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Abstract. Graphic Processing Units (GPUs) are promising solutions
in safety-critical applications, e.g., in the automotive domain. In these
applications, reliability and functional safety are relevant factors. Nowa-
days, many challenges are impacting the implementation of high-perfor-
mance devices, including GPUs. Moreover, there is the need for effective
fault detection solutions to guarantee the correct in-field operation. This
work describes a modular approach to develop functional testing solu-
tions based on the non-invasive Software-Based Self-Test (SBST) strat-
egy. We propose a scalar and modular mechanism to develop test pro-
grams based on schematic organizations of functions allowing the explo-
ration of different solutions using software functions. The FlexGripPlus
model was employed to evaluate experimentally the proposed strategies,
targeting the embedded memories in the GPU. Results show that the
proposed strategies are effective to test the target structures and detect
from 98% up to 100% of permanent stuck-at faults.

Keywords: Graphics Processing Units (GPUs) Software-Based Self-
Test (SBST), Modular Test program, In-field Testing

1 Introduction

Graphics Processing Units (GPUs) are powerful devices devoted to processing
high-demand data-intensive applications, such as multimedia, multi-signal anal-
ysis, and High-Performance Computing (HPC). Moreover, GPUs’ flexibility and
programming capabilities have boosted the operational scope of these technolo-
gies into new domains, so these devices are now also used for safety-critical
applications with substantial requirements in terms of reliability and functional
safety.

In the automotive field, safety-critical applications, such as Advanced Driver
Assistance Systems (ADAS) [1] and sensor-fusion systems, usually require huge
computational power and real-time capabilities. For this purpose, cutting-edge
technologies are used to implement modern GPU platforms to maximize per-
formance and reduce power consumption. Nevertheless, some studies [2][3] have
proven that devices with the latest transistor technologies are prone to be af-
fected by faults during the device’s operative life. One of the most critical chal-
lenges arises when permanent faults (for example, caused by wear-out or aging
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[4]) affect a module during the in-field operation, potentially altering the func-
tionality and the reliability of a device. Thus, end-of-manufacturing testing is no
longer sufficient. These recent challenges require additional testing procedures
executed during the in-field operation of a device.

In practice, test engineers employ three main methods to perform testing
during the operational phase of digital devices. These mechanisms are based on
i) hardware, ii) software and iii) hybrid approaches and can be used to solve the
new reliability and technology challenges in GPUs. The hardware mechanisms
include solutions based on the addition of Design for testability (DfT) structures,
such as Logic and Memory Built-in Self-Test [5], which can be activated at the
Power-on or during idle times of the operation and stimulate/observe the internal
modules of a device detecting possible faults [6]. Furthermore, ‘Error Correcting
Codes’ (ECC) structures can detect errors and also provide mitigation features
into memory modules or communications peripherals.

On the other hand, software solutions are based on designing special pro-
grams using appropriate combinations of instructions to test a target function-
ally. These non-invasive and flexible mechanisms are formally called Software-
Based Self-Test (SBST)[7]. Finally, the last approach is based on hybrid mech-
anisms, combining hardware structures and software programs to detect [8] or
mitigate [9] faults located in the different modules of a device. Both (hardware
and hybrid) solutions are costly when targeting small modules in a GPU and
should be developed and included in a design before the production phase. More-
over, both methods cannot be used in already existing hardware platforms.

The testing procedures of GPUs must consider that these special-purpose
parallel architectures are particularly efficient when executing embarrassingly
parallel programs, as a result of two main factors: the parallel operation of
threads and the efficient procedures of loading and storing operands from/to
memory. However, real applications are far from this behavior, and most of
them are composed of non-easily-parallelizable algorithms. Thus, these applica-
tions usually include intra-warp divergence, which is produced when a group of
threads (also known as Warp) follows different execution paths with different in-
structions. In [10], the authors analyzed the applications in the CUDA Software
Development Kit (SDK) and concluded that approximately 33% of the total
execution on them is devoted to process intra-warp divergence. Furthermore, in
[11], the authors profile a divergence map of typical programs and workloads in
GPUs. Results show that most applications might produce thousands or millions
of divergence conditions during the operation of the applications.

The GPUs include several structures and features to manage issues related
with the intra-warp divergence. A special structure called Convergence Manage-
ment Unit (CMU) (also known as Branch Convergence/Divergence Controller,
Branch Controller, or Divergence Controller) is employed to manage the intra-
warp divergence. The CMU controls the operation of multiple paths in the same
group of threads. Internally, the CMU evaluates control-flow instructions and
uses a stack memory to store relevant information concerning the execution
paths. Thus, the CMU is crucial for the correct operation of an application in
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the GPU, and a fault affecting this unit can propagate through the modules and
collapse the entire operation of the device and the application.

On the other hand, the use of several levels of memory supports an effi-
cient management of operands and reduces latencies generated by the inactive
threads, allowing high-performance operation in GPUs [12]. In the GPU paral-
lel architecture, several in-chip and out-chip memories cooperate on hiding stall
conditions during the operation of programs that become more critical when a
few threads access dispersed memory locations. Faults in these structures might
compromise the operation of a thread. Some hardware solutions, such as ECC
structures are now common. However, these solutions are not always acceptable
and the best tradeoffs are adopted (i.e., in some cases the ECCs are limited
to massive memory structures, such as the cache, the shared memory and the
register file), leaving other structures unprotected.

Several works demonstrated that SBST solutions [7] could be successfully in-
tegrated into safety-critical applications, such as the automotive ones [13]. Most
previous works on GPUs proposed SBST strategies targeting some data-path
modules [14], including the execution units [15] [16], the register file [17], the
pipeline registers [18] and some embedded memories [19]. Moreover, other solu-
tions targeted critical modules in the control-path (i.e., the warp scheduler [20],
their internal memories [21][22], and parts of the convergence management unit
[23]). Nevertheless, to the best of our knowledge, most of the proposed strate-
gies were designed after relevant programming efforts and analyses, considering
the specific micro-architectural details of the targeted structures, complicating
portability and generalization. Thus, practical strategies to provide convenient
procedures in developing SBST mechanisms are still missing in parallel archi-
tectures, including GPUs.

In the present work, we propose a modular approach to develop functional
test procedures using the SBST strategy targeting some relatively small but
critical memory modules.

