
21 December 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

HW-Flow-Fusion: Inter-Layer Scheduling for Convolutional Neural Network Accelerators with Dataflow Architectures /
Valpreda, Emanuele; Mori, Pierpaolo; Fasfous, Nael; Vemparala, Manoj Rohit; Frickenstein, Alexander; Frickenstein,
Lukas; Stechele, Walter; Passerone, Claudio; Masera, Guido; Martina, Maurizio. - In: ELECTRONICS. - ISSN 2079-
9292. - ELETTRONICO. - 11:18(2022), p. 2933. [10.3390/electronics11182933]

Original

HW-Flow-Fusion: Inter-Layer Scheduling for Convolutional Neural Network Accelerators with Dataflow
Architectures

Publisher:

Published
DOI:10.3390/electronics11182933

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2971405 since: 2022-09-19T07:05:32Z

MDPI

Citation: Valpreda, E.; Morì, P.;

Fasfous, N.; Vemparala, M.R.;

Frickenstein, A.; Frickenstein, L.;

Stechele, W.; Passerone, C.; Masera,

G.; Martina, M. HW-Flow-Fusion:

Inter-Layer Scheduling for

Convolutional Neural Network

Accelerators with Dataflow

Architectures. Electronics 2022, 11,

2933. https://doi.org/10.3390/

electronics11182933

Academic Editor: Xiang Chen

Received: 30 June 2022

Accepted: 7 September 2022

Published: 16 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

HW-Flow-Fusion: Inter-Layer Scheduling for Convolutional
Neural Network Accelerators with Dataflow Architectures
Emanuele Valpreda 1,*,† , Pierpaolo Morì 1,†, Nael Fasfous 2, Manoj Rohit Vemparala 2, Alexander Frickenstein 2,
Lukas Frickenstein 2, Walter Stechele 3, Claudio Passerone 1 , Guido Masera 1 and Maurizio Martina 1

1 Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy
2 Autonomous Driving, BMW Group, 80809 München, Germany
3 Department of Electrical and Computer Engineering, Technical University of Munich,

80333 München, Germany
* Correspondence: emanuele.valpreda@polito.it
† These authors contributed equally to this work.

Abstract: Energy and throughput efficient acceleration of convolutional neural networks (CNN)
on devices with a strict power budget is achieved by leveraging different scheduling techniques to
minimize data movement and maximize data reuse. Several dataflow mapping frameworks have
been developed to explore the optimal scheduling of CNN layers on reconfigurable accelerators.
However, previous works usually optimize each layer singularly, without leveraging the data reuse
between the layers of CNNs. In this work, we present an analytical model to achieve efficient data
reuse by searching for efficient scheduling of communication and computation across layers. We
call this inter-layer scheduling framework HW-Flow-Fusion, as we explore the fused map-space of
multiple layers sharing the available resources of the same accelerator, investigating the constraints
and trade-offs of mapping the execution of multiple workloads with data dependencies. We propose
a memory-efficient data reuse model, tiling, and resource partitioning strategies to fuse multiple
layers without recomputation. Compared to standard single-layer scheduling, inter-layer scheduling
can reduce the communication volume by 51% and 53% for selected VGG16-E and ResNet18 layers on
a spatial array accelerator, and reduce the latency by 39% and 34% respectively, while also increasing
the computation to communication ratio which improves the memory bandwidth efficiency.

Keywords: DNN; layer-fusion; scheduling; accelerator; dataflow; memory hierarchy

1. Introduction

Convolutional neural networks (CNNs) are currently the state-of-the-art approach for
many computer vision tasks, such as image recognition, object detection, and segmenta-
tion [1–4]. However, their superior task accuracy comes at the cost of high computational
complexity and memory demands and makes deployment difficult on energy-constrained
devices, such as autonomous electric vehicles and drones [5]. During the last decade,
specialized CNN accelerators such as [6,7] have been developed to maximize the infer-
ence’s energy consumption and throughput by reducing the data movement required to
process convolutional layers. These accelerators expose many reconfigurable hardware
(HW) parameters to allow flexible resource mapping to execute many different workloads.
Several design space exploration tools have been proposed to facilitate the evaluation
of these architectures, and the search for optimal mappings [8–11]. These frameworks
use scheduling techniques to map the computation of CNN workloads to the available
hardware resources while optimizing the execution for different performance targets. The
scheduling techniques typically used in the aforementioned frameworks are limited to
intra-layer data reuse, i.e., each layer composing the CNN is mapped and optimized singu-
larly. Each layer of a CNN, except for the first and last ones, is fed with the data produced
by a preceding layer and generates new data that feeds the subsequent layer. The data

Electronics 2022, 11, 2933. https://doi.org/10.3390/electronics11182933 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11182933
https://doi.org/10.3390/electronics11182933
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1285-9360
https://orcid.org/0000-0001-5652-221X
https://orcid.org/0000-0002-3069-0319
https://doi.org/10.3390/electronics11182933
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11182933?type=check_update&version=1

Electronics 2022, 11, 2933 2 of 24

between adjacent layers is usually stored outside the accelerator and read back again for
processing since the volume of intermediate data is orders of magnitude higher than the
available on-chip memory [5]. This data movement is redundant and could be avoided by
scheduling the communication and computation of the accelerator in such a way that once
data is produced from one layer, it is immediately reused by the next one. Previous works
have proposed methods to leverage intermediate data between consecutive layers, referred
to as layer fusion, to reduce the inference’s energy and latency, such as a specialized systolic
array tailored around a specific CNN [12], graph rewriting for operation fusion for general
purpose architectures [13], and dataflow mappers for throughput optimization [14].

With this work, we propose HW-Flow-Fusion, a framework that uses scheduling
techniques that can leverage the data reuse between the consecutive layers that compose a
CNN to improve the performance metrics of hardware accelerators based on spatial arrays.
The scheduling starts from an abstract hardware description of a CNN accelerator and a
target CNN model and explores intra- and inter-layer data reuse opportunities. Standard
loop optimization techniques and novel tiling and reuse strategies are used to determine
the communication patterns for efficient memory usage across different layers, using the
performance metrics estimated with dataflow mapping as feedback to optimize the overall
energy. The analytical model of inter-layer scheduling proposed in HW-Flow-Fusion is
not an optimization of the map-space search process but rather an extension that can be
integrated into existing state-of-the-art dataflow mappers [8–10] to jointly explore new
reuse opportunities to improve the accelerator’s efficiency.

We summarize the contributions of this work as follows:

• An analytical model of inter-layer scheduling with the constraints and parameters
that define the communication and computation patterns in spatial arrays.

• HW-Flow-Fusion, a layer fusion framework that can explore the map-space across
multiple layers.

• An improved data reuse model for zero recomputation when executing layers with
data dependencies, leveraging multiple tile-sets to compute only non-redundant
intermediate data.

• An evaluation of different hardware partitioning policies to allocate storage and
processing units to different layers processed simultaneously on the same accelerator.

2. Related Works
2.1. Loop Tiling and Loop Unrolling

Ma et al. [15] analyze how loop optimization techniques (e.g., loop unrolling, loop
tiling, loop interchange) impact design objectives of CNN accelerators. Loop tiling is used
to reduce the number of off-chip memory access, while loop unrolling is used to parallelize
the computation of the output feature maps. It is applied over kernel dimensions for
weights and the horizontal dimension of output features for activations. Tiling factors are
computed according to a given on-chip memory capacity and CNN layer shape, while
unrolling factors are tied to systolic array dimensions. Tu et al. [16] design a reconfigurable
architecture called DNA, where the accelerator datapath can be reconfigured to support
a hybrid data reuse pattern for different layer sizes and computing resources and can be
reconfigured to support the scalable and efficient mapping method, improving resource
utilization. Furthermore, considering the variety of convolutional layers, they propose a
hybrid method that assigns each layer with a separate data reuse pattern based on loop
reordering. From these works we borrow the notation and mathematical equations used in
standard loop blocking.

2.2. Scheduling and Mapping

In [8], the authors propose Timeloop, a framework to explore the architecture de-
sign space of CNN accelerators. By using a high-level description of the CNN, a model
hardware architecture, and hardware/loop constraints, Timeloop creates a map-space and
uses a dataflow mapper to estimate hardware metrics such as energy, latency, and area.

