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MODELING ANIMAL MOVEMENT WITH DIRECTIONAL
PERSISTENCE AND ATTRACTIVE POINTS

By Gianluca Mastrantonio,
Department of Mathematical Sciences, Politecnico di Torino, gianluca.mastrantonio@polito.it

GPS technology is currently easily accessible to researchers, and
many animal movement datasets are available. Two of the main fea-
tures that a model which describes an animal’s path can possess are
directional persistence and attraction to a point in space. In this
work, we propose a new approach that can have both characteristics.

Our proposal is a hidden Markov model with a new emission dis-
tribution. The emission distribution models the two aforementioned
characteristics, while the latent state of the hidden Markov model is
needed to account for the behavioral modes. We show that the model
is easy to implement in a Bayesian framework.

We estimate our proposal on the motivating data that represent
GPS locations of a Maremma Sheepdog recorded in Australia. The
obtained results are easily interpretable and we show that our pro-
posal outperforms the main competitive model.

1. Introduction. The use of statistical models to understand the movement of
animals has become increasingly popular. The data of such models are generally in the
form of a time series of 2-dimensional spatial locations, recorded using a GPS device
attached to the animal, with a time-interval between observations programmed by the
researcher (Cagnacci et al., 2010). These data are often called ”trajectory tracking
data”, and they allow features of an animal’s movement, such as habitat selection
(Hebblewhite and Merrill, 2008), spatio-temporal patterns (Morales et al., 2004; Fryxell
et al., 2008; Nathan et al., 2008; Frair et al., 2010) and animal behavior (Merrill and
David Mech, 2000; Anderson and Lindzey, 2003), to be investigated; for a detailed
review, the reader may refer to Hooten et al. (2017). These approaches can be grouped
into three main categories: point processes (Johnson et al., 2013; Brost et al., 2015),
continuous-time dynamic models (CTM) (Blackwell, 1997; Johnson et al., 2008; Fleming
et al., 2014; Hanks et al., 2015; Buderman et al., 2018a,b) and discrete-time dynamic
models (DTM) (Morales et al., 2004; Jonsen et al., 2005; McClintock et al., 2012).
Animal movement is a continuous process, but it is generally easier to interpret and
analyze a DTM if the time-interval between observations is fixed (Codling and Hill,
2005; Patterson et al., 2017). For a discussion on the differences between and similarities
of these approaches, the reader may refer to McClintock et al. (2014).

Most of the proposed models, in both continuous- and discrete-time frameworks, are
based on biased random walks (BRWs) and correlated random walks (CRWs). In a
BRW, the animal is attracted to a specific spatial location, called center-of-attraction
(see, for example, Blackwell, 1997; Dunn and Gipson, 1977), which can be used to model
a tendency to move toward a patch of space (McClintock et al., 2012) or the home range
(Christ et al., 2008). On the other hand, in a CRW, the movement direction, at a given
time, depends on the previous one; this property is called directional persistence. A
CRW is often expressed using movement-metrics, e.g., step-length and turning-angle or
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step-length and bearing-angle, which are proxies of the speed and the direction measured
between consecutive locations. These models are often referred to as step and turn
models (Parton and Blackwell, 2017). Independence between the movement-metrics
is usually assumed, see, for example, Morales and Ellner (2002) and Patterson et al.
(2017), and they are rarely dependent (Mastrantonio, 2018; Mastrantonio et al., 2019).
The correlation between locations is a necessary but not sufficient condition for a model
to be a CRW, e.g., a two-dimensional AR(1) model is a BRW, but not a CRW, since
there is no correlation between consecutive turning-angles or bearing-angles. Most of
the proposed models have only a BRW or CRW characteristic, but there are some
approaches, called biased and correlated random walks (BCRWs), which have both
(Schultz and Crone, 2001; Fortin et al., 2005; Codling et al., 2008; McClintock et al.,
2012). In order to be able to detect changes in the behavior of an animal (behavioral
modes), the data are generally modeled conditionally to a latent discrete state that
describes the behavior assumed by the animal at a given time (Patterson et al., 2008).
Switching between behavioral modes is often assumed to be temporally structured, and
if it follows a Markov process the model is said to be a hidden Markov model (HMM)
(Michelot et al., 2016; Langrock et al., 2012). In the HMM context, the distribution of
the data is called emission distribution (Volant et al., 2014).

In this work, we propose an HMM with a new emission distribution which is called
step and turn with an attractive point (STAP); the STAP belongs to the BCRW family.
We define the STAP by combining a CRW and a BRW. For the CRW part, we envision
the step-length and turning-angle as the polar-coordinate representation of Cartesian
coordinates. The Cartesian coordinates are assumed to be normally distributed, which
induces a conditional normal distribution on the spatial locations. We use an AR(1)
model with a normal conditional distribution for the BRW part. We can thus combine
the two by introducing a parameter ρ ∈ [0,1], which defines a conditional normal dis-
tribution with a mean and covariance matrix that reduces to those of the BRW when
ρ = 0 and to those of the CRW if ρ = 1, with a bias toward the center-of-attraction
and a directional persistence for any value in between. The distribution we define for ρ
allows us to detect whether a behavior follows BRW, CRW or BCRW dynamics. Our
HMM is formalized in a Bayesian setting, using the sticky hierarchical Dirichlet pro-
cess HMM (sHDP-HMM) of Fox et al. (2011). The sHDP-HMM is a general framework
that is used to define an HMM with any emission distribution, and it is based on the
Dirichlet process (DP). We indicate as STAP-HMM the sHDP-HMM with the STAP as
emission distribution. The use of the DP and of the distribution we define for ρ, allows
us to treat the number of behaviors as a random variable, which can then be estimated
during the model fitting, and to select the behavior-type without the need to resort
to information criteria or a trans-dimensional Markov chain Monte Carlo algorithm
(MCMC), such as the reversible jump MCMC (RJMCMC), which involves challenges
in its implementation (Hastie and Green, 2012).

Although other BCRWs model the circular mean of the turning- or bearing-angle to
induce attraction and directional persistence (Fortin et al., 2005; Barton et al., 2009;
Rivest et al., 2016), we approach the problem from a different point of view by modeling
the movement path with a normal distribution, and hence inducing attraction and
directional persistence on the bi-dimensional movement directly. This allows not only a
straightforward inference but, as a by-product, to have a projected-normal distribution
for the bearing- and turning-angle, which is, to-date, the most flexible distribution for
circular data (Mastrantonio et al., 2015). On the other hand, competitive models, i.e.,
HMMs with a BCRW emission distribution, use unimodal and symmetrical circular
distributions for interpretability and easiness of implementation (e.g., the von-Mises,
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wrapped Normal or wrapped Cauchy), thereby limiting the flexibility of the model. Most
BCRW models can be formalized in the general framework proposed by McClintock
et al. (2012), which we consider as our main competitive model.

We use our proposal to model the trajectory tracking data of a Maremma Sheep-
dog. These dogs have been used for centuries in Europe and Asia to protect livestock
from predators, but only recently in Australia (Gehring et al., 2017; van Bommel and
Johnson, 2016). They generally work with the shepherd to keep the stock together
but, due to the size of the properties, this is not always possible in Australia. Since an
owner is often unaware of his/her dog’s behavior, it is of interest to understand and
characterize such behavior. We analyze a dataset taken from the movebank repository
(www.movebank.org) in which the spatial locations of a dog, used to protect livestock in
a property in Australia, are recorded using a GPS device (van and Johnson, 2014; van
Bommel and Johnson, 2014). We also show that our proposal outperforms the model
of McClintock et al. (2012) in terms of “deviance information criterion” (DIC) (Celeux
et al., 2006) and “integrated classification likelihood” (ICL) (Biernacki et al., 2000).

The paper is organized as follows. We formalize the model in Section 2, by introducing
the CRW (Section 2.2), the BRW (Section 2.3), then the STAP models (Section 2.4)
and finally the STAP-HMM (Section 2.5). In Section 2.6, we show the similarities
and differences between our proposal and the general framework of McClintock et al.
(2012). The conclusive remarks are presented in 4. In the Appendix, we show how to
implement the MCMC algorithm (Appendix A), some simulated examples (Appendix
B), a description of the McClintock et al. (2012) proposal (Appendix C), how the
turning-angle distribution changes if we change the time-interval between the recorded
coordinates (Appendix D), a sensitivity analysis of the sHDP-HMM hyper-parameter
priors (Appendix E), simulated paths obtained with parameters estimated from the
real data application (Appendix F), and the results of STAP-HMMs that are only able
to estimate CRW or BRW behaviors (Appendix G).

2. Methods. We assume we have a time-series of spatial coordinates s =
(s1, . . . , sT )′, with si = (si,1, si,2) ∈D ⊂R2, which represent the animal’s path in a two-
dimensional space. We assume there is no measurement error and the time-difference
between consecutive observations is fixed. We consider coordinates si+1 as the realiza-
tion of a random variable with the following conditional distribution:
(1) si+1|si, si−1, . . . , s1 ∼N(si + Mi,Vi), i ∈ {1, . . . , T − 1},
where Mi = (Mi,1,Mi,2)′ ∈R2 and Vi is a 2× 2 covariance matrix. The vector Mi and
the matrix Vi may depend on previous locations and other parameters, while s1 is
known and fixed. The conditional set is composed of the entire past but, as we will
show in Section 2.4, only the two previous locations are needed in our proposal, and s0
is therefore considered as a parameter that is able to define the conditional distribution
of s2. Equation (1) models the path intuitively, since the animal moves at each time-
point following a normal distribution, with the mean coordinates given by the previous
location and parameter Mi, while Vi measures the variability.

In Figure 1, it is possible to see how Mi and Vi are connected to the observed
path, since the end-point of the arrow represents the mean value of the conditional
distribution of si+1 (which is si + Mi), while the ellipse is the set of points s∗ ∈ R2

that satisfy (s∗− si−Mi)′V−1
i (s∗− si−Mi) = c, where the value c is defined to ensure

that the area E ∈ R2 inside the ellipse contains 95% of the probability mass of the
conditional distribution of si+1, i.e.,

(2)
∫

s∈E
(2π)−1|Vi|−

1
2 exp

(
−(s− si −Mi)′V−1

i (s− si −Mi)
2

)
ds = 0.95.

www.movebank.org
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Fig 1: A graphical representation of the relations between the spatial locations, the
movement-metrics and the displacement-coordinate. The arrow represents ~Fi, while the
ellipse is an area containing 95% of the probability mass of the conditional distribution
of si+1, computed using (2).

It should be noted that the value of the conditional density of si+1 is the same for all s∗
on the ellipse, hence the ellipse is a contour of the normal density, and it can be used to
represent and to infer the characteristics of the covariance matrix Vi (Friendly et al.,
2013). For example, let x ∈ (−π/2, π/2] be the inclination angle of the major axis of
the ellipse, then the correlation is >0 if 0< x < π/2, <0 if −π/2< x < 0, and there is
no correlation if x= 0 or x= π/2 , i.e., the major axis of the ellipse is parallel to one
of the two axes of the Euclidian reference system. If we indicate the largest values of
the first and second Euclidean coordinate in E as x∗1 and x∗2, respectively, the distances
x∗1− si,1−Mi,1 and x∗2− si,2−Mi,2 are proxies of the two variances of Vi. If the ellipse
is a circle, there is no correlation and the two variances have the same value.