The proposed modular approach exploits a key feature of most SBST strate-
gies in which test program corresponds to a combination of several routines,
which are linked together and integrated into the test program. Thus, each rou-
tine’s intended functionality can be seen as a ’modular’ and independent block.
This abstraction level (routines as blocks) can be used to explore alternative
descriptions and observe the advantages and limitations of diverse topologies
for a given target. Moreover, this method allows to port test routines between
different targets, simplifying the development of functional test programs.

This manuscript is an extension of a previous work [23], which introduced a
modular approach to develop parametric test programs. The procedures were ex-
perimentally validated using the memory in the convergence management mod-
ule. The main novelties of this work with respect to [23] are: i) a detailed de-
scription of the proposed modular strategy to generate test programs, ii) the
exploration of different test-program topologies for a given module, iii) the im-
plementation of different test routines (in a test program), considering opera-
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tional constraints, and iv) the validation through experiments using the small
embedded memories in the GPU core.

The proposed modular approach, and the developed SBST strategies are
implemented and evaluated resorting to the FlexGripPlus model, an open-source
version of the NVIDIA GPU architecture. Results show that the flexibility of
the proposed modular test programs do not compromise the fault detection
capabilities (from 98% to 100%) for the evaluated modules.

This work is organized as follows. Section II introduces a basic overview
of the GPU architecture, with special emphasis on the FlexGripPlus and the
memory modules targeted to validate the proposed strategies. Section III de-
scribes the modular SBST strategies to test permanent faults on each target
structure. Section IV reports the implementation details, including development
constraints. Section V reports the experimental results, and Section VI draws
some conclusions and outlines future works.

2 Background

2.1 General Organization of GPUs

GPUs are special-purpose parallel processing devices composed of arrays of ex-
ecution units (also called ‘Streaming Multiprocessors’, or SMs), implementing
the Single-Instruction Multiple-Data (SIMD) paradigm [24] or variations, such
as the Single-Instructions Multiple-Thread (SIMT). An SM is the main oper-
ative core inside a GPU and is organized as a few pipeline stages, including
various execution units (also known as Stream/Scalar Processors, or SPs), some
cache memories, a Register File (RF), one or more scheduler controllers, and
one or more dispatchers. More in detail, the operation of an SM starts when
the scheduler controller submits an available group of threads (also called Warp
or Work-group) and one instruction is fetched, decoded and executed in the
available SPs. Then, a new instruction is loaded and executed.

The SM also includes a CMU able to control different execution path in a
warp, which are produced when conditional assessments are present in a parallel
program. Modern SM implementations also include a memory hierarchy com-
posed of several levels of memories, aiming at the reduction of latency and race
conditions when load and store operations are performed.

2.2 FlexGripPlus

FlexGripPlus is a microarchitectural RT-level GPU model described in VHDL
[25]. This model is a new version built on top of the original FlexGrip model [26].
FlexGripPlus implements the Nvidia G80 microarchitecture, supporting up to
52 assembly instructions, and is also compatible with the CUDA programming
environment. The latest version of the GPU model has the flexibility to select
among 8, 16, or 32 SPs and may be configured to include both Floating-Point
Unit (FP32) and Special Function Unit cores.
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Fig. 1. A general scheme of the SM architecture in FlexGripPlus.

The FlexGripPlus architecture is based on the SIMT paradigm and exploits a
SM core with five stages of pipeline (Fetch, Decode, Read/Issue, Execute/Control-
flow and Write-back), as shown in Fig. 1. In the SIMT paradigm, the controller
(WSC) submits a warp (32 threads) and one instruction is fetched, decoded, and
distributed to be processed on an independent SP. The Read/Issue and Write-
back stages load and store data operands from/to the Register File (RF), shared,
global, local or constant memories. Moreover, the Address Register File (ARF)
and a Predicate Register File (PRF) are used to perform the indirect addressing
of memory resources and to store conditional flags, respectively.

The Execute/Control-flow stage is composed of the SPs, FP32s and other ac-
celerators. Moreover, this stage contains one CMU used for intra-warp branching
and also controls and traces the intra-warp divergence (caused when threads of
a warp follow different execution paths, so executing different instructions). The
CMU handle two paths in the same level of divergence by executing every path
in a serial manner until both paths return to convergence (all threads in a warp
execute the same instruction). The number of supported nesting divergence is
proportional to the number of threads in a warp. Furthermore, the CMU also
stores the information related to perform conditional branches with several ex-
ecution paths.

The following subsection describes the purpose of the embedded memories
in the GPU architecture and in the FlexGripPlus model.
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2.3 Embedded memories

Inside the SM core, several embedded memories are used to indirectly access to
memory resources, to store the predicate flags, after the execution of conditional
instructions, and to store information for divergence management. These em-
bedded memories are limited in size, in some cases lie inside controllers, making
hard and expensive to add fault detection or mitigation structures, such as ECC
or BIST.

Stack Memory: This special-purpose embedded memory is located inside the
CMU and stores the starting (divergence point) and ending (convergence point)
addresses when a conditional assessment instruction is executed by a warp. More
in detail, the memory contains a set of 32 Line Entries (LEs). The number of
LEs is directly related with the number of threads in a warp and the maximum
number of nested divergences per warp. A divergence point can be defined as
the address, in a parallel program, where two paths (Taken and No-Taken) are
produced by effect of a conditional operation, so causing intra-warp divergence
(threads in a warp execute different paths with different instructions). Further-
more, a convergence point is the location in the parallel program where the
intra-warp divergence ends, so the threads in a warp execute one path again.

Fig. 2. Organization of one LE in the stack memory of FlexGripPlus.

Each LE in the stack is composed of three fields, (see Fig. 2). These fields are
the ‘thread mask’ (TM), the flow ID, and the ‘program counter of a warp’ (SPC).
The TM stores the status of the active threads in a warp and an active logic state
represents the number of active threads executing a path (Taken or No-Taken).
The flow ID represents the execution state of the intra-warp divergence. This
field can be “01” (for a branch condition) or “00” (for a convergence point or
embarrassingly parallel condition). The SPC can store the starting address of
the paths or the convergence point address after both paths are executed.