Electronics 2022, 11, 2933 3 of 24

Timeloop has been validated over two CNN accelerators (NVDLA [17] and Eyeriss [6]),
different in scale, architecture, dataflow, and technology. In [9], the authors develop CoSA
to navigate the large scheduling space of CNN accelerators. Similar to Timeloop, their
scheduler optimizes CNN layer mapping onto spatial accelerators. CoSA takes the spec-
ification of the CNN layers and the target spatial architecture as input constraints and
generates a valid schedule based on the defined objective function in one pass. The authors
of ZigZag [10] also propose a design space exploration framework that further expands the
search space and can find mappings that outperform those obtainable with [8]. Moreover,
another design space exploration framework meant for HW-CNN co-design is proposed
in HW-FlowQ [11]. It has been validated against Timeloop and is used to explore effi-
cient mappings of compressed CNNs on spatial arrays with either vectorized or bit-serial
arithmetic. In this work, we start from the framework proposed in [11] to implement
HW-Flow-Fusion and explore the layer-fusion map-space with dataflow-based hardware
accelerators. Our intent is to extend the scheduling techniques used by previous works by
introducing a new reuse strategy in the map-space of spatial arrays.

2.3. Execution of Multiple Layers on the Same Hardware Accelerator

In MAGMA [18], the authors propose to map the execution of multiple layers with
no data dependencies on the same dataflow-based accelerator by searching for an optimal
array partitioning using a genetic algorithm. In HW-Flow-Fusion, we also consider the
memory partitioning within each processing engine of the array. Additionally, our method
is orthogonal to [18] and could be enhanced in future work by adopting their search
strategy. The authors of DNNFusion [13] propose to accelerate the execution of CNNs
on CPU and GPU architectures by fusing the execution of the operators by rewriting
the computational graph at compile time. Their work mainly targets general-purpose
architectures that execute the convolution using the GEMM algorithm, while we focus
on dataflow accelerators, which have a broader search space and complexity. The idea of
fusing the execution of multiple layers with data dependencies was initially introduced by
the authors of [12], who proposed a CNN accelerator based on a dedicated systolic array
that can execute the first five layers of VGG16-E, reducing the volume of data transferred to
the DRAM by 95%. Special purpose buffers are used to manage data dependencies between
the layers and avoid recomputing redundant pixels. This fusion approach was proposed for
dedicated systolic arrays specialized only for fused-layer execution. With HW-Flow-Fusion,
we extend layer-fusion to reconfigurable dataflow architectures and compare it against
standard scheduling techniques. In DNNfuser [14], the authors propose to use transformers
to explore the map-space of dataflow-based accelerators that can execute multiple fused
layers by sharing the available hardware resources with a limited number of combinations
of tiling factors for each layer. However, there are no details on how data is reused to
avoid re-computation, how the memory required to store intermediate pixels is estimated,
and how the computation and communication patterns of fused layers are modeled to
estimate and evaluate the results. We differentiate our work from [14] by providing an
analytical model of inter-layer scheduling for spatial arrays based on loop and hardware
parameters and considering an additional resource sharing strategy. Furthermore, we
extend the hardware metric comparison used in [14] from latency only to energy and
memory bandwidth efficiency. We also analyze how different fusion techniques scale with
different hardware resources.

3. Background on Loop Scheduling

Modern architectures such as [6,7,19,20] have many reconfigurable settings that influ-
ence the performance, such as the computation energy and latency, and require a proper
mapping. A loop schedule can be defined as a set of mapping parameters that characterize
the communication and computation patterns of a hardware accelerator executing a certain
workload. The methods used to optimize these patterns are called loop blocking techniques.
They can be applied to any workload that can be represented as a series of nested loops,

Electronics 2022, 11, 2933 4 of 24

such as the generic convolutional layer in Algorithm 1 (notation reported in Table 1), with s
denoting the stride, here, for simplicity, assumed to be equal for both the horizontal and
vertical dimensions. The loop schedule of a convolutional layer for a target hardware
accelerator defines the entire execution of a processing loop, such as after how many cycles
a set of pixels is moved from one memory level to the other, or how many multiply and
accumulate operations (MACs) are required to generate an output pixel with a certain set
of processing engines (PEs).

Algorithm 1: Convolutional loop pseudocode.

for c = 0; c <= Nox; c++ do
for r = 0; r <= Noy; r++ do

for to = 0; to <= Nof; to++ do
for b = 0; b <= B; b++ do

for ti = 0; ti <= Nif; ti++ do
for i = 0; i <= Nkx; i++ do

for j = 0; j <= Nky; j++ do
out[b][to][r][c] += weight[to][ti][i][j] · input[b][ti][S·r+i][S·c+j]

Table 1. Notation used in this work for loop dimensions, tiling factors, and unrolling factors.

Input Output Weights Batch
Width/Height/Channels Width/Height/Channels Width/Height

Loop size Nix, Niy, Nif Nox, Noy, Nof Nkx, Nky B

Tile size Tix, Tiy, Tif Tox, Toy, Tof Tkx, Tky Tb

Unroll size Pix, Piy, Pif Pox, Poy, Pof Pkx, Pky Pb

The objective of optimal loop scheduling is to maximize the data reuse in workloads
with redundant computation, such as a convolutional layer. Typically, there are four reuse
opportunities in the processing of a convolutional loop:

• Input reuse: each input pixel is reused during the convolution to generate Nof
feature maps;

• Output reuse: each output pixel is reused during the accumulation of Nif feature maps;
• Kernel reuse: kernel weights are reused Nox * Noy times over each input feature map;
• Convolutional reuse: each input pixel is reused Nkx * Nky times for a single

Hadamard product at a time.

There is an additional reuse opportunity that consists of reusing the intermediate pixel
volume between layers. In this work, we named this reuse strategy inter-layer reuse, and it
is detailed in Section 3.4.

3.1. Optimal Loop Scheduling on Dataflow Architectures

This work is focused on dataflow architectures, such as [6,7], often referred to as spatial
arrays. Contrary to systolic arrays, where the computation patterns are fixed and scheduled
by a main control, with no data reuse at the PE array level (no local memory except for I/O
or datapath registers), spatial arrays leverage distributed control units to organize the data
processing. Each processing engine has its internal control unit and register file; the latter is
used to store input and partial results. A typical accelerator with a spatial array includes a
memory hierarchy, normally composed of the system’s main memory (off-chip memory,
DRAM), the internal main memory (on-chip memory, SRAM), and local memory, often
implemented as a register file. Finally, point-to-point communication within the array of
processing engines is managed by interconnections, often implemented as a network on
chip (NoC). The overall architecture is depicted in Figure 1. The map-space on dataflow
architectures is considerably larger than the one of systolic arrays because more hardware
settings need to be configured [8,9]. The scheduling is usually carried out by minimizing

Electronics 2022, 11, 2933 5 of 24

cost functions that associate estimated performance metrics to the total data movement
required to execute the workload [6,8]. These cost functions comprehend all significant
energy and latency contributions due to data movement, such as MAC energy, memory
read/write energy at every level, and communication through the NoC. Frameworks
such as [8–11] create an abstract hardware model of the target accelerator and search the
map-space by optimizing the aforementioned cost function for energy, latency, or both.

Figure 1. Hardware model with a memory hierarchy composed of three elements (main memory,
on-chip memory, and register file) and an array of processing engines interconnected with a network-
on-chip.

In this work, the target hardware accelerator is a spatial array with a row-stationary
dataflow. The motivations behind this choice are the extensive documentation produced
for this dataflow over the years [6,8] and its performance, which places row stationary as
one of the most energy efficient dataflows found in literature [5]. In HW-Flow-Fusion, the
same abstract hardware model defined in [8,11] is used to perform the dataflow mapping.

3.2. Temporal and Spatial Mapping

In order to simplify the analysis on the type of loop optimization performed at a
particular memory level, two terms and definitions are borrowed from Timeloop [8]:
temporal and spatial. Each memory level has a spatial and temporal mapping space; the
loop blocking techniques detailed in Section 3.3 can be applied to both spaces and affect
the mapping differently. When tiling is applied to a temporal level, it defines the amount
of data moved between different memories within the accelerators’ memory hierarchy,
whereas when it is applied to a spatial level, it defines the degree of unrolling. In this work,
temporal tiling parameters are defined as tiling factors and spatial tiling parameters as
unrolling factors. For loop reordering, when applied to a temporal level, it defines the
order in which data are accessed at a specific memory level. When reordering is applied
to a spatial level, it defines the dimension of unrolling over a hardware spatial dimension
(height, width). In this work, we use temporal and spatial fusion to refer to layer fusion
applied as a temporal tiling of the register file within the processing engines and as a spatial
tiling over the dimension of the array, respectively.

3.3. Loop Tiling and Reordering in Single-Layer Scheduling

Temporal tiling divides the data volume at a particular memory level in sub-volumes,
as depicted in Figure 2. For each temporal tiling level, the memory footprint of the tiled
volume identified with the tiling factors Tb, Tof, Tif, Tox, and Toy is defined as the buffer space
required to store inputs, weights, partial sums, and outputs used during the computation.
The memory footprint can be evaluated as shown in Equation (1). Precision here refers to
the bit-width of the datatype.

