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ABSTRACT Accurate flood delineation is crucial in many disaster management tasks, such as risk map
production and update, impact estimation, claim verification, or planning of countermeasures for disaster risk
reduction. Open remote sensing resources such as the data provided by the Copernicus ecosystem enable to
carry out this activity, which benefits from frequent revisit times on a global scale. In the last decades, satellite
imagery has been successfully applied to flood delineation problems, especially considering Synthetic
Aperture Radar (SAR) signals. However, current remotemapping services rely on time-consumingmanual or
semi-automated approaches, requiring the intervention of domain experts. The implementation of accurate
and scalable automated pipelines is hindered by the scarcity of large-scale annotated datasets. To address
these issues, we propose MMFlood, a multimodal remote sensing dataset purposely designed for flood
delineation. The dataset contains 1,748 Sentinel-1 acquisitions, comprising 95 flood events distributed
across 42 countries. Along with satellite imagery, the dataset includes the Digital Elevation Model (DEM),
hydrography maps, and flood delineation maps provided by Copernicus EMS, which is considered as ground
truth. To provide baseline performances on the MMFlood test set, we conduct a number of experiments of
the flood delineation task using state-of-art deep learning models, and we evaluate the performance gains
of entropy-based sampling and multi-encoder architectures, which are respectively used to tackle two of
the main challenges posed by MMFlood, namely the class unbalance and the multimodal setting. Lastly,
we provide a future outlook on how to further improve the performance of the flood delineation task. Dataset
and code can be found at https://github.com/edornd/mmflood.
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INDEX TERMS Computer vision, deep learning, image processing, machine learning, semantic segmenta-
tion, remote sensing, natural disaster dataset.

I. INTRODUCTION21

One of the most impacting consequences of climate change22

is the intensification of the water cycle, a phenomenon that23

in some regions is causing more intense rainfall, increas-24

ing the risk of severe flood events. The most recent reports25

estimate that, by the end of this century, intense precipita-26

tion events that would typically occur two times per cen-27

tury would occur twice as often [1]. At the same time,28

coastal areas are expected to see a constant sea-level rise29

The associate editor coordinating the review of this manuscript and

approving it for publication was Shovan Barma .

throughout the century, contributing to more frequent and 30

severe coastal flooding in low-lying areas [1]. Floods are 31

the most significant disaster type in terms of affected peo- 32

ple, producing a wide range of health impacts with short, 33

medium, and long terms effects [2], [3]. Moreover, floods 34

cause a significant amount of economic losses. For example, 35

in Italy, it is estimated that the damages caused by floods 36

events will amount to 654 million euros per year in the 37

interval between 2014 and 2100 [4]. For countries in Central 38

Europe, a 1-in-20-year flood (probability of 5%) could lead 39

to losses within the range of 2.2-10.7% of the government 40

revenues [5]. 41
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FIGURE 1. Samples from the MMFlood dataset. From left to right, SAR bands (VV and VH polarizations), hydrography, elevation model and binary label.

Information becomes a critical resource in case of flood42

events: providing geographical extent, severity, and socioe-43

conomic impacts of a natural hazard using near real-time44

Earth Observations (EO) can improve the assessment of the45

affected areas more quickly and efficiently [6]. EO-based46

imagery, either derived from aerial or satellite acquisitions,47

is becoming crucial for the detection and the monitoring48

of natural hazards, as well as to support activities related49

to the restoration and adaptation phase. In recent years, the50

increased accessibility of remote sensing services has allowed51

for new and improved applications, from urban develop-52

ment [7] to agricultural [8], [9], and emergency scenar-53

ios [10], [11]. Considering floods, aerial or remote sensing54

images have been extensively and successfully employed in55

the last decade, with a focus on SAR signals. Despite the56

typically lower image quality compared to optical or multi-57

spectral variants, SAR technology has several advantages.58

First, it is not sensitive to light because the acquisition is based59

on the backscatter coefficient, thus allowing the provision of60

actionable data also at night. Second, the SAR signal is less61

affected by atmosphere or clouds, making it possible to map62

the underlying soil in different weather conditions. Last, its63

inherent sensitivity to the physical and dielectric properties64

of the traversedmaterials make SAR imagery extremely valu-65

able for water and soil moisture analysis [12].66

However, the vast majority of remote sensing applications67

aimed at mapping flood events are typically carried out68

through manual or semi-automated approaches [13], [14].69

The challenge of this task mainly resides in the complex and70

time-consuming activity carried out by domain experts that 71

manually inspect and annotate the available images along 72

different emergency management phases and often in several 73

iterations [13]. In recent years, this process has been pro- 74

gressively improved. First, using standard image processing, 75

with techniques such as spectral indices [14] or threshold- 76

ing [15]. Then, with fully automated supervised machine 77

learning approaches, where the most effective solutions are 78

provided by deep convolutional neural networks aimed at 79

binary segmentation, i.e., the pixel-wise classification of the 80

image in flooded or not flooded areas [10]. Nonetheless, 81

a major setback of supervised machine (and deep) learning 82

solutions remains the strong reliance on large amounts of 83

annotated data. While this issue is being gradually mitigated 84

in the context of optical data [8], [9], a low number of 85

datasets are including SAR signals, even less targeting flood 86

delineation. Moreover, the scope of such data is often limited 87

to specific geographical regions [16], or they include large 88

portions of weakly annotated data [17] that makes it harder 89

to realise highly accurate supervised models. 90

In this paper, we propose MMFlood, a novel remote sens- 91

ing dataset derived from Sentinel-1, with the aim of pro- 92

viding a complete and well-rounded set of data specifically 93

designed for the delineation of flooded areas. While build- 94

ing MMFlood, we considered three key aspects: worldwide 95

distribution, the availability of manual annotations and mul- 96

tiple data sources. To obtain the labelled data, we exploit 97

the Copernicus Emergency Management System (EMS) ser- 98

vice, [18], cross-referencing hundreds of manually produced 99
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flood delineation maps with the raw SAR data obtained from100