The CMU employs two LEs to manage the intra-warp divergence. The first
LE stores the convergence point (also known as synchronization point) and the
number of active threads at the moment of starting the divergence. The second
LE stores the starting address for the No-taken path and the threads to execute
this path. It is worth noting that the CMU uses a new set of LEs to store the
status once nesting divergence is produced.

Predicate Register File (PRF): This module stores the predicate flags after
the execution of conditional assessments, by each thread, in a warp. These con-
ditional assessments are the product of logic-arithmetical operations or explicit
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setting operations. When the GPU model is configured with 8 SPs, 2,048 one-bit
size locations are assigned per SP. These locations are divided in groups of 4-bits
registers (C0, C1, C2 and C3) and distributed among the available threads. Each
predicate register Cx stores the logical state of the zero (Z), the sign (S), the
carry (C), and the overflow (O) flags for each thread. The flags remain constant
in the subsequent clock cycles until the execution of a new instruction affects
their state. Furthermore, these predicate flags are also used as conditions for
the executions of instructions, so these are commonly read before the execution
if required. Recent implementations of the PRF provide support for up to 8
predicate registers per thread.

Address Register File (ARF): This module is a structure of registers devoted
to perform indirect indexing for external memories to the SM, including the
shared and constant memories. These additional registers are mainly used in
case of performance optimization for the several threads in a program and are
mainly focused on the efficient access of memory sectors organized as arrays or
matrices. Furthermore, the ARF reduces latency of accessing frequently used
data by a kernel.

Each one of the eight SPs has an associated ARF module composed of 512
registers of 32 bit-size holding up to 128 threads. Each ARF module is distributed
among the threads, so four registers (A0, A1, A2, and A3) can be employed per
thread.

Vector Register File (VRF): This is a massive structure composed of 16KB
general-purpose registers of 32 bit-size and located inside of an SM. This struc-
ture is the fastest element in the memory hierarchy of the SM and is one of the
most critical units in the operation of a thread, since most instructions store or
load operands from this structure. The VRF is divided among the eight cores
and it is distributed among the threads in a program during the configuration
phase.

Since recent GPU architectures protect the VRF against fault effects through
ECC structures, this module is not considered as the main target for the devel-
opment of SBST programs. However, we employ this module to validate and
also explore different options of implementing test programs.

3 Modular Functional Testing Approach

The proposed modular approach to develop functional test programs aims at
defining a set of software functions (or self-test routines) that can be assem-
bled as compact and scalable blocks that connected together can perform the
test of a hardware structure in the GPU. Each software function is initially de-
fined as a generic high-level module, which is then translated into the equivalent
procedures to generate the intended functionality. The modular abstraction pro-
vides flexibility that can be used to explore and address different approaches of
functional test in any module.
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For illustration purposes, the method is supported in a scheme describing
the software functions of the modular test program. This scheme is composed
of blocks, representing modular procedures or software functions, and a set of
interconnections, indicating the serial sequence of operations to perform during
the test. Finally, dotted modules in the scheme (i.e., see Fig. 3) represent loop
functions as the repetition of one or several blocks. It is worth noting that in
parallel architectures, and depending on the structural location of the target
module, several threads might execute the same test program in parallel.

Three attributes of a target module are employed to develop SBST programs,
which are combined with the features of the parallel architecture of a GPU: i) the
controllability: directly related with the ability to inject test patterns through the
available instructions and structural resources, ii) the observability: related with
the possibility to propagate a fault (if present) to any of the available outputs in
the system, and iii) the architectural features of the target module that provides
information regarding the required test patterns and the operational features in
the parallel architecture.

The controllability of a module indicates the feasibility to apply test patterns
into the target module. It is worth noting that SBST is a non-invasive test
strategy, so it is possible that some modules have not controllability support
(i.e., instructions able to activate faults in the module) to apply a test pattern.
Furthermore, the observability describes the feasible methods to propagate the
fault effect to any visible output. This feature becomes important in modules that
are operated by different threads, so in a parallel architecture, such as the GPU,
the observability of faults might implicitly include parallel fault propagation.
Finally, the micro-architectural features of module provide the composition and
contribute to identify the controllability and observability options for a target
module.

The next subsections describe the development of the functional blocks and
schemes that can be used to develop SBST programs for the divergence stack
memory, PRF, ARF and the VRF in a GPU core.

3.1 Stack Memory

Controllability: The controllability of this module is achieved by injecting test
patterns through forcing the execution of controlled divergence paths for each
thread in a warp. Thus, a sequence of divergence paths provides a method to
detect permanent faults in the TM bit field of each LE. As an effect of the
divergence, the TM and the SPC fields store the active threads and the starting
address (following the no-taken path), respectively. Using this information, we
propose two possible methods to control the address pointer of the LEs and
inject test patterns in both fields (TM and SPC) of the LEs.

The first method (Nesting), see Fig. 3 (Top), generates test patterns by us-
ing a sequence of recursive intra-warp divergence routines, so nesting functions
cause the movement of the address in the stack pointer into a deeper LE. The di-
vergence is produced by successive conditional assessments between the thread
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Fig. 3. A general scheme of the proposed modular SBST strategies Nesting (Top) and
Sync-Trick (Bottom) to test the stack memory. (*) Optional function to test the odd
LEs. (§) Optional functions to distribute the test functions in the system memory.

identified of each thread in a warp and constant values, so generating an or-
dered number of comparisons (following a specific path, grey path in Fig. 3) and
producing the required test pattern in the TM field of each LE.

On each comparison, one or a group of threads is disabled, so defining a
pattern to be stored into the deeper LE and generating two execution paths. This
method is useful in managing the addressing of the LEs and injecting patterns
into the TM field. The routines on each path (Taken and No-taken) expose the
presence of a permanent fault in the TM. The previous process is repeated for
half the number of threads in a warp, hence two LEs are required during nesting
divergence management. Once the Taken routine finishes, the DMU submits the
No-taken path routine when a fault is present.

A fault-free divergence stack always executes the routine in the Taken path,
which generates new divergence paths and forces the test of other levels of LEs.
The fault detection can be explained considering that once a divergence is gen-
erated, two LEs store the synchronization point and the address to start the
not-taken path (as test patterns). Thus, a fault can be detected when retrieving
the stored values, or when the number of threads executing a path is different
from the expected one, so making the fault effects visible in the outputs.

