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ABSTRACT Accurate flood delineation is crucial in many disaster management tasks, such as risk map
production and update, impact estimation, claim verification, or planning of countermeasures for disaster risk
reduction. Open remote sensing resources such as the data provided by the Copernicus ecosystem enable to
carry out this activity, which benefits from frequent revisit times on a global scale. In the last decades, satellite
imagery has been successfully applied to flood delineation problems, especially considering Synthetic
Aperture Radar (SAR) signals. However, current remote mapping services rely on time-consuming manual or
semi-automated approaches, requiring the intervention of domain experts. The implementation of accurate
and scalable automated pipelines is hindered by the scarcity of large-scale annotated datasets. To address
these issues, we propose MMFlood, a multimodal remote sensing dataset purposely designed for flood
delineation. The dataset contains 1,748 Sentinel-1 acquisitions, comprising 95 flood events distributed
across 42 countries. Along with satellite imagery, the dataset includes the Digital Elevation Model (DEM),
hydrography maps, and flood delineation maps provided by Copernicus EMS, which is considered as ground
truth. To provide baseline performances on the MMFlood test set, we conduct a number of experiments of
the flood delineation task using state-of-art deep learning models, and we evaluate the performance gains
of entropy-based sampling and multi-encoder architectures, which are respectively used to tackle two of
the main challenges posed by MMFlood, namely the class unbalance and the multimodal setting. Lastly,
we provide a future outlook on how to further improve the performance of the flood delineation task. Dataset
and code can be found at https://github.com/edornd/mmflood.

INDEX TERMS Computer vision, deep learning, image processing, machine learning, semantic segmenta-
tion, remote sensing, natural disaster dataset.

I. INTRODUCTION

One of the most impacting consequences of climate change
is the intensification of the water cycle, a phenomenon that
in some regions is causing more intense rainfall, increas-
ing the risk of severe flood events. The most recent reports
estimate that, by the end of this century, intense precipita-
tion events that would typically occur two times per cen-
tury would occur twice as often [1]. At the same time,
coastal areas are expected to see a constant sea-level rise
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throughout the century, contributing to more frequent and
severe coastal flooding in low-lying areas [1]. Floods are
the most significant disaster type in terms of affected peo-
ple, producing a wide range of health impacts with short,
medium, and long terms effects [2], [3]. Moreover, floods
cause a significant amount of economic losses. For example,
in Italy, it is estimated that the damages caused by floods
events will amount to 654 million euros per year in the
interval between 2014 and 2100 [4]. For countries in Central
Europe, a 1-in-20-year flood (probability of 5%) could lead
to losses within the range of 2.2-10.7% of the government
revenues [5].
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FIGURE 1. Samples from the MMFlood dataset. From left to right, SAR bands (VV and VH polarizations), hydrography, elevation model and binary label.

Information becomes a critical resource in case of flood
events: providing geographical extent, severity, and socioe-
conomic impacts of a natural hazard using near real-time
Earth Observations (EO) can improve the assessment of the
affected areas more quickly and efficiently [6]. EO-based
imagery, either derived from aerial or satellite acquisitions,
is becoming crucial for the detection and the monitoring
of natural hazards, as well as to support activities related
to the restoration and adaptation phase. In recent years, the
increased accessibility of remote sensing services has allowed
for new and improved applications, from urban develop-
ment [7] to agricultural [8], [9], and emergency scenar-
ios [10], [11]. Considering floods, aerial or remote sensing
images have been extensively and successfully employed in
the last decade, with a focus on SAR signals. Despite the
typically lower image quality compared to optical or multi-
spectral variants, SAR technology has several advantages.
First, it is not sensitive to light because the acquisition is based
on the backscatter coefficient, thus allowing the provision of
actionable data also at night. Second, the SAR signal is less
affected by atmosphere or clouds, making it possible to map
the underlying soil in different weather conditions. Last, its
inherent sensitivity to the physical and dielectric properties
of the traversed materials make SAR imagery extremely valu-
able for water and soil moisture analysis [12].

However, the vast majority of remote sensing applications
aimed at mapping flood events are typically carried out
through manual or semi-automated approaches [13], [14].
The challenge of this task mainly resides in the complex and
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time-consuming activity carried out by domain experts that
manually inspect and annotate the available images along
different emergency management phases and often in several
iterations [13]. In recent years, this process has been pro-
gressively improved. First, using standard image processing,
with techniques such as spectral indices [14] or threshold-
ing [15]. Then, with fully automated supervised machine
learning approaches, where the most effective solutions are
provided by deep convolutional neural networks aimed at
binary segmentation, i.e., the pixel-wise classification of the
image in flooded or not flooded areas [10]. Nonetheless,
a major setback of supervised machine (and deep) learning
solutions remains the strong reliance on large amounts of
annotated data. While this issue is being gradually mitigated
in the context of optical data [8], [9], a low number of
datasets are including SAR signals, even less targeting flood
delineation. Moreover, the scope of such data is often limited
to specific geographical regions [16], or they include large
portions of weakly annotated data [17] that makes it harder
to realise highly accurate supervised models.

In this paper, we propose MMFlood, a novel remote sens-
ing dataset derived from Sentinel-1, with the aim of pro-
viding a complete and well-rounded set of data specifically
designed for the delineation of flooded areas. While build-
ing MMFlood, we considered three key aspects: worldwide
distribution, the availability of manual annotations and mul-
tiple data sources. To obtain the labelled data, we exploit
the Copernicus Emergency Management System (EMS) ser-
vice, [18], cross-referencing hundreds of manually produced
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flood delineation maps with the raw SAR data obtained from
Sentinel-1. In the time span ranging from 2014 to 2021,
we obtain 1,748 SAR acquisitions and the corresponding
pixel-level annotations from 95 flood events distributed in
42 different countries around the world. These acquisitions
translate into a total of 8,522 images using a tiling dimension
of 512 x 512 pixels, or 30,855 at 256 x 256, which is
comparable or superior to similar existing datasets [16], [17]
(see Sec. V-A). Given the challenging task of delineating the
flooded areas from a single data source, we add the Digital
Elevation Model (DEM) sourced from MapZen [19]. In fact,
DEM has been shown to improve the accuracy of models
in discriminating the area of interest from permanent water
bodies [20], [21]. We also include the hydrography map,
derived from OpenStreetMap (OSM) [22], which can provide
additional information about the location of large rivers and
water basins in the area. Both the DEM and the hydrography
feature the same spatial resolution and the same coverage of
the corresponding Sentinel-1 data. A visual sample of the
dataset is presented in Fig. 1. In summary, the contributions
of this paper can be broken down as follows:

o« We present MMFlood, a multimodal dataset created
specifically for the task of flood delineation, describing
the construction process and its features in comparison
to the most known remote sensing datasets;

