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ABSTRACT This work presents an eight element array antenna with single layer frequency selective
surface (FSS) to obtain high gain. The eight elements are fed by single port. The FSS consists of
14 x 6 unit cells with one unit cell size is 5 x 5 mm? having wideband behavior. The antenna uses Rogers
RT Duroid 5880 substrate and giving very wide bandwidth from 20 GHz to 65 GHz, covering millimeter
wave 5G bands (including 28 GHz, 38 GHz and 60 GHz). The designed FSS is showing stop band
transmission characteristics below —10 dB threshold from 25 GHz to 42 GHz and 59 GHz to 61 GHz. The
eight element antenna integrated with the FSS reflector, which results an improvement in the gain level from
12dB to 15 dB at 28 GHz, from 10 dB to 12 dB at 38 GHz, and from 9.5 to 11 dB at 60 GHz. The dimensions
of the antenna are 65 x 27 x 0.857 mm?. The proposed antenna shows stable gain and directional radiation
patterns. The simulation findings are experimentally confirmed, by testing the fabricated prototypes of the

proposed antenna system.

INDEX TERMS 5G, array antenna, FSS, mobile communication.

I. INTRODUCTION

With the rapid increase of mobile communication users over
the last decade, the need for higher channel capacity and
wider bandwidth have been exponentially increased. In order
to meet these increasing demand, fifth generation (5G) is one
of the promising technology, which can provide higher data
rates up to 20 Gbps, and very low latency of 1 ms [1], [2],
improved reliability, connectivity of millions of devices with
low power consumption and support for modern technolo-
gies such as autonomous cars, smart cities and virtual real-
ity [3]. As many of the nations that are regarded leaders in
5G technology, development, and deployment (such as
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United States, Korea, Japan, United Kingdom, Canada,
China, and the European Union) are employing millimetre
wave band for 5G communication [4]. As due to scarcity
and congestion in sub-6 GHz frequency spectrum, millimeter
wave spectrum is the potential spectrums for 5G mobile
applications [5]. Moreover, the absolute bandwidth provide
by millimeter wave frequencies is much larger than the the
bandwidth provided by sub-6 GHz [6]. However, in mil-
limeter wave bands there are some key factors that should
be considered. As at higher frequencies bands free space
path loss, user hand effects and shadowing effect are severe
during the propagation [7]. Therefore, in order to compen-
sate these losses, the gain of the transmitter and receiver
antennas needs to be increased, without using additional
power [8].
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In recent literature, several types of antennas and tech-
niques have been proposed to solve the problems of path
loss, user hand effects and shadowing effect. In [9] and [10]
a planer waveguides based, array antennas with high gain
and wide band are reported. Three identical sub-arrays are
positioned along the upper portion of the device with the
beam steering capabilities, consisting of rectangular patches
in [11] and capacitive linked patches is reported in [12].
In [13], [14] phased arrays working in the millimeter wave
frequencies have been used in the mobile devices, despite the
fact that their all of the constructions are three-dimensional,
integration is tough. Planar phased array antennas, including
patch, vivaldi, quasi-Yagi, and slot antennas, were proposed
in different forms in [15]-[17]. In [12], a planar eight identical
elements array for 5G applications is reported. Moreover,
in diverse user settings, a circularly polarized phased array in
the portable device was investigated [18]. In [19] proposes a
unique design combining a low-frequency PIFA antenna with
millimeter wave end fire antenna array. The millimeter wave
antenna array has a wide bandwidth of more than 9 GHz, and
a gain of 9.5 dBi, with coverage efficiencies of 85 % and
55 % for gain of 0 dB and 4 dBi, accordingly. However, in the
above literatures, most of the antenna designs are showing
limitations in respect of high gain, fabrication complexity,
and operational bandwidth. Our proposed antenna has high
gain, wide bandwidth, simple fabrication, and covering all
the candidate frequencies considered for 5G millimeter wave
communications.