Electronics 2022, 11, 2933 6 of 24

Inputbu f f er = Tix · Tiy · Ti f · Tb · input_precision

Outputbu f f er = Tox · Toy · To f · Tb · output_precision

Weightbu f f er = Nkx · Nky · Ti f · To f · weight_precision

(1)

To check if a tiling set for a particular memory level is valid, the sum of the buffered
volumes in (Equation (1)) must be less or equal to the total buffer size. The tiling set also
defines the communication volume with the memory level above and depends strictly on
the loop order. The loop order is correlated with different reuse opportunities, according to
the relative position of nested loops. Considering the Algorithm 1, there are 120 possible
permutations of the five outermost loops, but the possibilities can be reduced by analyzing
the loop orders that significantly affect the communication. Although the frameworks [8,11]
can support layer-wise loop reordering, only the original loop order described in [6] is
considered to provide a well-documented baseline for single-layer scheduling. Therefore,
only one loop permutation is described in this work. This particular loop order is defined as
output reuse oriented in [16] since partial sums are never transferred to the main memory.
It guarantees that all the output pixels are generated on-chip. The loop order of the
convolutional loop pseudocode Algorithm 1 is an example of output reuse orientation.
Equation (2) defines the unique fetch and write invocations of each buffered tile set in
Equation (1).

Input f etch =
Ni f
Ti f

·
⌈

No f
To f

⌉
·
⌈

Noy
Toy

⌉
·
⌈

Nox
Tox

⌉
· B

Tb

Weight f etch =
No f
To f

· Ni f
Ti f

·
⌈

Noy
Toy

⌉
·
⌈

Nox
Tox

⌉
· B

Tb

Output f etch = 0

Outputwrite =
No f
To f

· Noy
Toy

· Nox
Tox

· B
Tb

(2)

The total communication volume between two adjacent memory levels is then eval-
uated with Equation (3) and is the product of the invocation count (2) and the memory
footprint (1).

Total volume = Inputbu f f er · Input f etch + Weightbu f f er · Weight f etch

+ Outputbu f f er · (Output f etch + Outputwrite)
(3)

Spatial tiling, or unroll, is used to partition the communication or computation across
multiple buffers or processing engines at the same level of the memory hierarchy. Similar
to temporal tiling, it is possible to have nested spatial tiling levels. For instance, in an
accelerator such as the one in Figure 1, spatial tiling applied at the on-chip memory would
partition the data stored in the memory banks for the computation and the space allocated to
save the results. Nested spatial tiling applied at the PE level would unroll the computation
of the data contained in the memory banks. For the effect of spatial tiling and reordering
on a row-stationary dataflow, only the meaningful parameters are reported. The spatial
loop order is fixed and the description and analysis can be found in [6,8], as they would be
out of the scope of this work. Two parameters are relevant for the work presented in this
paper, reported in Table 2, as they are influenced by the temporal and spatial tiling done
during inter-layer scheduling: processing engine set (PE set) and unrolling. The values PEx
and PEy represent the columns and rows of processing engines, respectively. A graphical
representation of a possible mapping for a small processing engine array is depicted in
Figure 3, on a 4 × 4 array with PEx = 4, PEy = 4, Pky = 2, Poy = 2, Pof = 2, and Pif = 2.
Different colors represent different output channels; the red line separates different input
channels. In Section 4.3 the array dimension is modified to fit multiple layers in the same
array, constraining the spatial tiling factors to a subset of the initial single layer map space.

Electronics 2022, 11, 2933 7 of 24

Table 2. Row-stationary mapping parameters.

Parameter Value Maximum Value

PE set Pkx · Poy Pkx ≡ Nkx, Poy ≤ Toy

Unrolling Pif, Pof Pif ≤ PEx ÷ Pkx, Pof ≤ PEy ÷ Poy

Figure 2. Tiled input, output, and weight volumes.

Figure 3. Example of row-stationary mapping.

3.4. Inter-Layer Scheduling Concepts and Constraints

During the sequential execution of a convolutional layer on a typical HW accelerator
such as [6,7,19,20], partial sums are accumulated to generate output pixels, which are then
saved to the main memory, and then fetched again for the processing of the next layer, after
the computation of the current one is finished. These output pixels, defined as intermediate
pixels, could be fetched directly by the processing engines, along with the required set
of filters, from the on-chip memory to compute the next layer’s output. This is the idea
proposed for the first time in [12] and allows pipeline execution of layers by leveraging the
reuse of intermediate pixels. Intermediate pixels are passed from one layer to the next and
then discarded when they are no longer needed. Since CNN computation is deterministic,
it is possible to evaluate the exact life span of input pixels, intermediate pixels, and sets
of weights (i.e., for how long they should be kept in the on-chip buffer). All intermediate
pixels exist only on the on-chip memory and are never transferred to the main memory,
allowing additional energy saving by reducing the most expensive data movement, as
the cost for DRAM accesses can be 20~30 times higher than that of SRAM accesses [6,8].
Moreover, by reducing access to the DRAM, it is also possible to reduce the communication
latency and the impact of bandwidth bottlenecks on the computation [21].

Electronics 2022, 11, 2933 8 of 24

In order to understand how inter-layer reuse can impact the communication efficiency,
the normalized weight and pixel volumes for ResNet18 for ImageNet [2] are reported in
Figure 4. Notice that pixel volumes dominate the first half of the CNN, whereas weight
volume dominates the second one. Since inter-layer reuse depends on the volume of
intermediate pixels, inter-layer scheduling can improve the hardware metrics only in some
portions of the CNN, particularly where the volume is dominated by pixels. In this case,
the execution of the first half of the CNN could be optimized by fusing layers, whereas the
second half would be scheduled using traditional single-layer techniques since inter-layer
reuse would be negligible.

All input/output pixels between the first and last fused layers are intermediate pixels,
and the order in which they are generated is important; therefore, using different temporal
loop reordering in inter-layer scheduling is not possible. As pointed out in Section 3.2,
changing the temporal loop order affects the communication and computation pattern,
resulting in a different order of pixel production and consumption for each layer, breaking
the data dependencies.

The approach followed in this work is to create a batch-independent fusion schedule
like the one proposed in [12], setting Tif = Nif and Tof = Nof for all the intermediate fused
layers. This increases the buffering requirements (Equation (1)) significantly, with respect to
scheduling with unconstrained input/output channel tile size, but eliminates two loops out
of five per layer and grants maximum reuse per batch size because the buffered weights are
reused during the computation of every Tox ·Toy output pixels (Equation (2)). The fusion
process occurs in a bottom-up fashion, starting from a set of output pixels in the last layer,
defined as the bottom layer, and tracing back the computation to the first input layer, defined
as the top layer. The output tile identifying the output pixels is propagated across all the
layers between the top and bottom ones. Each time it travels across a new layer, due to the
input–output relations, its feature size is increased. The set of Equation (4) describes the
feature size transformations between two adjacent layers, m at the top and m − 1 at the
bottom, recalling that the input of layer m − 1 is the output of layer m. The terms Sx and
Sy denote the horizontal and vertical stride, respectively. A graphical representation of
bottom, intermediate, and top tiling factor propagation on the spatial dimension of feature
maps is depicted in Figure 5:

To f m = Ti f m−1

Toxm = Tixm−1 = (Toxm−1 − 1) · Sxm−1 + Nkxm−1

Toym = Tiym−1 = (Toym−1 − 1) · Sym−1 + Nkym−1

Tixm = (Toxm − 1) · Sxm + Nkxm

Tiym = (Toym − 1) · Sym + Nkym

(4)

If temporal tiling is applied in a layer-fusion scenario, the same Equation (1) is applied
for each layer within the fusion schedule. Layers in which the input is the output of the
preceding one sharing the same buffer. Notice how the entire weight volume is allocated at
once to allow the maximum batch reuse.

Intermediate buffers store both the previous layer’s output and the next one’s input.
The evaluation of any layer scheduled in such a way can start only after enough output
pixels have been evaluated. Intermediate buffers can be used to compute activation or nor-
malization of layers between consecutive convolutional layers without additional storage.
In [6], a similar solution is already implemented for activation layers. Therefore, ignoring
shared buffers and assuming m = M as the top layer and m = 0 as the bottom one, the
required buffer size is evaluated in Equation (5).

Fusion bu f f er =
M

∑
m=0

Inputm
buffer +

M

∑
m=0

Weightm
buffer + Outputbottom

buffer (5)

Electronics 2022, 11, 2933 9 of 24

Figure 4. Normalized data volumes for ResNet18.