« We provide a benchmark evaluation on MMFlood using
state-of-the-art deep learning segmentation algorithms
to provide a solid performance baseline for future works;

o We explore the performance improvements of entropy-
based sampling and multi-encoder architectures to
address the class unbalance problem, which is inherent
to this task because floods typically cover a limited
portion of land, and the multimodal setting enabled by
the availability of multiple data sources, respectively.

The remainder of this document is organised as follows.

Section II introduces related works, focusing on existing
remote sensing datasets related to SAR data and natural disas-
ters, as well as on existing techniques in computer vision and
machine learning for binary segmentation tasks. Section III
introduces the MMFlood dataset, describing its construction
and validation process, while Section IV delineates the exper-
imental setup, together with the preprocessing steps and the
methodology employed. Section V details and discusses the
results obtained from our experiments. Finally, Section VI
draws the final conclusions, highlighting possible directions
in view of future works.

Il. RELATED WORK

A. DATASETS

Aerial and remote sensing datasets are still relatively lim-
ited with respect to the number of available resources and
their extension. If we consider the largest and most pop-
ular datasets in the EO field, we find that they are typi-
cally dedicated to land cover classification, or its derivative
tasks. Among them, it is worth mentioning by popularity
the Vaihingen and the Potsdam datasets [23]. However, they
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are both limited to acquisitions over a single city, count-
ing few Very-High Resolution (VHR) imagery in multiple
bands, as detailed in Table 1. Larger datasets are often
aimed towards general-purpose tasks like BigEarthNet [24]
or DeepGlobe [26], dedicated to land cover, or derived from
aerial acquisitions such as Agriculture-Vision [9]. The Deep-
Globe Land Cover challenge encompasses different geo-
graphical areas and contains thousands of images, paired
with pixel-level semantic annotations for 7 categories, from
urban to agricultural areas. However, the images only cover
the visible spectrum and they do not include location data,
hence limiting its use in other contexts. BigEarthNet con-
sists of 590,326 Sentinel-2 image patches annotated with
multiple land-cover classes, considering 10 different coun-
tries. Given the classification task, this dataset only contains
coarse labels, indicative of possible elements present in the
image, from vegetation to water, from agriculture to urban
areas. Lastly, Agriculture-Vision represents one of the first,
publicly available, large-scale aerial dataset for agricultural
land cover, providing RGB and Near-Infrared (NIR) bands
and with different agricultural patterns manually annotated by
experts. It contains 94,986 images at resolutions varying from
10 to 20 m/pixel, sampled from American farmlands.
Focusing on disaster management and flood delineation,
the amount of open datasets available is further reduced,
typically only including images in the visible spectrum, thus
providing coarser annotations. This is, for instance, the case
of xBD [27], a large-scale dataset providing 9,168 annotated
images, comprising 5 disaster types, including floods, wild-
fires and earthquakes. A similar example specific for flood
segmentation is FloodNet [28], an aerial dataset comprising
more than two thousands VHR drone images acquired after
hurricane Harvey and annotated with semantic categories
including flooded areas. On top of the limitation represented
by the sole availability of optical imagery, we also have the
lack of geographical diversity. Among the possible satellite
instruments available to overcome this limitation, the most
common for the flood mapping task is in fact the SAR.
The advantage in this case is not being disrupted by cloud
cover (extremely common during flood events) or lack of
illumination. A major obstacle for machine learning anal-
ysis for flood mapping is the scarce availability of SAR
datasets, together with the lack of annotations and robust
ground truths. To this day, among the data source avail-
able for supervised training methods, it is worth mention-
ing SEN12-FLOOD [29], a co-registered optical and SAR
images time series for the detection of flood events, built
from 336 time series containing Sentinel-1 and Sentinel-2
images of areas hit by major flooding event during 2019,
including east Africa, south-west Africa, Middle-East, and
Australia. An improvement on top of this dataset is provided
by Senlfloods11 [17], a set of images based on Sentinel-1 and
Sentinel-2 of flooded areas which are composed of both man-
ual and automated annotations, including in different propor-
tions permanent water masks, flood water masks, and raw
Sentinel imagery. Senlfloods11 consists of 4,831 tiles with
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TABLE 1. Brief summary and comparison between MMFlood and other aerial datasets. S1 and S2 refer to Sentinel-1 and Sentinel-2 respectively.
Modalities include visible spectrum (RGB), Digital Surface Maps (DSM), Digital Elevation Maps (DEM), all the 12 bands of Sentinel-2, SAR imagery with VV
and VH polarizations (VV-VH), and hydrography (Hd). Tasks refer instead to classification (C), segmentation (S), object detection (OD), and visual question

answering (VQA).

