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Abstract—In today’s era of smart cyber-physical systems, Deep
Neural Networks (DNNs) have become ubiquitous due to their state-
of-the-art performance in complex real-world applications. The high
computational complexity of these networks, which translates to
increased energy consumption, is the foremost obstacle towards
deploying large DNNs in resource-constrained systems. Fixed-Point
(FP) implementations achieved through post-training quantization
are commonly used to curtail the energy consumption of these
networks. However, the uniform quantization intervals in FP restrict
the bit-width of data structures to large values due to the need
to represent most of the numbers with sufficient resolution and
avoid high quantization errors. In this paper, we leverage the key
insight that (in most of the scenarios) DNN weights and activations
are mostly concentrated near zero and only a few of them have
large magnitudes. We propose CoNLoCNN, a framework to enable
energy-efficient low-precision deep convolutional neural network
inference by exploiting: (1) non-uniform quantization of weights
enabling simplification of complex multiplication operations; and (2)
correlation between activation values enabling partial compensation
of quantization errors at low cost without any run-time overheads.
To significantly benefit from non-uniform quantization, we also
propose a novel data representation format, Encoded Low-Precision
Binary Signed Digit, to compress the bit-width of weights while
ensuring direct use of the encoded weight for processing using a
novel multiply-and-accumulate (MAC) unit design.

I. INTRODUCTION

Deep Neural Networks (DNNs) are state-of-the-art models for
applications like object classification, image segmentation and
speech processing [1]. However, they have high computational
complexity and memory footprint, which translates to high hard-
ware and energy requirements [2]. This resource-hungry nature
of DNNs challenges their high-accuracy deployment in resource-
constrained scenarios such as inference on resource-constrained
embedded devices.

Methods like pruning and quantization are used to reduce the
computational complexity and memory footprint of DNNs [3]–
[6]. However, these state-of-the-art approaches are highly ef-
fective when used with retraining to minimize the accuracy
loss. While retraining smaller DNNs designed for less complex
datasets incurs fewer overheads, it is super costly to retrain
larger DNNs designed for complex applications, which can take
several days even on high-end GPU servers. Moreover, proper
retraining of DNNs during optimization phase requires access
to a comprehensive dataset, and may not be possible in cases
where the dataset is an IP of a company and it has not made
it available (e.g., Google’s JFT-300M dataset [7]) to the end
user who wants to optimize the given pre-trained DNN for a

specific set of resource constraints. Under such cases, an effective
approach is post-training quantization that enables low-precision
Fixed-Point (FP) implementation (≤8 bits) of DNNs [8] [9], and
thereby reduces power, latency, and memory footprint. However,
reducing precision introduces quantization errors, leading to po-
tentially noticeable accuracy loss. This additional source of error
degrades the application-level accuracy of DNNs and restricts
the designers from reducing the bit-widths of DNN datastructures
beyond a level without significantly affecting the accuracy.

State-of-the-Art Works and Their Limitations: To overcome
the above-mentioned limitations and achieve significant effi-
ciency gains, several works have been proposed. Compensated-
DNN [10] proposed a technique to quantize DNN data-structures
and dynamically compensate for quantization errors. It achieves
this using a novel Fixed Point with Error Compensation (FPEC)
data representation format and a specialized Processing Element
(PE) design containing a low-cost error compensation unit. In
FPEC, each number consists of two sets of bits: (1) bits that
represent quantized value of the number in traditional FP formats;
and (2) bits that store quantization related information, such as
error direction, which is useful for error compensation. Tech-
niques like [11] and [12] make use of power-of-two quantization
and multi-scaled FP representation (respectively) to reduce the
bit-width of DNN data-structures as well as the complexity of
the PEs (mainly multipliers). Recently, CAxCNN [13] proposed
the use of reduced precision Canonical-Sign-Digit (CSD) repre-
sentation to decrease the complexity of Multiply-and-Accumulate
(MAC) units in DNN accelerators. Similarly, [14] combined the
use of reduced precision CSD with customized delta encoding
scheme to efficiently approximate and encode DNN parameters.
A summary of the key characteristics of the most relevant state-
of-the-art techniques is presented in Table I. The table shows
that Compensated-DNN is the only work that employs error
compensation (without retraining) to offer better energy-accuracy
trade-off. However, it does not exploit the advantages of efficient
data representations such as power-of-two or reduced precision
CSD representations. Moreover, it also requires extra hardware
support for error compensation.