The Nesting strategy can inject test patterns on the even LEs of the stack
memory. However, the odd ones are missing. The generation of test patterns for
these fields requires the explicit addition of one synchronization function (SSY)
before start the comparisons causing the divergence. The effect of SSY is the
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movement of the address pointer to the next or deeper LE in the stack memory.
Then, the same previous procedure can be applied again, so testing the odd LEs.

On the other hand, the main issue of this strategy is the procedure to manage
disabled threads. When a thread is disabled, this cannot be turned active again
until the divergence paths are executed, and a convergence point is reached.
Thus, it is not possible to test or detect a permanent fault in a deeper LE loca-
tion. This restriction implies that the comparisons should be performed multiple
times, targeting different threads in the TM field. We anticipate that this strat-
egy may suffer from considerable code length and excessive execution times.

The second method (called Sync-Trick), see Fig. 3 (Bottom), exploits the
functionality of synchronization functions (SSY) to deceive the CMU when test-
ing the stack memory. This method allocates SSY functions in strategically se-
lected locations in the test program to generate the movement in the stack
pointer.

More in detail, one SSY is explicitly located before each sequence of controlled
divergence functions to test the TM of a LE. Hence, this function forces the
controller to allocate a new level of LE in the memory without the need to
generate an intra-warp divergence explicitly. The advantage of this method is
that each LE can be addressed without the need of disabling specific threads
to create nesting addressing of the memory. Thus, this strategy replaces the
generation of nesting divergence by the management of the stack pointer. Then,
sequences of intra-warp divergence operations, generating the Taken and No-
taken paths, test the target LE. This process can be repeated N times (number
of threads in a warp) to use different active threads and memory addresses as
test patterns. Then, a new SSY addresses a deeper LE and the test procedure is
restarted. It is worth noting that this mechanism is effective to move across one
direction and reach deeper LEs in the memory. However, the returning phase
(to a previous LE) requires the achievement of the convergence point address,
which is initially stored by the SSY instruction.

Observability: The fault effect propagation is achieved using the Signature
per Thread (SpT) strategy [18][21] [27]. This mechanism assigns one signature
to each thread to map and to propagate the effect of a permanent fault into the
global memory. Each SpT is updated, taking advantage of both paths (Taken and
No-taken) produced during an intra-warp divergence. Thus, the same mechanism
used to test faults is used to increase the observability of the structure under
test. Each SpT computes and accumulates intermediate results for each verified
LE. The SpTs are finally grouped and stored in global memory for later analyses.

Modular Test Strategy: The observability and controllability methods for
the TM field are complemented with check-pointing routines, which are devoted
to testing the SPC field. These routines are located after the convergence point.
In this way, any permanent fault in the SPC is detected when the convergence
point or the starting address of the No-Taken path are incorrectly read from
the LEs by effect of any permanent fault. A fault in the SPC field generates an
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unexpected addressing in the system memory. The permanent fault is detected
by mismatches in time execution and through the signatures stored in the global
memory.

The check-point routines verify, through a check-point signature, the cor-
rect flow execution of a program. Moreover, this function compares an expected
check signature value with the actual accumulated value during the execution of
the test program. When the comparison matches, the accumulated signature is
updated, otherwise the test program finishes propagating in memory the error
in the SPC field of the evaluated LE. The same strategy can be applied to any
of the two controllability methods (Nesting or Sync-Trick).

The SPC field is partially tested. This issue is mainly caused by the short
length of the test program in both strategies. A control-flow routine (PC) can be
included before or in one of the divergence paths to test the high bits in the SPC
field. Moreover, the test routines are redistributed across the system memory, so
generating the missing test patterns.

Figure 3 presents the basic schemes of the modular composition of the Nesting
and Sync-Trick test mechanisms. In both schemes, the address pointers SPC0,
SPC1, and SPC2 represent the effect of each block function on the stack address
pointer and the values stored in the SPC field of the stack memory.

The use of these additional functions (Check-Point and PC) is entirely op-
tional, considering that these strategies are costly in terms of memory overhead
for an in-field execution. It is worth noting that the proposed technique takes
into account the operational restrictions to develop the test programs using the
Stuck-at fault model. Other fault models would require the adaptation of the
Sync-trick mechanism. However, it would be hard or impossible to follow the
Nesting strategy. The convergence function (CONV) synchronizes the operation
of both paths and restart (from that point) the embarrassingly parallel operation
of all threads in a warp.

3.2 Predicate Register File

Controllability: The PRF stores homogeneous information, so only one spe-
cific procedure is required to inject test patterns. The test of each register is
based on the generation of load procedures (Ld), see Fig. 4. Initially, the Ld
function targets one predicate register (Cx) per thread and changes its content
by using two possible methods: i) conditional assessments(PRF T) or ii) direct
assignments(PRF T R2C).

In the first case, a sequence of conditional assessments causes the activation of
each predicate flag and propagates its effect for evaluation. On the other hand,
in the direct assignment, the movement operation changes the content of the
predicate register. It is worth noting that in both cases, one flag was targeted to
clearly identify the location of a fault.

Observability: A function (PROP) performs conditional evaluations to identify
and classify a fault. This function propagates the effect of the target predicate
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register. The conditional evaluations produce two paths (Taken and No-taken).
Both paths are used to update a SpT to identify if a fault was present in a
given flag of a predicate register. As depicted in Fig. 4, the gray path describes
the fault-free case of the test. When there are no detected faults, the test pro-
gram remains convergent for all threads in a warp. In contrast, when a fault
is detected, an intra-warp divergence is produced as effect of the fault and the
SpT are updated indicating a detected fault. It is worth nothing that four serial
procedures of conditional evaluations are required to test each register.

Fig. 4. General schemes of the modular approaches to test the PRF.

Modular Approach: Once the methods for pattern injection and fault detec-
tion are defined for the PRF, it is possible to develop two different approaches
to organize the test program (PRF T and PRF T R2C). We consider the PRF
divided in M exclusive predicate registers per thread and each predicate register
is composed of N flags and T test patterns to be injected. Finally, the parallel
program is composed of P parallel threads.

In the first case, the injection and the evaluation are performed in a sequence,
so each flag of a register is directly tested, as depicted in Fig. 4(Top). In the
second case, the injection of test patterns targets initially one flag among all
predicate registers. Then, the evaluations of all registers are performed. Finally,
the procedure is repeated targeting the missing flags in the predicate registers,
see Fig. 4(Bottom). As specified in both schemes, the testing procedures consider
the maximum number of parallel threads (P).