Dataset Source Modalities Geolocated  Task Images  Img. size Resolution
Vaihingen [23] Aerial RG-IR, DSM S 33 <2,500%x2,000  10cm
Potsdam [23] Aerial RGB-IR, DSM v S 38 6,000x6,000  10cm
BigEarthNet [24] S2 12 bands v C 590,326 120120  10-60m
LandCoverNet [24] S2 12 bands v C 9,000 256 %256 10-60m
Agriculture-Vision [9] | Aerial RGB-NIR X S 94,986 512x512  10-20cm
HRSID [25] S1, TerraSAR-X HH,VVHV v OD 5,604 800x 600 1-5m
DeepGlobe [26] Maxar RGB X S 1,146 2,448x2,448  50cm
xBD [27] Maxar RGB X OD 9,168 1,024%x1,024  80cm
FloodNet [28] Aerial RGB X S,C,VQA 2,343 4,500%x3,000  1.5cm
SENI12FLOOD [29] S1,S2 VV-VH (S1), 12 bands (S2) v C 336* 512x512  10-60m
senlfloods11 [17] S1, S2,JRC VV-VH (S1), 12 bands (S2), Hd. Vv S 4,831 512x512  10-60m
ETCI-2021 [16] S1, NASA VV-VH, Hd. X S 33,405 256x256  20m
MM-Flood S1, MapZen, OSM  VV-VH, DEM, Hd. v S 1,748 <2,000x2,000  20m

worldwide coverage, comprising 11 different floods events.
Among the total amount of images, 446 are hand-labeled
images of surface water from flood events, 814 are images
of publicly available permanent water data labels from Land-
sat and the remaining 4,385 images are of surface water
classified from Sentinel-2 images from flood events. Given
the delineation carried out through Sentinel-2 imagery, many
annotations contain several missing parts due to high cloud
coverage which, especially during floods events, is often
an issue for multi-spectral imagery. Another comparable
proposal is the ETCI 2021 dataset [16], containing more
than 30, 000 raw Sentinel-1 SAR tiles from five different
geographical regions. Although the available datasets are
extremely valuable, we argue that most of them lack in certain
aspects: first, they often contain a limited number of images
that represent an actual flood event, where the vast majority
represents water basins. Second, they lack a DEM, which
has been proven to be useful in assisting the models to dis-
criminate between flooded areas and permanent water bodies,
resulting in a more precise prediction [20], [21], [30]. Last,
only a few proposals include hydrography map or include it
as part of the segmentation mask, which does not help the
model to learn how to differentiate only the flood event.

We try to address these issues through our MMFlood
dataset. In the first place, we exploit Copernicus EMS as
ground truth, generating masks from high quality activations
that provide three main features: they have been produced
using SAR imagery, they have been manually validated by
experts, and most importantly they only include flooded
areas. Then, we include both DEM and hydrography, when
available, of the same areas of interest to exploit additional
modalities at training time.

B. ALGORITHMS

Thanks to the continuously increasing availability of freely
available remote sensing data, many studies concerning the
delineation of flooded areas from satellite acquisitions have
been proposed over the years. The approaches proposed in
these works cover a wide range of techniques, both in terms
of algorithms and data sources used. Among the possible
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satellite instruments available, most of the flood mapping
literature revolves around the use of SAR data from different
satellite networks as TerraSAR-X [31], RADARSAT [32],
COSMO-SkyMed [33] and Sentinel-1 [34]. The latter is one
of the most convenient options available to this day, given
the worldwide coverage at medium-high spatial resolution,
short revisit times and the open data availability. Prelimi-
nary approaches in this field were mainly using masking
and thresholding, combined with careful data preprocessing
[15], [35], [36], [37] or by using Fuzzy Logic approach [38],
[39], [40]. With the increasing applications of Artificial
Intelligence and Deep Learning techniques in the Computer
Vision field, many supervised machine learning classifiers
have been devised and exploited for these tasks. In particu-
lar, previous works have proposed Support Vector Machines
[41], [42], Fully Convolutional Neural Networks [43]
Bayesian Networks [44], Deep Belief Networks [45], or Ran-
dom Forests [10]. To this day, deep learning solutions have
mostly focused on flood delineation on ground level [46]
or through drone and aerial imagery [28]. However, several
works have been carried out on remote sensing SAR data,
from image despeckling [47], [48], to the detection of large
objects such as ships [25], [49] and land cover classifica-
tion [8], [24]. SAR imagery is often enriched with informa-
tion derived from additional sources, including optical data
such as Sentinel-2 [24], or even completely different modal-
ities such as Automatic Identification Systems (AIS), which
is often exploited in vessel detection as both supplementary
knowledge through domain adaptation [50] or ad-hoc data
fusion [51].

While classical machine learning techniques provide
robust results across different tasks, Convolutional Neural
Networks (CNN) remain the dominant architecture, with
encoder-decoder modules such as U-Net [10], or multi-scale
extraction such as DeepLab [52].

IIl. THE DATASET
This section describes the dataset in all its components, and
the post-processing operations applied to the raw data, with
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SUBSETS
Train
Validation
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FIGURE 2. Locations of the major floods derived from Copernicus EMS and exploited for the dataset generation. Different colours correspond to different

splits.

the aim of refining and optimising the available information
for training purposes. The proposed dataset is composed of a
set of 1,748 tuples, in turn comprising four separate pieces of
information: (i) SAR satellite acquisitions, gathered from the
Copernicus Sentinel-1 mission, (ii) pixel-wise DEM maps,
(iii) hydrography information, and (iv) binary annotations,
obtained through the Copernicus EMS service and delineat-
ing flooded or not flooded areas.

TABLE 2. Summary of activation counts, grouped by country. Major
events from a total of 42 countries are present in the final dataset.

Italy | 11 Togo | 1
France | 10 Djibouti | 1
Spain | 7 Slovenia | 1
Germany | 6 Portugal | 1
Greece | 6 Croatia | 1
Ireland | 5 Moldova | 1
United Kingdom | 4 Lithuania | 1
Australia | 3 Timor-Leste | 1
Albania | 3 Guyana | 1
Finland | 3 Peru | 1
Romania | 3 Tajikistan | 1
Sweden | 3 Honduras | 1
Nicaragua | 2 Mexico | 1
Netherlands | 2 Iran | 1
Norway | 2 Nigeria | 1
Vietnam | 2 Madagascar | 1
Uganda | 2 Belgium | 1
Ukraine | 2 Austria | 1
Latvia | 1 Slovakia | 1
Tunisia | 1 Bosnia and Hze... | 1
Belgium | 1 United States | 1

A. FLOOD EVENTS

The whole construction process of this dataset revolves
around Copernicus EMS [18], which represents the main
source of information for the identification and delineation
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of flooded areas. Copernicus is an EU program that has the
purpose of developing European information services based
on satellite EO and in-situ data. Its main objective is to
monitor and forecast the state of the environment on land,
sea and in the atmosphere, in order to support climate change
mitigation and adaptation strategies.

