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SIGNAL COMPRESSION VIA NEURAL IMPLICIT REPRESENTATIONS

Francesca Pistilli, Diego Valsesia, Giulia Fracastoro, Enrico Magli

Politecnico di Torino

ABSTRACT
Existing end-to-end signal compression schemes using neural net-
works are largely based on an autoencoder-like structure, where a
universal encoding function creates a compact latent space and the
signal representation in this space is quantized and stored. Recently,
advances from the field of 3D graphics have shown the possibility
of building implicit representation networks, i.e., neural networks
returning the value of a signal at a given query coordinate. In this
paper, we propose using neural implicit representations as a novel
paradigm for signal compression with neural networks, where the
compact representation of the signal is defined by the very weights
of the network. We discuss how this compression framework works,
how to include priors in the design, and highlight interesting connec-
tions with transform coding. While the framework is general, and
still lacks maturity, we already show very competitive performance
on the task of compressing point cloud attributes, which is notori-
ously challenging due to the irregularity of the domain, but becomes
trivial in the proposed framework.

Index Terms— Implicit representation, signal compression.

1. INTRODUCTION

While compression has traditionally been performed using model-
based methods, several techniques based on neural networks have
recently appeared and there is a growing interest in exploiting the
representation capabilities of deep neural networks. The so-called
end-to-end compression schemes seek to implement the entire com-
pression pipeline using neural networks without handcrafted priors,
so that optimal representations can be learned from data. The dom-
inating archetype in the literature is the use of auto-encoder struc-
tures [1, 2, 3, 4, 5, 6], where an encoder network is trained on a
representative dataset to extract a compact vector representing the
input signal, and a decoder recovers an estimate of the original from
the compressed information. In this paradigm, the encoder and de-
coder networks are universal, and the quantized and entropy-coded
compact vector represents the compressed information. Some works
exploit the latent space of generative models [7, 8] to obtain compact
representations but they are conceptually analogous to autoencoders.
Convolutional dictionary learning and its deep learning extensions
[9] use a network to learn discrete atoms that can be combined to
reconstruct the signal, although they have not been extensively ap-
plied to compression. However, the main idea is still to use universal
encoders and store the sparse coefficients providing the signal repre-
sentation.

In this paper, we examine a different paradigm for signal com-
pression with neural networks. We use neural networks that take as
input a single coordinate from the signal domain (e.g., the location
of a pixel) and return the value of the signal at that coordinate (e.g.,
the RGB value of that pixel) while sharing the parameters for any
input coordinate. In training, we essentially make the network over-
fit the signal we want to represent, so that the network itself, in its
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Fig. 1: A neural implicit representation network processes an input
coordinate from the signal domain and returns the value of the
signal at that coordinate, sharing weight values over the whole

domain. The network can be loosely understood to compute a set of
of basis functions optimized for the signal to be represented and
mix them in the final layer, in an analogy with transform coding

(see Sec. 2.2).

weights, biases and architecture, becomes the compact representa-
tion of our signal. The motivation for this work is given by the recent
success of neural implicit representations in 3D rendering problems
[10, 11, 12], where it has been shown that recent architectures of this
kind built as coordinate-based multilayer perceptrons, with periodic
activation functions [13] or specific embedding layers [14], can suc-
cessfully fit the high-frequency components of signals, which was
previous thought to be challenging. We present the general frame-
work of this novel compression paradigm, which we refer to as NIC
(Neural Implicit Compression), formalize its connection with trans-
form coding, and highlight the importance of efficient coding of the
weights of the neural network, as the rate of our representation de-
pends entirely on that. We also show how priors can be introduced
by means of meta-learning, i.e., providing a universal pretraining of
the network for a given class of signals. Finetuning on the signal of
interest then provides the final value of the weights, which can be
differentially encoded with respect to their universal initializations,
with significant rate savings with respect to a random initialization.

This is a preliminary exploration of this new compression
paradigm and we highlight a number of interesting research ques-
tions that can significantly improve our basic design, if answered.
Nevertheless, we show extremely promising experimental results on
a sample application, namely compression of point cloud attributes.
This application fully leverages the advantages of the new paradigm,
because the irregularity of the domain makes it difficult to design
traditional compression methods, while it can be trivially handled by
our framework which reaches performance close to the latest MPEG
G-PCC standard (v12.0 test model) 1.