Parameter Mi can be used to introduce such movement features as directional persis-
tence and a center-of-attraction. To describe these two features, we introduce the vector
~Fi, which is a vector with initial and terminal points si and si + Mi, respectively (see
Figure 1), and it represents the expected movement between time i and i+ 1 since its
initial position is the previous observed location si, while the terminal point is equal to
E(si+1|si) = si + Mi. The length of ~Fi, ξi, is equal to

||(si + Mi)− si||2 = ||Mi||2,
while its direction, λi, is equal to

atan∗((si,2 +Mi,2)− si,2, (si,1 +Mi,1)− si,1) = atan∗(Mi,2,Mi,1) ∈ [−π,π),
where atan∗(·) is the two-argument tangent function (Jammalamadaka and Kozubowski,
2004), i.e., the direction and length of ~Fi are equal to those of Mi. We introduce the
bearing-angle
(3) φi = atan∗(si+1,2 − si,2, si+1,1 − si,1).
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Fig 2: Representation of projected-normal densities based on a bivariate normal distri-
bution with variances (0.5,1), 0 correlation and different mean vectors.

which measures the direction between locations si and si+1. The distribution of φi, in
a BRW, is independent of the previous bearing-angles and λi is equal to atan∗(µ2 −
si,2, µ1−si,1), which is the direction between the location in space µ = (µ1, µ2)′ ∈R2 and
the previous observed location si. In this case, the vector µ is a parameter that is used
to define Mi. Since the expected movement at time i+ 1, measured by ~Fi, starts from
si and points to µ, the latter is called the attractor, since it “attracts” the animal. The
distribution of φi, in a CRW, depends on the previous bearing-angles (albeit generally
only on the first one, φi−1), which means that the directions are correlated. This is often
done by assuming that λi is a function of φi−1, see, for example, Mastrantonio et al.
(2019). It should be noted that a CRW needs to be at least second-order Markovian
since two previous locations are needed to compute φi−1. In both models, ξi is a measure
of how far the mean value of the conditional distribution of si+1 is from si, and it can
be considered a proxy of the expected bi-dimensional movement speed. Parameter ξi
can be also used, in a BRW, to evaluate the strength of the attraction, see Section 2.3.
As we will show in Sections 2.2 and 2.3, parameter Vi, in our definition of a CRW
and BRW, depends on the previous direction in the CRW, and is independent of the
previous direction and the attractor in the BRW.

Models based on equation (1) with only one of the two aforementioned features, i.e.,
directional persistence or an attractive point, have already been proposed (see, for
example, Christ et al. (2008) and Mastrantonio et al. (2019)), and one of the main
contributions of this paper is that it allows both properties to be considered.

2.1. Displacement-coordinates and movement-metrics. In this section, we introduce
different ways of parametrizing the movement path that are useful to understand and
interpret our approach. The relations between these quantities are also depicted in
Figure 1.

The path s can be described equivalently by using s1 and the displacement-
coordinates v = (v1, . . . ,vT−1)′, where vi = si+1 − si, since

(4) si+1 = s1 +
i∑
l=1

vl, i ∈ {1, . . . , T − 1}.

Variable vi represents the movement between time i and i+ 1 and, from equation (1),
we can easily derive that
(5) vi|vi−1, . . . ,v1 ∼N(Mi,Vi), i ∈ {1, . . . , T − 1}.
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The coordinates vi are useful to describe an attractive point, since we can evaluate how
it changes with respect to the distance from the attractor. Vector vi can be expressed
in polar-coordinates using its magnitude ri = ||vi||2 and the bearing-angle φi which can
be computed using equation (3) or the following:

φi = atan∗(vi,2, vi,1).

The value of ri is the animal speed, and φi measures the direction with respect to the
“general” reference-system, where φi = 0 indicates the East direction, and the sense of
rotation is anticlockwise. In animal-movement literature ri is known as the step-length.

We can define a new set of displacement-coordinates if we let the reference-system
change at each time-point, and align the x-axis in the direction of the previous increment
si − si−1 with origin on the coordinate si. We introduce the rotation matrix

R(ω) =
(cos(ω)− sin(ω)

sin(ω) cos(ω)

)
,

which is a matrix that can be used to perform a rotation in a 2-dimensional space, and
we define the new displacement-coordinates as

(6) yi = R′(φi−1)vi = R′(φi−1)(si+1 − si),

which represent the projection of vi onto the direction of the increment si− si−1 mea-
sured by the bearing-angle φi−1, see Figure 1. From (5) and (6), we obtain

(7) yi|yi−1, . . . ,y1 ∼N(R′(φi−1)Mi,R′(φi−1)ViR(φi−1)), i ∈ {1, . . . , T − 1},

where φ0 is a parameter, since it is a function of the fixed coordinate s1 and parameter
s0. The transformation (6) preserves the vector magnitude, which then results in ri =
||vi||2 = ||yi||2. The polar-coordinate representation of yi is the couple (θi, ri) where

(8) θi = atan∗(yi,2, yi,1).

The angle θi is called turning-angle and it is related to the bearing angle through the
relation

(9) θi = φi − φi−1,

which highlights how θi and yi represent a change in direction between two consec-
utive time-points and they are therefore useful to describe and introduce directional
persistence, see the next section.

The polar-coordinates (φi, ri) and (θi, ri) are called movement-metrics, and they are
often modeled instead of the coordinates, especially in CRWs, but also in BCRWs (Mc-
Clintock et al., 2012). The distribution over the angular variable is generally assumed
to be unimodal and symmetric (Michelot et al., 2016; Patterson et al., 2017), with a
few exceptions (see, for example, Mastrantonio (2018)). On the other hand, since both
vi and yi are normally distributed, the bearing- and turning-angle of our proposal are
projected normal distributed (Mastrantonio et al., 2016), which is one of the most flex-
ible distributions for circular data, with a density that can be unimodal symmetric,
asymmetric, bimodal or antipodal; some examples of projected normal densities are
shown in Figure 2, and more details can be found in Wang and Gelfand (2013).
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Fig 3: Graphical representation of the conditional distribution of si+1 for different
possible values of si and the previous directions. The dashed arrow represents the
movement between si−1 and si. The solid arrow is ~Fi, while the ellipse is the area
containing 95% of the probability mass of the conditional distribution of si+1, computed
using (2). In all the figures, µ = (0,0)′, η = (0,6)′, τ = 0.25, Σ =

(0.2 0
0 1

)
, and the

central dot is the location µ, which represents the attractor in the BRW and the
BCRW.

2.2. Correlated random walk. To define the CRW, which is one of the two compo-
nents needed as the base of our proposal, we model the displacement-coordinates yi
as
(10) yi ∼N(η,Σ),
where η = (η1, η2)′ ∈R2 is a vector of length 2 and Σ is a 2×2 covariance matrix. From
equation (10), we can compute the following conditional distributions:

si+1|si, si−1 ∼N(si + R(φi−1)η,R(φi−1)ΣR′(φi−1)),(11)
vi|vi−1 ∼N(R(φi−1)η,R(φi−1)ΣR′(φi−1)).(12)
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Since the bearing-angle φi is computed using si and si−1, see equation (3), the path
is second-order Markovian. The distribution (11) is in the form given by (1) with
Mi = R(φi−1)η and Vi = R(φi−1)ΣR′(φi−1). In this model, the parameters are η,
Σ and s0.

The angle λi, which is the direction of ~Fi, does not depend on the spatial location,
but only on the bearing angle φi−1 which rotates the parameter η. In more detail, we
have

(13) λi = φi−1 + atan∗(η2, η1),

where atan∗(η2, η1) is the direction of η. Equation (13) shows that λi, the direction
of the expected movement, is a rotation of the previous bearing-angle by an amount
atan∗(η2, η1), that is a function of η. The value λi depends of the previous bearing-angle
φi−1, and φi and φi−1 are, therefore, correlated; this defines a CRW (see the beginning
of Section 2). For example, if η = (1,0) (i.e., atan∗(η2, η1) = 0), we obtain λi = φi−1, if
η = (0,1) (i.e., atan∗(η2, η1) = π/2), we obtain λi = φi−1 + π/2, and λi = φi−1 − π/2 if
η = (0,−1) (i.e., atan∗(η2, η1) =−π/2). The length of η is equal to ξi, since ||Mi||2 =
||R(φi−1)η||2 = ||η||2, and it represents the distance between si and E(si+1|si). It should
be noted that the covariance matrix of vi and si+1 rotates according to the bearing-angle
φi−1. The step-length and turning-angle, and variable yi, are i.i.d. and independent
of the position in space and of the previous movement, while the parameters of the
distribution of the bearing-angle and vi change according to φi−1 (see equation (12)).

In Figure 3 (a), we show the conditional distribution of si+1 under different con-
ditions, where all the features we described can easily be seen. Each vector ~Fi (solid
arrow) has the same length (ξi = ||η||2 = 6), regardless of the position in space (the
tail of ~Fi) and the previous movement (dashed arrow). The value of λi depends on the
previous direction, but the angle between the previous direction and ~Fi is fixed and
equal to atan∗(η2, η1) = π/2. The ellipse rotates with the bearing angle φi−1.

It should be noted that it is not possible to find a closed-form expression for the
distribution of si+l|si, si−1 if l > 1, for the proposed CRW. Hence, the CRW can be
used if the time-interval is constant, since, even in the simple case in which there
is no recorded observation for time i + 1, we are unable to compute the conditional
density si+2|si, si−1 (l = 2). Hence, in order to be able to compute the data likelihood
in the MCMC algorithm, any missing data must be considered a further parameter and
estimated during model fitting.

2.3. Biased random walk. We use a two-dimensional AR(1) model for the BRW
component of our proposal

(14) si+1|si ∼N(si + τ (µ− si) ,Σ),

where µ is a two-dimensional vector and τ ∈ (0,1). The process is first-order Markovian
and can be expressed as equation (1) by setting Mi = τ (µ− si) and Vi = Σ. The
parameters, in this model, are µ, τ , and Σ. The distributions of the displacement-
coordinates are

vi|vi−1, . . . ,v1 ∼N(τ (µ− si) ,Σ),(15)
yi|yi−1, . . . ,y1 ∼N(R′(φi−1)τ (µ− si) ,R′(φi−1)ΣR(φi−1)),(16)

where si is a function of the previous displacement-coordinates through equations (4)
and (6). The direction of ~Fi is equal to

λi = atan∗(τ(µ2 − si,2), τ(µ1 − si,1)) = atan∗(µ2 − si,2, µ1 − si,1),
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where it is clear that ~Fi points to the parameter (or point in space) µ, and the former is
therefore the spatial-attractor, i.e., we expect the movement to be in the direction of µ.
Since the path described by equation (16) is first-order Markovian, the distribution of φi
is independent of the previous bearing angles and only depends on the spatial coordinate
si and µ, see equations (14) and (15). Hence, the two-dimensional AR(1) model is a
BRW (see the beginning of Section 2). The length of ~Fi, ξi, is equal to τ ||µ− si||2, and
since ||µ− si||2 is the distance between the previous observation (si) and the spatial
attractor (µ), τ ∈ (0,1) indicates the fraction of that distance that is covered by ~Fi.
Parameter τ can then be interpreted as the strength of attraction, since the larger it is,
the larger is ξi. In detail, we obtain limτ→1 E(si+1|si) = µ and limτ→1 ξi = ||µ− si||2,
which indicates that if τ → 1 the mean of the conditional distribution of si+1 is on
the coordinate µ and the position at time i + 1 is then centered on the attractor.
On the other hand, if τ → 0, there is no attraction since limτ→0 E(si+1|si) = si and
limτ→0 ξi = 0, and the model reduces to a random walk. Unlike the CRW, the variability
of the movement in the fixed reference frame is constant, as can be seen from the
covariance matrices of vi and si.