The information tools provided by Copernicus are avail-
able to authorities and first responders on a fully open
and free-of-charge basis. Among these, the EMS service is
exploited to retrieve the mapping of flooded areas, as shown
in Fig. 3A. The latter provides information belonging to
past emergency responses in relation to different types of
disasters, including meteorological hazards, geophysical haz-
ards, deliberate and accidental man-made disasters, and other
humanitarian disasters, as well as prevention, preparedness,
response and recovery activities. Specifically, the EMS Rapid
Mapping products provide a large data collection, a provi-
sion of geospatial information within hours or days from the
disaster, including flood delineations. To carry out the data
gathering process, we consider the vector packages with flood
delineation products, comprising sets of geographical files
with the purpose of assessing the extent of the flood events.
The EMS damage maps are thus used as ground truth for
training machine learning models.

The retrieval of the vector packages is executed program-
matically, extracting the vector file containing the delineation
of the flooded area, and considering all the activations prior to
July 2021 (Fig. 3B). Due to differences in package structure,
naming and inconsistencies in the geometry, a small portion
of the hundreds of available activations was discarded. For
this reason, after retrieval, we performed a thorough manual
inspection over the activations to ensure a certain degree
of correctness and uniformity among the obtained packages
and their contents. The final activation list considers a total
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of 95 individual flood events, including a large variety of
data spanning seven years, starting from 2014 (i.e., dating
the initial Sentinel-1 acquisitions), and encompassing 42 dif-
ferent countries (see Table 2). Given the inherent focus of
the Copernicus products on the European soil, Italy, France,
and Spain gather the largest number of activations, while an
equally large portion of data is scattered around the world.
The least represented continent! in terms of absolute numbers
is South America, with 2 unique flood events. A complete
list of the EMS activations selected for the dataset is listed in
Appendix.

For each activation, we collect all the necessary infor-
mation to provide both precise annotations and additional
contextual details, specifically: the event date, intended as
estimate of the flood starting time, a general location of
the area of interest, the bounding box of the event, and the
polygons corresponding to the actual flood delineation. Each
activation usually groups together several disasters, happened
around the same region and caused by the same agent; for
this reason the former may contain one or multiple vector
packages, defining different flooded sub-regions within the
same event. In order to maximise the recall for the dataset
construction, we consider each one of them separately for
the subsequent image acquisition and rasterization phase
(Fig. 3C). Flood polygons have been manually validated by
both the service provider that generated such delineations,
and the Joint Research Centre (JRC) services to ensure a cer-
tain degree of accuracy [13]. From these polygons, we auto-
matically derive the minimum bounding box fully containing
the flooded areas, necessary for the image retrieval phase.
We also pad the areas in each direction by a variable amount
corresponding to 10% of its maximum extent, to account
for possible inaccuracies in the delineations and to include
contextual information.

B. DATA ACQUISITION

Given the list of geolocated EMS activations with vector
delineations, the main objective is to retrieve a set of image
tuples, including remote sensing acquisitions, additional
modalities and binary labels, with pixel-level alignment.

For the creation of this dataset we focus on SAR images
given their inherent properties particularly suitable for the
task of flood delineation, especially considering the visibility
in cloudy environments. Sentinel-1, the first mission in the
Copernicus Programme conducted by the European Space
Agency (ESA) in 2014, represents one of the best options in
this field, given the worldwide coverage, the relatively short
revisit time, and its open and free availability. Its constellation
comprises two twin satellites with polar orbit, Sentinel-1A
and Sentinel-1B, which share the same orbital plane. The
radar acquisition is carried independently through a C-band
SAR instrument, thus providing a variable revisit time that
differs according to the latitude, estimated as 3 days at the
equator, while even less than 1 day at the poles. Given its

1 https://en.wikipedia.org/wiki/Continent
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purpose, we focus the acquisition on Level-1 Interferometric
Wide (IW) Ground Range Detected (GRD) products, which
provide only the signal amplitude without its phase, but
can maintain an approximately square spatial resolution and
square pixel spacing without further resampling, and display
reduced speckle due to the multi-look processing. In order to
facilitate the retrieval of the images only in desired areas and
periods, we exploit the Sentinel-Hub platform,” a third-party
service providing complex filtering and compositing func-
tionality with direct access to several open remote sensing
sources, such as Sentinel or Landsat. For each bounding box
collected in the previous step, we retrieve the correspond-
ing raw SAR signal with two channel variants, namely VV
(Vertical transmit and Vertical receive) and VH (Vertical
transmit and Horizontal receive), obtaining every image in
a window with a maximum of 4 days from the day of the
event to minimise the discrepancies between images and
flood delineations (Fig. 3D). Since each area may not be fully
covered by a single Sentinel-1 tile, we exploit the mosaicking
features of Sentinel-Hub to automatically merge neighbour-
ing acquisitions. In the rare event where such adjacent tiles
cannot be found, the pixels missing in the SAR acquisition
will also be masked out in the corresponding ground truth.

All the images are provided as orthorectified, georefer-
enced TIFF (GeoTIFF) files, with a spatial resolution of
20m/pixel and 32-bit floating point precision.

In addition to the SAR imagery, we collect the DEM of the
same areas of interest (Fig. 3E) based on Mapzen’s terrain
tiles, a static collection mainly based on the Shuttle Radar
Topography Mission (SRTM30) [53]. Its main purpose is to
provide additional context to the flood prediction process,
by suggesting which areas are more likely to be flooded based
on elevation. The provided data is inherently static, therefore
it does not take into account small variations of terrain due
to side natural events (e.g. landslides), which are common
phenomena during heavy rains. On the other hand, static data
allows for a much wider coverage and a rarer presence of
noise in the retrieved images. While the original resolution
of the available DEM varies from 5 to 30m/pixel, we provide
a resampled version at the same 20m/pixel resolution of the
SAR image, as a separate single-band GeoTIFF with 32-bit
floating point precision.

With a similar process, we further expand the available
information by including the hydrography map of the areas
of interest. Given the worldwide scope of the retrieved EMS
activations, we leverage on OSM for this task. Exploiting the
provided Overpass API, we extract polygons for every water
layer available in every region inside the image bounds, when
available. With the aim of maintaining a pixel-wise alignment
among tuples, we rasterise each set of hydrography vectors at
20m/pixel to maintain same resolution of previous modalities.
While not every area provided high-quality polygons of the
water basins, more than half of the available SAR acquisitions
is accompanied by an hydrography raster.