3.3 Address Register File and Vector Register File

Controllability: The ARF and the VRF are modules storing homogeneous
information on each register, so one procedure is required to perform the pattern
injection and also the propagation of a fault. The ARF mainly stores addresses
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Fig. 5. General schemes of the modular approaches to test the ARF and VRF.

to access other memory resources. Furthermore, the VRF stores the operands
for each thread.

The test pattern injection procedure is based on a function (Ld), performing
direct assignations to each register in any module (Ax in ARF and Rx in VRF).
This parametric function (Ld) can access any register in the modules and perform
the store procedures.

Observability: A function (Comp) is employed to perform conditional assess-
ments and compare the value in any register with predefined masks. These masks
are used to identify any fault in the registers and are the base for the comparison.
A fine-grain mask allows identifying the exact location of the fault affecting a
register. However, several detection procedures are required. On the other hand,
a coarse-grain mask allows the rapid detection of a fault, but it is not possible
to identify its exact location.

After each comparison, the same approach used in the PRF is employed to
generate intra-warp divergence and identify a fault in the registers. Again the
two paths (Taken and No-taken) are employed to update the SpT. The gray
(see Fig. 5) path shows the embarrassingly parallel operations, when the test
approach is used and there are not fault in the module.

The modular approach can be applied in two methods and it is similar for
both modules (ARF and VRF). We consider modules composed of N register
per threads and P number of parallel threads and T test patterns to be injected.

In the first case, the test pattern injection, fault propagation and evaluation is
performed in a sequence for each register in the module, so allowing the division
of the functional test program as small parts. On the other hand, the identi-
fication of fault in the registers can be divided in two steps: general patterns
injection (1) and general evaluation (2). In (1), all registers assigned to a thread
are injected with a given test pattern. Then, in the step (2), all propagation and
comparison operations are performed to identify faults.
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3.4 Implementation

The implementation of the self-test routines is based on the analysis of the
generated scheme and the individual definition of the blocks, so determining the
composition of the modular testing solution. In principle, each block (routine)
can be composed of a number of instructions ranging from a simple instruction
up to complex program procedures. In the end, all SBST strategies are based on
blocks described as a combination of the high-level programming environment
(when possible) and instructions at the assembly-level (SASS for the used GPU).
The main advantage is the possibility to design programs for only detection
(VRF T det and ARF T) and diagnosis (VRF T dia).

3.5 Stack Memory

The synch-trick strategy cannot be directly described in CUDA, and explicit as-
sembly level descriptions are required. In contrast, the Nesting mechanism can
be directly mapped into the CUDA without modifications. The implemented
code for both test methods is composed of the following functions: i) Initial-
ization function, ii) synchronization function (SSY), iii) flow control function
(PC), iv) intra-warp divergence function and SpT update functions (Taken and
No-Taken), and v) check-point function (Check-point).

Each function is described independently and can be attached depending on
the target of a test program. The initialization function defines and initializes
the registers for each thread. Moreover, this function initializes the addresses to
store the SpTs and check-point signatures. The functionality of other functions
was introduced in the previous section.

Two main operations can be employed to manage the addressing of LEs in
the stack memory. Initially, the convergence function is implemented using one
synchronization instruction (SSY), which affects the stack pointer in the mem-
ory, and moves it to the next LE. When the program reaches the convergence
point, the pointer returns to the previously addressed LE. During the execution,
the first LE is used only for storing purposes. In contrast, the second LE is em-
ployed during the management of the divergence, and control-flow instructions
can affect this LE with writing or reading operations. Thus, when the operation
of the first path ends, the information in the second LE is used to start the not-
taken path until the convergence point is reached. The CONV function, which is
interpreted as the return from an addressed LE to the previous one, is described
using exit control-flow instructions, such as (NOP.S).

The PC functions are relocations in the memory of the intra-warp divergence
routines. These PC functions require of some instructions (in the format of 32
and 64 bits) located before each relocated function. These instructions avoid
hanging conditions by permanent faults in the SPC field. In this way, when the
program counter is affected by a fault, and it jumps to any unexpected memory
location, it is always possible to retake control of the program and finish the
execution of the GPU. Nevertheless, it is expected degradation in performance by
the effect of the permanent fault. On the other hand, the intra-warp divergence
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routines are generated by successive comparisons between the Thread.id values,
of a warp, with a constant value. The constant value is loaded using immediate
instructions. The check-point signatures are predefined before execution and also
loaded through immediate instructions. Then, the two paths are executed.

The functions in both paths (Taken and No-taken) update the SpT, which
is firstly loaded from memory and then increased as a counter according to the
path. A similar procedure is applied in the check-point routines that update
check-point signatures to verify the step-by-step execution of the program, so
avoiding infinite loops or unexpected branches by faults in the SPC field.

The modular description of both SBST strategies allows the exploration of
multiple options for the programs. In the Nesting method, the modular approach
guides the addition of functions, such as the nesting divergence, and also provides
support to add or to remove optional functions targeting the SPC field (PC and
Check-point). In contrast, the modularity presents considerable advantages for
the Sync-Trick method. The code description of this method is scalable and
modular, so it is possible to append or remove block functions in the description
of the program, targeting the individual test of LEs in the stack memory. This
modularity gives us the possibility to address any or a group of LEs and to
generate an independent test program. The division of the test contributes to
reducing the execution time of the test program during the in-field operation of
a GPU.

The Sync-Trick method can employ two approaches to evaluate LEs in mem-
ory. The first approach (Accumulative or Acc) aims the test of a consecutive
group of LEs and accumulates the signatures in memory. This approach must
always start from the first LE and can finish at any of the other 31 LEs in the
stack.

On the other hand, the second approach (Individual or Ind) targets the test-
ing of an individual LE and then the retrieving of signature results to the host.
This approach only focuses on one of the LEs in the memory and is intended to
have a reduced execution time. The performance cost (execution time (ST)) of
both approaches (Acc and Ind) can be calculated using the equations (1) and
(2).