Some examples of the BRW can be seen in Figure 3 (b), where the described charac-
teristics are easy to identify. Each vector ~Fi (solid arrow) points to the spatial attractor
µ = (0,0)′ (black dot), its direction is independent of the previous movement direction
(the dashed arrow) and depends only on the relative position with respect to the at-
tractor. Since τ = 0.25, the length of any ~Fi is equal to 25% of the distance between
si (the tail of ~Fi) and the spatial attractor (the dot). All the ellipses have the same
shape, and are only translated in space, which means that the covariance matrix does
not depend on the location si or on the previous bearing-angle φi−1.

2.4. Step and turn with an attractive point. In this section, we introduce the main
contribution of this work, that is a way to model a path that has the CRW and BRW of
the previous two sections as special cases, and which can exhibit, with different degrees,
directional persistence and an attraction to a point in space. Our idea is to introduce a
parameter ρ ∈ [0,1], and to define ~Fi as a weighted mean between the vector ~Fi in the
CRW and the BRW, with weights equal to ρ and 1− ρ, respectively. We then obtain,
in terms of equation (1), Mi = (1 − ρ)τ (µ− si) + ρR(φi−1)η, where it is clear that
the values of ρ that are close to 0 indicate a strong central place attraction and weak
directional persistence, while values of ρ that are close to 1 indicate a weak central
place attraction and a strong directional persistence. The length and direction of ~Fi

change smoothly with ρ.
In order to specify the conditional distribution of si+1, we need its covariance matrix.

As shown in the previous sections, the covariance matrix for the BRW is fixed (equation
(14)), while it depends on the previous bearing-angle for the CRW (equation (11)). Our
aim is for the covariance to change smoothly from Σ to R(φi−1)ΣR′(φi−1), on the basis
of the value ρ, and since the rotation matrix reduces to an identity matrix when its
argument is zero, and a smaller argument than φi−1 rotates the matrix by less than
φi−1, we define the variance as Vi = R(ρφi−1)ΣR′(ρφi−1). The conditional distribution
of the path therefore becomes

(17) si+1|si, si−1 ∼N(si + (1− ρ)τ (µ− si) + ρR(φi−1)η,R(ρφi−1)ΣR′(ρφi−1)),

which is second-order Markovian. If the path follows equation (17), we say that it is a
STAP. The parameters in (17) are µ, η, Σ, τ , ρ and s0. Examples based on the CRW
and BRW in Figures 3 (a) and (b) are shown in Figures 3 (c) and (d), for two values of
ρ. We can see that the STAP is closer to the BRW for ρ= 1/3, i.e., the path is attracted
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to µ and there is a modest directional persistence, while the STAP resembles a CRW
more for ρ= 2/3, i.e., there is a strong directional persistence but the movement is only
slightly attracted to µ. Using equations (5) and (7), we can find the distribution of the
displacement-coordinates

vi|vi−1, . . . ,v1 ∼N((1− ρ)τ (µ− si) + ρR(φi−1)η,R(ρφi−1)ΣR′(ρφi−1)),

yi|yi−1, . . . ,y1 ∼N((1− ρ)R′(φi−1)τ (µ− si) + ρη,R(φi−1(ρ− 1))ΣR′(φi−1(ρ− 1))),

where, for the conditional distribution of yi we use the following properties of the ro-
tation matrix: R−1(w) = R′(w) = R(−w) and R(w1)R(w2) = R(w1 + w2). From the
above equation, it is clear that the displacement-coordinates are not identically dis-
tributed and the movement-metrics are location-dependent.

It should be noted that the STAP can only be defined for observations that are
equally-spaced in time. This is due to its CRW component which, as discussed in
Section 2.2, presents challenges for the definition of the conditional density for non
constant time-intervals.

2.5. Hidden Markov model. If we assume that the animal exhibits different behav-
iors in the observed time-window, the STAP model, as proposed in (17), may not be
flexible enough to be used to model the data, since different movement characteristics
should be modeled by different parameters, while the parameters in equation (17) do
not change over time. For this reason, trajectory tracking data are generally assumed to
originate from a mixture-type model in which the latent cluster-membership variable
zi ∈ Z ⊆ N is interpreted as a behavior indicator, so that zi = j means that, at time
i, the animal is following j-th behavior. We can easily link the behavior to the STAP
parameters by assuming si+1|si, si−1 ∼N (si + Mi,zi ,Vi,zi) with

Mi,zi = (1− ρzi)τzi

(
µzi
− si

)
+ ρziR(φi−1)ηzi

,(18)
Vi,zi = R(ρziφi−1)ΣziR′(ρziφi−1).(19)

In both (18) and (19), the parameters are indexed by the latent variable zi and they
therefore change according to the animal’s behavior at time i. The set (ρj , τj ,µj ,ηj ,Σj)
contains the STAP parameters that describe the j-th behavior and, for example, if
ρ1 = 1, ρ2 = 0 and ρ3 = 0.5, the first behavior is a BRW, the second a CRW and the
third is a BCRW.

Different approaches have been proposed to model zi, and the most commonly used
is the HMM where the temporal evolution of zi is generated by a first-order Markov
process, so that P(zi = j|zi−1, . . . , z1) = P(zi = j|zi−1) = πzi−1,j for i ∈ {1, . . . , T − 1},
where the probability depends on the previous behavior and z0 is here equal to 1.
Generally, zi is assumed to have values in the set {1,2, . . . ,K∗}, where K∗ indicates
the maximum number of behaviors that we expect to see between time 1 and T − 1, and
the optimal K∗ is chosen by considering the opinion of experts or information criteria.
Instead of using a model with a finite K∗, we propose modeling the data with the
sHDP-HMM of Fox et al. (2011), using the STAP as the emission-distribution. In the
sHDP-HMM, we have Z ≡N , i.e., there are infinite possible behaviors but, with a finite
number of time-points, only a finite number of them, K, can be observed (these are
called “non-empty states” (Frühwirth-Schnatter and Malsiner-Walli, 2019)), and the
random variable K is used to estimate the number of behaviors. The HMM component
of the model is non-parametric, since the number of possible behaviors is assumed to
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be countable and unbounded, and K is a random variable that can be estimated. The
proposed HMM model, which we call STAP-HMM, is

si+1|si, si−1,Mi,zi ,Vi,zi ∼N (si + Mi,zi ,Vi,zi) ,(20)
zi|zi−1,πzi−1 ∼Multinomial(1,πzi−1),

πj |α,κ,β ∼Dir
(
α+ κ,

αβ + κδj
α+ κ

)
,

β|γ ∼GEM (γ) ,
ρj , τj ,µj ,ηj ,Σj ∼H,

where πj and β are infinite-dimensional probability vectors, GEM(·) indicates the
Griffiths-Engen-McCloskey distribution (Ishwaran and Zarepour, 2002), δj is the Dirac-
delta, and H is a distribution over the likelihood parameters which acts as a prior. We
assume a uniform distribution over the observed domain D for parameter s0.

For distribution H , we assume independence between the parameters with a normal
distribution for µj and ηj , an inverse-Wishart for Σj , and a uniform distribution over
(0,1) for φj . We want to be able to tell whether a behavior is a CRW (ρj = 1), a BRW
(ρj = 0) or a BCRW (ρj ∈ (0,1)), which means that we must allow ρj to assume, a
posteriori, not only values in (0,1), but also 0 or 1. This can be done by assuming
a mixed-type distribution over ρj , which then becomes a mixed-type random variable
composed of a discrete distribution with probabilities w0 > 0 and w1 > 0 on 0 and 1,
respectively, and a distribution over (0,1), which, in our case, is the uniform distribu-
tion, with an associated weight w(0,1) > 0; in order to obtain a proper distribution, it
is necessary to have w0 + w1 + w(0,1) = 1. The cumulative distribution function of the
distribution over ρj is

(21) P(ρj ≤ d) =


0 if d < 0,
w0 if d= 0,
w0 +w(0,1)d if 0< d< 1,
w0 +w(0,1) +w1 = 1 if d≥ 1.

We consider the use of a mixed-type distribution over ρj as being an important contri-
bution of this work, since it allows us to easily detect the type of behavior. We also
assume (α,κ, γ) to be random variables and, following Fox et al. (2011), closed-form
expressions for the updating of these parameters can be achieved with the following
priors: α+ κ∼G(a1, b1), κ/(α+ κ)∼B (a2, b2), and γ ∼G(a3, b3), where B(·, ·) stands
for the Beta distribution and G(·, ·) for the Gamma. Missing observations are also con-
sidered as parameters that have to be estimated. Since we are directly modeling the
path, the posterior distribution of the missing data is coherent with the observed lo-
cations, and we do not need any further assumptions, as instead are needed in Jonsen
et al. (2005) and McClintock et al. (2012), where the missing locations are assumed to
be on the line connecting the previous and subsequent observed locations.

The suggested distributions allow the implementation of MCMC updates based on
Gibbs steps, with the only exceptions being ρj and the missing data, as shown in
Appendix A.

2.6. Differences in and similarities between the STAP-HMM and the McClintock
et al. (2012) proposal. The McClintock et al. (2012) model is a general framework for
BCRWs that generalizes most of the other approaches. It shares some similarities with
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our proposal and can be considered its main competitor, since it is an HMM with an
emission distribution that has directional persistence and attractive points as it most
prominent features. Instead of coordinates, it models the step-length and bearing-angle
assuming independence between the two components; the same model can be expressed
using the turning-angle instead of the bearing-angle (see equation (9)). Even though
independence between the step-length and bearing-angle is not strictly necessary, and
their framework can still be used without it, there are very few distributions over the
cylinder that can accommodate dependence between circular and linear variables, see,
for example, Abe and Ley (2017), Mastrantonio (2018) and references therein. The
main idea of McClintock et al. (2012) is to define the circular mean λmc

i,j of the angular
variable, in the j-th behavior, as a weighted average between the previous direction
and the direction of the spatial attractor: λmc

i,j = ρmc
j φi−1 + (1− ρmc

j )ζi, where ζi is the
angle of the vector connecting si and the attractor, and ρmc

j is the weight of the j-
th behavior. Indeed, as in our proposal, with ρmc

j = 1 the model reduces to a CRW
and ρmc

j = 0 defines a BRW, while a behavior with ρmc
j ∈ (0,1) has both characteristics.

Other parameters of the movement-metrics are modeled to take into account that other
movement characteristics, such as circular variance and mean velocity, can be affected
by the distance from the attractor. A more detailed description of one of the possible
formulations of the model can be found in Appendix C.

Although the McClintock et al. (2012) approach is similar to our proposal and it
introduces the same features, there are some differences. The McClintock et al. (2012)
approach is defined using unimodal and symmetric circular distributions, and such
distributions are necessary to be able to interpret the results. To understand why, let
us suppose that the movement is ruled by a bimodal circular distribution, which is a
mixture of two wrapped-Cauchy with means λmc

i,j + π/3 and λmc
i,j − π/3, small circular

variances, and equal weights. In this case, the circular mean is λmc
i,j and, if ρmc

j = 0, the
model reduces to a BRW, and λmc

i,j = ζi is therefore the direction of the attractor. Since
there are two modes and the circular variance of the two components is small, even
though the model is a BRW, the density of the circular distribution over the direction
ζi is almost zero, which means that the animal never goes toward the attractor, but is
more likely to be in a direction close to ζi+π/3 or ζi−π/3. We then lose the possibility
of modeling and interpreting the attractor in a meaningful way. A similar issue can
arise if the circular mean is modeled with a non symmetrical distribution. On the other
hand, the circular distribution of our proposal is highly flexible, as shown in Figure 2,
and we do not have the same problem as McClintock et al. (2012), since we are modeling
the coordinates, and the mean of the conditional normal density of si+1 depends on the
location of the attractor. In our proposal, the characteristics of the distribution of the
movement-metrics (e.g., means and variances) change according to the distance from
the attractor and the previous bearing-angle (see Section 2.4), but there is no need to
model them directly.