2https://WWW.sentinel-hl.lb.com/
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FIGURE 3. Processing steps taken to generate the dataset from Copernicus EMS activations: retrieval and conversion to raster images (A-C), acquisition
of images and additional modalities (D-E), and manual inspection and filtering (F).

After the image retrieval phases, a thorough manual filter-
ing is carried out to further improve the quality of the final
product (Fig. 3F): among every Sentinel-1 image retrieved
within the 4-day period, starting from the event date of each
activation, only the one that was visibly matching the flood
mask is maintained, discarding all the others. Furthermore,
given the possible inconsistencies among different geograph-
ical regions, DEM rasters are also manually verified, filtering
out all those tuples with invalid elevation map. Concern-
ing the hydrography, the availability is much sparser, either
because of missing data or absence of water basins in the
requested area. We still opted to keep every sample with-
out corresponding hydrography, both for future studies and
as optional post-processing step to further subtract perma-
nent water areas from the final prediction of the models,
if required.

TABLE 3. MMFlood data specification, including format and bands.

Modality Format Bands
Sentinel-1 IW GRD  GeoTIFF, Float32  0: VV, I: VH
DEM GeoTIFF, Float32  0: elevation
Hydrogr. GeoTIFF, Uint8 0: hydrography
Flood Mask GeoTIFF, Uint8 0: ground truth

The released dataset is specified in Table 3: it is grouped
in 1,748 elements containing SAR, DEM, and mask images,
out of which 1,012 also include the correspondent hydrog-
raphy images (i.e., 57.9%). Each group contains additional
metadata describing the activation code, the date of the event,
and the country in which the event has happened. Moreover,
SAR data are also annotated with the acquisition date of the
satellite signal itself, which may differ from the actual event
date. On average, the acquisition happens 1 day and 21 hours
later than the reported event date. Further technical details
about the metadata are available in the main repository.?
Focusing on the semantic segmentation task, we keep the
original image size for each area of interest, while making
sure that the minimum input dimensions of 512 x 512 are
kept across the whole set. The smallest image size is 531 x
524 pixels, while the largest is 1, 944 x 1, 944 pixels.

3 https://github.com/edornd/mmflood
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For training and benchmark purposes, the set has also
been split into images for training, validation, and testing.
To ensure a robust subdivision, data has been randomly split
based on the EMS activation with geographical awareness,
meaning that each set has a proportionally equal number
of examples for different locations around the globe, thus
preventing biases due to specific land types or geographical
areas. Specifically, the three splits, whose location is visible
in Fig. 2, comprise 54 activations for the training set, 34 for
the test set, and 7 for the validation set.

0% 10% 20% 30% 40% 50% 60%
Flood ratio (%)

FIGURE 4. Cumulative distribution function of the flooded areas ratios
over the full MMFlood dataset.

C. DATASET CHALLENGES

Despite the relatively simple downstream task of binary
segmentation, the dataset provides several challenges that
need to be addressed for an effective training. First, areas
affected by floods usually represent a small portion of the
segmentation mask, because of the inherent unbalance of
the actual flooded area within the image extremely skewed
towards background pixels, especially when the ordinary
water basins are excluded in the final mask. As shown by
the cumulative distribution function in Fig. 4, 50% of the
images have less than 1.4% of pixels marked as flood, and
95% of the dataset consists of images that contain less
than 11% of flooded area. To tackle this recurring issue in
remote sensing scenarios, we test the effectiveness of differ-
ent solutions: we first adopt a simple, albeit effective, filtering
and down-sampling approach based on flood-background
ratio with different thresholds, comparing it with a dynamic,
entropy-based weighted sampling, to cope with lack of
information in labels with mostly background or flood
pixels.
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A second challenge is given by the SAR data itself,
as radar signals are inherently noisy, therefore a proper
pre-processing pipeline should typically involve radiomet-
ric correction based on elevation maps and speckle noise
reduction, to obtain an optimal image for further downstream
tasks [13]. We purposely avoid these manuals steps for two
main reasons: first, we aim to provide a dataset with clean
and coherent data, while at the same time maximising its
reusability in other contexts, and refraining from biasing the
final product towards a specific set of applications. Second,
we expect deep learning algorithms to extract similar fea-
tures on their own during training, when provided with the
necessary information. As detailed in the following sections,
we cope with the noisy images by means of random aug-
mentations, while testing the effectiveness of the multimodal
setting exploiting the additional DEM data.

Last, another challenging aspect of the proposed dataset is
the provision of multiple modalities. Using SAR data through
VV and VH polarisations, in combination with the elevation
raster, introduces the problem of having input sources of
different nature. In this paper, we test several combinations
with and without DEM in order to assess the advantage
brought by the additional modality, by simply expanding
the input weights [9], or further refining the model struc-
ture to support early and late fusion [54], to better merge
modality-specific features. The following sections provide
further details regarding the methodologies and training con-
figurations adopted, together with the experimental results on
the selected baselines and more complex scenarios.

IV. METHODOLOGY

We focus the evaluation of the MMFlood dataset on deep
learning models, considering only SAR and DEM as train-
ing modalities, as the hydrography can be exploited as
post-processing step. The task of flood delineation can be
described as a binary classification problem, where the objec-
tive is to classify each pixel as flood or background. Formally,
we can define a set of samples X, containing pairs of images
xs and x4, respectively representing SAR and DEM inputs,
with matching and constant dimensions H x W, that are
associated with a set of labels y € Y with the same dimen-
sions. For each pixel i, the image label provides an annotation
vi = {0, 1}, where 0 indicates background cells, while 1 refers
to flooded areas. A binary segmentation training can be for-
malised as training a model fy with parameters 6 to map from
the image space to the label space, namely f; : X — RIF>WI,
In the multimodal context, we provide a model with two
separate encoders, g and g4, then fuse the extracted features
through a shared decoder A, to obtain a final model f =
h(gs(xs) @ ga(x4)). In the following sections we describe the
methodology adopted to address the highlighted challenges,
focusing on class unbalance and multiple modalities.