In this work, by applying parametric analysis from
designs A- F in Fig.1, finally the optimized single
element is obtained which shows wide band characteris-
tic covering range from 20 GHz to 65 GHz. This cov-
ers 28 GHz frequency band including 38 GHz and 60 GHz
bands, these all are considered candidate frequencies for the
5G mobile applications [23]-[28]. The antenna with one
element is showing good characteristics in terms of radi-
ation patterns but having limitation of low gain values
(i.e., 3 dB, 4 dB, 4 dB), at the aforementioned frequencies
of 28 GHz, 38 GHz, and 60 GHz, respectively. In order
to compensate high gain requirement, the optimized one
element antenna is converted to two, four and finally to
eight element antenna. The final design having eight ele-
ments showing maximum gain levels of 12 dB, 10 dB,
and 9.5 dB. To further increase the gain, unit cell metama-
terial is designed. Parametric analysis was carried out on
metamaterial unit cell to get the optimized one in order to
cover the wide range of targeted frequencies. The final opti-
mized metamaterial unit cell is covering all aimed bands and
showing band stop behavior at the targeted bands. In order
to get further improvement in gain, single layer frequency
selective surface is made having 14 x 6 unit cells. The FSS
reflector is introduced at back side of the eight elements
antenna at 5 mm space. It is observed good improvement
in gain values that are 15 dB at 28 GHz, 12 dB at 38 GHz,
and 11 dB at 60 GHz. The proposed designs of antenna and
FSS were fabricated. The simulated and measured results
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TABLE 1. Dimensions of the single element antenna.

Parameter hy ho hs hy hs hg ho
Value (mm) 2.3 04 2.625 04 2325 32 05

Parameter b1 ba bs bsa bs bg hy
Value (mm) 0.65 1.075 0.4 0.325 0.4 04 1.8

show good agreement. This work was compared to related
work which shows obvious superiority in terms of gain, wide
bandwidth and operational frequencies.

The remaining part of the paper is structured as follows:
section 2 discusses design and optimization of the single
element and eight elements antenna. Section 3 discussed the
design of unit cell and its FSS array. Section 4 presented the
comparison between simulated and fabricated design.
The comparison of the proposed design with related work
is carried out in section 5. The last section 6, presents conclu-
sion of the proposed work.

Il. DESIGN AND OPTIMIZATION

The steps followed for the design of single element antenna
have been discussed in detail in this section. The single
element is replaced by the multi elements designs as per
the required needs for the 5G applications. Rogers 5880 has
been used as a substrate with thickness 0.787 mm, relative
permittivity of 2.2, and loss tangent of 0.0009. The upper
arm and lower with the truncated ground are made of copper
conductor.

A. OPTIMIZATION OF THE SINGLE ELEMENT ANTENNA

The evolution of the initial to final design is achieved in
six stages as shown in Fig. 1. The initial design type-A
has only one main arm on the front and similarly on the
back side. The length of the arm is taken half of wavelength
at 38 GHz. The type-A shows no behavior for being acting
as an antenna at any 5G frequency bands. A small upper
arm is made with addition of a stub in type-B. The type-B
covers dual frequency ranges from 22 GHz to 29 GHz and
from 33 GHz to 40 GHz. In order to cover 60 GHz, the
type-C is introduced with addition of lower arm due to which
covering range from 47 GHz to 64 GHz is achieved. Type-C
covers all bands but showing bandwidth limitation at 38 GHz.
The bandwidth is enhanced by introducing left most vertical
arm in type-D design with absence of stub. The bandwidth is
increased but shows instability in behavior due to removing
of stub. In type-E, the upper arm is removed in order to
verify its significance. It can be seen that type-E covers only
higher frequency bands. Finally, the optimized single element
antenna type-F is designed which covers wide bandwidth
ranging from 20 GHz to 65 GHz. The type-F antenna covers
5G candidate frequencies which are 28 GHz includ-
ing 38 GHz and 60 GHz. The optimized final version type-F
is obtained by varying the relative positions, sizes includ-
ing lengths and widths of the main arm, upper/lower arms,
vertical arm, stub and height of the ground. The height of the
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FIGURE 1. Evolution of single element antenna (a) Single arm (b) Upper
arm (c) Upper and Lower arms (d) Addition of vertical arm (e) Removing
Upper arm and (f) Optimized single element antenna.