ST (Acc) = Ts · n + Ch · n + SSY · (n− 1) (1)

ST (Ind) = Ts + Ch + SSY · (n− 1) (2)

where n represents the target LE in the stack memory. SSY, Ts, and Ch
represent the execution time of the synchronization, test pattern injection, and
check-point functions, respectively. The initialization function was not included
considering that it is constant for both cases, and it is negligible in terms of
duration.

From equations (1) and (2), it is clear that the cost of the Accumulative
version (Acc) is higher than for the Ind version. The cost is mainly caused by
the different approaches in each case. In the Acc version, the program is intended
to test the number of selected LEs sequentially. In contrast, the Ind approach
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targets the test on one LE, so the test patterns and check-point functions are
used once. The number of synchronization functions depends on the target level
of LE in the stack memory.

On the other hand, the performance cost of the Nesting method is described
by the expression in equation (3).

Ns = N · Ch ·
m∑
i=0

(SSY + Ts) (3)

where N represents the total number of threads in a warp, and m is the target
LE to be tested. CH, SSY, and Ts have the same meaning than in equations (1)
and (2). As introduced previously, the target LE could be even or odd. Thus,
the starting value of i in the summation could be 0 or 1.

Table 1. Performance parameters of the SBST programs using the two approaches to
detect permanent faults in the LEs

Approach Module Instructions
Execution time
[Clock cycles]

System memory
overhead [Bytes]

Sync-Trick Ind LE #1 Stack 403 33,449 1,612
LE #2 Stack 404 34,211 1,616
LE #10 Stack 412 34,589 1,648

Sync-Trick Acc
LEs 1 – 2 Stack 794 66,637 3,176
LEs 1-10 Stack 3,922 326,423 15,688

All Stack 12,524 1,030,473 50,096

Nesting

LE 1 Stack 683 37,986 2,732
LEs 1-2 Stack 1,323 83,569 5,292
LEs 1-10 Stack 6,443 528,086 25,772

All Stack 19,883 2,567,209 79,532

PRF T PRF 434 1,890,106 1,736

PRF T R2C PRF 398 1,795,596 1,592

ARF T ARF 122 338,240 488

VRF T det VRF 82 108,958 368

VRF T dia VRF 350 1,503,254 2,800

Table 1 reports the results concerning the performance parameters for the
Nesting and the Sync-Trick method under the accumulative and individual ap-
proaches. It is worth noting that results reported in Table 1 were obtained by
simulations performed resorting to the ModelSim environment to simulate the
FlexGripPlus model.

The reported results show the performance parameters for the two possible
methods that can be used to test the LEs in the stack memory of the CMU. All
versions present an overhead in the global memory of 64 locations (256 bytes)
devoted to saving the SpTs and the Check-point signatures.

Regarding the performance results of both versions, it can be noted that
the Sync-Trick (Ind) approach maintains an average performance cost to test
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any LE in the stack memory. The only difference among these programs is the
number of SSY instructions included to address a selected LE. Similarly, the
Sync-Trick (Acc) version can test a group of LEs consecutively. However, it
requires additional execution time and cannot be stopped once the test program
starts.

On the other hand, Table 1 also reports the required execution time to test
the first and the second LEs in the stack using the Sync-Trick Ind (rows 2 and
3, column 4) and Sync-Trick Acc (row 5, column 4) approaches. The Individ-
ual approach requires 76 additional clock cycles to test the LEs, but it has the
advantage of being able to test each LE independently. In contrast, the Accumu-
lative method must check both LEs consecutively. Thus, the Ind approach can
be adapted for in-field operation by the limited number of clock cycles required
during the execution.

The performance parameters show that for the Nesting approach there is a
proportional relation between the number of instructions and the number of LEs
to test. Similarly, the relationship between the execution time and the number
of LEs to test presents an increasing exponential ratio. In the end, the Nesting
method requires more than twice the execution time to test the entire stack than
Sync-Trick using the Acc approach. The execution time could be the relevant
parameter to take into account when targeting the in-field operation.

3.6 Predicate Register File

Three versions of the Ld function can be described; one based on logic-arithmetic
instructions (IOP.AND, IOP.XOR) and a second version using setting instruc-
tions (ISETP) to modify a flag in the predicate register. Furthermore, it is also
possible to modify a register using a direct assignment (R2C). Thus, the target
(inject a test pattern) of this function can be obtained through several descrip-
tions. The block functions in the SBST strategy for the PRF are parametrically
developed, so it is possible to easily replace one function (such as Ld) by an-
other in the program. It is worth noting that the first two cases require several
instructions before the comparison or setting.

The Prop function also supports different implementation methods. One
method is based on a sequence of conditional operations, which are executed once
a specific flag is active. The other method is through intra-warp divergence, so
explicitly producing two execution paths corresponding to the faulty (No-Taken)
and fault-free (Taken) cases. In both versions, the parametric description allows
the selection of a predicate register and a target flag, so simplifying the proce-
dures for the generation of the test program.

The routines on each path follow a similar description with respect to those
developed for the stack memory, so in principle, these functions are imported
into these SBST programs.

Equations 4 and 5 represent the performance cost of both strategies for test-
ing the PRF. As you can observe, both equations are equivalent and the per-
formance of both strategies remains the same. The main difference between the
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two approaches is the order of executing the test on each register of the PRF
module.

ST = ((Ld + Prop) ·M + T ·M) ·N · T (4)

ST = (Ld + Prop + T ) ·N ·M · T (5)

The Ld implementation presents the same cost for the IOP (arithmetic and
logical) and the ISETP (setting) descriptions of the functions. However, for the
R2C alternative, the total description and memory footprint is reduced to a total
of 36 instructions.

3.7 Address Register File and Vector Register File

In the case of the ARF and the VRF memories, both approaches employ similar
methods to implement the Ld function. This is based on the direct assign in-
structions R2A and MOV, respectively. However, the ARF structure can use an
equivalent instruction to perform the assignation using another address register
as source A2A.

The Comp function compares and enables a flag when mismatches are found.
In both cases this function is implemented using similar mechanisms through
constant values (from immediate instructions or loaded from memory). Finally,
the same intra-warp divergence functions are imported and adopted for these
modules. It is worth noting that the development of the blocks allows different
targets of the SBST program. On the one hand, it is possible to develop the
functions to only perform fault detection. Furthermore, the functions can be re-
placed with special versions, which provide fault diagnosis features (VRF T dia),
so allowing the identification of the location causing the fault effect. A detailed
evaluation shows that both versions of the R2A and A2A routines to implement
the Ld function have the same cost in terms of execution and resource overhead.