We also want to show that a bimodal circular distribution can be helpful to describe
an animal’s path, especially in a CRW. Even if, for a given time-interval, for example
10 minutes, the turning-angle of a CRW is distributed as a unimodal and symmetric
distribution, e.g., a wrapped-Cauchy, if we record the data with a different time-interval,
e.g., 20 minutes, and we use the recorded data to compute the turning-angle, this may
be distributed as a multimodal or asymmetric distribution, as is possible to see in the
simulated data in Appendix D. To further clarify this point, we here show a simple
example. Let us suppose that the true path of an animal for a time-interval of 10
minutes is described by a wrapped-Cauchy with a circular mean π (half a circle), the
step-length is Weibull distributed with a mean of 1, and both distributions have a small
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Fig 4: Observed coordinates (a) and kernel density estimates of movement-metric dis-
tributions ((b) and (c)).

variance. If s1 = (0,0)′, and φ0 = 0, we can expect s2 to be close to the spatial point
(−1,0)′, s3 to be close to (0,0)′, and, since the variances of the distributions are small,
we expect s3,2 ≈ 0. This means that P(s3,1 < 0) ≈ 0.5, i.e., half of the time the step-
length of time i= 1 is larger than the step-length of time i= 2, and P(s3,1 ≥ 0)≈ 0.5,
i.e., half of the time the opposite is true. If we record the data with a time-interval of
20 minutes, the first turning-angle is computed as

θ1 = atan∗(s3,2 − s1,2, s3,1 − s1,1)− φ0 = atan∗(s3,2 − s1,2, s3,1 − s1,1),

see equation (8), because the second recorded coordinate is s3. Then, since s3,2 ≈ 0,
P(s3,1 < 0)≈ 0.5 and P(s3,1 ≥ 0)≈ 0.5, we obtain P(θ1 ∈ ∂0)≈ 0.5 and P(θ1 ∈ ∂π)≈ 0.5,
where ∂0 and ∂π denote small sections around 0 and π, respectively. This means that
the circular distribution is unimodal for a time-interval of 10 minutes, while, if we
record the data with a time-interval of 20 minutes, it is bimodal with two modes at ≈ 0
and ≈ π. When data are available, we cannot know if the turning-angle distribution
recorded at the given time-interval is unimodal and symmetric and we should therefore
use a distribution that can also take into account asymmetry and multimodality, which
is not possible with the model of McClintock et al. (2012), but is, instead, a by-product
of our proposal, see Figure 2.

The McClintock et al. (2012) framework in the original Bayesian model and the new
frequentist implementation in the momentuHMM R-package (McClintock and Miche-
lot, 2018), both require the number of behaviors to be fixed in order to estimate the
model, but this is not necessary in the STAP-HMM. Moreover, the prior on ρj allows
us to detect the behavior-type, while the McClintock et al. (2012) approach requires
an RJMCMC to obtain the same result, or the use of informational criteria, such as
the AIC in the momentuHMM R-package. The RJMCMC is an algorithm which, apart
from other problems, presents challenges in its implementation and in the designing
of a valid trans-dimensional proposal (Hastie and Green, 2012), especially since it is
not possible to find a closed-form full conditional for most likelihood parameters, and
Metropolis steps need to be used. On the other hand, our MCMC is mostly based on
Gibbs steps, and it does not need a trans-dimensional MCMC. Moreover, working di-
rectly with coordinates instead of movement-metrics allows us to easily estimate any
missing locations as part of the model fitting, and without imposing any constraints,
apart from the missing observations to only have a positive density in D, while Mc-
Clintock et al. (2012) assumes linearity between non-missing points.
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3. Real data. Maremma Sheepdogs are large-breed dogs, originating from Italy,
that have been used for centuries all over Europe and Asia to protect livestock from
predators and thieves. These dog are trained, from an early age, to live with livestock,
thereby creating a strong bond, and adult dogs therefore view the livestock as their
social companions and protect them from threats for the rest of their lives. Recent
studies have proved that Sheepdogs are effective in protecting livestock from a wide
range of potential predators (Gehring et al., 2017; van Bommel and Johnson, 2016).
The dogs can be fence-trained, to remain in the proximity of the paddock where the
livestock are confined, but they are generally allowed to cross fences, move freely and
roam over large areas. The use of Maremma Sheepdogs (or general livestock guardian
dogs) is relatively new in Australia and outside the country of origin, and interest in
their use is increasing (van Bommel and Invasive Animals Cooperative Research Centre,
2010). Owing to the extension of the properties, which can be several thousand squared
hectares, it is hard, or even impossible, for an owner to supervise dogs (van Bommel
and Johnson, 2012), which are visited rarely, and sometimes only once a week.

The dataset1 contains GPS locations of Maremma Sheepdogs and sheep on three
properties (van and Johnson, 2014). From the available data, we selected a subset
of temporally-contiguous observations of one female dog, called “Bindi”, who belongs
to the “Rivesdale” property, situated in North-East Victoria. Bindi’s locations were
recorded every 30 minutes, starting from 2010-03-13 at 18:30, to 2010-07-23 at 17:33.
The data, which consist of 6335 time-points with 196 missing observations, are plotted
in Figure 4 (a); it should be noted that, to facilitate the specification of the priors, the
coordinates are centered and divided by a pooled variance. The kernel density estimates
of the observed movement-metrics are depicted in Figures 4 (b) and (c), where we can
see bimodality in both the log step-length and turning-angle, thus suggesting a CRW,
while attractive points are suggested from Figure 4 (a), e.g., around coordinates (0,0),
which could lead to a BRW.

Owing to the still recent use of these dogs in Australia, and given the extension of
the property, the owner is often unaware of the dog’s movements and how she behaves
(van Bommel and Invasive Animals Cooperative Research Centre, 2010). In this work,
we are interested in finding how many behaviors the dog has and to describe them. We
are interested in evaluating the behavior when she is looking after the livestock, at the
core of the home-range, and at what time of the day she is more likely to leave the
sheep unattended. The description of the movement outside the central core area is also
interesting, because it can be related to the dog protecting livestock from predators and
be considered evidence of the effectiveness of such dogs.

To the best of our knowledge, this is the first attempt that has been made to iden-
tify the number and characteristics of the behavior of a Sheepdog, using a modeling
approach. Other works have only described the behavior of a Maremma qualitatively,
or have used descriptive statistics (van Bommel and Invasive Animals Cooperative Re-
search Centre, 2010) and tests (van Bommel and Johnson, 2012).

3.1. Model comparison. Our aim here is to show that our proposal outperforms
the model of McClintock et al. (2012) when estimated on the motivating dataset; the
performance is evaluated using the DIC5 of Celeux et al. (2006) and the ICL of Biernacki
et al. (2000), which can easily be computed if no measurement error is assumed.

We use the code provided in the supplementary material of McClintock et al. (2012)
to estimate their model, modifying it to remove the measurement error. The code

1available on https://www.datarepository.movebank.org/handle/10255/move.395

https://www.datarepository.movebank.org/handle/10255/move.395
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STAP-HMM MC-HMM4,5 MC-HMM7,2 MC-HMM5,4 MC-HMM3,6 MC-HMM6,2
DIC5 -17290.37 -16634.912 -16557.948 -16317.222 -16012.851 -15727.025
ICL 13245.672 9082.2480 8818.4409 8673.5212 8773.3074 8421.2723

Table 1
The table shows the DIC5 and the ICL for the STAP-HMM and the 5 best MC-HMMnmc

b
,nmc

c
. The

model selected by each index is indicated in bold.

estimates an HMM with a given number of BCRW and CRW (which McClintock et al.
(2012) called “exploratory state”) and we indicate as MC-HMMnmc

b
,nmc

c
the model of

McClintock et al. (2012) which is based on nmc
b BCRW and nmc

c CRW behaviors. An
RJMCMC is exploited to choose between different parametrizations that allow a BCRW
to be reduced to a BRW, thus making it possibility to determine the behavior-type. The
emission distribution is the product of a Weibull distribution on the step-length and of a
wrapped-Cauchy for the bearing-angle; these distributions are commonly used, see, for
example, Morales et al. (2004) and Michelot et al. (2016). The directional persistence
and attraction to the central location is introduced by modeling the wrapped-Cauchy
circular mean, and the distance from the center-of-attraction is also used to model the
circular concentration and the two Weibull parameters. We use the priors suggested in
the original paper, which are shown in Appendix C together with more details on the
model formalization.

For our proposal, we use weakly informative priors for the likelihood parameters,
namely N(02,1000I2) for µj and ηj , Σj ∼ IW (3, I2), a uniform over (0,1) for φj . The
three weights w0, w1, and w(0,1), which define the prior of ρj , (see equation (21)) are
all equal to 1/3. We also assume the priors α + κ ∼ G(0.1,1), κ/(α + κ) ∼ B (10,1),
γ ∼ G(0.1,1), which are defined to avoid the production of redundant behaviors, i.e.,
behaviors with similar vectors of the likelihood parameters (see Fox et al. (2011)),
since they induce a distribution over K which is almost fully concentrated on 1. The
distribution over K has been evaluated by simulating datasets from the STAP-HMM
with the same number of temporal points as the data we are modeling. This means
that we are a priori assuming that only one behavior is observed, i.e., the model is not
a mixture, and if the data support the hypothesis of different behaviors, the posterior
of K will move away from the prior. The spatial domain where the path is recorded
is defined as the square [−5,5]2 ≡D. The STAP-HMM is estimated using an MCMC
algorithm, implemented in Julia 1.3 (Bezanson et al., 2017). All the models have 5000
posterior samples, based on 125000 iterations, burnin 75000, thin 10. The codes that
can be used to replicate the results of our proposal are available at https://github.
com/GianlucaMastrantonio/STAP_HMM_model.

We decided to test MC-HMMnmc
b
,nmc

c
with a number of latent behaviors between

2 and 9 and all possible combinations of BCRW and CRW, e.g., with 4 behaviors
we tested the following: MC-HMM0,4, MC-HMM1,3, MC-HMM2,2, MC-HMM3,1, and
MC-HMM4,0. We selected 9 as the maximum number of behaviors since it is reasonable
to assume that 10 or more behaviors are not likely to be observed. In fact, such a large
number is somewhat uncommon, and the models in literature are usually tested on a
maximum of 2 to 5 behaviors (see, for example, Langrock et al., 2012; Pohle et al.,
2017; Michelot and Blackwell, 2019). Moreover, we experienced convergence issues and
extremely long computation times for models with more than 9 behaviors.

Both DIC5 and ICL are likelihood-based indices and the likelihood of the two ap-
proaches must be evaluated on the same data for a fair comparison. For this reason, in-
stead of locations si+1 we evaluated the likelihood of the STAP-HMM using (ri+1, ψi+1),
whose density can easily be determined from the displacement-coordinates distribution

https://github.com/GianlucaMastrantonio/STAP_HMM_model
https://github.com/GianlucaMastrantonio/STAP_HMM_model
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using standard results (see, for example, Mastrantonio, 2018). We show the computed
DIC5 and ICL for the STAP-HMM and the best five MC-HMMnb,nc in Table 1, which
are the same for both indices. ICL and DIC5 select our proposal as the best model
and 4 out of 5 MC-HMMnb,nc have 9 behaviors, while the other has 8. In order to
compute the estimated number of behaviors with the STAP-HMM, we can use the pos-
terior samples. Let Kb be the number of unique values of {zi}T−1

i=1 in the b-th MCMC
iteration, Kb is therefore a posterior sample of K and the set {Kb}5000

1 can be used
to estimate the distribution of the number of observed behaviors (K); we found that
P(K = 5|s) ≈ 0.996 and P(K = 6|s) ≈ 0.004. These results and the ones in Appendix
E, where we show that the number of behaviors with the highest posterior probability
does not change for a wide range of STAP-HMM hyperparameters priors, indicate that
only 5 behaviors are needed to describe the data.