A. BASELINE MODELS
With the aim of providing benchmark results as baseline,
we first select and test different combinations of encoders and
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decoders, to assess the effectiveness of different models in
this context. Among the encoders, we adopt ResNet50 [55],
the de-facto standard choice in many segmentation frame-
works, TResNet [56] a ResNet variant that aims to boost
accuracy and efficiency in both training and inference,
EfficientNet-V1 [57], a more lightweight approach that
scales all dimensions using a compound coefficient, and
DenseNet [58], where all layers are connected with matching
feature-map sizes to provide more semantically rich layers.
Among state-of-the-art decoders, we include U-Net [59],
a standard solution in aerial imagery initially proposed for
datasets in the medical field [60], which reverses the com-
putation back to the pixel level using a mirrored upscaling
pipeline. In terms of decoders based around mult-scale fea-
ture extraction, we include DeepLabV3+ [52], based around
atrous convolutions and spatial pyramid pooling, and PSP-
Net [61], which utilises a pyramid parsing module to exploit
global and local clues.

B. CLASS UNBALANCE

The unbalance between flood and background pixels repre-
sents the first and major challenge of this dataset. We test
two complementary approaches to address this, respectively
based on downsampling and upsampling: in the first case,
we simply impose a threshold on the percentage of flood
pixels in each tile, therefore avoiding the selection of images
almost completely covered with background and focusing on
those tiles rich of information. More formally, from the final
list of preprocessed tiles, as described in Sec. V, we filter
out images having a flood pixel ratio under a threshold t,
computed as:

I = Zi[yi =1] (1

Zi[yi 1
where y; represents the label associated with a generic pixel i.
Simply put, the ratio of pixels marked as flood with respect
to the total amount of pixels in the label.

In the second case, we better exploit the sparsity of the
dataset by considering the entropy of the available labels.
In information theory, the latter can be interpreted as amount
of information, which can also translate into how much the
given data sample is effective in terms of content. The larger
the entropy, the higher information content is contained [62].
This property can be exploited to provide an estimation of the
importance of each label with respect to the training process,
meaning that those annotations with higher entropy are more
likely to be informative for the given task. Similar to [62],
we exploit this property to perform a standard weighted sam-
pling, where however each sample is weighted by its content
information computed as:

wi=xr|=> pWlogpm |. Yielx] (@
y

where p(y) represents the distribution of pixels among the
two available classes in the label y, A represents a modulating
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FIGURE 5. Multi-encoder architecture: two twin, separate encoders (blue, yellow) are merged layer-wise through Squeeze-and-Excitation blocks to
produce an equivalent multimodal layer (green). The decoder (red) is agnostic w.r.t. the multi-encoder setup.

factor 0 < A < 1, and j uniquely identifies each item of the
set of samples X.

C. MULTIPLE MODALITIES
A second challenge of this dataset is the inclusion of the DEM
for training purposes. Given the matching spatial extents
of SAR and DEM modalities, we can consider this addi-
tional information as extra channel, to combine with the
satellite acquisitions. As for the unbalance problem, we test
two increasingly complex approaches, namely input channel
expansion and multi-encoder networks, to assess the benefits
of including this additional data as input. As baseline, we sim-
ply provide every SAR band and the extra DEM image as
a 3-channel image, training the network from scratch and
letting it extract features from each modalities independently.
For a more effective approach, we construct a custom resid-
ual U-Net network [63], including two separate, lightweight
twin encoders, one for each modality. Similar to [54],
we provide both early and late fusion by means of a Squeeze-
and-Excitation block (SaE) [64]. At each layer i, the encoders
provide a comparable tensor with shape H; x W; x C;.
As shown in Fig. 5 (right), the SaE module merges these out-
puts of the encoders by first concatenating them channel-wise
to produce an output with size H; x W; x 2 C;, which
are then calibrated through a weight map, generated by the
second branch of the module. The weights are obtained by

first squeezing the input into a channel descriptor with %

channels, and subsequently expanding it back to 2C;. This
tensor is eventually fed to a Sigmoid activation, that scales
each value in the range [0, 1], and multiplied by the original
inputs. Last, the 2C; channels are reduced to the original
shape H; x W; x Cj, so that the final output becomes vir-
tually indistinguishable from the single-encoder ones, and
remains perfectly compatible with the decoder, regardless of
the encoding phase. An example schema of multi-encoder
architecture is displayed in Fig. 5 (left).

V. EXPERIMENTS

In this section, we provide an overview of the experimental
tests carried out on the MMFlood dataset and their results.
We first detail the initial preprocessing steps, in order to trans-
form the available images into an actual model input. Then we
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describe the preliminary benchmark tests, with the purpose
of finding the best performing encoder-decoder combination
for subsequent tests. Last, we discuss the inclusion of the
additional components described in Sec. IV, namely Entropy
Weighted Sampling (EWS), the inclusion of DEM as extra
channel, and the multi-encoder setup, highlighting strengths
and weaknesses of the proposed approaches.

A. IMPLEMENTATION DETAILS

Given the purposely generic dataset, we first process the
available images to obtain a set of data more suitable for
training. Considering SAR imagery, we compute a base-10
logarithm over the acquisitions to obtain decibel values and
reduce the effects of high backscatter peaks. Concerning the
DEM image, since the values are expressing the raw altitude
in meters, we clip the available values within reasonable
values in the range [—100, 6, 000] to reduce noise. In every
experiment, we further normalise each input by first comput-
ing mean and standard deviation for each channel.

Because of large images with various scales, we resort
to offline tiling to both speed up the training process and
maintain a standard setup. From each available image and
modality, we extract the smallest possible number of tiles
covering the whole surface of the original image, considering
a window size of 512 x 512, which is a common standard in
most semantic segmentation applications [9], [52], as it pro-
vides a good compromise between pixel-wise class balance
and contextual information. Since the image extent is often
incompatible with the tile size, we dynamically overlap by the
minimal amount of pixels required to cover the whole image
without overflow, thus avoiding padding and maximising the
visual content of each window. Excluding the test partition,
the training dataset contains a total of 6,182 tiles, together
with 560 tiles for validation.