Equation 6 describes the performance costs for both approaches, which are
equivalent from the performance point of view. Nevertheless, the test can be
performed in parts (ld + comp) when the modules are free and the application
can be stopped for a long interval. Otherwise, the complete evaluation of each
register and the splitting into parts can be employed when short interval times
can be employed. It is worth noting that the performance of each approach is
affected when faults are detected on each module by the execution of the missing
path in order to update the detection signatures.

ST = ((Ld+Pr+Co+Ts)·N ·M ·P = ((Ld)·N+(Pr+Co+Ts)·N)·M ·P (6)

3.8 Limitations and constraints

In the implementation of the SBST techniques, we explored different possible
description styles for each program using high-level and middle-level abstraction
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languages for programming the GPU (CUDA and PTX, respectively). How-
ever, we observed some constraints related to the implementation of the SBST
technique in CUDA or PTX, due to the fact that particular combinations of
instructions are required to excite any of the target modules. Furthermore, the
generation of specific instructions at the two levels in some cases was not possible
(e.g., the SSY instruction cannot be used in CUDA or PTX levels). Thus, we
adopted the assembly language (SASS) to describe most SBST techniques that
cannot be directly described at other abstraction levels.

It should be noted that compilers in the programming environment of GPUs
have as main target the performance optimization of a program, so removing or
reorganizing the intended test program and causing a mismatch in the intended
behavior of the SBST programs. The solution to overcome this issue is based on
a combination of different levels of description, when possible. This solution is
affordable only when the Instruction Set Architecture (ISA) of a GPU device is
well known, which unfortunately is not always the case.

4 Experimental Results

The RTL FlexGripPlus model was used in the experiments. The fault injection
environment follows the methodology described in [18], and we injected perma-
nent faults using the Stuck-at Fault model. On each target module, fault simula-
tion campaigns were performed injecting faults in every location of each module,
meaning 4,224, 32,768, 262,144 and 262,144 permanent faults in the stack mem-
ory, PRF, ARF and VRF, respectively. These fault simulation campaigns were
performed using both representative benchmarks and the test programs imple-
menting the proposed SBST strategies. Moreover, the SBST programs targeting
the stack memory were evaluated with and without the optional PC functions.

The representative benchmarks have been carefully selected to compare the
detection capabilities they can achieve with the ones provided by the proposed
SBST programs. Descriptions and details regarding the chosen benchmarks can
be found in [18]. For the sake of completeness and comparison, the different
versions of the SBST strategy are reported in Table 2. The results are reported
based on the output effect of the faults as: Faults corrupting the output results,
or ’Corrupted Output Data’ (Data)), faults corrupting the complete execution of
the system, or ’Hang’, and fault affecting the performance of a given benchmark,
or ’Timeout’.

The last column of Table 2 reports the testable FC (TFC) of the benchmarks
and the proposed SBST strategy. The TFC is defined as the ratio between the
number of detected faults and the number of injected faults after removing the
untestable faults. The untestable faults are those faults that due to structural
or functional issues cannot be tested and cannot produce any failure. A detailed
analysis of the stack memory revealed that a total of 192 faults are untestable.
These are related to the lowest bits of the SPC field of each LE, which does
not affect the execution of an instruction. Thus, these faults were removed when
computing the TFC.
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The Sync-Trick strategy provides a moderate FC for both cases (Ind and
Acc). Moreover, the FC increases when adding the PC functions and the re-
location of the test functions in the memory. These comprehensive approaches
(Ind+SP and Acc+SP) obtain a high percentage of FC for the target structure.

An in-depth analysis of the results shows that the Individual approach allows
detecting 100% of the faults in the TM of all LEs by looking at the results of the
test procedure ”Data” type faults. In contrast, the Acc version causes a small
percentage (0.75%) of faults produced in the TM field and visible because they
hang or crash the GPU. This behavior can be explained considering that in the
Ind approach, each LE is evaluated individually, and so all detections can be
labeled as Data. On the other hand, for the Acc method, a permanent fault in
one LE affects the synchronization point, thus corrupting the convergence point
and causing the Hang condition. More in detail, a Stuck-at-0 fault is a sensitive
case during the run of the test program. A fault affecting one LE when used as
synchronization causes the Hang condition.

The Nesting SBST program has a slightly lower FC than Sync-Trick with
an increment of more than twice the percentage of faults causing hanging and
timeout. This fault effect is equivalent to the effect shown by in the Acc version
of Sync-Trick. In this case, the Nesting method generates intra-warp divergence
to move the stack pointer among the LEs (in the stack memory), testing all
LEs even when a fault is detected, so other LEs are also tested. The continuous
evaluation generates issues when a fault affects the LE used for synchronization
purposes (when testing the even LEs). Thus, the test program may confuse the
convergence point and produce the Hang or Timeout condition. According to
results, the Nesting strategy seems to be more susceptible to Hang and Timeout
effects than the Sync-Trick using the Acc approach.

In both approaches, the addition of the relocation in memory and the SPC
functions increase the testable coverage in the stack memory. However, as ex-
plained previously, these optional functions can be employed when it is possible
to use the entire system memory to relocate the test functions in specific memory
locations, or the application code allows this adaptation. Similarly, both SBST
approaches can detect a considerable percentage of the permanent faults in the
stack memory. However, a direct comparison involving the performance parame-
ters from Table 1 shows that the Nesting approach consumes more than twice the
execution time and 37% of additional instructions. In conclusion, the Sync-Trick
strategy seems to be a feasible candidate for in-field operations. Moreover, the
Ind strategy can be divided into parts and adapted with the application code.

Regarding the SBST program for the PRF module, the two implemented
versions obtain the 100% of fault coverage. The main advantage of both ver-
sions is the fault propagation to the global memory, so enabling the detection
as Data. In fact, all faults detected are identified using this classification. Thus,
the main difference between SBST approaches is the performance and overhead
cost, which are mainly caused by the internal description of one modular function
(Ld). The previous fault coverage results allow us to validate the exploration of
different methods to implement different modular functions. In both cases, the
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replacement of a modular function does not affect the final fault coverage. A sim-
ilar situation is observed in the SBST programs for VRF. In both approaches
(Detection (Dec) and Diagnosis (Dia)), the programs reach a full fault cover-
age (100%). However, the performance degradation rises up to 13.8 times when
employing the diagnosis version of the test program. Nevertheless, this SBST
version can be affordable with mild system time constraints, such as during the
Switch-on of the system.