Figure 5. Tiling multiple layers.

The fetch and write invocations presented in Equation (2) can also be adapted, recalling
that intermediate activations generate no external communication volume. The final
communication volume is evaluated as in Equation (6); notice how weights are accessed
precisely once, except for the bottom layer.

Total volume = Inputtop
buffer · Input f etch +

M

∑
m=0

Weightm
buffer + Outputbottom

buffer · Outputwrite (6)

One potential problem that can occur during layer fusion, as observed in [12], is
that the intermediate pixels within adjacent tiles are re-computed again if not adequately
buffered. This redundancy is present during standard processing and is described in
the four reuse opportunities in Section 3. Figure 6 depicts the overlapping of the spatial
dimensions of a feature map during the processing. The overlapping depends on the
stride and the spatial dimensions of the tile, feature map, and kernel map. In [12], it is
demonstrated that recomputation can account for up to 10 times the original energy cost
estimated with single-layer scheduling; therefore, overlapping pixels must be stored in
appropriate buffers. The overlapping regions Ox and Oy between adjacent tiles, depicted
in Figure 6, can be evaluated as shown in Equation (7). In Section 4.1, a solution to the re-
computing problem is presented, improving the one proposed in [12], from the observation
that some overlapping regions are immediately reused during the computation.

Ox = Nkx − Sx Oy = Nky − Sy (7)

Electronics 2022, 11, 2933 10 of 24

Figure 6. Overlapping regions of adjacent tiles happen during regular processing. In case of single-
layer scheduling, these regions would be re-fetched from the main memory.

4. HW-Flow-Fusion: Inter-Layer Scheduling and Hardware Resource Optimization

Starting from the assumption that an accelerator based on a spatial array has enough
hardware settings and control to support multiple processing sets to compute the same
layer, as demonstrated in [6,7], in this work, we propose HW-Flow-Fusion, an inter-layer
scheduling framework that can explore the map-space of fused layers. Instead of using
dedicated arrays, we leverage the PE sets to compute different layers, reusing the available
hardware resources.

4.1. Optimized Intermediate Pixel Reuse Model

The problem of recomputation and the need for an appropriate reuse model was
introduced in Section 3.4. The overlapping regions of Figure 6 indicate the tile portions that
must be stored and reused to avoid recomputation. With appropriate tiling, it is possible to
define the exact control sequence of a memory controller in charge of managing the correct
movement of intermediate results between the processing units and the on-chip memory.
This is the main reason for the proposed multi-tiling approach introduced in Section 4.2.
Figure 7 depicts the overlapping regions, only one set of the regions to be stored and reused
must be accounted for when evaluating the size of the reuse buffer. The required reuse
storage is then given by Equation (8), the term reuse bufferx is used when the direction of
tile processing is horizontal, as in Figure 6, and covers the contributions of (1,4), (1,2,4,5),
(2,5), and (2,3,5,6), whereas reuse buffery is used when the processing direction is vertical.

reuse bu f f erx = (Nix − Tix) · (Nky − Sy) · Ni f

reuse bu f f ery = (Niy − Tiy) · (Nkx − Sx) · Ni f
(8)

The reuse model described in [12] additionally saves the sequential overlap, thus
requiring extra storage that can be evaluated using Equation (9). In this case, reuse overheady
is for the horizontal processing and is added to the reuse bufferx, whereas reuse overheadx is
for vertical processing and added to the reuse buffery.

reuse overheadx = (Tix − (Nkx − Sx)) · (Nky − Sy) · Ni f

reuse overheady = (Tiy − (Nky − Sy)) · (Nkx − Sx) · Ni f
(9)

Electronics 2022, 11, 2933 11 of 24

Figure 7. Overlapping tiles that require buffering. Only one entire block out of the four marked for
reuse has to be stored to allow for zero recomputation scheduling.

4.2. Multi-Tiling for Minimum Reuse Memory with No Recomputation

Multi-tiling is used to schedule the computation of the exact amount of unique pixels
needed for the current layer without generating redundant results. This technique, paired
with reuse buffers, allows zero recomputation. Multi-tiling starts as a normal tiling process
by generating a set of output tiles, Tox Toy, and then evaluating the corresponding input
tiles, Tix and Tiy. To explain the multi-tiling process, a graphical example is depicted in
Figure 8, in which the output pixels must be generated at the top, and intermediate layers
are reported to produce the output pixels 1, 2, and 3 of the bottom layer. The computation
was traced back using the input/output relations of Equation (4), assuming Nkx = Nky = 3,
Sx = Sy = 1. With these values, a 3 × 3 input size is required to produce a single output
pixel. Conversely, to compute a 3 × 3 intermediate tile size 5 × 5 input pixels are required.
Let us suppose that the first tile to be evaluated is the one marked as 1|2 in the bottom
right square. New unique pixels marked with 1, 2, 1|2, 2|3, and 1|2|3 are produced. From
Equation (7) it is possible to evaluate the overlapping in the top and intermediate layer and
store all the pixels that will be reused during the computation for output pixel 3, which are
all the pixels marked with 2|3 and 1|2|3. Therefore, to compute the pixel number 3 in the
bottom layer, the pixels marked with 3 in the intermediate layer must be computed. To do
so, pixels 2|3 and 1|2|3 are read from the top-layer reuse buffer and used to generate the
intermediate pixels, which are then processed with the pixels 2|3 and 1|2|3 read from the
intermediate layer reuse buffer, to generate the final output value.

In order to reduce the amount of data saved in reuse buffers and justify the model
proposed in Section 4.1, only unique pixels are scheduled for computation to reduce the
overlapping. To produce new blocks of unique pixels in intermediate layers, the tile set
must be shaped accordingly to exclude the recomputation of pixels stored in reuse buffers.
If the previous example of Figure 8 is continued over the entire spatial dimension, the
resulting tile sizes will look like what is depicted in Figure 9. These tiles are used to
schedule the computation of new pixels every time they are executed. By comparing the
left and right squares of Figure 8, it can be noticed that the tiles only cover pixels generated
for the first time by every tile, minus the overlapping with the tiling factors that generated
previous pixels. To define the spatial dimensions of these tiling factors, it is necessary to
evaluate the three horizontal and vertical sizes from which it is possible to define the entire
set. Naming the three horizontal sizes X1, X2, and X3, and the three vertical sizes Y1, Y2,
and Y3, it is possible to define with Formula (10) the tile dimensions and occurrence, the
latter, with the terms Xreps and Yreps, represents the number of times a tile is repeated along
the X or Y dimension.

Electronics 2022, 11, 2933 12 of 24

Xreps =

(⌈
Nox
Tox

⌉
− 2
)

Yreps =

(⌈
Noy
Toy

⌉
− 2
)

X1 = Tix − Px Y1 = Tiy − Py

X2 = Tix − (Nkx − Sx) Y2 = Tiy − (Nky − Sy

X3 = Tix − 2 · Px − X1 − X2 · Xreps Y3 = Tiy − 2 · Py − Y1 − Y2 · Yreps

(10)

Figure 8. Example of multi-tiling applied to generate two output tiles of two and one output pixels.

Figure 9. Multi-tiling covers the computation of new unique pixels. Notice how the tiles on the right
cover the pixels covered for the first by the tiles on the left. The multiple tiles are ordered following
a left-to-right and top-to-bottom order, rather than the processing direction to avoid additional
irregularities in the scheduling.

The padding correction is necessary to avoid the scheduling of nonexistent pixels
covering the borders of the feature map. Finally, it is possible to define in formula (11) the
tile sizes, using the notation and position of Figure 9.

Tile 1 = X1 · Y1 Tile 2 = X2 · Y1 Tile 3 = X3 · Y1

Tile 4 = X1 · Y2 Tile 5 = X2 · Y2 Tile 6 = X3 · Y2

Tile 7 = X1 · Y3 Tile 8 = X2 · Y3 Tile 9 = X3 · Y3

(11)

The repetitions of these tiles depend on the size of Tox and Toy from which this set is
generated. A possible set of tiles comprehend 1, 2, 3, 4, 6, or 9 valid tiles. In the case of nine
valid tiles, the following tile matrix (12) represents the tile repetition across the feature map.