With the aim of maintaining the correct pixel count,
we only apply this procedure to the training and validation
sets, while keeping the full test images: during the test phase,
we apply an online tiling with fixed overlap, combining the
predictions into a single output with the same extents of the
inputs.

We also apply several online data augmentations to avoid
overfitting at training time. In case of multiple modalities,
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every input is first processed by a common set of trans-
formations, namely random rotation, cropping, horizontal
and vertical flipping, grid and elastic transforms, each with
probability p = 0.5. Then, we apply additional pixel-level
transformations to SAR images, dealing with its inherent
speckle noise by introducing random Gaussian blur and ran-
dom multiplicative noise, alternately.

In every experiment, we train for 100 epochs and early
stopping criterion with patience set to 30 epochs. Given
the peculiar inputs, we do not use any pretrained weights.
We use a batch size of 16, except for the combinations of
UNet with ResNet50 and DenseNet121, where the batch
was reduced to 12 images for memory constraints. More-
over, given the stride incompatibility of the outputs provided
by DenseNet with the DeepLabV3+ decoder, we did not
include such variant in the baseline result. We adopt an
AdamW optimiser with a base learning rate A = 1073
and a weight decay coefficient of 0.01. We also employ a
polynomial LR scheduler with y = 3 and ending learning
rate A = 1074,

Considering the loss function, we perform every exper-
iment using a focal Tversky loss [65], a generalisation of
the soft Dice score with the addition of a focal component,
particularly suited for imbalanced problems. The loss was
configured with hyperparameters « = 0.6, 8 = 0.4 and
y = 2. To provide a complete overview, four metrics are
considered: we report the mean value over all test images for
Precision, Recall, IoU, and F1 Score (with equal weighting
of all chips).

All the procedures and experiments described in this paper
were performed on a workstation equipped with an Intel Core
Intel(R) Xeon(R) Silver 4216 CPU and 4 Nvidia GTX 2080Ti
GPUs. The framework is based on Python, exploiting the
PyTorch library for training and testing.

B. RESULTS

1) BASELINES

We first test the effectiveness of different combinations of
encoders and decoders, to test the best combination for subse-
quent experiments. To assess the feasibility of the task with-
out including additional information, we train on SAR images
only, using a flood threshold of 2% to maximise the per-
formances (see Section V-C). Results for this set are shown
in Table 4. We observe similar performances across most
decoders, with the most relevant differences dictated by the
encoder choice: ResNet variants (RN50, TResNet) display
the best performance with 0.63 and 0.59 mloU respectively.
On the other hand, EfficientNet and DenseNet variants did
not achieve optimal results for this specific task, with a max-
imum score of 0.56 mloU for the latter, despite the added
complexity. This may be due to several factors, such as the
relatively smaller amount of data when compared to natural
images domain, where these models typically outperform the
standard ResNet. While this performance gap may be closed
exploiting more hardware and data resources to effectively
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train more advanced architectures, we leverage on ResNet50
for subsequent experiments for simplicity, as it remains a
competitive solution to this day [66].

Considering decoders, performance differences are gener-
ally negligible, however, both UNet and DeepLabV3+ reach
comparable results, with 0.63 mIoU on average, while PSP-
Net remains a solid choice, despite the 1% performance loss,
providing the most consistent results across the experiments.
While we note that the performances with other decoders are
comparable, for simplicity we maintain the combination of
ResNet50 and DeepLabV3+4 as model architecture for future
tests given the obtained results, except for the multi-modal
setting where we employ a TResNet-m variant for perfor-
mance reasons. Overall, deep learning approaches appear to
provide much more robust results when compared to the
Otsu baseline with a +0.3 increment in most cases, as also
confirmed by the qualitative results in Fig. 6, where the latter
is noticeably noisier than the counterparts. This issue could
be mitigated with careful processing, however we note that
neural networks were able to cope with the same noisy inputs
without additional steps.

TABLE 4. Baseline results on the test set, considering different
combinations of encoders and decoders, without including additional
modalities.

Model Precision Recall IoU F1

Otsu 0.2895 0.4627  0.1963  0.2895
ResNet50 + UNet 0.6910 0.8710 0.6269  0.7706
ResNet50 + DeepLabV3+ 0.6733 0.9031  0.6279 0.7714
ResNet50 + PSPNet 0.6659 0.8858 0.6132  0.7603
TResNet + UNet 0.6151 09178 0.5830 0.7366
TResNet + PSPNet 0.7376 0.7462  0.5897 0.7419
TResNet + DeepLabV3+ 0.6331 0.6299 04614 0.6315
EfficientNet + UNet 0.6856 0.6242  0.4853  0.6534
EfficientNet + DeepLabV3+ 0.4491 0.2050 0.1638  0.2815
EfficientNet + PSPNet 0.7143 0.6211  0.4976  0.6645
DenseNet121 + PSPNet 0.6050 0.8967 0.5656  0.7225
DenseNet121 + UNet 0.5954 0.9054 0.5605 0.7184

2) DEM AND CLASS BALANCE

Experiments considering different combinations of modal-
ities and class unbalance countermeasures are shown in
Table 5. We observe that the sole inclusion of the DEM
as extra input, without further processing or considerations,
is enough to improve the performance of the baseline model
by 1.5%, with 0.63 mloU, maintaining the flood threshold
v = 0.02. This shows the importance of including terrain
information in this context, where elevation and the nom-
inal extents of water basins is crucial for flood segmen-
tation. These results are confirmed and further improved
by including EWS, where the performance improvement is
more substantial, reaching 0.65 mloU. This demonstrates
the importance and the effectiveness of the guided sam-
pling of the most informative labels during training. While
recall is maintained at 0.9 across most experiments, results
are more remarkable when considering precision, going
from 0.67 to 0.71 after the inclusion of DEM and EWS.
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TABLE 5. Results obtained from the incremental addition of our proposed solutions, starting from the single encoder (SE), single encoder with DEM as
extra channel, to the entropy-weighted sampling (EWS), and the multi-encoder model (ME) with all the additions.