Sentinel-1. In the time span ranging from 2014 to 2021,101

we obtain 1,748 SAR acquisitions and the corresponding102

pixel-level annotations from 95 flood events distributed in103

42 different countries around the world. These acquisitions104

translate into a total of 8,522 images using a tiling dimension105

of 512 × 512 pixels, or 30,855 at 256 × 256, which is106

comparable or superior to similar existing datasets [16], [17]107

(see Sec. V-A). Given the challenging task of delineating the108

flooded areas from a single data source, we add the Digital109

Elevation Model (DEM) sourced from MapZen [19]. In fact,110

DEM has been shown to improve the accuracy of models111

in discriminating the area of interest from permanent water112

bodies [20], [21]. We also include the hydrography map,113

derived fromOpenStreetMap (OSM) [22], which can provide114

additional information about the location of large rivers and115

water basins in the area. Both the DEM and the hydrography116

feature the same spatial resolution and the same coverage of117

the corresponding Sentinel-1 data. A visual sample of the118

dataset is presented in Fig. 1. In summary, the contributions119

of this paper can be broken down as follows:120

• We present MMFlood, a multimodal dataset created121

specifically for the task of flood delineation, describing122

the construction process and its features in comparison123

to the most known remote sensing datasets;124

• We provide a benchmark evaluation onMMFlood using125

state-of-the-art deep learning segmentation algorithms126

to provide a solid performance baseline for future works;127

• We explore the performance improvements of entropy-128

based sampling and multi-encoder architectures to129

address the class unbalance problem, which is inherent130

to this task because floods typically cover a limited131

portion of land, and the multimodal setting enabled by132

the availability of multiple data sources, respectively.133

The remainder of this document is organised as follows.134

Section II introduces related works, focusing on existing135

remote sensing datasets related to SAR data and natural disas-136

ters, as well as on existing techniques in computer vision and137

machine learning for binary segmentation tasks. Section III138

introduces the MMFlood dataset, describing its construction139

and validation process, while Section IV delineates the exper-140

imental setup, together with the preprocessing steps and the141

methodology employed. Section V details and discusses the142

results obtained from our experiments. Finally, Section VI143

draws the final conclusions, highlighting possible directions144

in view of future works.145

II. RELATED WORK146

A. DATASETS147

Aerial and remote sensing datasets are still relatively lim-148

ited with respect to the number of available resources and149

their extension. If we consider the largest and most pop-150

ular datasets in the EO field, we find that they are typi-151

cally dedicated to land cover classification, or its derivative152

tasks. Among them, it is worth mentioning by popularity153

the Vaihingen and the Potsdam datasets [23]. However, they154

are both limited to acquisitions over a single city, count- 155

ing few Very-High Resolution (VHR) imagery in multiple 156

bands, as detailed in Table 1. Larger datasets are often 157

aimed towards general-purpose tasks like BigEarthNet [24] 158

or DeepGlobe [26], dedicated to land cover, or derived from 159

aerial acquisitions such as Agriculture-Vision [9]. The Deep- 160

Globe Land Cover challenge encompasses different geo- 161

graphical areas and contains thousands of images, paired 162

with pixel-level semantic annotations for 7 categories, from 163

urban to agricultural areas. However, the images only cover 164

the visible spectrum and they do not include location data, 165

hence limiting its use in other contexts. BigEarthNet con- 166

sists of 590,326 Sentinel-2 image patches annotated with 167

multiple land-cover classes, considering 10 different coun- 168

tries. Given the classification task, this dataset only contains 169

coarse labels, indicative of possible elements present in the 170

image, from vegetation to water, from agriculture to urban 171

areas. Lastly, Agriculture-Vision represents one of the first, 172

publicly available, large-scale aerial dataset for agricultural 173

land cover, providing RGB and Near-Infrared (NIR) bands 174

andwith different agricultural patternsmanually annotated by 175

experts. It contains 94,986 images at resolutions varying from 176

10 to 20 m/pixel, sampled from American farmlands. 177

Focusing on disaster management and flood delineation, 178

the amount of open datasets available is further reduced, 179

typically only including images in the visible spectrum, thus 180

providing coarser annotations. This is, for instance, the case 181

of xBD [27], a large-scale dataset providing 9,168 annotated 182

images, comprising 5 disaster types, including floods, wild- 183

fires and earthquakes. A similar example specific for flood 184

segmentation is FloodNet [28], an aerial dataset comprising 185

more than two thousands VHR drone images acquired after 186

hurricane Harvey and annotated with semantic categories 187

including flooded areas. On top of the limitation represented 188

by the sole availability of optical imagery, we also have the 189

lack of geographical diversity. Among the possible satellite 190

instruments available to overcome this limitation, the most 191

common for the flood mapping task is in fact the SAR. 192

The advantage in this case is not being disrupted by cloud 193

cover (extremely common during flood events) or lack of 194

illumination. A major obstacle for machine learning anal- 195

ysis for flood mapping is the scarce availability of SAR 196

datasets, together with the lack of annotations and robust 197

ground truths. To this day, among the data source avail- 198

able for supervised training methods, it is worth mention- 199

ing SEN12-FLOOD [29], a co-registered optical and SAR 200

images time series for the detection of flood events, built 201

from 336 time series containing Sentinel-1 and Sentinel-2 202

images of areas hit by major flooding event during 2019, 203

including east Africa, south-west Africa, Middle-East, and 204

Australia. An improvement on top of this dataset is provided 205

by Sen1floods11 [17], a set of images based on Sentinel-1 and 206

Sentinel-2 of flooded areas which are composed of both man- 207

ual and automated annotations, including in different propor- 208

tions permanent water masks, flood water masks, and raw 209

Sentinel imagery. Sen1floods11 consists of 4,831 tiles with 210
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TABLE 1. Brief summary and comparison between MMFlood and other aerial datasets. S1 and S2 refer to Sentinel-1 and Sentinel-2 respectively.
Modalities include visible spectrum (RGB), Digital Surface Maps (DSM), Digital Elevation Maps (DEM), all the 12 bands of Sentinel-2, SAR imagery with VV
and VH polarizations (VV-VH), and hydrography (Hd). Tasks refer instead to classification (C), segmentation (S), object detection (OD), and visual question
answering (VQA).