1https://github.com/MPEGGroup/mpeg-pcc-tmc13

https://github.com/MPEGGroup/mpeg-pcc-tmc13


2. NEURAL IMPLICIT COMPRESSION

2.1. Neural Implicit Representations of signals

Neural implicit representations seek to represent arbitrary continu-
ous functions by means of a neural network, typically a multilayer
perceptron (MLP), where the input of the network is a coordinate x
from the domain of the function and the output is the correspond-
ing value of the function f(x) (see Fig.1). A signal is a sampled
version of f(x) on a regular or irregular domain, e.g., an image, a
point cloud, etc.. The weights and biases of the network are shared
for different input coordinates and are all the information required to
represent the signal. Recent advances have shown how designs using
sinusoidal activation functions (“SIRENs” [13]) or the use of Fourier
embeddings as the first layer [14] significantly improve performance
by allowing the network to successfully fit the high frequency com-
ponents of the signal.

While existing works have mostly focused on using this machin-
ery to address 3D rendering problems, we are interesting in investi-
gating the efficiency of such neural implicit representations. In par-
ticular, we show how they can serve as compressed signal represen-
tations, whose efficiency can be measured in rate-distortion terms.

We remark how NIC is a different paradigm with respect to
existing works based on autoencoders. In autoencoders, the en-
coder/decoder networks are universal, and the compact vector is the
signal representation, i.e., what needs to be saved. On the other hand,
a neural implicit representation is a network that is trained to repre-
sent a specific signal and the network itself needs to saved as it is
the signal itself. This paradigm has potential advantages in optimiz-
ing the representation for the specific instance that is being com-
pressed rather than relying on a training dataset that may or may not
be perfectly representative of the signals to be compressed. The use
of coordinate-based MLPs can also simplify some challenging com-
pression tasks. As an example, compression of point cloud attributes
is challenging because the signal is supported on an irregular domain
(the scattered points in the geometry), while training a coordinate-
based MLP mapping from a point coordinate to the corresponding
attribute value is trivial.

In the remainder of the paper we will focus on using the recently
proposed SIREN implicit representations [13], which are an MLP
with sinusoidal activation functions.

2.2. Connections with transform coding

The following result shows that there is a strong connection between
neural implicit representations and transform coding by identifying
a one-to-one correspondence between the global minimum of a two-
layer SIREN with sufficient capacity and the well-known discrete
cosine transform (DCT) [15].

Proposition 2.1. A two-layer SIREN approximating a continuous
function f : R → R with N hidden features is equivalent to an
N -point 1D-DCT.

Proof. Given an input scalar coordinate x, we can define the corre-
sponding output y of the two-layer SIREN as

y =

N−1∑
k=0
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(2)
k sin(w
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where b(i) is the bias of the i-th layer, and w(1) ∈ RN and w(2) ∈
RN are the weights of the first and second layer of the network, re-
spectively. If we suppose that the input coordinates of the SIREN

are sampled from a regular grid (i.e., x = n where 0 ≤ n ≤ N − 1)
and the loss function is the MSE between the output of the network
y and the corresponding value of the continuous function f(x) sam-
pled on that grid, we can observe that the global minimum of the loss
function is reached when the SIREN converges to the inverse of the
N -point 1D-DCT, which is defined as follows
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with 0 ≤ n ≤ N − 1,

where ŷk is the k-th DCT coefficient of the signal y. Therefore,
the two-layer SIREN reaches the global minimum (zero MSE), i.e.,
converges to the inverse of the N -point 1D-DCT, when w(2)

k = ŷk,
w
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k = π

N
k, b(1)k = π

2N
k + π

2
, and b(2)k = 0.

It is interesting to notice how this suggests that the first layer acts
a basis function generator, while the last layer learns how to combine
the basis functions with suitable weights akin to transform-domain
coefficients. However, notice that this is only a loose interpreta-
tion of what happens when deeper networks when fewer features are
used.

2.3. Signal compression

Compressing a signal with a neural implicit representations requires
to perform the following basic operations:

1. Define the architecture of the coordinate-based MLP to be
used; this step requires the choice of a network design (e.g,
SIRENs), as well as suitable sizing of the model in terms of
number of parameters and layers. The size of the model di-
rectly affects the accuracy of signal fit, but scaling laws are
still unclear (e.g., whether depth or width is more important)
as this is the first work looking at the efficiency of such repre-
sentations. Preliminary empirical evidence from our exper-
iments seems to suggest a preference for width instead of
depth.