Model Thresh. DEM EWS  Precision Recall IoU F1

SE 2% 0.6733 0.9031 0.6279 0.7714
SE 2% v 0.6814 0.8979  0.6324  0.7748
SE X v 0.6976 0.8955 0.6451 0.7843
SE X v v 0.7173 0.8893  0.6585 0.7941
ME X v v 0.7319 0.8794  0.6652  0.7989

SAR Otsu SE

SE + DEM

SE + DEM + EWS ME + DEM + EWS Ground truth

FIGURE 6. Qualitative results obtained on the test set. From left to right, Otsu baseline, single encoder on SAR data only (SE), single encoder with DEM
(SE+DEM), single encoder with DEM and EWS (SE + DEM + EWS), the multi-encoder setup (ME + DEM + EWS), and the ground truth.

TABLE 6. Study on the influence of the downsampling threshold and the
effectiveness of the entropy-based sampling (EWS).

Thresh. EWS  Precision Recall IoU F1

0% X 0.4118 0.2274  0.1717  0.2930
2% X 0.6733 0.9031 0.6279 0.7714
5% X 0.6301 0.9097 0.5930 0.7445
0% v 0.6976 0.8955 0.6451  0.7843
2% v 0.6700 0.9024  0.6247  0.7690
5% v 0.6486 0.9096 0.6094 0.7573

Last, we also test the multi-encoder architecture, reaching
more than 0.66 mloU and surpassing every other variant,
notwithstanding the encoder change. As shown by the qual-
itative results in Fig. 6, despite the small performance dif-
ferences the multi-encoder setup appears more resilient to
terrain changes, where shadows on mountain ranges or large
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permanent water basins could be erroneously classified as
floods (Fig. 6-D, 6-E).

C. SAMPLING VARIATION STUDY

We perform a variation study to assess the effectiveness
of different combinations of sampling procedures over the
MMFlood dataset, without including the elevation model
because of the focus on sampling. We test four different
downsampling thresholds, namely 0% meaning no downsam-
pling, 2% and 5% to test the effectiveness of the reduced
training size on the test set. We further experiment with each
variant with and without EWS, effectively performing a mix
of oversampling over informative inputs, and downsampling
tiles with mostly background beforehand. For every experi-
ment listed in Table 6, we maintain the same configurations
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and hyperparameters as described in Sec. V-A. Consider-
ing the variants without sampling, results confirm that the
optimal threshold for this context remains T = 0.02: lower
values undermine the performance of the model, while higher
values slowly introduce a bias towards flooded areas with
less precise predictions, decreasing from 0.67 to 0.63 in the
5% setup. Including the entropy-based sampling introduces
a strong performance boost without thresholds, improving
over the baseline by 4.5% with 0.64 mloU, while leaving
the remaining variants almost unchanged. This highlights the
effectiveness of the sampling solution, which is most likely
constrained by the lower number of images in the threshold-
based approaches, and works best when applied to the
whole set.

VI. CONCLUSION

We introduced MMFlood, an ad-hoc dataset for flood delin-
eation tasks, generated from 1,748 Sentinel-1 acquisitions
based exclusively on flooded areas delineated from 95 Coper-
nicus EMS flood events around the globe. MMFlood builds
on top of other comparable datasets available in literature
in terms of images and global distribution, the multiple
modalities of the dataset, including also elevation model and
hydrography, and the use of masks which are specific for
the task of flood delineation, without including irrelevant
water basins. Considering future developments, MMFlood
could be expanded in several ways. First, new images from
future flood events mapped by Copernicus EMS could be
incrementally added. Second, by adding other Copernicus
satellites such as Sentinel-2. Third, including all the available
acquisitions within the temporal span of the flood events.
Lastly, by considering co-registered VHR optical and SAR
satellite networks, such as TerraSAR-X [35], as additional
modalities. We provided an extensive benchmark applying
state-of-the-art solutions, to evaluate the effectiveness of
MMFlood in the context of binary segmentation, consid-
ering both classical thresholding and recent deep learning
approaches. Furthermore, we proposed various solutions to
common aerial segmentation problems such as class unbal-
ance and the exploitation of the additional modalities by
means of a multi-encoder architecture. The inclusion of the
elevation model provided a consistent boost in performance
in every setup, especially in the multi-encoder setup. In future
works, the model performances could be further improved
investigating different multimodal architectures, as proposed
by recent works on RGB-D [67], [68], which have a simi-
lar problem setting. Additionally, future experiments could
also investigate the use of weights pretrained on natural
images, as bootstrap strategy for training. While aimed at
completely different domains, an effective knowledge trans-
fer from recent large-scale models such as Vision Transform-
ers [69] may provide better results.

APPENDIX
COPERNICUS EMS ACTIVATIONS
See Table 7.
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TABLE 7. Complete list of Copernicus EMS activations included and
selected for the construction of the MMFlood dataset.

EMSR107 EMSR260 EMSR342 EMSR450
EMSRI117 EMSR261 EMSR358 EMSR456
EMSR118 EMSR265 EMSR388 EMSRA465
EMSR120 EMSR267 EMSR397 EMSR467
EMSRI122 EMSR268 EMSR399 EMSR468
EMSR141 EMSR271 EMSR407 EMSRA470
EMSR147 EMSR273 EMSR410 EMSRA471
EMSR149 EMSR275 EMSR411 EMSR479
EMSR150 EMSR277 EMSR414 EMSR487
EMSRI151 EMSR279 EMSR416 EMSR492
EMSRI154 EMSR280 EMSR417 EMSR496
EMSR156 EMSR283 EMSR419 EMSR497
EMSR162 EMSR284 EMSR421 EMSR498
EMSR165 EMSR287 EMSR422 EMSR501
EMSR166 EMSR293 EMSR424  EMSR502
EMSR167 EMSR314 EMSR427 EMSRS504
EMSR184 EMSR319 EMSR429 EMSRS507
EMSRI187 EMSR321 EMSR437 EMSRS511
EMSR192 EMSR324 EMSR438 EMSRS514
EMSR199 EMSR326 EMSR441 EMSRS517
EMSR203 EMSR330 EMSR442 EMSRS518
EMSR215 EMSR332 EMSR444  EMSRS520
EMSR238 EMSR333 EMSR445 EMSR548
EMSR258 EMSR337 EMSR446
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