worldwide coverage, comprising 11 different floods events.211

Among the total amount of images, 446 are hand-labeled212

images of surface water from flood events, 814 are images213

of publicly available permanent water data labels from Land-214

sat and the remaining 4,385 images are of surface water215

classified from Sentinel-2 images from flood events. Given216

the delineation carried out through Sentinel-2 imagery, many217

annotations contain several missing parts due to high cloud218

coverage which, especially during floods events, is often219

an issue for multi-spectral imagery. Another comparable220

proposal is the ETCI 2021 dataset [16], containing more221

than 30, 000 raw Sentinel-1 SAR tiles from five different222

geographical regions. Although the available datasets are223

extremely valuable, we argue that most of them lack in certain224

aspects: first, they often contain a limited number of images225

that represent an actual flood event, where the vast majority226

represents water basins. Second, they lack a DEM, which227

has been proven to be useful in assisting the models to dis-228

criminate between flooded areas and permanent water bodies,229

resulting in a more precise prediction [20], [21], [30]. Last,230

only a few proposals include hydrography map or include it231

as part of the segmentation mask, which does not help the232

model to learn how to differentiate only the flood event.233

We try to address these issues through our MMFlood234

dataset. In the first place, we exploit Copernicus EMS as235

ground truth, generating masks from high quality activations236

that provide three main features: they have been produced237

using SAR imagery, they have been manually validated by238

experts, and most importantly they only include flooded239

areas. Then, we include both DEM and hydrography, when240

available, of the same areas of interest to exploit additional241

modalities at training time.242

B. ALGORITHMS243

Thanks to the continuously increasing availability of freely244

available remote sensing data, many studies concerning the245

delineation of flooded areas from satellite acquisitions have246

been proposed over the years. The approaches proposed in247

these works cover a wide range of techniques, both in terms248

of algorithms and data sources used. Among the possible249

satellite instruments available, most of the flood mapping 250

literature revolves around the use of SAR data from different 251

satellite networks as TerraSAR-X [31], RADARSAT [32], 252

COSMO-SkyMed [33] and Sentinel-1 [34]. The latter is one 253

of the most convenient options available to this day, given 254

the worldwide coverage at medium-high spatial resolution, 255

short revisit times and the open data availability. Prelimi- 256

nary approaches in this field were mainly using masking 257

and thresholding, combined with careful data preprocessing 258

[15], [35], [36], [37] or by using Fuzzy Logic approach [38], 259

[39], [40]. With the increasing applications of Artificial 260

Intelligence and Deep Learning techniques in the Computer 261

Vision field, many supervised machine learning classifiers 262

have been devised and exploited for these tasks. In particu- 263

lar, previous works have proposed Support Vector Machines 264

[41], [42], Fully Convolutional Neural Networks [43] 265

Bayesian Networks [44], Deep Belief Networks [45], or Ran- 266

dom Forests [10]. To this day, deep learning solutions have 267

mostly focused on flood delineation on ground level [46] 268

or through drone and aerial imagery [28]. However, several 269

works have been carried out on remote sensing SAR data, 270

from image despeckling [47], [48], to the detection of large 271

objects such as ships [25], [49] and land cover classifica- 272

tion [8], [24]. SAR imagery is often enriched with informa- 273

tion derived from additional sources, including optical data 274

such as Sentinel-2 [24], or even completely different modal- 275

ities such as Automatic Identification Systems (AIS), which 276

is often exploited in vessel detection as both supplementary 277

knowledge through domain adaptation [50] or ad-hoc data 278

fusion [51]. 279

While classical machine learning techniques provide 280

robust results across different tasks, Convolutional Neural 281

Networks (CNN) remain the dominant architecture, with 282

encoder-decoder modules such as U-Net [10], or multi-scale 283

extraction such as DeepLab [52]. 284

III. THE DATASET 285

This section describes the dataset in all its components, and 286

the post-processing operations applied to the raw data, with 287
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FIGURE 2. Locations of the major floods derived from Copernicus EMS and exploited for the dataset generation. Different colours correspond to different
splits.

the aim of refining and optimising the available information288

for training purposes. The proposed dataset is composed of a289

set of 1,748 tuples, in turn comprising four separate pieces of290

information: (i) SAR satellite acquisitions, gathered from the291

Copernicus Sentinel-1 mission, (ii) pixel-wise DEM maps,292

(iii) hydrography information, and (iv) binary annotations,293

obtained through the Copernicus EMS service and delineat-294

ing flooded or not flooded areas.295

TABLE 2. Summary of activation counts, grouped by country. Major
events from a total of 42 countries are present in the final dataset.