N
_ N _ JET T
I
e LRI\ o=y e T T e o2
2 vV IOS s23es S e ==
= A S < -
S -10 1y i\ SN P oo Nao-z2
£ VN 7/ s P W

VNN gt z=
© -15 [} \ ‘\ [ S
S \ RN AN === Sy type A
= VO SO — == Sy typeB
S 0 \ s “w /, m type
5 \, ‘{ /4 Sn type C
= vV ~ == S typeD
S .25
4 === Sn typeE
———- Sy typeF
-30
20 30 40 50 60 70

Frequency (GHz)

FIGURE 2. Comparison of reflection coefficients of single element
designs with the optimized single element design.

TABLE 2. Dimensions of the eight element antenna.

Parameter Ly Lo Ls Ly Ls Lg W1 W,
Value (mm) 7 30 402 15 338 75 133 025

ground plane plays in important role in obtaining the opti-
mized results due to its influence on the radiation character-
istics of the antenna. All these parameters play an important
role in the behavior of the antenna. The optimized parameters
of the single element type-F are shown in Table 1. The pro-
posed single element design is showing good characteristics
like light weight, wide bandwidth, easy to fabricate and stable
radiation patterns. Fig. 2 represents the reflection coefficients
of all the six designs (type-A to type-F). These results are
obtained by using CST microwave studio in the time domain.

B. OPTIMIZATION OF THE MULTI ELEMENT DESIGN
The antenna with one element is showing good characteristics
in terms of radiation patterns but having limitation of low gain

VOLUME 10, 2022
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FIGURE 3. Geometries of the multi elements designs (a) Two elements
antenna (b) Four elements antenna and (c) Eight elements antenna.

values. Therefore, single element type-F design is converted
to two, four and eight elements for compensating the need of
high gain required for 5G applications as indicated in Fig. 3.
To get broadside radiation pattern, 7.5 mm spacing is chosen
between the inter-elements of the individual elements. The
taper lines feeding network is provided to the multi elements
designs. The end feeder is selected 50 € while all other
taken 100 Q2. The widths and lengths of feeding lines have
been selected according to the equations [29].

277

Wi = (
Zo\J€r

—2)h (1)
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TABLE 3. Simulated radiation characteristics of the proposed antennas.

(a) 1- Element (c) 4— Elements
£ (GHz) Planes | MLM | MLD | HPBW | SLL | f (GHz) | Planes | MLM | MLD | HPBW | SLL
z
(dB) | (deg) | (deg) |(dB) (dB) | (deg) | (deg) |(dB)
23 E 433 | 95 1719 | 0 E 9.38 | 91 121.5 0
H 24 3 782 | -2.1 28 H 4.9 2 20.7 |-1.3
33 E 5.88 | 88 108.4 | -7 E 6.89 | 87 85 |27
H |0434| 6 59.7 |22 38 H 751 | -8 155 |26
60 E 475 | 87 160 0 E 799 | 87 459 | -6
H 4.22 5 54 |34 60 H 719 | -4 35 |28
(b) 2— Elements (d) 8-Elements
£ (GHz) Planes | MLM | MLD | HPBW | SLL | f (GHz) | Planes | MLM | MLD | HPBW | SLL
z
(dB) | (deg) | (deg) |(dB) (dB) | (deg) | (deg) |(dB)
23 E 6.55 | 93 1493 | -3 E 135 | 91 455 |52
H 4.41 8 445 |-2.6 28 H 8.2 2 9 -4.9
33 E 7.85 | 86 97.6 |-3.1 E 11.3 | 93 525 |38
’ H 486 | 4 39 |36 38 H 7.33 1 106 |-1.9
60 E 7.6 88 90 |48 E 9.5 95 375 |-1.8
H 353 | -7 49.7 |-1.1 60 H 4.82 4 26.5 |09
W, = ( 277 2)h 2) 0
o= -
ZD4/E}’ —_ A
M 5 [N
L2 L2 <) 1\
L4 = ? and L6 = Z (3) @ \‘ “ . -==
5 -10 {\\ 255
. . . .2 \ ,——r> &
Wi represents width of end feeder line when Z, is 50 €. 2 \ \ lr -,a‘::\\_,;," “l? S
. . . = Ny N =
W, represents width of all other feed lines when Z, is 100 €2. § -15 1 \ \ ,,7;:\\ e Q‘.ﬁl' Dt
The main feeder of 50 ohm is further divided into equal S ,‘(' ‘I:I AR\ ! === Snofsingle element
feeders of 100 ohm in order to provide equivalent excitation B * \ ,(‘,' === Syoftwo elements
signals to all elements of 50 ohm as these feeder lines are E 25 1 v Sy of four elements
in parallel combination. €, represents relative permittivity = == Sy of eight elements
and h shows height of the substrate. Lo, L4 and L¢ are the -30 2 30 20 5 6 7
horizontal lengths of the feed lines. The parameters of the Frequency (GHz)