The STAP-HMM is not only preferable from the information criteria point of view,
but it is also more parsimonious in terms of number of estimated behaviors. Pohle
et al. (2017) showed, in a large simulation study, that if the emission distribution is
not flexible enough, information criteria can select a number of behaviors that is much
greater than the real one. Since, as discussed in Section 2.6, the circular distributions
used in the general framework of McClintock et al. (2012) are not flexible, i.e., they are
unimodal and symmetric, and independence is assumed between the step-length and
bearing-angle (or turning-angle), we believe that this is why a large number of behaviors
are selected. On the other hand, the distributions induced on the movement-metrics by
our proposal, especially in terms of turning- and bearing-angle, are quite flexible.

3.2. The results. Since the posterior mode of K is almost fully concentrated on 5,
we only describe the results obtained with the set of samples that has Kb = 5 and, in
order to simplify the discussion, we indicate the j-th latent behavior with LBj . We show
the posterior means (indicated using the hat notation ·̂) and the 95% credible intervals
(CIs) for all the model parameters in Table 2. We compute the maximum-at-posteriori
estimate of zi for each time-point, which we indicate with ẑi and we call it the MAP
behavior at time i. We can then associate a MAP behavior to each spatial location
and use it to see wheter there are any differences in the spaces utilized by the animal;
this information is indicated with dots in Figure 5. The vectors ~Fi and the predictive
conditional distributions of si+1 are also shown in the same figure. It should be noted
that, since the ellipses in Figure 5 are too small for the first two behaviors, we plot the
same objects on a smaller spatial scale in Figure 6. The MAP behavior is also used in
Figure 7 where, for a given time of the day (half an hour apart), we show the proportion
of occurrence of the values of the MAP behaviors.

We can see from ρ̂j in Table 2, that the first two behaviors are CRW, and the last
two are BRW, with a strength of attraction that is moderate in the fourth (τ̂4 = 0.628)
and very strong in the fifth (τ̂5 = 0.985). The third behavior is close to a random walk
since τ̂3 = 0.027, with a slight direction persistence (ρ̂3 = 0.018). The same information
can be deduced from Figures 5 and 6, which also give more insight into the movement
characteristics. The predictive distribution of the turning-angle and log step-length are
depicted in Figure 8, albeit only for the behaviors that have a strong CRW component
(LB1 and LB2) since, as discussed in Sections 2.3 and 2.4, the distribution of the
movement metrics in BRWs and BCRWs are location-dependent.

The strong attraction present in LB5 can be seen in Figure 5, since the heads of the
vectors ~Fi are all on the same coordinates, regardless of the spatial location. It is also
possible to see the moderate attraction of LB4 in the same figure. We can see from the
CIs of µ4 and µ5 that the two attractors are well defined in space and different from
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j=1 j=2 j=3 j=4 j=5
µ̂j,1 -1.26 -0.4 8.317 -0.35 0.179
(CI) (-63.744 60.201) (-63.476 60.828) (-2.394 46.037) (-0.413 -0.286) (0.169 0.189)
µ̂j,2 0.579 0.064 4.209 -0.328 -0.404
(CI) (-60.586 61.246) (-62.861 62.019) (-6.944 32.779) (-0.4 -0.261) (-0.413 -0.395)
η̂j,1 -0.005 -0.045 23.83 -0.068 -0.037
(CI) (-0.006 -0.004) (-0.06 -0.03) (3.257 64.705) (-60.042 61.38) (-62.237 61.557)
η̂j,2 0 -0.001 -5.239 -0.261 0.275
(CI) (-0.001 0.001) (-0.012 0.01) (-21.373 2.178) (-60.86 62.259) (-61.478 62.021)
τ̂j 0.499 0.492 0.027 0.628 0.985

(CI) (0.024 0.97) (0.026 0.973) (0.001 0.079) (0.574 0.685) (0.973 0.997)
ρ̂j 1 1 0.018 0 0

(CI) [1 1] (1 1] (0.003 0.071) [0 0) [0 0]
Σ̂j,1,1 0.001 0.029 0.791 0.128 0.006
(CI) (0.001 0.001) (0.022 0.039) (0.67 0.953) (0.104 0.158) (0.005 0.008)

Σ̂j,1,2 0 0 -0.078 0.033 0.001
(CI) (0 0) (-0.002 0.002) (-0.139 -0.024) (0.018 0.049) (0 0.001)

Σ̂j,2,2 0.001 0.018 0.373 0.168 0.005
(CI) (0.001 0.001) (0.014 0.023) (0.315 0.444) (0.14 0.201) (0.004 0.006)
π̂1,j 0.848 0.073 0.023 0.044 0.011
(CI) (0.835 0.861) (0.063 0.084) (0.016 0.031) (0.035 0.055) (0.005 0.019)
π̂2,j 0.286 0.388 0.145 0.094 0.086
(CI) (0.242 0.336) (0.335 0.44) (0.109 0.185) (0.057 0.135) (0.057 0.116)
π̂3,j 0.066 0.202 0.513 0.162 0.056
(CI) (0.037 0.102) (0.143 0.268) (0.441 0.581) (0.114 0.218) (0.027 0.092)
π̂4,j 0.169 0.206 0.001 0.419 0.205
(CI) (0.125 0.218) (0.145 0.272) (0 0.018) (0.343 0.493) (0.161 0.252)
π̂5,j 0.873 0 0.008 0.003 0.116
(CI) (0.768 0.976) (0 0.003) (0 0.035) (0 0.027) (0.018 0.217)
β̂j 0.248 0.169 0.14 0.172 0.219

(CI) (0.079 0.484) (0.039 0.373) (0.023 0.341) (0.039 0.375) (0.065 0.439)
α κ γ

ˆ 0.284 2.701 1.177
(CI) (0.007 1.073) (1.408 4.447) (0.296 2.754)

Table 2
Posterior means and 95% CIs of the STAP-HMM parameters for K=5.

each other. On the other hand, the length of ~Fi is approximatively zero in the first two
behaviors, see Figure 6, but the variance of the conditional distribution of si+1 rotates
with the bearing-angle (see the direction of the major axis of the ellipses) which is a
characteristic of directional persistence. Figure 8 shows that LB1 has a slower speed
than LB2 and both have a bimodal circular distribution with the major mode at around
−π and a smaller one at 0. These modes indicate that the dog tends to move in the
opposite direction to the previous movement (mode at −π) or in the same direction
(mode at 0). The vector ~Fi in LB3 changes slightly according to the spatial location,
but the attractor is not well defined in space since the CI of µ3 is large and contains the
entire space where the animal has been observed. It should be noted that the major axis
of the ellipses rotate slightly in Figure 5 (c), thus suggesting a very small directional
persistence.

In Appendix G, we show simulated coordinates from the STAP-HMM, obtained using
the posterior means in Table 2 as parameters, where we can see that the coordinates
have the data characteristic, for example the central bulk of observations, as well as the
extension of the “explored space”. The results that are obtained when we only consider
CRW (CRW-HMM) or BRW behaviors (BRW-HMM) are also discussed in Appendix
G.
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Fig 5: Graphical representation of the predictive conditional distribution of si+1 for
different possible values of si and previous directions. The dashed arrow represents the
movement between si−1 and si. The solid arrow is ~Fi, while the ellipse represents an
area containing 95% of the probability mass of the predictive conditional distribution
of si+1, computed using (2). The dots for the j-th figure are the coordinates for which
ẑi = j.

Behavior description. It is clear from the posterior mean of πj,k and from Figure 7
that the animal spends most of her time in LB1. By comparing the spatial coordinates
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Fig 6: Graphical representation of the predictive conditional distribution of si+1 for
different possible values of si and previous directions for the first two behaviors at
greater spatial detail than in Figure 5. The dashed arrow represents the movement
between si−1 and si. The solid arrow is ~Fi, while the ellipse represents an area containing
95% of the probability mass of the predictive conditional distribution of si+1, computed
using (2).
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Fig 7: The values of the lines at each time (x-axis) represent the proportion of the times
that the STAP-HMM MAP behaviors are observed (y-axis).

of LB1, shown in Figure 5 (a), with the property boundaries in Figure G.2, we can
see that the animal mostly stays inside the property boundaries. This consideration,
together with the low speed and the changes in direction (Figure 8), allows us interpret
it as boundary-patrolling or scent-marking behavior, which has already been observed
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Fig 8: Turning-angle (a) and log step-length (b) predictive distributions for the first
two behaviors of the STAP-HMM. The distributions are computed using only the CRW
component.

for other livestock guardian dogs (McGrew and Blakesley, 1982). The probability of
observing LB1 drops in the early morning and late afternoon, and it is smaller during
the night than for the central hours of the day.

Regarding LB2, the higher speed and the smaller variance in the turning-angle dis-
tribution with respect to LB1, the spatial coordinates that are very similar to those of
LB1, and the fact that it is more likely during the night and the afternoon, are all clues
that, with this behavior, the animal could be defending the territory from predators,
which is coherent with the known behavior of potential predators that are present in
the area where the data were collected (Brook et al., 2012; Walton et al., 2017).

There is also an increase in the probability of LB3 in the first hours of the day,
which is otherwise very small. This is the behavior with the largest variability in the
observed coordinates (Figure 5 (c)) and an almost total absence of structure in the
movement, from both the CRW and BRW points-of-view. With this behavior, the
animal is exploring, going outside the property boundaries and also visiting nearby
sheep flocks (see van Bommel and Johnson, 2014). If the dog leaves LB3, the probability
of switching to LB1 and LB5 is small (π̂3,1/(1− π̂3,3) = 0.135 and π̂3,4/(1− π̂3,3) = 0.115),
while the probability of going to LB4 (π̂3,4/(1− π̂3,3) = 0.333) and LB2 (π̂3,2/(1− π̂3,3) =
0.415) is higher; the high probability of LB2 is likely due to the possibility of spotting
a potential predator during the exploration.

LB4 is one of the behaviors with a well defined attractor, and its spatial coordinates
are located in the central area where the sheep are (for completeness, the observed co-
ordinates of the sheep are depicted in the Appendix, Figure G.1). The spatial attractor
has a posterior mean µ̂4 = (−0.35,−0.328)′, which is located in the center of the live-
stock paddock (for details, see van Bommel and Johnson, 2014). When the dog is close
to its attractor, the 95% probability area, represented by the ellipses in Figure 5 (d),
is large enough to encompass most of the sheep locations, which means that the dog is
moving between the sheep. This is more probable during the night, and two probability
spikes can be observed in the early morning and late afternoon when there is a drop
in the LB1 probability. It should be noted that all the previously described behaviors
have some coordinates that overlap those of the sheep, but not all of them do, which
means that the dog is moving through the space according to a CRW (LB1 and LB2) or
an RW (LB3) and the path sometimes overlaps the sheep locations, probably as a way
of continuously guarding the livestock while engaging in other activities. On the other
hand, when the dog shows this behavior (LB4), she is attracted to the sheep paddock,
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and is more likely to show this behavior during the night, when the sheep are more
vulnerable to attacks. This can easily be interpreted as the dog attending the livestock,
and the high probability of moving to this behavior from LB3 (π̂3,4/(1− π̂3,3) = 0.333),
i.e., the exploring one, can be interpreted as a way of checking on the livestock after
leaving the sheep unsupervised.