A. FLOOD EVENTS296

The whole construction process of this dataset revolves297

around Copernicus EMS [18], which represents the main298

source of information for the identification and delineation299

of flooded areas. Copernicus is an EU program that has the 300

purpose of developing European information services based 301

on satellite EO and in-situ data. Its main objective is to 302

monitor and forecast the state of the environment on land, 303

sea and in the atmosphere, in order to support climate change 304

mitigation and adaptation strategies. 305

The information tools provided by Copernicus are avail- 306

able to authorities and first responders on a fully open 307

and free-of-charge basis. Among these, the EMS service is 308

exploited to retrieve the mapping of flooded areas, as shown 309

in Fig. 3A. The latter provides information belonging to 310

past emergency responses in relation to different types of 311

disasters, including meteorological hazards, geophysical haz- 312

ards, deliberate and accidental man-made disasters, and other 313

humanitarian disasters, as well as prevention, preparedness, 314

response and recovery activities. Specifically, the EMSRapid 315

Mapping products provide a large data collection, a provi- 316

sion of geospatial information within hours or days from the 317

disaster, including flood delineations. To carry out the data 318

gathering process, we consider the vector packageswith flood 319

delineation products, comprising sets of geographical files 320

with the purpose of assessing the extent of the flood events. 321

The EMS damage maps are thus used as ground truth for 322

training machine learning models. 323

The retrieval of the vector packages is executed program- 324

matically, extracting the vector file containing the delineation 325

of the flooded area, and considering all the activations prior to 326

July 2021 (Fig. 3B). Due to differences in package structure, 327

naming and inconsistencies in the geometry, a small portion 328

of the hundreds of available activations was discarded. For 329

this reason, after retrieval, we performed a thorough manual 330

inspection over the activations to ensure a certain degree 331

of correctness and uniformity among the obtained packages 332

and their contents. The final activation list considers a total 333
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of 95 individual flood events, including a large variety of334