feed lines network provided to eight element antenna are
shown in Table 2. The simulated Sy, gain vs. frequency plots
and the radiation patterns of the single and multi-element
antennas are shown in Fig. 4, Fig. 5, and Fig. 6, respectively.
A negligible variation observed in impedance (S1; < —10dB)
between the single and multi-elements designs as displayed
in Fig. 4. The gain values are significantly increased by
increasing elements from single to eight elements. Fig. 6
shows the comparison of radiation pattern in the two principal
planes, that is, E-plane (¢ = 90°) and H-plane (¢ = 0°)
which shows gain is increasing in parallel with the increasing
number of elements in the array design. For measuring the
mutual coupling between neighboring elements, the eight
elements are fed by separate ports instead of single feed line
as indicated in Fig. 7. It is important to mention that there is
very minimal mutual coupling between elements because of
proper selection of spacing between the adjacent elements.
The inter-element spacing is 7.5 mm which is A/2 distance
at 20 GHz. The spacing taken at lowest frequency due to
fact that mutual coupling is high at lower distance. Lower
frequency required greater distance between elements as
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FIGURE 4. Comparison of reflection coefficients (S;;) of multi element
designs.
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FIGURE 5. Comparison of Gain verses frequency of multi element designs.

compared to higher frequency. Therefore, the lower fre-
quency is chosen a reference frequency for calculating
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FIGURE 6. Comparison of radiation patterns in E and H planes at 28 GHz,
38 GHz and 60 GHz.

11111111

FIGURE 7. Eight elements are fed by separate ports for measuring mutual
coupling between elements.

inter-elements spacing without mutual coupling. Fig. 8 shows
mutual coupling between elements. The details of the sim-
ulated side lobe level (SLL) along with Main lobe Magni-
tude (MLM) including its direction (MLD) and Half Power
Beam-width (HPBW) are presented in Table 3. It is noticeable
that beam scanning along the main lobe direction occurs in
the multiple elements design, compare to the single element
design. It is obvious that gain is inversely to HPBW as the
gain is increasing HPBW is decreasing simultaneously [29].

Ill. DESIGN OF UNIT CELL FOR FSS CONFIGURATION

Frequency Selective Surface (FSS) are repeated periodic
structures with one or two dimensions. FSS has unit cells
which are aligned in periodic form. FSS structures have
the capability to reflect, absorb or transmit the electromag-
netic radiations depending on the design [20]-[22]. Rogers
5880 substrate with thickness 0.787 mm has been used for
designing unit cell with dimension 5 x 5 mm?. The sim-
ulations of the unit cells have been carried out in CST for
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FIGURE 8. Transmission coefficients of eight element antenna.

(c) (d)

FIGURE 9. Optimization of the unit cell (a) Square patch (b) Square shape
strip (c) Slots in the square patch (d) Optimized unit cell.

obtaining the wide bandwidth covering all the targeted bands.
The final version of unit cell is achieved with the result of
evolution from Fig. 9 (a) to (d) for the aimed bands. The
unit cell A with square patch achieves dual band operation
which can stop band at 38 GHz with bandwidth 13 GHz
from 30 GHz to 43 GHz and also shows stop band behavior
at 60 GHz from 56.5 GHz to 60.3 GHz but limitation of
covering of 28 GHz. Unit cell B with square shape strip
is showing stop band characteristics at only 60 GHz with
bandwidth of 0.7 GHz from 60 GHz to 60.7 GHz at Sp; <
—10 dB. In order to cover all the aimed bands, design of
unit cell C is introduced which also shows limited operational
behavior covering only lower bands, 28 GHz and 38 GHz
with bandwidth of 20 GHz from 23 GHz to 43 GHz. The
optimized final version unit cell D is designed which shows
stop characteristics with improved Sy; < —10 at the entire
targeted bands. It covers from 25.5 GHz to 42 GHz with band-
width of 16.5 GHz, and 59.6 GHz to 61 GHz with bandwidth
of 1.4 GHz. The proposed unit cell has square shape with
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FIGURE 10. Comparison of reflection coefficients of the different unit
cells with the optimized unit cell.
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FIGURE 11. Comparison of transmission coefficients of the different unit
cells with the optimized unit cell.