2. Train the network by minimizing a suitable regression loss.
For example, denoting as x a sampled input coordinate and
with yx the signal value at that coordinate, the network pa-
rameters θ can be learned by minimizing the MSE:

θ̂ = argmin
θ

∑
x

‖fθ(x)− yx‖22

3. Compactly represent the weights of the network. Since the
rate of the compressed representation entirely relies on cod-
ing the values of the weights and biases, they must be rep-
resented in the most efficient way. Techniques like network
sparsification [16] and quantization [17] can be used to re-
duce the number of parameters and/or their precision. As an
example, a uniform scalar quantizer can be applied to the pa-
rameters of each layer.

4. Use an entropy encoder on the quantized weights and biases
and save any required side information (e.g., sparsification
pattern, or quantization step sizes)

Decoding the compressed signal simply amounts to performing a
forward pass through the sparse/quantized network, for all the coor-
dinates of interest (e.g., all the pixels in a grid of arbitrary resolu-
tion). This “random access” property, where any coordinate can be
queried for the corresponding signal value, also implies that decod-
ing at different resolutions or on irregular grids is trivial.



2.4. Priors via Meta Learning

Implicit neural networks can be used to learn any signal but they
are not able to exploit any prior knowledge about data properties.
To overcome this problem we propose to exploit meta-learning tech-
niques. Meta-learning [18] is a framework to address few-shot learn-
ing problems by exploiting previously gained experience over a task
to improve future learning performance. In particular, in our case, a
first training of the network is performed over a collection of data in
order to find a good initialization point that improves the results for
previously unseen data over the same task. The goal is to learn some
low-level properties of the data of interest, such as smoothness over
the domain, or inherit some common characteristics of a specific
class of data. In [19] the idea of using well-known meta-learning
algorithms to learn the initial weight parameters of coordinate-based
neural representations is presented with the purpose of speeding up
the convergence.

Our idea is to exploit a meta-learned initialization to improve
the rate-distortion efficiency of the representation. For instance, con-
sider a very simple class of signal as images of faces from a public
dataset such as FFHQ [20]. Ideally, the meta-learning pretraining on
this dataset learns commonly recurring patterns in the class, such as
eyes, nose or mouth and provides an initialization that already con-
tains these elements. The subsequent finetuning over a novel image
would benefit from the insightful initialization and the final values
of the weights of the network would not deviate much from their ini-
tial values. To exploit this, we propose an innovative compression
methodology where the difference between the final weights of the
network and their meta-learned initialization is quantized and used
to recover the signal instead of directly quantizing the final values.
This achieves significant rate savings because the meta-learned ini-
tialization is a strong predictor of the final weight value. Also notice
that the meta-learned initialization is universal, as it can be recreated
from the public dataset or written in a standard, so that it does not
require to be encoded.

There are several meta-learning algorithms [18, 21] in the liter-
ature, and we exploit a simplified variant of Model-Agnostic Meta
Learning (MAML) [18]. In our algorithm, one signal at a time (for
instance an image) is fed into the coordinate-based network and few
steps of inner optimization are performed. After the inner training,
an outer optimizer is updated and a new inner loop with a novel input
signal is started.

3. EXPERIMENTS

In this section, as an example application, we evaluate the perfor-
mance of the NIC paradigm in the context of point cloud attribute
compression. The implicit neural network considered is a SIREN
that takes as input the 3D coordinates of a point cloud and provides
as output the corresponding RGB values.

3.1. Experimental setting

After choosing a suitable design of the SIREN in terms of number
of layers and parameters, the network is pretrained with the meta-
learning algorithm from Sec. 2.4. Stochastic Gradient Descend
(SGD) with learning rate equal to 0.01 and Adam with 10−5 have
been used as inner and outer optimizers respectively. The network
is trained with 10 inner steps for 1000 iterates. The meta-learning
dataset exploited for pretraining is a collection of point clouds from
the Microsoft Voxelized Upper Bodies dataset [22]. After obtain-

ing this initialization, a finetuning is performed specifically for each
point cloud to be compressed from the test set. The Adam optimizer
has been employed with a fixed learning rate equal to 10−5. Each
network is trained for 20000 iterations by minimizing a loss func-
tion that is based on the MSE between the original colors and the
predicted ones in the YUV space:

LTot = αMSEY + βMSEU + γMSEV, (1)

where α, β and γ are coefficients aimed modulating the relative im-
portance of luminance and chrominance. In our experiment we use
α = 0.6, β = 0.2, γ = 0.2 to slightly promote luminance, as com-
mon practice in traditional codecs. After finetuning, the network pa-
rameters are differentially encoded with respect to the meta-learned
intialization. The differences are quantized with a uniform scalar
quantizer, where the quantization step size is adapted layer-by-layer
on the basis of the dynamic range of the parameters belonging to
each layer, and entropy-coded with an arithmetic encoder.