data spanning seven years, starting from 2014 (i.e., dating335

the initial Sentinel-1 acquisitions), and encompassing 42 dif-336

ferent countries (see Table 2). Given the inherent focus of337

the Copernicus products on the European soil, Italy, France,338

and Spain gather the largest number of activations, while an339

equally large portion of data is scattered around the world.340

The least represented continent1 in terms of absolute numbers341

is South America, with 2 unique flood events. A complete342

list of the EMS activations selected for the dataset is listed in343

Appendix.344

For each activation, we collect all the necessary infor-345

mation to provide both precise annotations and additional346

contextual details, specifically: the event date, intended as347

estimate of the flood starting time, a general location of348

the area of interest, the bounding box of the event, and the349

polygons corresponding to the actual flood delineation. Each350

activation usually groups together several disasters, happened351

around the same region and caused by the same agent; for352

this reason the former may contain one or multiple vector353

packages, defining different flooded sub-regions within the354

same event. In order to maximise the recall for the dataset355

construction, we consider each one of them separately for356

the subsequent image acquisition and rasterization phase357

(Fig. 3C). Flood polygons have been manually validated by358

both the service provider that generated such delineations,359

and the Joint Research Centre (JRC) services to ensure a cer-360

tain degree of accuracy [13]. From these polygons, we auto-361

matically derive the minimum bounding box fully containing362

the flooded areas, necessary for the image retrieval phase.363

We also pad the areas in each direction by a variable amount364

corresponding to 10% of its maximum extent, to account365

for possible inaccuracies in the delineations and to include366

contextual information.367

B. DATA ACQUISITION368

Given the list of geolocated EMS activations with vector369

delineations, the main objective is to retrieve a set of image370

tuples, including remote sensing acquisitions, additional371

modalities and binary labels, with pixel-level alignment.372

For the creation of this dataset we focus on SAR images373

given their inherent properties particularly suitable for the374

task of flood delineation, especially considering the visibility375

in cloudy environments. Sentinel-1, the first mission in the376

Copernicus Programme conducted by the European Space377

Agency (ESA) in 2014, represents one of the best options in378

this field, given the worldwide coverage, the relatively short379

revisit time, and its open and free availability. Its constellation380

comprises two twin satellites with polar orbit, Sentinel-1A381

and Sentinel-1B, which share the same orbital plane. The382

radar acquisition is carried independently through a C-band383

SAR instrument, thus providing a variable revisit time that384

differs according to the latitude, estimated as 3 days at the385

equator, while even less than 1 day at the poles. Given its386

1https://en.wikipedia.org/wiki/Continent

purpose, we focus the acquisition on Level-1 Interferometric 387

Wide (IW) Ground Range Detected (GRD) products, which 388

provide only the signal amplitude without its phase, but 389

can maintain an approximately square spatial resolution and 390

square pixel spacing without further resampling, and display 391

reduced speckle due to the multi-look processing. In order to 392

facilitate the retrieval of the images only in desired areas and 393

periods, we exploit the Sentinel-Hub platform,2 a third-party 394

service providing complex filtering and compositing func- 395

tionality with direct access to several open remote sensing 396

sources, such as Sentinel or Landsat. For each bounding box 397

collected in the previous step, we retrieve the correspond- 398

ing raw SAR signal with two channel variants, namely VV 399

(Vertical transmit and Vertical receive) and VH (Vertical 400

transmit and Horizontal receive), obtaining every image in 401

a window with a maximum of 4 days from the day of the 402

event to minimise the discrepancies between images and 403

flood delineations (Fig. 3D). Since each area may not be fully 404

covered by a single Sentinel-1 tile, we exploit the mosaicking 405

features of Sentinel-Hub to automatically merge neighbour- 406

ing acquisitions. In the rare event where such adjacent tiles 407

cannot be found, the pixels missing in the SAR acquisition 408

will also be masked out in the corresponding ground truth. 409

All the images are provided as orthorectified, georefer- 410

enced TIFF (GeoTIFF) files, with a spatial resolution of 411

20m/pixel and 32-bit floating point precision. 412

In addition to the SAR imagery, we collect the DEM of the 413

same areas of interest (Fig. 3E) based on Mapzen’s terrain 414

tiles, a static collection mainly based on the Shuttle Radar 415

Topography Mission (SRTM30) [53]. Its main purpose is to 416

provide additional context to the flood prediction process, 417

by suggesting which areas are more likely to be flooded based 418

on elevation. The provided data is inherently static, therefore 419

it does not take into account small variations of terrain due 420

to side natural events (e.g. landslides), which are common 421

phenomena during heavy rains. On the other hand, static data 422

allows for a much wider coverage and a rarer presence of 423

noise in the retrieved images. While the original resolution 424

of the available DEM varies from 5 to 30m/pixel, we provide 425

a resampled version at the same 20m/pixel resolution of the 426

SAR image, as a separate single-band GeoTIFF with 32-bit 427

floating point precision. 428

With a similar process, we further expand the available 429

information by including the hydrography map of the areas 430

of interest. Given the worldwide scope of the retrieved EMS 431

activations, we leverage on OSM for this task. Exploiting the 432

provided Overpass API, we extract polygons for every water 433

layer available in every region inside the image bounds, when 434

available.With the aim of maintaining a pixel-wise alignment 435

among tuples, we rasterise each set of hydrography vectors at 436

20m/pixel tomaintain same resolution of previousmodalities. 437

While not every area provided high-quality polygons of the 438

water basins, more than half of the available SAR acquisitions 439

is accompanied by an hydrography raster. 440

2https://www.sentinel-hub.com/
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FIGURE 3. Processing steps taken to generate the dataset from Copernicus EMS activations: retrieval and conversion to raster images (A-C), acquisition
of images and additional modalities (D-E), and manual inspection and filtering (F).

After the image retrieval phases, a thorough manual filter-441

ing is carried out to further improve the quality of the final442

product (Fig. 3F): among every Sentinel-1 image retrieved443

within the 4-day period, starting from the event date of each444

activation, only the one that was visibly matching the flood445

mask is maintained, discarding all the others. Furthermore,446

given the possible inconsistencies among different geograph-447

ical regions, DEM rasters are also manually verified, filtering448

out all those tuples with invalid elevation map. Concern-449

ing the hydrography, the availability is much sparser, either450

because of missing data or absence of water basins in the451

requested area. We still opted to keep every sample with-452

out corresponding hydrography, both for future studies and453

as optional post-processing step to further subtract perma-454

nent water areas from the final prediction of the models,455

if required.456

TABLE 3. MMFlood data specification, including format and bands.

The released dataset is specified in Table 3: it is grouped457

in 1,748 elements containing SAR, DEM, and mask images,458

out of which 1,012 also include the correspondent hydrog-459

raphy images (i.e., 57.9%). Each group contains additional460

metadata describing the activation code, the date of the event,461

and the country in which the event has happened. Moreover,462

SAR data are also annotated with the acquisition date of the463

satellite signal itself, which may differ from the actual event464

date. On average, the acquisition happens 1 day and 21 hours465

later than the reported event date. Further technical details466

about the metadata are available in the main repository.3467

Focusing on the semantic segmentation task, we keep the468

original image size for each area of interest, while making469

sure that the minimum input dimensions of 512 × 512 are470

kept across the whole set. The smallest image size is 531 ×471

524 pixels, while the largest is 1, 944× 1, 944 pixels.472

3https://github.com/edornd/mmflood

For training and benchmark purposes, the set has also 473

been split into images for training, validation, and testing. 474

To ensure a robust subdivision, data has been randomly split 475

based on the EMS activation with geographical awareness, 476

meaning that each set has a proportionally equal number 477

of examples for different locations around the globe, thus 478

preventing biases due to specific land types or geographical 479

areas. Specifically, the three splits, whose location is visible 480

in Fig. 2, comprise 54 activations for the training set, 34 for 481

the test set, and 7 for the validation set. 482

FIGURE 4. Cumulative distribution function of the flooded areas ratios
over the full MMFlood dataset.

C. DATASET CHALLENGES 483

Despite the relatively simple downstream task of binary 484

segmentation, the dataset provides several challenges that 485

need to be addressed for an effective training. First, areas 486

affected by floods usually represent a small portion of the 487

segmentation mask, because of the inherent unbalance of 488

the actual flooded area within the image extremely skewed 489

towards background pixels, especially when the ordinary 490

water basins are excluded in the final mask. As shown by 491

the cumulative distribution function in Fig. 4, 50% of the 492

images have less than 1.4% of pixels marked as flood, and 493

95% of the dataset consists of images that contain less 494

than 11% of flooded area. To tackle this recurring issue in 495

remote sensing scenarios, we test the effectiveness of differ- 496

ent solutions: we first adopt a simple, albeit effective, filtering 497

and down-sampling approach based on flood-background 498

ratio with different thresholds, comparing it with a dynamic, 499

entropy-based weighted sampling, to cope with lack of 500

information in labels with mostly background or flood 501

pixels. 502
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A second challenge is given by the SAR data itself,503