Table 2. FC results for the representative benchmarks and the proposed SBST strate-
gies

(%)SBST strategy
or benchmark

Module
Data Hang Timeout FC TFC

Stack 0.00 0.38 - 0.38 0.40
PRF 0.00 0.38 - 0.38 0.38
ARF 25.07 0.0 - 25.07 25.07

MxM

VRF 18.26 8.24 - 26.5 26.5

Stack 0.15 0.04 - 0.19 0.19
PRF 0.16 0.04 - 0.20 0.20
ARF 0.00 0.00 - 0.00 0.00

Sort

VRF 0.18 0.07 - 0.25 0.25

Stack 0.14 0.19 - 0.33 0.35
PRF 0.15 0.19 - 0.34 0.34
ARF 0.0 0.0 - 0.00 0.00

FFT

VRF 0.19 0.21 - 0.4 0.4

Stack 0.15 0.28 - 0.43 0.47
PRF 0.00 7.05 - 7.05 7.05
ARF 0.00 0.00 - 0.00 0.00

Edge

VRF 12.25 5.6 - 17.85 17.85

Ind 65.64 2.08 1.01 68.75 72.02
Acc 64.89 2.84 1.01 68.75 72.02

Ind + PC 83.00 8.49 2.44 93.93 98.41
Sync-Trick

Acc + PC

Stack

82.24 9.25 2.44 93.93 98.41

54.12 11.81 1.23 67.16 70.04
Nesting

+ PC
Stack

76.94 13.16 2.81 92.91 97.34

100.0 - - 100.0 100.0
PRF T

R2C
PRF

100.0 - - 100.0 100.0

Det 100.0 - - 100.0 100.0
VRF T

Dia
VRF

100.0 - - 100.0 100.0

ARF T ARF 100.0 - - 100.0 100.0

Although Table 2 reports one SBST program for the PRF, the two versions
were evaluated changing each time the Ld function. The two versions achieved
the same fault coverage (100%) and the Ld functions, in both versions, have the
same performance cost, so both solutions can be used identically.

A comparison of the FC obtained by the proposed SBST strategies and the
representative benchmarks shows that the FC using these specialized programs is
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higher for the targeted modules than the FC obtained with typical applications.
Thus, the FC capabilities of a representative benchmark is mostly lower. This
behavior can be explained considering that most applications only use parts of
the modules (e.g., only the first levels of stack memory to handle the divergence
or certain registers per thread in the ARF or VRF modules) to operate the
instructions of each application.

The matrix multiplication application generates one level of divergence. Thus,
other levels inside the Stack memory are not employed, and the fault effect in not
detected or propagated into the application. On the other hand, the VRF and
the ARF modules are excited in almost 25% and 20%, which helps to explain
the fault coverage obtained for both modules (26.5% and 25.07%, respectively).
In contrast, the Sort application can generate intra-warp divergence, depending
on the input data operands, but it remains limited to the first LE in the stack
memory. However, the percentage of detection (0.33% and 0.19%) is negligible
in comparison with the proposed test strategies. A similar behavior is observed
for the ARF, PRF and VRF when executing this application.

The FFT benchmark produces two levels of intra-warp divergence, so using
up to four LEs during the operation. This behavior slightly increases the per-
centage of faults detected. Nevertheless, the achieved percentage remains small.
Finally, the Edge application causes two levels of intra-warp divergence and can
detect some faults as Data and hangs. However, the total coverage of all repre-
sentative kernels is minimal.

The previous scenario supports the idea that executing applications and
checking their results (as it is often done when using a functional test approach)
is definitely not enough to verify the functionality of crucial hardware modules in
the GPU. Thus, special test programs, as those proposed in this work using the
modular approach, are required to guarantee the correct operation of a module
inside a device used in a safety-critical application.

The main advantage of the proposed method lies in its modularity and scal-
ability. Scalability allows the configuration and the selection of the number of
LEs to be tested in the SBST programs for the stack memory. Moreover, the test
programs for the ARF, PRF and VRF can also be reduced to target only specific
registers in the target modules. Finally, the scalability of their structure allows
splitting the overall program in several parts, as presented for the Sync-Trick
SBST program.

As introduced previously, the implementation of the test programs required
the combination of high-level descriptions (about 15% of the total code in all
SBST strategies), and the addition of assembly functions (about 85%). For both
proposed SBST strategies targeting the memory stack, the synchronization func-
tions (SSY) were implemented in assembly language. In this way, we could also
avoid that the compiler removes or changes important parts of the test code.
Similarly, in the PRF test program, the Comp modular function used specific
procedures that required assembly language support. Thus, these parts and oth-
ers are written at the assembly level. These limitations show that the develop-
ment of test programs for these complex structures in GPUs requires access to
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the assembly formats to provide feasible and efficient solutions. The implemen-
tation effort could be reduced by the design of an automatic tool to include the
subroutines at the assembly or binary level. Moreover, such a tool could also
be employed to develop modular approaches, targeting other modules, such as
functional units in the GPU.

Although the proposed SBST strategies targeted the test of unprotected
memories in a GPU model with the G80 micro-architecture, we still claim that
the proposed methodology can be adapted and used for the most recent GPU
architectures, such as Maxwell and Pascal that include similar structures. More-
over, other parallel architectures can also use the proposed method.

5 Conclusions

We introduced a modular and scalable method to design functional programs
for testing in the field the small embedded memories in GPU cores. For this pur-
pose, each target embedded memory was analyzed and based on controllability,
observability and composition features, a set of parametric functions were devel-
oped and then combined to test each target structure in the GPU. Results show
that the modular solution allows the exploration of the advantages and limita-
tions of different routines employed in a test program. Moreover, this technique
also allows the split of a test program into several parts, while still achieving
the same FC, so allowing to adjust the test program to potential requirements
of in-field operations.

As future works, we plan to extend the proposed method to test other func-
tional units and critical modules in parallel architectures. Moreover, we plan to
use the modular approach to target other fault models.
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