3.2. Experimental results

The test set to be compressed is composed by four point clouds from
the 8i Voxelized Full Bodies dataset [23]: Loot vox10 1200,
Longdress vox10 1300, Redandblack vox10 1550,
Soldier vox10 0690. Notice that they are strictly disjoint from
the data used by meta-learning. In order to obtain a rate-distortion
curve several networks have been trained, where different numbers
of layers, features and quantization step sizes allow to reach different
rate-distortion points. We have tested networks with 60, 80, 130 and
170 features per layer, with 5, 7 or 9 hidden layers, and quantization
step sizes corresponding to a number of levels from 22 to 212.

Fig.2 compares the results of the proposed method with the lat-
est version of the MPEG G-PCC standard (v12.0 test model), and
with the Region-Adaptive Hierarchical Transform (RAHT) [24], a
recent algorithm that exploits a hierarchical transform based on Haar
wavelets. The grey lines in the figure show all the operating points
that can be obtained by different networks at different training it-
erations with different quantization levels. The performance of the
proposed method is determined by the envelope of these curves as
one wold design the most suitable network for the target rate/quality.
Performance is measured in terms of Y-PSNR. From Fig.2 it can be
seen that NIC significantly improves over RAHT, and reaches per-
formance close to G-PCC v12.0, especially at low rates. This is espe-
cially significant because the proposed method is a proof-of-concept
that has not been as extensively optimized, and, indeed, there are
several developments that may further improve its performance (also
see Sec. 4).

Also notice that our training directly promotes the luminance
channel over the chrominance, as shown in Eq.(1); for completeness,
we also evaluate the total PSNR (on Y, U and V). Table 1 shows such
result by reporting the BD-Rate with respect to RAHT, confirming
that our method still improves over RAHT even when the distortion
on chrominance is taken into account.

3.3. Effectiveness of differential meta-learning

We study the effectiveness of meta-learning by assessing the rate-
distortion performance achieved by various weight coding options.

First of all, in Fig.3 the first hidden layer of the network with 80
features and 9 hidden layers trained over the
Redandblack vox10 1550 point cloud is considered. In par-
ticular, the distribution of the finetuned weights is compared with
the distribution of their difference with respect to the meta-learned
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Fig. 2: Attribute compression rate-distortion performance. Average
BD-Rate: NIC vs. RAHT= -32.07%, NIC vs. G-PCC v12.0 =

47.21%.

Table 1: BD-Rate over the total PSNR of NIC versus RAHT.

Loot Longdress Redandblack Soldier
-10.23 % -38.88 % -22.10 % -33.39 %

initialization. The advantage of differential weight compression is
clearly visible, as it results in a distribution with significantly lower
variance, thus leading to increased rate-distortion efficiency.

In Fig.4 several methods are compared by means of rate-
distortion curves: the proposed method with differential compres-
sion with respect to the universal meta-learned initialization; classic
network compression, i.e., directly quantizing the final values of
the weights; and a network with random initialization and quantiza-
tion of the final values of the weights. It is clearly visible that the
differential coding strategy increases the rate-distortion efficiency,
showing how meta-learning effectively supplies prior information
about the signal characteristics. Notice how meta-learning alone
without differential compression does not significantly improve the
performance over random initialization. This is due to the fact that
both networks converge to similar quality levels, albeit with different
speeds. Finally, notice how differential coding also has a beneficial
effect on quality, rather than rate alone, because the distortion in-
troduced on weights is nonlinearly related to final distortion on the
point cloud attributes.

4. DISCUSSION AND FUTURE DEVELOPMENTS

In this paper we introduced a novel paradigm for signal compression
by means of neural networks consisting in representing the signal
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Fig. 4: Rate-distortion effectiveness of differential meta-learning.

through the weights and biases of a neural implicit representation.
The technique is appealing as it can simplify and optimize the design
of compression schemes for the most challenging data types. There
are several open questions that can open multiple lines of research
for this topic and, possibly, significantly improve performance with
respect to our early results. In particular, if the early portion of the
network learns basis functions for the signal, is it possible to pretrain
it to be more universal, something akin to dictionary learning, and
possibly saving rate? Moreover, how does one optimally prune and
quantize the network weights without drastically lowering quality?
Can priors be incorporated in ways other than meta-learning, e.g., via
new architectures but still retaining the “random-access” property of
using a single-coordinate input?
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