as radar signals are inherently noisy, therefore a proper504

pre-processing pipeline should typically involve radiomet-505

ric correction based on elevation maps and speckle noise506

reduction, to obtain an optimal image for further downstream507

tasks [13]. We purposely avoid these manuals steps for two508

main reasons: first, we aim to provide a dataset with clean509

and coherent data, while at the same time maximising its510

reusability in other contexts, and refraining from biasing the511

final product towards a specific set of applications. Second,512

we expect deep learning algorithms to extract similar fea-513

tures on their own during training, when provided with the514

necessary information. As detailed in the following sections,515

we cope with the noisy images by means of random aug-516

mentations, while testing the effectiveness of the multimodal517

setting exploiting the additional DEM data.518

Last, another challenging aspect of the proposed dataset is519

the provision of multiple modalities. Using SAR data through520

VV and VH polarisations, in combination with the elevation521

raster, introduces the problem of having input sources of522

different nature. In this paper, we test several combinations523

with and without DEM in order to assess the advantage524

brought by the additional modality, by simply expanding525

the input weights [9], or further refining the model struc-526

ture to support early and late fusion [54], to better merge527

modality-specific features. The following sections provide528

further details regarding the methodologies and training con-529

figurations adopted, together with the experimental results on530

the selected baselines and more complex scenarios.531

IV. METHODOLOGY532

We focus the evaluation of the MMFlood dataset on deep533

learning models, considering only SAR and DEM as train-534

ing modalities, as the hydrography can be exploited as535

post-processing step. The task of flood delineation can be536

described as a binary classification problem, where the objec-537

tive is to classify each pixel as flood or background. Formally,538

we can define a set of samples X , containing pairs of images539

xs and xd , respectively representing SAR and DEM inputs,540

with matching and constant dimensions H × W , that are541

associated with a set of labels y ∈ Y with the same dimen-542

sions. For each pixel i, the image label provides an annotation543

yi = {0, 1}, where 0 indicates background cells, while 1 refers544

to flooded areas. A binary segmentation training can be for-545

malised as training a model fθ with parameters θ to map from546

the image space to the label space, namely fθ : X → R|H×W |.547

In the multimodal context, we provide a model with two548

separate encoders, gs and gd , then fuse the extracted features549

through a shared decoder h, to obtain a final model f =550

h(gs(xs)⊕ gd (xd )). In the following sections we describe the551

methodology adopted to address the highlighted challenges,552

focusing on class unbalance and multiple modalities.553

A. BASELINE MODELS554

With the aim of providing benchmark results as baseline,555

we first select and test different combinations of encoders and556

decoders, to assess the effectiveness of different models in 557

this context. Among the encoders, we adopt ResNet50 [55], 558

the de-facto standard choice in many segmentation frame- 559

works, TResNet [56] a ResNet variant that aims to boost 560

accuracy and efficiency in both training and inference, 561

EfficientNet-V1 [57], a more lightweight approach that 562

scales all dimensions using a compound coefficient, and 563

DenseNet [58], where all layers are connected with matching 564

feature-map sizes to provide more semantically rich layers. 565

Among state-of-the-art decoders, we include U-Net [59], 566

a standard solution in aerial imagery initially proposed for 567

datasets in the medical field [60], which reverses the com- 568

putation back to the pixel level using a mirrored upscaling 569

pipeline. In terms of decoders based around mult-scale fea- 570

ture extraction, we include DeepLabV3+ [52], based around 571

atrous convolutions and spatial pyramid pooling, and PSP- 572

Net [61], which utilises a pyramid parsing module to exploit 573

global and local clues. 574

B. CLASS UNBALANCE 575

The unbalance between flood and background pixels repre- 576

sents the first and major challenge of this dataset. We test 577

two complementary approaches to address this, respectively 578

based on downsampling and upsampling: in the first case, 579

we simply impose a threshold on the percentage of flood 580

pixels in each tile, therefore avoiding the selection of images 581

almost completely covered with background and focusing on 582

those tiles rich of information. More formally, from the final 583

list of preprocessed tiles, as described in Sec. V, we filter 584

out images having a flood pixel ratio under a threshold τ , 585

computed as: 586

τ =

∑
i[yi = 1]∑
i[yi]

(1) 587

where yi represents the label associated with a generic pixel i. 588

Simply put, the ratio of pixels marked as flood with respect 589

to the total amount of pixels in the label. 590

In the second case, we better exploit the sparsity of the 591

dataset by considering the entropy of the available labels. 592

In information theory, the latter can be interpreted as amount 593

of information, which can also translate into how much the 594

given data sample is effective in terms of content. The larger 595

the entropy, the higher information content is contained [62]. 596

This property can be exploited to provide an estimation of the 597

importance of each label with respect to the training process, 598

meaning that those annotations with higher entropy are more 599

likely to be informative for the given task. Similar to [62], 600

we exploit this property to perform a standard weighted sam- 601

pling, where however each sample is weighted by its content 602

information computed as: 603

wj = λ

−∑
y

p(y) log2 p(y)

 , ∀j ∈ |X | (2) 604

where p(y) represents the distribution of pixels among the 605

two available classes in the label y, λ represents a modulating 606
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FIGURE 5. Multi-encoder architecture: two twin, separate encoders (blue, yellow) are merged layer-wise through Squeeze-and-Excitation blocks to
produce an equivalent multimodal layer (green). The decoder (red) is agnostic w.r.t. the multi-encoder setup.