Electronics 2022, 11, 2933 13 of 24

Tile1 Tile2 Tile3
Tile4 Tile5 Tile6
Tile7 Tile8 Tile9

 =

 1 Xreps 1
Yreps (Yreps · Xreps) Yreps

1 Xreps 1

 (12)

Finally, the total MAC computation with standard tiling and multi-tiling for a convolu-
tional layer can be evaluated with Equation (13), the term Nif is set to zero for pooling layers.
The total MAC operations for any layer is the same with both standard and multi-tiling.

computestandard = No f · Ni f · Nkx · Nky · Nox · Noy

computemulti = No f · Ni f · Nkx · Nky · (
9

∑
n=1

Tilen · Repetitionsn)
(13)

4.3. Hardware Resource Partitioning

The goal of a mapping framework such as Timeloop [8] or CoSA [9] is to find an
efficient mapping for the target spatial array. This involves searching for optimal spatial
and temporal tiling and reordering as detailed in Section 3.3. Resource partitioning is
conducted at the layer level to map the execution of a single workload in [8,9,11], whereas
resource partitioning in this work occurs at both the layer and the CNN level to map the
execution of multiple layers on a fraction of the available resources. In this work, we
explore both array and register file partitioning. The former is similar to spatial tiling at
the array level (unrolling, PE set), and the latter is similar to temporal tiling at the register
file level (loop tiling). Figure 10 depicts the spatial and temporal fusion proposed in this
work and detailed in the following paragraphs. Since the main focus is the analysis of
inter-layer scheduling opportunities, an analysis of the required high-level and PE-level
control is omitted.

Figure 10. Resource partitioning is applied to the on-chip buffer, the PE array for spatial fusion, and
the PE register file for temporal fusion. A hypothetical 2-layer fusion mapping is depicted, showing
unallocated memory and array regions. With both single- and inter-layer scheduling, it is possible to
have reduced resource utilization due to spatial/temporal tiling factors that are not divisors of the
dimensions of the array or the memory. PEs partitioned with either spatial or temporal policies use
the on-chip memory to communicate with other PEs assigned to the processing of other layers.

4.3.1. Spatial Fusion

Spatial fusion is the partitioning of the PE array for the computation of multiple
layers sharing the same on-chip memory and reuse buffers. This partitioning models an
accelerator in which the PE array can be divided into smaller regions, each computing
a different layer and communicating with the on-chip buffer to read and store the data.
Each PEs region would compute the output pixels of the layer assigned to it and send
them back to the on-chip memory, which would be read by another PEs region that would
compute the output pixels of another layer and repeat the same process. The objective

Electronics 2022, 11, 2933 14 of 24

of spatial fusion is to find the size of sub-arrays like those depicted in Figure 10, which
can achieve an energy-efficient or high-throughput scheduling. It is impossible to know
the best partitioning beforehand, as any combination of sub-arrays with any widths and
heights could be the optimal one. Therefore, analyzing each combination and comparing
the loop schedules is necessary to find the most efficient resource allocation. It is important
to highlight that each sub-array will execute only one layer within the fusion schedule, so
the partitioning must assign the best amount of the resource to each workload, with the
number of sub-arrays equal to the number of layers fused. To find the best partitioning
for N number of layers, we start by evaluating all the N sub-arrays that can fit within
the original PE array without overlapping, using the method described in [22] to remove
illegal solutions. Only sub-arrays of height and width that are even divisors of the PE
array dimensions are considered to prune the large solution space, which is then reduced
again by removing solutions that are known to be illegal for certain dataflows. For instance,
recalling Table 2, when mapping on a row-stationary dataflow, it is possible to remove all
arrays with a height that is smaller than the horizontal dimension of the kernel, as they
would not generate any legal mapping, as detailed in [6]. Finally, each tile set of every fused
layer is mapped for each combination of sub-arrays, and hardware metrics are collected and
compared to find the most energy/throughput-efficient partitioning. A possible downside
of spatial fusion is that the unrolling factors of the fusion schedule might be smaller than
those of a single-layer schedule, being constrained by the sub-array sizes, which might
result in increased computation latency.

4.3.2. Temporal Fusion

Temporal fusion consists of partitioning the register files (RF) of each PE in the array for
each layer within the fusion schedule. This partitioning models an accelerator in which the
register file inside the PEs can be used to store input, weight, and output pixels belonging
to different layers and process them alternatively. To some extent, this could be similar to
CPU multi-threading, which allows the same core (PE) to process multiple threads (layers)
sharing the same cache (register file) and datapath (MAC). The execution of a layer would
be paused when there are not enough input pixels to compute a partial sum or output pixel
and the PE would switch to compute another layer with the data available in the register
file. Theoretically, this can reduce the PE idle time as it would always have multiple jobs to
process. A possible downside of temporal fusion is that the interleaving search space is
reduced by reducing the register file size assigned to each layer. Interleaving is leveraged
by some dataflows such as row-stationary in [6] and output-stationary in [19] to compute
partial sums of multiple output channels within a single PE, reusing the same input data
with different kernels. On the other hand, according to [23], the register file size does not
significantly impact the performance, while the PE array size does, so the reduction in
interleaving possibilities should not degrade the efficiency. At the same time, the possibility
to unroll the execution of each layer over the original array size (compared to spatial fusion)
should result in lower computation latency and higher energy efficiency, as both strictly
depend on the number of PEs and the possibility to have larger spatial tiling factors (not
constrained in temporal fusion). In the hardware model adopted by this work and [8,11],
the register file of a certain PE is divided into three sections: one for the weights, one for
the inputs, and one for the partial sums. In inter-layer scheduling, each of these sections
has to be partitioned into N sub-sections, with N being the number of fused layers. The
search space is limited to one combination for each fusion schedule, which is obtained by
dividing the input, weight, and partial sums register file into N sub-sections, respectively.
For instance, the register file of a standard row-stationary model accelerator in [8,11] is
divided into 384 bytes for the weights, 24 for the input pixels, and 36 for the partial sums.
In case of a fusion schedule with two layers, with N = 2, each layer would have 192, 24,
and 36 bytes for the weights, input pixels, and partial sums, respectively.

Electronics 2022, 11, 2933 15 of 24

4.4. Proposed Inter-Layer Scheduling Framework

The inter-layer scheduling framework HW-Flow-Fusion is built on a validated tool
named HW-FlowQ [11] and reuses it as it is for single-layer scheduling. The framework
is written in Python and uses Tensorflow 1.13 for the definition of CNNs models. The
framework used in this work is depicted in Figure 11 and is composed by several blocks,
two of which execute some tasks that have been described in previous sections. Valid
hardware resource partitions for spatial and temporal fusion are evaluated as explained
in Section 4.3. Tile sets are evaluated as detailed in Section 4.2 using Equations (10)–(12),
whereas buffering requirements are evaluated with Equations (5) and (8), as explained in
Section 4.1.

The procedure to generate and map the sequence of fused layers begins with the
evaluation of sequences of layers that can be fused with the available hardware resources.
Starting from a sequence composed of a minimum of two layers, all possible tile sets
are evaluated and used to check the validity of the fusion schedule, comparing the total
allocated memory with the buffer size. The solution is marked as legal and saved for
further evaluation if the total memory occupation is less than or equal to the available
memory size. If at least one valid solution exists for the current sequence of layers, a new
adjacent layer is added to the sequence, and the validity check process starts over with
an additional layer, and this process continues until there are no valid sets for a sequence.
When this happens, the cycle starts again with a new sequence composed of the first layer
that could not be fused and the next. Multiple layers can be included in different fusion
schedules. For instance, if the first four layers of a CNN can be fused, this procedure
outputs three legal fusion schedules: one for the first two layers, one for the first three
layers, and one with all four layers. This process continues until the entire CNN has been
analyzed and outputs a set of sequences and single layers, which compose the solution
space searched by the scheduling framework. The scheduler receives the corresponding
layer dimensions, tile sets, and buffer/RF/array partitions for each sequence of fused
layers or single layers. Each solution is then evaluated, hardware metrics are generated,
the fused sequences are compared against each other, and the corresponding layers are
scheduled singularly. Only the fusion schedules that improve the target hardware metrics
with respect to single layers are included in the final output. The hardware metrics are
evaluated using the same architecture model and energy/delay models of Timeloop [8] and
HwFlowQ [11]. The target hardware platform is an ASIC spatial array, configurable with
different dataflows and memory hierarchies, with a typical structure as the one depicted in
Figure 1. The energy and delay of each operation (MAC operation, RF read, NoC transfer,
etc.) are multiplied for the total access count specific to that resource. For instance, the
DRAM energy for each operation is multiplied for the write access count evaluated as
Outputwrite in Equation (3).

Figure 11. Overview of the inter-layer scheduling framework. The framework takes as input a
CNN model with layer types and dimensions, an abstract hardware model with memory and PE
array specifications, and scheduler settings such as the energy/delay model and search resolution.
Valid partitions, tile sets, and sequences of layers are evaluated and marked for single- or inter-layer
scheduling. The output schedule is composed by the mapping parameters and performance metrics.