In the final behavior, there is a well located attractor and the variability of the
movement is very low (the size of the ellipses in Figure 5 (e)), which means that, for
any point in space, the animal moves precisely on the coordinate of the attractor. The
probability of continuing this behavior is very low (π̂5,5 = 0.116) and the only switching
probability with a high value is π̂5,1 = 0.873. In order to interpret this behavior, we can
look at Figure G.2, which shows that there is a self-feeder, located approximatively at
the spatial location µ̂5, where the dog can obtain dry food ad-lib. As a result of these
considerations, we believe that this can be interpreted as a feeding behavior and, after
feeding, the dog switches, with a high probability, to boundary-patrolling.

4. Final remarks. In this work, we have proposed an HMM that is based on a new
emission distribution, which we have called STAP, that can be used to model animal
movements with attractive points and directional persistence. The STAP belongs to
the BCRW family. We have described the similarities to and differences from the model
proposed by McClintock et al. (2012), which is a generalization of previous approaches
that are aimed at combining attraction and directional persistence. Our proposal is
easy to implement, is very flexibile, especially in terms of the angular variable distri-
bution, and is easily interpretable. We also introduce a distribution over the likelihood
parameters that has allowed us to detect the type of behavior of the dog.

The proposal was estimated on the motivating example, where the spatial locations
of a Maremma Sheepdog were recorded. To the best of our knowledge, this work is the
first to have used a mixture-model to identify the characteristics of the behavior of a
Maremma, and the results we have obtained are clear and easy to interpret. The model
is able to find 5 different behaviors, two CRW (LB1 and LB2), two BRW (LB4 and LB5)
and an RW, with slightly directional persistence (LB3), which is therefore a BCRW.
These behaviors are easily characterizable, and they appear to be very different. We
found that the dog is on boundary-patrolling for most of the time (LB1), and when
she changes behavior, because she is defending the property (LB2), exploring the space
(LB3), staying within the sheep paddock (LB4) or going to the self-feeder (LB5), she
switches back to boundary-patrolling after a few time-points. The information obtained
with our model can be used to better understand how to employ these dogs and it
suggests that they may be effective in protecting livestock, since the recorded dog
constantly guarded the property and livestock and never left for an extensive period of
time.

From the obtained results, we can infer that a mixture-type model with a BCRW
emission distribution is needed to model such data. As shown in Appendix E, regard-
less of the priors chosen for the HMM hyper-parameters, 5 was always the number of
behaviors with the highest posterior probability, which points out that a mixture-type
model is the right approach. The STAP has the CRW and the BRW as special cases,
and they can be estimated if the parameter ρ is equal to 1 or 0, respectively. Since
between the five behaviors that were found we have CRWs, BRWs and also a BCRW,
a density that is able to model all of the three is necessary.

The two CRW behaviors have bimodal posterior predictive distributions, see Figure
8. Since the STAP with the right set of parameters can have a unimodal and symmetric
circular density, bimodality was needed to better fit these behaviors. The informational
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criteria in Table 1 show that the STAP-HMM is preferable to the model of McClin-
tock et al. (2012), and it requires a smaller number of behaviors to describe the data.
Hence, there is evidence that the STAP is superior, in terms of description ability, to
the emission distributions proposed in McClintock et al. (2012). We have shown, in
Appendix D, that it is not possible to assume a unimodal and symmetric turning-angle
distribution for all time-intervals, which, we believe, is one of the reasons why the model
of McClintock et al. (2012) needs a large number of behaviors to describe the data. On
the other hand, we have shown that the number of estimated behaviors of our proposal
does not change even when changing the priors over the STAP-HMM hyperparameters,
see Appendix E, which suggests that the animal exhibited 5 different types of behavior
in the observed time-window.

In the future, we will extend our model to incorporate several animals, as in Lan-
grock et al. (2014), we will use more flexible temporal dynamics for the latent behavior
switching, as in Harris and Blackwell (2013) or Mastrantonio et al. (2019), and we will
also introduce covariates into the emission distribution.
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Appendix A Implementation details. In this section, we describe how to
sample the STAP parameters and missing observations in the MCMC algorithm, by
showing the full conditional distribution, when it can be derived in closed-form, or
the proposal distribution used in the Metropolis step, when the full conditional is not
available in closed-form. For the sHDP-HMM parameters, the reader can refer to the
original paper of Fox et al. (2011), where different sample schemes are explained; we
used the degree L weak limit approximation (Ishwaran and Zarepour, 2002) with L= 200
(algorithm 4).

Let Ij be the set of indices i, so that zi = j, and let nj be the number of elements in
Ij ; Ij can be empty. Given the conditional specification (20), if nj > 0, the likelihood
contribution to the full conditional of a STAP parameter, for the j − th behavior, is
proportional to

(22)
∏
i∈Ij

|Σj |−
1
2 exp

(
−

(si+1 − si −Mi,j)′V−1
i,j (si+1 − si −Mi,j)

2

)
,

where we used the relation |Σj |= |R(ρjφi−1)ΣjR′(ρjφi−1)|. It should be noted that if
nj = 0, the full conditional of a parameter is equal to its prior.
Parameter µj . Since we assume µj ∼ N (Bµ,Wµ), and µj enters linearly into the
mean of the conditional distribution of si+1, standard results (Gelman et al., 1995)
show that the full conditional is µj ∼N (Bµ,j ,Wµ,j) with

Wµ,j =

(1− ρj)2τ 2
j

∑
i∈Ij

V−1
i,j + W−1

µ

−1

,

Bµ,j = Wµ,j

(1− ρj)τj
∑
i∈Ij

V−1
i,j

(
si+1 − si + (1− ρj)τjsi − ρjR (φi−1)ηj

)
+ W−1

µ Bµ

 .
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Parameter ηj . If ηj ∼N (Bη,Wη), then, for the same reason as above, the full con-
ditional of ηj is N (Bη,j ,Wη,j) with

Wη,j =

ρ2
j

∑
i∈Ij

R′(φi−1)V−1
i,j R(φi−1) + W−1

η

−1

,

Bη,j = Wη,j

ρj ∑
i∈Ij

R′(φi−1)V−1
i,j

(
si+1 − si − (1− ρj)τj(µj − si)

)
+ W−1

η Bη

 .
Parameter τj . Similarly to µj and ηj , τj also enters linearly into the mean of the
conditional distribution of si+1. Since its domain is (0,1) and the prior is uniform, the
full conditional is therefore a truncated normal N (Bτ,j ,Wτ,j) I(0,1) with

Wτ,j =

(1− ρj)2 ∑
i∈Ij

(µj − si)′V−1
i,j (µj − si)

−1

,

Bτ,j = Wτ,j

(1− ρj)
∑
i∈Ij

(µj − si)′V−1
i,j

(
si+1 − si − ρjR (φi−1)ηj

) .
Parameter Σj . We can express equation (22) as

∏
i∈Ij

|Σj |−
1
2 exp

(
−

(R′(ρjφi−1) (si+1 −Mi,j))′Σ−1
j (R′(ρjφi−1) (si+1 −Mi,j))
2

)

which shows that Σj is the covariance of normal densities. Given that the prior is
IW (aΣ,CΣ), the full conditional is IW (aΣ,j ,CΣ,j) (Gelman et al., 1995) with

aΣ,j = nj + aΣ,

CΣ,j = CΣ +
∑
i∈Ij

(R′(ρjφi−1) (si+1 −Mi,j)) (R′(ρjφi−1) (si+1 −Mi,j))′ .

Parameter ρj . Parameter ρj is part of the rotation matrix argument, and as it is
therefore not possible to find a closed-form full conditional, it must be sampled using a
Metropolis step. Our suggestion is to propose a new value sampling from a mixed-type
distribution composed of two bulks of probability in 0 and 1, and a uniform distribution
in (max(0, ρ∗j − c),min(1, ρ∗j + c)) with c > 0, where ρ∗j is the last accepted ρj in the
MCMC algorithm. The bulks of probability ensure that ρj can assume values 0 and
1 a posteriori, while the parameters of the uniform are defined in order to be able to
propose a new value that is close to the previously accepted one.

Missing observations and s0. A closed-form full conditional cannot be found for the
missing observations, and a Metropolis should therefore be used. We suggest proposing
a new value of the missing si+1 sampling from its conditional distribution N(si +
Mi,zi ,Vi,zi), since it will simplify the Metropolis ratio. The initial value s0 is sampled
using a Metropolis step with a proposal that is a normal distribution with a mean equal
to the previously accepted value of s0.

Appendix B Simulated examples. We here want to show that the parameters
of the STAP-HMM can easily be estimated. For this reason, we simulate synthetic data
from an HMM with a fixed number of behaviors and STAP emission distribution, and
after model fitting we compare the 95% CI of each parameter with the true value; if the
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Fig B.1: Locations of the simulated datasets.

latter is inside the CI, we consider the parameter “well estimated”. We simulate three
datasets with 7000 observations, and 3 behaviors (K∗ = 3), with πj,j = 0.8, πj,j′ = 0.1
if j 6= j′, and different sets of STAP parameters. In the first dataset, we assume

µ1 =
(
−10

0

)
, µ2 =

(10
10

)
, µ3 =

(0
0

)
, η1 =

(0
0

)
, η2 =

(1
1

)
, η3 =

(
−2
0

)
,

Σ1 =
(0.5 0.0

0.0 5.0

)
, Σ2 =

( 1.0 −0.25
−0.25 0.5

)
, Σ3 =

( 1.0 0.25
0.25 1.0

)
,

and τ1 = 0.5, τ2 = 0.2, τ3 = 0, ρ1 = 0, ρ2 = 0.5, ρ3 = 1. With this dataset we want
to show that our model is able to detect whether a behavior is a BRW (behavior
1), a CRW (behavior 3), or a STAP (behavior 2). In the second dataset, we assume
τ1 = τ2 = τ3 = 0.2, ρ1 = 0.2, ρ2 = 0.5, ρ3 = 0.8, while all the other parameters remain
the same. With this dataset, we want to show that we are able to learn the strength of
attraction, even when its value is moderate (τ =0.2) and the model is closer to a CRW
than a BRW (behavior 3, ρ= 0.8). In the last dataset, we have τ1 = τ2 = τ3 = 0.8, while
all the other parameters are the same as those of the second dataset. With this example,
we are interested in showing that, even though the strength of attraction is strong, we
can still detect directional persistence. We use the same priors and iterations as Section
3 for the model implementation. We show the simulated datasets in Figure B.1, where
we can see that the spatial locations of the 3 behaviors are clearly overlapping.

The posterior estimates of the parameters are shown in Tables B.1, B.2 and B.3, and
the parameters that are not well estimated are highlighted in bold. As can be seen, as
expected most of the parameters are inside the intervals, and the ones that are not well
estimated have intervals that are close to the real values. The posterior probabilities
of K = 3 are 0.985, 0.969, and 0.98, respectively, for the three datasets. The accuracy
of the prediction of zi, based on the MAP estimator, and the true behavior at time
i is 0.942 for the first dataset, 0.916 for the second one, and 0.978 for the third one.
Given these results, we can assume that the STAP-HMM parameters can be estimated
with the proposed algorithm, which is also able to detect the right number of latent
behaviors.