factor 0 ≤ λ ≤ 1, and j uniquely identifies each item of the607

set of samples X .608

C. MULTIPLE MODALITIES609

A second challenge of this dataset is the inclusion of the DEM610

for training purposes. Given the matching spatial extents611

of SAR and DEM modalities, we can consider this addi-612

tional information as extra channel, to combine with the613

satellite acquisitions. As for the unbalance problem, we test614

two increasingly complex approaches, namely input channel615

expansion and multi-encoder networks, to assess the benefits616

of including this additional data as input. As baseline, we sim-617

ply provide every SAR band and the extra DEM image as618

a 3-channel image, training the network from scratch and619

letting it extract features from each modalities independently.620

For amore effective approach, we construct a custom resid-621

ual U-Net network [63], including two separate, lightweight622

twin encoders, one for each modality. Similar to [54],623

we provide both early and late fusion by means of a Squeeze-624

and-Excitation block (SaE) [64]. At each layer i, the encoders625

provide a comparable tensor with shape Hi × Wi × Ci.626

As shown in Fig. 5 (right), the SaE module merges these out-627

puts of the encoders by first concatenating them channel-wise628

to produce an output with size Hi × Wi × 2 Ci, which629

are then calibrated through a weight map, generated by the630

second branch of the module. The weights are obtained by631

first squeezing the input into a channel descriptor with Ci
η

632

channels, and subsequently expanding it back to 2Ci. This633

tensor is eventually fed to a Sigmoid activation, that scales634

each value in the range [0, 1], and multiplied by the original635

inputs. Last, the 2Ci channels are reduced to the original636

shape Hi × Wi × Ci, so that the final output becomes vir-637

tually indistinguishable from the single-encoder ones, and638

remains perfectly compatible with the decoder, regardless of639

the encoding phase. An example schema of multi-encoder640

architecture is displayed in Fig. 5 (left).641

V. EXPERIMENTS642

In this section, we provide an overview of the experimental643

tests carried out on the MMFlood dataset and their results.644

Wefirst detail the initial preprocessing steps, in order to trans-645

form the available images into an actual model input. Thenwe646

describe the preliminary benchmark tests, with the purpose 647

of finding the best performing encoder-decoder combination 648

for subsequent tests. Last, we discuss the inclusion of the 649

additional components described in Sec. IV, namely Entropy 650

Weighted Sampling (EWS), the inclusion of DEM as extra 651

channel, and the multi-encoder setup, highlighting strengths 652

and weaknesses of the proposed approaches. 653

A. IMPLEMENTATION DETAILS 654

Given the purposely generic dataset, we first process the 655

available images to obtain a set of data more suitable for 656

training. Considering SAR imagery, we compute a base-10 657

logarithm over the acquisitions to obtain decibel values and 658

reduce the effects of high backscatter peaks. Concerning the 659

DEM image, since the values are expressing the raw altitude 660

in meters, we clip the available values within reasonable 661

values in the range [−100, 6, 000] to reduce noise. In every 662

experiment, we further normalise each input by first comput- 663

ing mean and standard deviation for each channel. 664

Because of large images with various scales, we resort 665

to offline tiling to both speed up the training process and 666

maintain a standard setup. From each available image and 667

modality, we extract the smallest possible number of tiles 668

covering the whole surface of the original image, considering 669

a window size of 512× 512, which is a common standard in 670

most semantic segmentation applications [9], [52], as it pro- 671

vides a good compromise between pixel-wise class balance 672

and contextual information. Since the image extent is often 673

incompatible with the tile size, we dynamically overlap by the 674

minimal amount of pixels required to cover the whole image 675

without overflow, thus avoiding padding and maximising the 676

visual content of each window. Excluding the test partition, 677

the training dataset contains a total of 6,182 tiles, together 678

with 560 tiles for validation. 679

With the aim of maintaining the correct pixel count, 680

we only apply this procedure to the training and validation 681

sets, while keeping the full test images: during the test phase, 682

we apply an online tiling with fixed overlap, combining the 683

predictions into a single output with the same extents of the 684

inputs. 685

We also apply several online data augmentations to avoid 686

overfitting at training time. In case of multiple modalities, 687
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every input is first processed by a common set of trans-688

formations, namely random rotation, cropping, horizontal689

and vertical flipping, grid and elastic transforms, each with690

probability p = 0.5. Then, we apply additional pixel-level691

transformations to SAR images, dealing with its inherent692

speckle noise by introducing random Gaussian blur and ran-693

dom multiplicative noise, alternately.694

In every experiment, we train for 100 epochs and early695

stopping criterion with patience set to 30 epochs. Given696

the peculiar inputs, we do not use any pretrained weights.697

We use a batch size of 16, except for the combinations of698

UNet with ResNet50 and DenseNet121, where the batch699

was reduced to 12 images for memory constraints. More-700

over, given the stride incompatibility of the outputs provided701

by DenseNet with the DeepLabV3+ decoder, we did not702

include such variant in the baseline result. We adopt an703

AdamW optimiser with a base learning rate λ = 10−3704

and a weight decay coefficient of 0.01. We also employ a705

polynomial LR scheduler with γ = 3 and ending learning706

rate λ = 10−4.707

Considering the loss function, we perform every exper-708

iment using a focal Tversky loss [65], a generalisation of709

the soft Dice score with the addition of a focal component,710

particularly suited for imbalanced problems. The loss was711

configured with hyperparameters α = 0.6, β = 0.4 and712

γ = 2. To provide a complete overview, four metrics are713

considered: we report the mean value over all test images for714

Precision, Recall, IoU, and F1 Score (with equal weighting715

of all chips).716

All the procedures and experiments described in this paper717

were performed on a workstation equipped with an Intel Core718

Intel(R) Xeon(R) Silver 4216 CPU and 4Nvidia GTX 2080Ti719

GPUs. The framework is based on Python, exploiting the720

PyTorch library for training and testing.721

B. RESULTS722

1) BASELINES723

We first test the effectiveness of different combinations of724

encoders and decoders, to test the best combination for subse-725

quent experiments. To assess the feasibility of the task with-726

out including additional information, we train on SAR images727

only, using a flood threshold of 2% to maximise the per-728

formances (see Section V-C). Results for this set are shown729

in Table 4. We observe similar performances across most730

decoders, with the most relevant differences dictated by the731

encoder choice: ResNet variants (RN50, TResNet) display732

the best performance with 0.63 and 0.59 mIoU respectively.733

On the other hand, EfficientNet and DenseNet variants did734

not achieve optimal results for this specific task, with a max-735

imum score of 0.56 mIoU for the latter, despite the added736

complexity. This may be due to several factors, such as the737

relatively smaller amount of data when compared to natural738

images domain, where these models typically outperform the739

standard ResNet. While this performance gap may be closed740

exploiting more hardware and data resources to effectively741

train more advanced architectures, we leverage on ResNet50 742

for subsequent experiments for simplicity, as it remains a 743

competitive solution to this day [66]. 744

Considering decoders, performance differences are gener- 745

ally negligible, however, both UNet and DeepLabV3+ reach 746

comparable results, with 0.63 mIoU on average, while PSP- 747

Net remains a solid choice, despite the 1% performance loss, 748

providing the most consistent results across the experiments. 749

While we note that the performances with other decoders are 750

comparable, for simplicity we maintain the combination of 751

ResNet50 and DeepLabV3+ as model architecture for future 752

tests given the obtained results, except for the multi-modal 753

setting where we employ a TResNet-m variant for perfor- 754

mance reasons. Overall, deep learning approaches appear to 755

provide much more robust results when compared to the 756

Otsu baseline with a +0.3 increment in most cases, as also 757

confirmed by the qualitative results in Fig. 6, where the latter 758

is noticeably noisier than the counterparts. This issue could 759

be mitigated with careful processing, however we note that 760

neural networks were able to cope with the same noisy inputs 761

without additional steps. 762

TABLE 4. Baseline results on the test set, considering different
combinations of encoders and decoders, without including additional
modalities.

