3 APIs.

A. Computational results

In this section we study the computational time with respect
to the dimension of the problem of SEOPap. In particular,
versus the growth of |I| and |M|, we evaluate:

• the CPU time (sec).
• the time-to-best (sec): it is the number of seconds from

the start of the execution of Gurobi to the time in which it
founds the best solution of the run. This is an interesting
parameter since often exact solvers find really fast the
optimal solution, then they spend a lot of time for proving
optimality. Thus, by observing this parameter is possible
to better understand the performance of the exact solver.

• the MIP gap (%): it is computed as the percentage
difference between the lower and upper objective bound.
In particular, we consider the least gap value that Gurobi
has to reach before stopping its execution.

The average and standard deviation on 10 instances are shown
in Table I. In all the runs we set the solver time limit to 1 hour.
We chose this threshold because the decision-maker may, in

principle run the model several time a day and allowing for
longer computational times will deepen its usability.

As the reader can notice, the instances with |I| = 5, and
|M| = 20 are solved almost instantaneously with 0 gap. The
time-to-best is equal to the CPU time since the difference are
below the hundredths of a second.

For instances with |I| = 10, |M| = 40, and |I| =
20, |M| = 80, the computational time increases, but the solver
is still able to find the optimal solution inside the time limit.
For the instances with |I| = 10, |M| = 40 the time to best
is near one half of the total computational time but solutions
with gap below the 5% are found by the solver already in
the first minutes of the run. Instead, for the instance with
|I| = 20, |M| = 80, the time-to-best is close to the whole
computation time and no solution with gap below the 5% is
found in the first minute of the run. For instance of greater
dimensions the exact solver is not able to find the optimal
solution in the given time limit, for this reason the CPU
time is equal to 3600 seconds with a standard deviation of 0.
Nevertheless, for instances with |I| = 50, and |M| = 200,
several times the final gaps are below the 10%, while for
instances with |I| = 100, and |M| = 400, the problem is
not able to find a good bound in the time limit, thus the 100
MIP gap with 0 standard deviation.

These results enable us to claim that SEOPap can be used
in the real setting for crowd-shipping applications due to the
low number of delivery and people considered while for the
oIoT setting heuristic solution method are required.

B. Approximation analysis

In Section V we propose an approximation of SEOP . In
this section we analyse the goodness of the approximation
by means of some computational experiment. Since ∆m

i is
distributed according to a Gumbel distribution with con-
cave cdf, the approximation proposed converges to the exact
function and several techniques for developing good piece-
wise approximation are available, e.g. the Concave Adaptive
Value Estimation [23]. Thus, we are interested in how much
conservative is the Markov inequality with respect to Eq.
(5). In order to quantify this difference we compute the
optimal solution of SEOPap and we use it to compute
α̂ := P[

∑
m∈M Y m

i + rzi ≥ Wi]. It is possible to easily
compute this quantity by noting that the Y m

i are independent
with respect to the index m since the knowledge about can-
didate m performing a task does not provide any information
related to the execution of the same task by other candidate.
Thus,

∑
m Y m

i is a sum of independent random variable
distributed according to Bernoulli distribution of parameter
xm
i . Central Limit Theorems for non identically distributed

random variables are available and, in particular, by applying
the Lyapunov Central Limit Theorem (see [24]) it is possible
to prove that for large values of |M| (in practice |M| ≥ 30),



TABLE I
AVERAGE AND STANDARD DEVIATIONS OF THE CPU TIME, TIME TO BEST, AND MIP GAP FOR DIFFERENT VALUES OF I , AND M.

Instance CPU time(sec) time-to-best (sec) MIP gap (%)
|I| |M| Avg Std Dev Avg Std Dev Avg Std Dev
5 20 0.09 0.01 0.09 0.01 0 0

10 40 1569.56 175.83 614.31 235.43 0 0
20 80 2780.84 573.26 2634.94 897.98 0 0
50 200 3600.00 0.00 1054.31 562.25 56 47
100 400 3600.00 0.00 1679.57 720.77 100 0

it holds that:

∑
m∈M

Y m
i ∼ N

( ∑
m∈M

xm
i ,
∑

m∈M
xm
i (1− xm

i )

)
, i ∈ I.