Appendix C Details on the model of McClintock et al. (2012). The
model is an HMM with a fixed number of behaviors and an emission distribution
which is the product of a wrapped Cauchy over the bearing-angle and a Weibull for
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j=1 j=2 j=3
µ̂j,1 -10.007 10.247 0.139
(CI) (-10.08 -9.937) (9.602 10.947) (-60.403 63.725)
µ̂j,2 0.08 9.764 0.645
(CI) (-0.116 0.273) (9.246 10.278) (-60.098 61.962)
η̂j,1 -0.062 1.157 -2.026
(CI) (-62.867 62.613) (0.932 1.301) (-2.075 -1.978)
η̂j,2 0.003 1.126 0.022
(CI) (-61.274 60.611) (0.076 1.261) (-0.022 0.068)
τ̂j 0.502 0.181 0.499

(CI) (0.495 0.509) (0.167 0.196) (0.024 0.975)
ρ̂j 0 0.459 1

(CI) [0 0) (0.422 0.493) (1 1]
Σ̂j,1,1 0.482 0.974 0.983
(CI) (0.451 0.516) (0.916 1.037) (0.919 1.054)

Σ̂j,1,2 0.02 -0.232 0.267
(CI) (-0.046 0.088) (-0.264 -0.201) (0.22 0.315)

Σ̂j,2,2 4.912 0.487 0.991
(CI) (4.625 5.202) (0.458 0.518) (0.931 1.056)
π̂1,j 0.796 0.101 0.103
(CI) (0.777 0.815) (0.087 0.116) (0.088 0.12)
π̂2,j 0.085 0.821 0.094
(CI) (0.073 0.097) (0.804 0.837) (0.081 0.107)
π̂3,j 0.115 0.087 0.799
(CI) (0.1 0.131) (0.074 0.101) (0.78 0.818)
β̂j 0.312 0.312 0.308

(CI) (0.052 0.681) (0.049 0.676) (0.049 0.688)
α κ γ

ˆ 0.342 3.46 0.728
(CI) (0.009 1.347) (1.184 6.992) (0.075 2.303)

Table B.1
Posterior means and 95% CIs of the parameters of the first simulated dataset for K=3.

the step-length. The temporal evolution of the random variable zmc
i ∈ {1,2, . . . ,Kmc}

that represents the behavior at time i, follows a first-order Markov process with
zmc
i |zmc

i−1,π
mc
zmc

i−1
∼Multinomial(1,πmc

zmc
i−1

). If zmc
i = j, the distributions over the movement-

metric are
φi|φi−1, z

mc
i ∼wCauchy(λmc

i,j , ε
mc
i,j ),

ri|zmc
i ∼Weibull(amc

i,j , b
mc
i,j ).

If the j-th behavior at time i is a BCRW, we have
λmc
i,j = ρmc

j φi−1 + (1− ρmc
j )ζi,

εmc
i,j = logit−1(mmc

j + gmc
j ψi + qmc

j ψ2
i ),

amc
i,j = amc

1,j (1− I[0,dmc
j )(ψi)) + amc

2,jI[0,dmc
j )(ψi),

bmc
i,j = bmc

1,j (1− I[0,dmc
j )(ψi)) + bmc

2,jI[0,dmc
j )(ψi),

while, if it is a CRW, we obtain λmc
i,j = φi−1, εmc

i,j = νmc
j , amc

i,j = amc
j , bmc

i,j = bmc
j ,

where ψi is the distance between the observation si and the attractor. The prior
distributions are: mmc

j , gmc
j , qmc

j ∼ N(0, τmc), with τmc ∼ G(2,3), ρmc
j , νmc

j ∼ U(0,1),
φ0 ∼ U(0,2π), amc

j , amc
1,j , a

mc
2,j ∼ U(0,14000), bmc

j , bmc
1,j , b

mc
2,j ∼ U(0,30), dmc

j ∼ U(0,14000),
and πmc

j ∼Dir(1, . . . ,1).

Appendix D Turning-angle distribution for different time-intervals. In
this section, we want to show that even though a path, at a given time-interval, can
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j=1 j=2 j=3
µ̂j,1 -10.131 10.01 -0.39
(CI) (-10.495 -9.787) (9.447 10.578) (-1.571 0.816)
µ̂j,2 0.556 10 0.743
(CI) (-0.052 1.152) (9.517 10.483) (-0.787 2.062)
η̂j,1 -0.037 1.088 -2.029
(CI) (-0.324 0.248) (0.974 1.205) (-2.186 -1.895)
η̂j,2 0.235 1.033 -0.004
(CI) (-0.037 0.508) (0.927 1.144) (-0.062 0.055)
τ̂j 0.198 0.191 0.196

(CI) (0.19 0.207) (0.177 0.207) (0.142 0.264)
ρ̂j 0.201 0.48 0.795

(CI) (0.193 0.208) (0.449 0.511) (0.741 0.844)
Σ̂j,1,1 0.478 0.972 0.959
(CI) (0.445 0.514) (0.909 1.039) (0.886 1.036)

Σ̂j,1,2 0.036 -0.241 0.265
(CI) (-0.034 0.107) (-0.275 -0.21) (0.215 0.314)

Σ̂j,2,2 4.993 0.492 1.005
(CI) (4.692 5.301) (0.462 0.525) (0.937 1.077)
π̂1,j 0.811 0.096 0.107
(CI) (0.802 0.818) (0.081 0.112) (0.088 0.127)
π̂2,j 0.084 0.821 0.095
(CI) (0.071 0.099) (0.783 0.838) (0.08 0.111)
π̂3,j 0.113 0.093 0.794
(CI) (0.096 0.131) (0.079 0.11) (0.771 0.815)
β̂j 0.316 0.307 0.311

(CI) (0.052 0.675) (0.051 0.672) (0.049 0.675)
α κ γ

ˆ 0.351 3.382 0.73
(CI) (0.008 1.419) (1.143 6.927) (0.088 2.278)

Table B.2
Posterior means and 95% CIs of the parameters of the second simulated dataset for K=3. The

parameter whose 95% CI does not contain the true value is shown in bold.

be described by a unimodal and symmetric circular distribution, the distribution over
the turning-angle (or bearing-angle) can be asymmetric and multimodal for a greater
time-interval.

Let us suppose we have a path s∗ = (s∗t1 , . . . , s∗tT∗ ), where t1, . . . , tT ∗ are equally-spaced
temporal-indices, i.e., ti − ti−1 = ti−1 − ti−2 for all i= 3,4, . . . , T ∗. We assume that the
path is a CRW with the following distribution for the step-length and turning-angle:

r∗ti = ||y∗ti ||2 ∼Weibull(asim, bsim),(23)
θ∗ti = atan∗(y∗ti,2, y

∗
ti,1)∼wCauchy(λsim, εsim),

where y∗ti = (y∗ti,1, y∗ti,2)′ = R(φ∗ti−1)(s∗ti+1 − s∗ti), φ∗ti = atan∗(s∗ti+1,2 − s
∗
ti,2, s

∗
ti+1,1 − s

∗
ti,1),

θ∗ti = φ∗ti − φ
∗
ti−1 , s∗t0 = (−1,0)′, and s∗t1 = (0,0)′. It should be noted that the wrapped-

Cauchy is symmetric and unimodal. We assume that the distributions in (23) are the
ones that rule the animal’s path with a time-step ti − ti−1, but we are only able to
observe/record the path at the time-interval d(ti − ti−1) = tid − t(i−1)d with d ≥ 2.
Hence, we define s = (s1, . . . , sT ) as the recorded path with
(24) si = s∗tid

.

From (24), we can compute the movement metrics, as well as the other sets of co-
ordinates, as explained in Section 2, e.g., φi = atan∗(si+1,2 − si,2, si+1,1 − si,1) and
θi = φi − φi−1.

We simulate three paths s∗ (equation (23)) with T ∗ = 100000 and the following sets
of parameters:
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j=1 j=2 j=3
µ̂j,1 -9.997 10.028 -0.019
(CI) (-10.057 -9.938) (9.923 10.137) (-0.274 0.236)
µ̂j,2 0.054 10.003 0.22
(CI) (-0.084 0.188) (9.895 10.113) (-0.054 0.493)
η̂j,1 0.01 0.994 -1.977
(CI) (-0.233 0.254) (0.908 1.082) (-2.07 -1.908)
η̂j,2 0.015 0.962 0.005
(CI) (-0.244 0.265) (0.873 1.054) (-0.049 0.056)
τ̂j 0.806 0.816 0.915

(CI) (0.796 0.816) (0.777 0.862) (0.77 0.996)
ρ̂j 0.205 0.511 0.824

(CI) (0.197 0.211) (0.488 0.537) (0.791 0.84)
Σ̂j,1,1 0.483 0.982 0.975
(CI) (0.454 0.512) (0.928 1.04) (0.917 1.037)

Σ̂j,1,2 0.006 -0.244 0.264
(CI) (-0.06 0.074) (-0.275 -0.215) (0.222 0.308)

Σ̂j,2,2 4.962 0.495 0.976
(CI) (4.679 5.259) (0.468 0.524) (0.917 1.039)
π̂1,j 0.799 0.101 0.099
(CI) (0.781 0.817) (0.089 0.114) (0.086 0.114)
π̂2,j 0.09 0.817 0.093
(CI) (0.079 0.102) (0.801 0.832) (0.081 0.105)
π̂3,j 0.107 0.092 0.801
(CI) (0.094 0.121) (0.08 0.105) (0.783 0.818)
β̂j 0.317 0.304 0.31

(CI) (0.053 0.673) (0.052 0.675) (0.047 0.668)
α κ γ

ˆ 0.327 3.377 0.724
(CI) (0.007 1.279) (1.16 6.848) (0.076 2.315)

Table B.3
Posterior means and 95% CIs of the parameters of the third simulated dataset for K=3. The

parameter whose 95% CI does not contain the true value is shown in bold.

• set1={λsim = π− 0.1, εsim = 0.1, asim = 1, bsim = 1};
• set2={λsim = π− 0.35, εsim = 0.1, asim = 1.7, bsim = 5};
• set3={λsim = π/4− 0.2, εsim = 0.1, asim = 15, bsim = 10}.
We can see the highly concentrated wrapped-Cauchy distributions used to simulate
the paths, i.e., the distributions of θ∗ti , in the first row of Figure D.1. We obtain three
datasets of recorded coordinates by assuming d= 2 in the first path, while in the second
path we assume d= 3, and in the third d= 9. Using (6) and (8), we derive the samples of
the turning-angles θi of the recorded paths s and we evaluate the distributions induced
over θi with the given time-intervals tid − t(i−1)d by using a kernel estimator; these
densities are shown in the second row of Figure D.1. It is clear from the figures that,
even though the data at a given time-interval come from a unimodal and symmetric
circular distribution, the circular distribution can be bimodal for a greater time-interval
(Figure D.1 (d) and (e)) or asymmetric (Figure D.1 (f)). For this reason, a distribution
over the circular variable that may be multimodal and asymmetric should be used to
describe the data at any time-interval.

Appendix E Sensitivity analysis of the hyper-parameter priors. The
number of latent behaviors of the sHDP-HMM depends on the hyper-parameters α, κ
and γ, which are random quantities in our model and are assumed to be distributed ac-
cording to the following priors (see Section 3): α+ κ∼G(0.1,1), κ/(α+ κ)∼B(10,1),
γ ∼ G(0.1,1). In this section, we want to show how the posterior distribution of K
changes if we change these priors.
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Fig D.1: The wrapped-Cauchy densities used to simulate the paths s∗ (first row), and
the kernel density estimates of the turning-angle distributions of s (second row).
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Fig E.1: Values of the posterior probability of the number of behaviors being equal to
5, under 9 Gamma priors for α+ κ and γ, and 4 Beta priors for κ/(α+ κ).