four square slots at the corners. The optimized version
Fig. 9 (d) shows good performance for the targeted fre-
quencies. The comparison of the reflection and transmission
coefficients of all the unit cells are shown in Fig. 10, Fig.11,
respectively.

A. EIGHT ELEMENT ANTENNA WITH FSS ARRAY
REFLECTOR

In order to achieve high gain values, the FSS array of
14 x 6 unit cells is introduced with optimized space
of 5 mm at back face of the eight elements antenna
design are displayed in Fig. 12. The integrated size of
antenna with FSS reflector is slightly changed which is
66.75 x 28.75 x 6.679 mm?>. The proposed integrated
antenna size is deployable in the mobile phones as nor-
mal mobile phones like Vivo Y53s has size of 164 x
75.46 x 8.38 mm3. The gains enhancement achieved of 3 dB,
2 dB and 1.5 dB at 28 GHz, 38 GHz, 60 GHz, respectively.
Comparison of gain without and with FSS is represented in
Fig. 13. It is obviously observed that gains enhanced at the
targeted frequencies without notable changes in the overall
characteristics of the antenna. A detailed parametric study
was carried out for obtaining the optimized space of 5 mm
between antenna and FSS.

The proposed eight elements antenna with using FSS
shows highest gain relatively to the rest of antennas designs
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FIGURE 13. Comparison of gain without and with FSS of eight element
antenna.

and is considered candidate antenna for 5G communications.
This antenna is fabricated and the simulated results precisely
compared and validated in the measurement facility.

IV. RESULT DISCUSSION OF THE FABRICATED EIGHT
ELEMENT ANTENNA

The eight elements array design is fabricated as given in
Fig. 14. The simulated results including return loss, gain,
radiation pattern, and efficiency are validated in the measure-
ment facility. The comparison of simulated verses measured
reflection coefficient (S11) is given in Fig. 15 which are in
close agreement.

The simulated and measured radiation patterns at 28 GHz,
38 GHz and 60 GHz in the two principal planes, E-plane
(XZ @ ¢ =90°) and H-plane (YZ @ ¢ = (0°) are compared
in Fig. 16. This comparison shows closed agreement between
the simulated and measured results of the radiation patterns.
The direction of the main beam is oriented along 6 = 0°
and 180° as clearly observed from results. Also strong radia-
tions are observed at other angles in this plane.
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FIGURE 14. Photograph of the prototype: (a) FSS design (b) Eight
elements antenna design.
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FIGURE 15. Comparison of simulated and measured reflection
coefficients.

Fig. 17 shows comparison of simulated and measured gain
plots as function of frequency. The measured gains values
at the targeted frequencies are 15 dB at 28 GHz, 12 dB
at 38 GHz and 11 dB at 60 GHz. The proposed array antenna
design shows stable gain characteristics. Therefore, it can
be considered for 5G communications due to its high gain
capability.

To analyze the internal operating behavior of the proposed
design at 28 GHz, 38 GHz and 60 GHz, the surface currents
are illustrated in Fig. 18. It is observed that the currents
at 28 GHz are concentrated at the center of the upper arm.
At 38 GHz, currents are resided at the edges of the upper part
while currents are concentrated at the lower arm at 60 GHz.
It means that upper arm is effective at 28 GHz and 38 GHz
while lower arm is responsible for 60 GHz.

Due to properly matched design, the simulated and mea-
sured radiation efficiency shows good agreement as illus-
trated in Fig. 19. The radiation efficiency of the proposed
design at the aforementioned frequencies is above than
acceptable value.