Electronics 2022, 11, 2933 16 of 24

5. Results

For all experiments, we used the energy model of [8,11] and six hardware configura-
tions of a spatial-array accelerator, where the model architecture is based on Eyeriss [6],
reported in Tables 3 and 4. For each configuration, the batch size is one, the dataflow is
row-stationary with the same loop order used in the original Eyeriss accelerator [6] and also
in Timeloop [8] for single-layer scheduling, the MAC precision is 8 bit, and its energy cost
comprehends the MAC contributions plus two memory read operations, and one memory
write operation from/to the register file. Each memory access is evaluated as the cost of the
read operation from the source plus one write operation to the destination. The on-chip
buffer bandwidth is 2 bytes per cycle, and the DRAM burst length is 8 bytes. The refined
computation to communication ratio (CTC) formula proposed in Caffeine [21] is used to
evaluate the communication efficiency.

Table 3. Hardware configurations of the row-stationary model accelerator used in the experiments.

HW Config. PEx PEy On-Chip Buffer (kB) Register File (B) Precision

1 32 16 512 512 8

2 32 16 1536 512 8

3 32 32 1536 512 8

4 48 32 1536 512 8

5 32 16 1536 1024 8

6 32 16 1536 1536 8

Table 4. Energy costs for each hardware configuration.

HW Config. MAC 8 bit [pJ] On-Chip Buffer Access [pJ] DRAM Access [pJ]

1 1.75 26.70 200.0

2, 3, 4 1.75 78.16 200.0

5 1.79 78.16 200.0

6 1.83 78.16 200.0

5.1. Reuse Buffer Comparison and Impact of On-Chip Memory on Layer-Fusion

The memory required to fuse multiple layers depends on the constraints Nif = Tif
and Nof = Tof that both this work and [12] apply. In order to fuse two or more layers, the
entire weight volume must be stored on-chip. In Figure 12, it is possible to see how the
on-chip storage affects inter-layer scheduling. In order to replicate the results from [12]
and make a fair comparison, the CNN tested is VGG16-E [1], with all layers and data
quantized to 16 bit. We consider the first seven layers of the CNN, which are CONV1-
CONV2-POOL1-CONV3-CONV4-POOL-CONV5. Notice how the DRAM communication
volume is reduced by ~60% when fusing the first three layers. There is almost no difference
in memory requirements when fusing three or six layers, because the third and sixth layer
of both schedules would be a pooling layer, which requires no weight memory.

The reuse model proposed in Section 4.1 is an improvement over the one proposed
in [12], which is used as the baseline in the comparison of Figure 13. The additional
buffer memory is evaluated as kB of reuse buffer that must be allocated to achieve zero
recomputation. The reuse model presented in this work outperforms [12], requiring
from ~15% to ~22% less additional memory than [12] when fusing the same number
of layers and achieving the same reduction in communication volume. The gap becomes
even wider when the number of fused layers increases because deeper layers have more
feature maps, and the size of each sequential overlap that must be stored with the reuse
model [12] increases.

Electronics 2022, 11, 2933 17 of 24

Figure 12. Minimum storage to fuse VGG16 layers.

Figure 13. Reuse buffer comparison against [12].

5.2. Comparison of Spatial, Temporal Fusion, and Single Layer Hardware Metrics

We compare the HW metrics estimated with standard scheduling, here named single-
layer, against those generated with inter-layer scheduling. For this experiment, we use
ResNet18 and VGG16-E, HW configuration 1 of Table 3 and set the maximum number
of fused layers to two. We only compare layers included in fusion sequences since the
framework outputs the same mapping for the layers that cannot be fused. The energy and
latency estimates for ResNet18 are reported in Figure 14, those for VGG16-E in Figure 15,
the overall energy and latency ratios are reported in Table 5, evaluated as the sum of the
contributions for each layer in the sequence. Only six couples of layers could be fused with
this hardware configuration because the on-chip buffer size limits fusion possibilities once
the number of feature maps starts to increase in deep layers. For VGG16-E, the buffer size
prevents the fusion of any layer after the sixth, but there are two max poolings (zero weight
memory) that precede two convolutional layers, which allow the scheduler to find two
additional fusion sequences. For ResNet18, it is possible to fuse couples of consecutive
layers up to the twelfth convolutional layer.

Table 5. Energy, latency, and off-chip to on-chip communication volume comparison with the sum of
single- and inter-layer scheduling of the sequences of layers reported in Figures 14 and 15.

Temporal Fusion
Single−Layer

Spatial Fusion
Single−Layer

Spatia Fusion
TemporalFusion

CNN VGG16-E ResNet18 VGG16-E ResNet18 VGG16-E ResNet18

Energy 94% 91% 94% 90% 100% 98%

Latency 61% 66% 114% 118% 188% 180%

Com. volume 49% 47% 49% 48% 100% 101%

Electronics 2022, 11, 2933 18 of 24

Figure 14. Resnet18 single layer (SL) vs. temporal fusion (FT) vs. spatial fusion (FS) with HW
config. 1.

Figure 15. VGG16-E single layer (SL) vs. temporal fusion (FT) vs. spatial fusion (FS) with HW config. 1.

From the collected results, it is possible to see that temporal fusion can reduce the
energy, latency, and communication volume for almost every sequence, while spatial fusion
can only improve the energy and communication volume with a significant increment of
the latency. With temporal fusion, the overall latency is reduced to 66% for ResNet18 and to
61% for VGG16. For ResNet18, the latency reduction is consistent through the six couples
of fused layers, whereas with VGG16-E, the gap with single-layer schedules is smaller. On
the other hand, spatial fusion can match or slightly improve the energy with respect to
temporal fusion. The major contribution to latency is due to the computation rather than
communication, as spatial fusion achieves approximately the same communication volume
as temporal fusion. As anticipated in Section 4.3, a rise in the computation latency was to
be expected as it strictly depends on the unrolling and available PE engines. By analyzing
the results reported in Figures 14 and 15, it is possible to conduct the same observations
in [23] regarding the accelerator architecture design choices for high throughput, which is
that the number of PEs is more important than the size of the register file within each PE.
Recall that temporal fusion uses the entire PE array and reduced register file for each layer,
whereas spatial fusion uses reduced PE arrays and the entire register file for each layer. In
this experiment, the scheduler found the array partitioning reported in Table 6. The array
partitioning search space is limited to sub-arrays with spatial dimensions that are divisors

Electronics 2022, 11, 2933 19 of 24

of the original PE array size, whereas the register file partitions are fixed to 1
N of the original

size, with N being the number of layers within the fusion sequence. It is possible to notice
that the layers scheduled with spatial fusion are executed using partitions that are half of
the original PE array size, with one exception for the first two layers of VGG16-E, where
one quarter of the original array is assigned to each layer. Therefore, for spatial fusion, the
communication latency improvement achieved with inter-layer scheduling is lost due to
the higher computation latency resulting from executing each workload on fewer PEs with
respect to the single-layer scheduling approach.

The energy consumption of spatial and temporal fusion is marginally improved with
respect to the single-layer because only the communication energy is improved with the
inter-layer scheduling method presented in this work. Further investigation of inter-layer
scheduling could focus on reducing data movement between the register file and on-chip
buffer by directly forwarding computed output pixels from one processing engine to
another. The major contributions to the overall energy consumption come from the data
movement within the PE array and the on-chip memory accesses, as demonstrated in [6,8].
Moreover, the overall communication volume required to process the layers reported in
the figures is halved for both CNNs. The results for VGG16-E could have been anticipated
by observing Figure 12. With CONV1 and CONV2 fused, the communication volume
is reduced by ~25%, with POOL1 and CONV3 by ~10%, and with layers CONV4 and
POOL2 by ~17%. While there are three more couples of fused layers in the VGG16-E
experiment of Figure 15, the pixel communication volume is dominated by the six layers
we just mentioned.

Table 6. HW resource partitioning found by the scheduler for ResNet18 and VGG16-E layers. Only
PE array partitions are actually searched, as the register file sizes are fixed during the search.