Parameters α + κ and γ can be interpreted in a similar way, since the expected
value of the number of behaviors increases with both parameters, while κ/(α + κ) is
the proportion of the extra weight, κ, added to the self transitions, with respect to
the total weight, α + κ; for more details see Fox et al. (2011). We estimate different
models on the real data, using the same iterations and priors as in Section 3, with the
exception of those for α+ κ, κ/(α+ κ), and γ. We assume that α+ κ and γ have the
same prior and we test all the possible combinations of 8 Gamma priors for α+ κ and
γ and 4 Beta priors for κ/(α+ κ), thus obtaining 24 models. In detail, the priors are:
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Fig F.1: Simulated spatial locations using the posterior means of the STAP-HMM as
parameters.

• Gamma priors - G(0.01,1), G(0.1,1), G(1,1), G(10,1), G(20,1), G(50,1), G(100,1),
G(0.01,0.01);

• Beta priors - B(1,1), B(10,1), B(1,10), B(10,10).
We have a uniform distribution for κ/(α+ κ) (B(10,10)), while the other three have
expected values equal to 0.09 (B(10,1)), 0.91 (B(1,10)), 0.5 (B(10,10)), and smaller
variances than 0.012. The mean and the variance of 7 out of the 8 Gamma distri-
butions have the same value and are equal to 0.01 (G(0.01,1)), 0.1 (G(0.1,1)), 1
(G(1,1)), 10 (G(10,1), 20 (G(20,1), 50 (G(50,1)) and 100 (G(100,1)), while the last
one, G(0.01,0.01), has mean 1 and variance 100. Hence, we have 3 Gamma priors that,
a priori, put a greater probability mass on a small number of behaviors (G(0.01,1),
G(0.1,1), G(1,1)), and 4 priors (G(10,1), G(20,1), G(50,1), G(100,1)) which, a pri-
ori, support a high number of behaviors, while G(0.01,0.01) is often used as a weakly
informative prior.

In Figure E.1, we show the posterior probability that the number of latent behaviors is
equal to 5 in the 24 models, which is the number found when using the model estimated
in Section 3. Since P(K = 5|s) is always greater than 0.5, K = 5 is the number of
behaviors with the highest posterior probability for any possible combination of priors,
and this is > 0.95 for all the priors, with the exception of G(50,1) and G(100,1), where
P(K = 5|s)> 0.64. It is interesting to note that when using the two weakly informative
priors G(0.01,0.01) and B(1,1), we find that P(K = 5|s) is approximatively 1. The
posterior samples of K have values in {5,6} for the priors G(0.01,0.01), G(0.01,1),
G(0.1,1), and G(1,1), values in {5,6,7} for the priors G(10,1) and G(20,1), and values
in {5,6,7,8} for the priors G(50,1) and G(100,1).

As expected, P(K = 5|s) tends to decrease if we have a greater prior probability mass
on higher values of α+κ and γ, and it also increases the number of elements of N that
have a significant posterior probability, that is a measure of the variability of K. The
prior on κ/(α+κ) has a limited impact on P(K = 5|s) if the distribution over α+κ and
γ is G(0.01,0.01), G(0.01,1), G(0.1,1), or G(1,1), and the model with a B(10,1) prior
tends to have the highest P(K = 5|s) for a given Gamma prior, while a B(1,10) prior
has the smallest. Nonetheless, since P(K = 5|s) is very large in all of the 24 models,
the number of estimated behaviors is always 5, even though we use weakly informative
priors (G(0.01,0.01) and B(1,1)).

Appendix F Real data applications - Simulated trajectories. In order to
show that our model can describe the data in Section 3, we show, in Figure F.1, three
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BRW-HMM CRW-HMM
First Second Third Fourth Fifth First Second Third

First 4259 13 1 1 3 4266 9 2
Second 10 773 7 41 1 8 808 16

STAP-HMM Third 0 27 349 5 0 0 4 377
Forth 1 31 8 521 0 2 72 487
Fifth 8 1 1 0 273 2 123 158

Table G.1
Two-way table between the MAP behaviors of the STAP-HMM (rows), and the BRW-HMM and

CRW-HMM (columns).
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Fig G.1: Observed locations of the sheep.
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Fig G.2: A copy of the second row of Figure 1 from van Bommel and Johnson (2014),
which shows the location of the self-feeder (triangle). The coordinates are not displayed
in the original figure and have been added by matching the observed coordinates of all
the dogs in the Riversdale property with the home range isopleth.

sets of coordinates obtained by simulating from the STAP-HMM, using the posterior
means in Table 2 as parameters. We can clearly see that the simulated data have the
central bulk of observations, as well as the extension of the “explored space”, as the
real data.
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j=1 j=2 j=3 j=4 j=5
µ̂j,1 -3.168 -0.105 17.062 -0.356 0.18
(CI) (-52.457 43.823) (-22.525 23.693) (-15.255 59.094) (-0.423 -0.295) (0.17 0.19)
µ̂j,2 -0.294 3.153 5.021 -0.314 -0.404
(CI) (-46.638 45.392) (-7.564 31.502) (-25.564 41.621) (-0.389 -0.244) (-0.412 -0.395)
τ̂j 0 0.008 0.008 0.624 0.985

(CI) (0 0) (0 0.02) (0 0.038) (0.572 0.681) (0.974 0.996)
Σ̂j,1,1 0.001 0.035 0.854 0.12 0.006
(CI) (0.001 0.001) (0.025 0.05) (0.709 1.062) (0.097 0.15) (0.005 0.007)

Σ̂j,1,2 0 -0.002 -0.083 0.031 0.001
(CI) (0 0) (-0.005 0.001) (-0.155 -0.023) (0.015 0.047) (0 0.002)

Σ̂j,2,2 0.001 0.019 0.427 0.164 0.005
(CI) (0.001 0.001) (0.014 0.027) (0.357 0.522) (0.134 0.204) (0.004 0.006)
π̂1,j 0.847 0.077 0.023 0.042 0.011
(CI) (0.834 0.86) (0.066 0.089) (0.015 0.031) (0.032 0.052) (0.005 0.019)
π̂2,j 0.28 0.396 0.143 0.085 0.096
(CI) (0.236 0.33) (0.338 0.458) (0.102 0.185) (0.048 0.125) (0.067 0.126)
π̂3,j 0.07 0.209 0.504 0.161 0.056
(CI) (0.039 0.107) (0.148 0.276) (0.429 0.571) (0.11 0.217) (0.026 0.093)
π̂4,j 0.17 0.19 0 0.447 0.193
(CI) (0.125 0.22) (0.123 0.262) (0 0.006) (0.359 0.526) (0.151 0.24)
π̂5,j 0.883 0 0.004 0.003 0.11
(CI) (0.777 0.979) (0 0.003) (0 0.029) (0 0.026) (0.017 0.212)
β̂j 0.25 0.174 0.122 0.178 0.223

(CI) (0.074 0.48) (0.04 0.373) (0.016 0.308) (0.042 0.386) (0.068 0.44)
α κ γ

ˆ 0.266 2.613 1.204
(CI) (0.007 1.008) (1.338 4.357) (0.296 2.904)

Table G.2
Posterior means and 95% CIs of the BRW-HMM parameters for K=5.

j=1 j=2 j=3
η̂j,1 -0.005 -0.044 0.026
(CI) (-0.006 -0.004) (-0.059 -0.029) (-0.021 0.073)
η̂j,2 0 0.001 -0.008
(CI) (-0.001 0.001) (-0.009 0.011) (-0.046 0.029)

Σ̂j,1,1 0.001 0.036 0.597
(CI) (0.001 0.001) (0.029 0.045) (0.541 0.657)

Σ̂j,1,2 0 0 0.013
(CI) (0 0) (-0.002 0.002) (-0.017 0.042)

Σ̂j,2,2 0.001 0.018 0.394
(CI) (0.001 0.001) (0.015 0.022) (0.357 0.435)
π̂1,j 0.849 0.086 0.064
(CI) (0.837 0.861) (0.074 0.099) (0.055 0.075)
π̂2,j 0.349 0.415 0.236
(CI) (0.308 0.394) (0.364 0.463) (0.198 0.274)
π̂3v 0.245 0.213 0.542
(CI) (0.213 0.279) (0.168 0.256) (0.501 0.583)
β̂j 0.321 0.3 0.303

(CI) (0.047 0.696) (0.047 0.675) (0.046 0.671)
α κ γ

ˆ 0.229 2.175 0.765
(CI) (0.005 0.907) (0.778 4.439) (0.088 2.343)

Table G.3
Posterior means and 95% CIs of the CRW-HMM parameters for K=3.

Appendix G Real data applications - CRW-HMM and BRW-HMM.
In this Appendix, we show the results obtained when an HMM that can only esti-
mate CRWs (CRW-HMM) or BRWs (BRW-HMM) is considered. The priors, iterations,
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Fig G.3: Turning-angle (a) and log step-length (b) predictive distributions for the CRW-
HMM behaviors.
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(c) Third behavior

Fig G.4: Spatial locations of the MAP behavior for the CRW-HMM model.

burnin and thin are the same as those used to obtain posterior samples of the STAP-
HMM. After fitting the model, we found that the number of estimated behaviors is 5
(with probability 0.99) for the BRW-HMM, and 3 (with probability 0.98) for the CRW-
HMM. The posterior means and CIs of all the parameters are shown in Tables G.2 and
G.3. We indicate the j-th behavior for the BRW-HMM and CRW-HMM, respectively,
as LBj,BRW and LBj,CRW.
BRW-HMM. It is clear, from Table G.1, that the MAP behaviors of the STAP-HMM
and BRW-HMM have the same temporal dynamics, i.e., the animal exhibits behavior
LBj and LBj,BRW at the same temporal points. This almost one-to-one relation explains
why the parameters estimated for LB4 and LB5, i.e., the BRW-type behaviors of our
proposal, are very similar to LB4,BRW and LB5,BRW, respectively (see Tables 2 and G.2).
As the behaviors have the same temporal evolution as the STAP-HMM, they have the
same spatial locations and time of the day when they are more likely to be observed.
This means that the interpretation is similar, but the BRW-HMM fails to recognize the
directional persistence that is present in the first and second behaviors, and estimates
RWs, i.e., τ̂1 = 0 and τ̂2 = 0.008, respectively.
CRW-HMM. As can be seen from Table G.1, the dog follows LB1 and LB1,CRW at the
same temporal points, which is also shown by the spatial locations of LB1,CRW that
can be seen in Figure G.4 (a). The posterior estimates of the likelihood parameters of
LB1 and LB1,CRW are almost identical, and this can also be verified from the posterior
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Fig G.5: The values of the lines at each time (x-axis) represent the proportion of times
that the CRW-HMM MAP behaviors are observed (y-axis).

densities in Figure G.3. LB2,CRW generally has the same temporal indices as LB2,
similar spatial locations (Figure G.4 (a)), similar frequencies during the day (Figure
G.5 (b)), a similar step-length distribution (Figure G.3 (b)), but a different circular
one (Figure G.3 (d)). This behavior has a higher speed than LB1,CRW , and a bimodal
circular distribution with the major mode at −π, and a smaller one at 0. LB3,CRW
has the highest speed and a circular distribution with two modes, at 0 and −π, which
have approximatively the same density (see Figure G.3), and are more likely during the
night or in the early hours of the morning.

General comments. Our proposal is able to estimate behaviors that are similar, in
interpretation and posterior inference, to LB4,BRW, LB5,BRW and LB1,CRW, as well as
to find two behaviors, LB2 and LB3, that are not estimated by the other two models.
The CRW-HMM finds 3 behaviors but, since none of them has a spatial distribution
concentrated on the livestock paddock (Figure G.1) as LB4, it does not identify when the
dog is attending the livestock. The BRW-HMM fails to find any structure in LB1,BRW
or in LB2,BRW, where it estimates a simple RW.
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