VOLUME 10, 2022

E-Plane (XZ @ ¢=90") H-Plane (YZ @ ¢=0")

=== Simulated
=== Measured

=== Simulated
=== Measured

o

Y
Theta Fhi

=28 GHz

~ = Simulated
== Measured
30

Theta " r"lu 20
I

=38 GHz

=== simulated
=== Measured

Vi
Theta :"’"

60 GHz

=i

© ®

FIGURE 16. Comparison of simulated and measured radiation patterns
(a) E-Plane (b) H-Plane at 28 GHz, (c) E-Plane (d) H-Plane at 38 GHz,
(e) E-Plane (f) H-Plane at 60 GHz.
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FIGURE 17. Comparison of simulated and measured gain verses
frequency of eight elements antenna with FSS.

FIGURE 18. Surface currents at (a) 28 GHz (b) 38 GHz and (c) 60 GHz.

V. COMPARISON WITH THE EXISTED DESIGNS
The proposed design is compared to other related antennas
with respect to bandwidths, efficiency, operating frequencies,
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TABLE 4. Comparison of proposed 5G antenna with other related antennas.

Ref No. Year Size (AXAXA) Operating Frequency BW Efficiency Number Measured
(A is taken in mm) (GHz) (GHz) (%) of elements | Gain (dBi)
[30] 2021 224 x 0.14 x 2.78 28 0.85 - 1 5
[31] 2021 0.94 x 2.6 x 0.047 28 3.15 83 4 11.65
[32] 2021 0.23 x 3.17 x 0.044 28 10 >50 8 8.1
[33] 2021 0.48 x 0.48 x 0.09 28/26 5.25 85 4 10.1
[34] 2021 3 % 0.747 x 0.115 28 4.5 80 8 10
[35] 2021 0.5 x 0.63 x 0.09 28 6.3 88 4 7.1
[36] 2021 5.2 x 4.05 x 0.063 38 3.17 80 4 6.25
[37] 2021 1.43 x 0.67 x 0.047 28 4.7 98.6 8 7.7
[38] 2020 14.57 x 7 x 0.09 28 5 70 8 >8
[39] 2020 | 14.07 x 10.28 x 0.011 28 3 — 8 4-10
[40] 2020 2.33 x 1.40 x 0.047 28/38 0.9/2 84/99 1 9/5.9
[41] 2021 2x3.3x0.05 28/38 4.66/7 >86 8 >10
28 86 15
This work | 2022 6.96x2.5%0.08 38 45 87 8 12
60 78 11
92 improved at the targeted frequencies with the eight ele-
LemT 7T === Simulated ments antenna design but higher values were obtained by
" L SN === Measured introducing frequency selective surface (FSS). The proposed
S - ‘\ eight elements antenna with FSS showed good measured
o - L4 .
e S’ S \\ gain values 15 dB, 12 dB, and 11 dB at 28 GHz, 38 GHz
% 84 \\ \\ and 60 GHz, respectively. The proposed design is fabri-
g ‘\ S cated and measured results were obtained. A good agree-
o o Tseoo ment between simulated and measured results was noted. The
\\ proposed eight element array design is considered candidate
Seaeoe- antenna for 5G applications due to its wider bandwidth,
76 w w \ \ stable radiation patterns, and higher gains at the targeted
20 30 40 50 60 70 frequencies.
Frequency (GHz)

FIGURE 19. Comparison of simulated and measured radiation efficiency.

measured gain values, number of elements and size. The
size is expressed in wavelength taken in mm at 28 GHz.
Comparatively, the proposed design is showing extremely
wide bandwidth, better efficiency, higher gain and covering
three important bands considered candidate frequencies for
5G communications. A detailed comparison with the related
work is shown in Table 4.

VI. CONCLUSION

In this work, single element antenna with type-A to type-F is
designed. The former single element designs were evolved
to type-F single element antenna for achieving wide band
behavior of the antenna. The proposed antenna system cover
a wide range of frequency spectrum from 20 GHz to 65 GHz
which covers all candidate frequencies considered for 5G
communications. Although, single element type-F has good
characteristics like light weight, wide bandwidth, easy to
fabricate and stable radiation patterns but it is not preferred
for 5G applications due to showing less gain values at the
targeted frequencies 28 GHz, 38 GHz and 60 GHz, respec-
tively. The proposed single element is converted into two,
four and eight elements, in aiming to achieve the desired
gain values for 5G applications. Though gain values were
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