ResNet18 VGG16-E

Layer
Spatial Temporal

Layer
Spatial Temporal

PE Array Register File PE Array Register File
[PEx, PEy] [Wgt, In, Out] [PEx, PEy] [Wgt, In, Out]

CONV1 [16, 16] [192, 12, 16] CONV1 [8, 8] [192, 12, 16]
POOL1 [16, 16] [192, 12, 16] CONV2 [8, 8] [192, 12, 16]

CONV2_1_1 [32, 8] [192, 12, 16] POOL1 [32, 8] [192, 12, 16]
CONV2_1_2 [32, 8] [192, 12, 16] CONV3 [32, 8] [192, 12, 16]

CONV2_2_1 [32, 8] [192, 12, 16] CONV4 [32, 8] [192, 12, 16]
CONV2_2_2 [32, 8] [192, 12, 16] POOL2 [32, 8] [192, 12, 16]

CONV3_1_1 [32, 8] [192, 12, 16] CONV5 [32, 8] [192, 12, 16]
CONV3_1_2 [32, 8] [192, 12, 16] CONV6 [32, 8] [192, 12, 16]

CONV3_2_1 [32, 8] [192, 12, 16] POOL3 [16, 8] [192, 12, 16]
CONV3_2_2 [32, 8] [192, 12, 16] CONV9 [32, 8] [192, 12, 16]

CONV4_1_1 [32, 8] [192, 12, 16] POOL4 [16, 16] [192, 12, 16]
CONV4_1_2 [32, 8] [192, 12, 16] CONV13 [16, 16] [192, 12, 16]

Finally, we analyze the improvements in the CTC ratio, recalling the definition and
analysis from [21]. The peak performance of an HW accelerator is bounded by either
the computational rooftop (theoretical maximum number of operations per cycle) or the
system’s memory bandwidth multiplied by the CTC ratio. The memory bandwidth limits
the accelerator’s performance because for each functional unit (in our case, the PEs) to work
at full regime, it must be continually fed with data from memory. The CTC ratio defines the
amount of computation attainable with a certain amount of communication. Recalling that
there are four reuse opportunities in single-layer scheduling and an additional one in inter-
layer scheduling, the CTC ratio can be increased by maximizing data reuse and reducing
data movement between different memory levels. In this case, inter-layer scheduling could
outperform the single-layer as it completely removes the off-chip communication between
intermediate layers. The CTC ratios for standard and fused scheduling are reported in
Table 7. The increment of the CTC ratio is more noticeable in layers dominated by pixel

Electronics 2022, 11, 2933 20 of 24

volumes, such as the first couple of layers of VGG16-E, and generally in fusion sequences
containing a POOL layer at the end.

Table 7. CTC ratios for ResNet18 and VGG16-E for the single- and inter-layer schedules of
Figures 14 and 15. For single-layer the CTC ratios are reported for each layer, whereas for spatial and
temporal fusion the CTC ratios of the fused sequences of layers are reported.

ResNet18 VGG16-E

Layers Single Temporal Spatial Layers Single Temporal Spatial

CONV1 3.52 9.62 9.48 CONV1 0.80 58.06 58.06POOL1 0.03 CONV2 6.97

CONV2_1_1 5.03 14.65 14.65 POOL1 0.05 15.09 15.09CONV2_1_2 5.03 CONV3 9.50

CONV2_2_1 5.03 14.65 14.65 CONV4 12.91 23.02 23.93CONV2_2_2 5.03 POOL2 0.053

CONV3_1_1 4.73 10.90 10.80 CONV5 8.53 42.47 42.47CONV3_1_2 9.95 CONV6 9.68

CONV3_2_1 9.95 9.90 9.90 POOL3 0.05 11.76 11.76CONV3_2_2 9.95 CONV9 15.95

CONV4_1_1 3.99 5.10 5.05 POOL4 0.05 4.83 4.83CONV4_1_2 5.12 CONV13 5.58

To understand why the CTC ratio worsens for deeper layers, we must recall that the
refined CTC ratio used in [21] also depends on the burst length and, therefore, how much
continuous data are read from the off-chip memory. Therefore, moving multiple small
sequences of pixels might be worse than moving a few large sequences, as the latter would
use the memory bandwidth more efficiently than the former. Considering that we set the
constraints Tif = Nif and Tof = Nof for all intermediate layers, forcing the scheduler to save
the entire weight volume inside the on-chip buffer, there is not much storage left to store
intermediate pixels. Therefore, the tiling factors composing the tile sets of layers with a
high number of feature maps tend to be smaller, resulting in a communication pattern made
of small memory read and write operations. This increases the communication latency and
reduces the memory bandwidth efficiency. Moreover, when using the multi-tiling approach
proposed in Section 4.2, the tile sets used to block the processing of pixels around the center
of the feature map spatial dimensions are inherently smaller than the others and might
not use all the available on-chip buffer. Currently, our scheduler selects the biggest tile set,
i.e., the one with the largest memory footprint, to perform the legality check of the fusion
schedule. These small tile sets are what allow for fusing layers with zero-recomputation
but are not bandwidth-efficient when their sizes are too small. A possible solution to taper
this inefficiency could be to regroup the tile sets with a repetition count higher than one, in
particular, referring to formula (11), tile 2, 4, 5, 6, and 8. Regrouping small tile sets could
allow the movement of more data between the off-chip and on-chip memory, resulting in
a fusion schedule with a smaller degradation of the bandwidth efficiency. We leave this
study as future work.

Overall, temporal fusion can achieve lower latency, energy, and communication vol-
ume with respect to a single layer schedule, outperforming spatial fusion. Furthermore,
temporal fusion computation latency is not penalized by a smaller PE array partitioning
as spatial fusion, whereas the latter trade-off latency had slightly better energy efficiency
and increased CTC ratio. These results prove that inter-layer scheduling can improve
dataflow-based CNN accelerators’ performance metrics.

5.3. Hardware Constraints and Scaling on Inter-Layer Scheduling

In this section, we experiment with different HW configurations to understand how
layer fusion performance scales with different HW resources. In particular, two HW
configurations (3 and 4 of Table 3) are used to measure if spatial fusion can leverage

Electronics 2022, 11, 2933 21 of 24

the additional processing engines obtained by increasing the array size when fusing, at
most, four layers. Similarly, the two HW configurations, five and six, are used with
temporal fusion for the same purpose, with additional register file memory for each PE
with sequences of maximum four layers. The on-chip buffer is over-dimensioned for the
two CNNs considered. In both experiments, it was set to 1536 kB to increase the solution
space explored by the inter-layer scheduling framework, relaxing the legality checks while
evaluating the sequences of layers that can be fused.

We start by analyzing the results with temporal fusion in Figure 16 for ResNet18 and
Figure 17 for VGG16-E. The size of the register file within each PE in HW configuration six
was increased by 50% with respect to HW configuration 5. Therefore, the scheduler can fuse
at least four layers for both configurations, with a minimum RF memory-per-layer equal to
or higher than the one allocated for two layers with HW configuration 1. The results clearly
show that there is no performance scaling when the register file size is increased since the
energy and latency metrics with HW5 and HW6 of Table 3 are less than 1% for energy,
latency, and CTC ratio. This experiment confirms that register file size does not significantly
influence the energy or throughput efficiency of an accelerator and is congruent with the
observations made in [23].

Figure 16. Energy and latency for ResNet18, mapped with temporal fusion with HW config. 5 and 6.

For what concerns the performance scaling with spatial fusion, reported in Figures 18 and 19
for ResNet18 and VGG16-E, the overall energy difference for both CNNs with both HW
configurations is in the range of ±1%. Again, no noticeable improvement in energy
efficiency was achieved by scaling the PE array size. On the other hand, the latency was
significantly improved, with a 45% latency reduction between HW config. 5 and 6 for
ResNet18 and 75% for VGG16-E. These results are again congruent with the observations
made in [23] and prove that spatial fusion can benefit from additional PEs. A larger
PE array means that the scheduler can unroll the execution of each layer over larger
partitions, reducing the constraints on the unrolling factors, resulting in a much lower
computation latency.

In conclusion, of the two fusion methodologies proposed in this paper, temporal
fusion proved to be the best choice for small accelerators such as the one modeled in
HW configuration 1 but does not scale with additional resources. In contrast, spatial
fusion is severely limited on small PE arrays; however, it might be the best option to
improve the computing performance on large accelerators, such as those modeled with
HW configurations 3 and 4.

Electronics 2022, 11, 2933 22 of 24

Figure 17. Energy and latency for VGG16, mapped with temporal fusion with HW config. 5 and 6.

Figure 18. Energy and latency estimates for ResNet18, mapped with spatial fusion with HW config.
3 and 4.

Figure 19. Energy and latency estimates for VGG16-E, mapped with temporal fusion with HW config.
3 and 4.