2) DEM AND CLASS BALANCE 763

Experiments considering different combinations of modal- 764

ities and class unbalance countermeasures are shown in 765

Table 5. We observe that the sole inclusion of the DEM 766

as extra input, without further processing or considerations, 767

is enough to improve the performance of the baseline model 768

by 1.5%, with 0.63 mIoU, maintaining the flood threshold 769

τ = 0.02. This shows the importance of including terrain 770

information in this context, where elevation and the nom- 771

inal extents of water basins is crucial for flood segmen- 772

tation. These results are confirmed and further improved 773

by including EWS, where the performance improvement is 774

more substantial, reaching 0.65 mIoU. This demonstrates 775

the importance and the effectiveness of the guided sam- 776

pling of the most informative labels during training. While 777

recall is maintained at 0.9 across most experiments, results 778

are more remarkable when considering precision, going 779

from 0.67 to 0.71 after the inclusion of DEM and EWS. 780

VOLUME 10, 2022 96783



F. Montello et al.: MMFlood: Multimodal Dataset for Flood Delineation From Satellite Imagery

TABLE 5. Results obtained from the incremental addition of our proposed solutions, starting from the single encoder (SE), single encoder with DEM as
extra channel, to the entropy-weighted sampling (EWS), and the multi-encoder model (ME) with all the additions.

FIGURE 6. Qualitative results obtained on the test set. From left to right, Otsu baseline, single encoder on SAR data only (SE), single encoder with DEM
(SE+DEM), single encoder with DEM and EWS (SE + DEM + EWS), the multi-encoder setup (ME + DEM + EWS), and the ground truth.

TABLE 6. Study on the influence of the downsampling threshold and the
effectiveness of the entropy-based sampling (EWS).

Last, we also test the multi-encoder architecture, reaching781

more than 0.66 mIoU and surpassing every other variant,782

notwithstanding the encoder change. As shown by the qual-783

itative results in Fig. 6, despite the small performance dif-784

ferences the multi-encoder setup appears more resilient to785

terrain changes, where shadows on mountain ranges or large786

permanent water basins could be erroneously classified as 787

floods (Fig. 6-D, 6-E). 788

C. SAMPLING VARIATION STUDY 789

We perform a variation study to assess the effectiveness 790

of different combinations of sampling procedures over the 791

MMFlood dataset, without including the elevation model 792

because of the focus on sampling. We test four different 793

downsampling thresholds, namely 0%meaning no downsam- 794

pling, 2% and 5% to test the effectiveness of the reduced 795

training size on the test set. We further experiment with each 796

variant with and without EWS, effectively performing a mix 797

of oversampling over informative inputs, and downsampling 798

tiles with mostly background beforehand. For every experi- 799

ment listed in Table 6, we maintain the same configurations 800
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and hyperparameters as described in Sec. V-A. Consider-801

ing the variants without sampling, results confirm that the802

optimal threshold for this context remains τ = 0.02: lower803

values undermine the performance of the model, while higher804

values slowly introduce a bias towards flooded areas with805

less precise predictions, decreasing from 0.67 to 0.63 in the806

5% setup. Including the entropy-based sampling introduces807

a strong performance boost without thresholds, improving808

over the baseline by 4.5% with 0.64 mIoU, while leaving809

the remaining variants almost unchanged. This highlights the810

effectiveness of the sampling solution, which is most likely811

constrained by the lower number of images in the threshold-812

based approaches, and works best when applied to the813

whole set.814

VI. CONCLUSION815

We introduced MMFlood, an ad-hoc dataset for flood delin-816

eation tasks, generated from 1,748 Sentinel-1 acquisitions817

based exclusively on flooded areas delineated from 95 Coper-818

nicus EMS flood events around the globe. MMFlood builds819

on top of other comparable datasets available in literature820

in terms of images and global distribution, the multiple821

modalities of the dataset, including also elevation model and822

hydrography, and the use of masks which are specific for823

the task of flood delineation, without including irrelevant824

water basins. Considering future developments, MMFlood825

could be expanded in several ways. First, new images from826

future flood events mapped by Copernicus EMS could be827

incrementally added. Second, by adding other Copernicus828

satellites such as Sentinel-2. Third, including all the available829

acquisitions within the temporal span of the flood events.830

Lastly, by considering co-registered VHR optical and SAR831

satellite networks, such as TerraSAR-X [35], as additional832

modalities. We provided an extensive benchmark applying833

state-of-the-art solutions, to evaluate the effectiveness of834

MMFlood in the context of binary segmentation, consid-835

ering both classical thresholding and recent deep learning836

approaches. Furthermore, we proposed various solutions to837

common aerial segmentation problems such as class unbal-838

ance and the exploitation of the additional modalities by839

means of a multi-encoder architecture. The inclusion of the840

elevation model provided a consistent boost in performance841

in every setup, especially in the multi-encoder setup. In future842

works, the model performances could be further improved843

investigating different multimodal architectures, as proposed844

by recent works on RGB-D [67], [68], which have a simi-845

lar problem setting. Additionally, future experiments could846

also investigate the use of weights pretrained on natural847

images, as bootstrap strategy for training. While aimed at848

completely different domains, an effective knowledge trans-849

fer from recent large-scale models such as Vision Transform-850

ers [69] may provide better results.851

APPENDIX852

COPERNICUS EMS ACTIVATIONS853

See Table 7.854

TABLE 7. Complete list of Copernicus EMS activations included and
selected for the construction of the MMFlood dataset.
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