(23)
By using (23), we can compute α by solving:

αi = 1− Φ

(
Wi − rzi −

∑
m∈M xm

i√∑
m∈M xm

i (1− xm
i )

)
, i ∈ I, (24)

where Φ is the cdf of a standard normal distribution. We
report the value of the α ∈ [0.5, 1] in SEOPap versus
the α̂ computed with Eq. (24) in Figure 2. All the results
are averaged over 10 runs and the standard deviation of the
observation is represented as an uncertain area. We compute
the results for |I| = 10 and |M| = 40 since we are able
to get the optimal solution in a reasonable amount of time.
Moreover, with |M| = 40 there are enough candidates to let
us apply results in Eqs. (23)–(24).
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Fig. 2. Values of α set in the model vs real value of α.

As we expected, the curve is above the line α̂ = α since
by using the Markov inequality we are considering an upper
bound on the probability. Nevertheless, the results are close
to the exact value being on average 10% higher than the α
set in the model. Thus, in the real field the decision-maker
may lower by the 10% the values of the αs and get a solution
compliant with the wanted probability of execution.

In conclusion, it is worth noting that using the result of Eq.
(23) for Eq. (5) lead to the following equation

Wi − rzi −
∑

m∈M
xm
i ≥ z1−α

√ ∑
m∈M

xm
i (1− xm

i ), i ∈ I

(25)

where z1−α is the 1− α standard normal quantile. Neverthe-
less, due to the negative square term on the right hand side of
Eq. (25), it is not a second order cone constraint, preventing
its usage to simplify SEOP .

C. Sensitivity analysis and managerial insights

Since for values of |I| = 10 and |M| = 40, the optimal
solution can be computed in a reasonable amount of time,
we study how the solution characteristics change in different
settings. In particular, versus different values of α in the range
[0.5, 1], we will evaluate:

• the expected percentage costs for the employees’ services,
calculated as

ρE =

∑
i∈I cizi∑

i∈I
∑

m∈M Qm
i xm

i +
∑

i∈I cizi
;

• the percentage of services performed by employee, cal-
culated as

ωE = r

∑
i∈I zi∑
i∈I Wi

.

The average results on 10 instances for ρE and ωE are shown
in Figure 3. Note that we do not show values of α lower than
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Fig. 3. Values of ρE and ωE for different values of α.



0.5 since for those values the solution uses only candidates.
As α increases, the solutions use more the employee and

less the candidates. It is interesting to notice that even for
α = 1, a small percentage of the candidates it is still selected.
By analyzing the solution more in detail it is possible to see
that the Qm

i are set to several small values. Even if these values
lead to small probability of acceptance xm

i their summation
satisfy constraint (20). This is an approximation error gener-
ated by the usage of the Markov Inequality. Nevertheless, it is
not really important since the domain of usage of the model
will consider lower values of α.

VIII. CONCLUSIONS AND FUTURE WORKS

In this study, we proposed a new probabilistic model for
social engagement-based services optimization encompassing
the willingness to accept of the candidate involved in the
business model. We prove, by means of computational exper-
iment that, despite the difficult formulation, the model can be
approximated into a nice tractable form able to provide timely
solution for crowd-shipping applications.

Being the social engagement a very seminal topic within
the optimization field, several improvement can be sketched:

• first, a full-fledged experimental design to explore all
the solution characteristics is needed. Some questions
to answer are related to the performance of the method
in the case in which non-concave distributions for the
willingness to accept are considered or how the solutions
of the model are related to the number of breakpoints
used by the piece-wise linear cumulative distribution
approximation of the willingness to accept.

• second, the problem paves the way to be faced by means
of other techniques, such as dynamic programming, or
other paradigms to treat the uncertainty, such as stochastic
programming or robust optimization. In particular, we
believe that another promising paradigm could be the
distributionally robust optimization, since it relaxes the
assumption of knowing the real characteristics of the
willingness to accept distribution.

• finally, we highlight the need for ad-hoc methodologies
in order to get solutions for oIoT applications (i.e., those
having the larger number of tasks and candidates) in
a reasonable time. This may be achieved in two ways:
by introducing new approximation methodologies, or by
developing heuristics for the proposed mixed integer non
linear programming model.

We expect to cover some of these aspects in future studies.
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