6. Conclusions

Energy- and latency-efficient CNN acceleration is achieved by leveraging different
scheduling techniques to minimize data movement and maximize reuse. In this work,
we present an inter-layer scheduling framework that can exploit intermediate pixel reuse,
alongside the other common reuse strategies used in previous works. Furthermore, we

Electronics 2022, 11, 2933 23 of 24

investigate the constraints and trade-offs of layer fusion and provide a mathematical
background to understand how to map the execution of multiple workloads with data
dependencies on the same HW accelerator. Finally, we propose an improved data reuse
model, tiling, and partitioning strategies that allow fusing multiple layers without recom-
putation on generic spatial array accelerators. As further work, the proposed inter-layer
scheduling method could be included in standard single-layer scheduling frameworks
and optimized to improve the solution space and search efficiency. Moreover, inter-layer
scheduling could be investigated even further to move layer fusion at the dataflow level to
reduce some of the current limitations on the sequences of layers that can be fused, and
further optimize data movement. Compared to standard scheduling techniques, the two
fusion strategies, named spatial and temporal, can reduce the communication volume by
51% and 53% for VGG16-E and ResNet18 on a spatial array accelerator and reduce the
latency by 39% and 34%, while also increasing the CTC ratio, resulting in a better memory
bandwidth efficiency.

Author Contributions: Conceptualization, E.V., P.M., N.F., M.R.V. and A.F.; methodology, E.V.;
software, E.V., N.F. and M.R.V.; validation, E.V., N.F. and M.R.V.; formal analysis, E.V.; investigation,
E.V.; data curation, E.V. and P.M.; writing—original draft preparation, E.V. and P.M.; writing—
review and editing, E.V., P.M., N.F., M.R.V., A.F. and L.F.; visualization, E.V., P.M., N.F. and M.R.V.;
supervision, M.M., G.M., C.P. and W.S.; project administration, M.M., G.M., C.P. and W.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional neural network
HW Hardware
PE Processing engine
RF Register file
NoC Network on chip
CTC Computation to communication
MAC Multiply and accumulate

References
1. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
2. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
3. Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the 2020 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 10778–10787. [CrossRef]
4. Gidaris, S.; Komodakis, N. Object detection via a multi-region and semantic segmentation-aware cnn model. In Proceedings of

the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1134–1142.
5. Capra, M.; Bussolino, B.; Marchisio, A.; Masera, G.; Martina, M.; Shafique, M. Hardware and Software Optimizations for

Accelerating Deep Neural Networks: Survey of Current Trends, Challenges, and the Road Ahead. IEEE Access 2020, 8,
225134–225180. [CrossRef]

6. Chen, Y.H.; Krishna, T.; Emer, J.S.; Sze, V. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural
networks. IEEE J. Solid-State Circuits 2016, 52, 127–138. [CrossRef]

7. Gao, M.; Yang, X.; Pu, J.; Horowitz, M.; Kozyrakis, C. TANGRAM: Optimized Coarse-Grained Dataflow for Scalable NN
Accelerators. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, Providence, RI, USA, 13–17 April 2019; Association for Computing Machinery: New York,
NY, USA, 2019; ASPLOS ’19, pp. 807–820. [CrossRef]

8. Parashar, A.; Raina, P.; Shao, Y.S.; Chen, Y.H.; Ying, V.A.; Mukkara, A.; Venkatesan, R.; Khailany, B.; Keckler, S.W.; Emer, J.
Timeloop: A Systematic Approach to DNN Accelerator Evaluation. In Proceedings of the 2019 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), Madison, WA, USA, 24–26 March 2019; pp. 304–315. [CrossRef]

http://doi.org/10.1109/CVPR42600.2020.01079
http://dx.doi.org/10.1109/ACCESS.2020.3039858
http://dx.doi.org/10.1109/JSSC.2016.2616357
http://dx.doi.org/10.1145/3297858.3304014
http://dx.doi.org/10.1109/ISPASS.2019.00042

Electronics 2022, 11, 2933 24 of 24

9. Huang, Q.; Kalaiah, A.; Kang, M.; Demmel, J.; Dinh, G.; Wawrzynek, J.; Norell, T.; Shao, Y.S. CoSA: Scheduling by Constrained
Optimization for Spatial Accelerators. In Proceedings of the 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), Valencia, Spain, 14–18 June 2021; IEEE: Manhattan, NY, USA, 2021; pp. 554–566.

10. Mei, L.; Houshmand, P.; Jain, V.; Giraldo, S.; Verhelst, M. ZigZag: Enlarging Joint Architecture-Mapping Design Space Exploration
for DNN Accelerators. IEEE Trans. Comput. 2021, 70, 1160–1174. [CrossRef]

11. Fasfous, N.; Vemparala, M.R.; Frickenstein, A.; Valpreda, E.; Salihu, D.; Doan, N.A.V.; Unger, C.; Nagaraja, N.S.; Martina, M.;
Stechele, W. HW-FlowQ: A Multi-Abstraction Level HW-CNN Co-Design Quantization Methodology. ACM Trans. Embed.
Comput. Syst. 2021, 20. [CrossRef]

12. Alwani, M.; Chen, H.; Ferdman, M.; Milder, P. Fused-layer CNN accelerators. In Proceedings of the 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), Taipei, Taiwan, 15–19 October 2016; pp. 1–12. [CrossRef]

13. Niu, W.; Guan, J.; Wang, Y.; Agrawal, G.; Ren, B. DNNFusion: Accelerating Deep Neural Networks Execution with Advanced
Operator Fusion. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, Virtual, 20–25 June 2021; Association for Computing Machinery: New York, NY, USA, 2021; PLDI 2021,
pp. 883–898. [CrossRef]

14. Kao, S.; Huang, X.; Krishna, T. DNNFuser: Generative Pre-Trained Transformer as a Generalized Mapper for Layer Fusion in
DNN Accelerators. arXiv 2022, arXiv:2201.11218.

15. Ma, Y.; Cao, Y.; Vrudhula, S.; Seo, J.S. Optimizing the Convolution Operation to Accelerate Deep Neural Networks on FPGA.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 1354–1367. [CrossRef]

16. Tu, F.; Yin, S.; Ouyang, P.; Tang, S.; Liu, L.; Wei, S. Deep Convolutional Neural Network Architecture With Reconfigurable
Computation Patterns. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2017, 25, 2220–2233. [CrossRef]

17. Nvidia. NVDLA Open Source Project. 2017. Available online: https://nvdla.org/ (accessed on 28 June 2022).
18. Kao, S.C.; Krishna, T. MAGMA: An Optimization Framework for Mapping Multiple DNNs on Multiple Accelerator Cores. In

Proceedings of the 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA), Seoul, Korea, 2–6
April 2022; pp. 814–830. [CrossRef]

19. Venkatesan, R.; Shao, Y.S.; Wang, M.; Clemons, J.; Dai, S.; Fojtik, M.; Keller, B.; Klinefelter, A.; Pinckney, N.; Raina, P.; et al.
MAGNet: A Modular Accelerator Generator for Neural Networks. In Proceedings of the 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), Westminster, CO, USA, 4–7 November 2019; pp. 1–8. [CrossRef]

20. Aimar, A.; Mostafa, H.; Calabrese, E.; Rios-Navarro, A.; Tapiador-Morales, R.; Lungu, I.A.; Milde, M.B.; Corradi, F.; Linares-
Barranco, A.; Liu, S.C.; et al. Nullhop: A flexible convolutional neural network accelerator based on sparse representations of
feature maps. IEEE Trans. Neural Netw. Learn. Syst. 2018, 30, 644–656. [CrossRef] [PubMed]

21. Zhang, C.; Sun, G.; Fang, Z.; Zhou, P.; Pan, P.; Cong, J. Caffeine: Toward Uniformed Representation and Acceleration for Deep
Convolutional Neural Networks. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2019, 38, 2072–2085. [CrossRef]

22. Huang, E.; Korf, R.E. Optimal rectangle packing: An absolute placement approach. J. Artif. Intell. Res. 2013, 46, 47–87. [CrossRef]
23. Yang, X.; Gao, M.; Liu, Q.; Setter, J.; Pu, J.; Nayak, A.; Bell, S.; Cao, K.; Ha, H.; Raina, P.; et al. Interstellar: Using Halide’s Scheduling

Language to Analyze DNN Accelerators. In Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, Lausanne, Switzerland, 16–20 March 2020; Association for Computing
Machinery: New York, NY, USA, 2020; pp. 369–383.

http://dx.doi.org/10.1109/TC.2021.3059962
http://dx.doi.org/10.1145/3476997
http://dx.doi.org/10.1109/MICRO.2016.7783725
http://dx.doi.org/10.1145/3453483.3454083
http://dx.doi.org/10.1109/TVLSI.2018.2815603
http://dx.doi.org/10.1109/TVLSI.2017.2688340
https://nvdla.org/
http://dx.doi.org/10.1109/HPCA53966.2022.00065
http://dx.doi.org/10.1109/ICCAD45719.2019.8942127
http://dx.doi.org/10.1109/TNNLS.2018.2852335
http://www.ncbi.nlm.nih.gov/pubmed/30047912
http://dx.doi.org/10.1109/TCAD.2017.2785257
http://dx.doi.org/10.1613/jair.3735