Other approaches that are also designed to improve the energy
efficiency of DNN inference without the need of retraining in-
volve the use of approximate hardware modules (mainly approxi-
mate multipliers) [15] [16], and voltage-scaling of computational
array and memory modules [17] [18]. AxNN [15] selectively
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TABLE I: Characteristics of the most relevant state-of-the-art
works. RP-CSD refers to reduced precision CSD and T-CSD
refers to truncated CSD representation.

Compensated-

DNN [10]

CAxCNN 

[13]

H.-P. Trinh 

et al. [14]

D. Liu et 

al. [9]

H. Tann et al. 

[11]

XNOR-

Net [6]

Weights representation format FPEC RP-CSD T-CSD FP Power-of-two Binary

Involves retraining No No No No Yes Yes

Error compensation Yes No No No - -

Encoding of weights No No Yes No Yes No

Complementary hardware Yes No Yes No Yes No

Evaluation for ImageNet Yes Yes No Yes Yes Yes

approximates the neurons that do not impact the application-level
accuracy much. However, it offers close to the baseline accu-
racy only with approximation-aware retraining. ALWANN [16]
presents a method that employs functional approximations in the
MAC units to improve the energy efficiency of DNN inference
without involving approximation-aware retraining. It mainly de-
termines the most suitable approximation for each layer of the
given DNN to achieve a reasonable amount of savings. However,
note that these techniques have shown effectiveness only at 8-bit
FP precision level (i.e., not for less than 8-bit precision) and
only for relatively less complex datasets like Cifar-10. Moreover,
the voltage scaling techniques such as ThunderVolt [17] and
MATIC [18] either introduce faults at run-time that can lead to
undesirable accuracy loss or the need for expensive fault-aware
retraining.

Summary of Key Challenges Targeted in this Work: Based
on the above-mentioned limitations of the existing works, we
highlight the following key challenges:
• There is a need to investigate existing DNN post-training quan-

tization and approximation techniques to identify the methods
and data representation formats that can enable high energy
and performance efficiency without affecting the application-
level accuracy of DNNs.

• To maintain high accuracy, dynamic error compensation re-
quires additional resources that increase DNN inference cost.
Therefore, there is a need to explore low-cost software-level
error compensation mechanisms that are required to be applied
only once during DNN conversion (i.e., design-time phase) and
have the potential to offer benefits equivalent to costly dynamic
error compensation techniques.
Our Novel Contributions: We propose an algorithm and

architecture co-design framework, CoNLoCNN, for effectively
approximating DNNs through post-training quantization to im-
prove the power-/energy-efficiency of DNN inference process
without involving retraining. Towards this:
1) We investigate different methods for quantizing DNN data-

structures in search for an effective method for approximating
DNNs that offers high energy-accuracy trade-off. We identify
that choosing a data representation format that is aligned
to the long-tailed data distribution of DNN parameters (see
Fig. 3) results in less overall quantization error, and this se-
lection can also help in simplifying the hardware components
(mainly multipliers in the processing array of DNN hardware
accelerators) (Section III-A). Based on our analysis, we
propose an Encoded Low-Precision Binary Signed Digit data
representation format that at the core is an evolved version
of power-of-two representation and thereby enables the use
of low-cost shift operations instead of multiplications. This
results in significant simplification of the MAC units in DNN

accelerators and thereby enables high energy and performance
efficiency. (Section IV)

2) We propose a low-cost error compensation strategy that is
required to be applied only once at the conversion-time
(compile-time) to compensate for quantization errors. This
enables the users to completely avoid overheads associated
with dynamic compensation. (Section III-B)

3) We propose a systematic methodology for quantizing DNNs
while exploiting the proposed error compensation strategy.
(Section V)

4) We propose a specialized multiply-and-accumulate (MAC)
unit design that fully exploits the potential of the proposed
approximation scheme for improving the energy efficiency of
DNN inference. (Section IV-4)

A summary of our novel contributions is shown in Fig. 1.

Strategies for low-cost compensation 
of quantization error

Hardware friendly and data 
distribution-aware quantization 

and encoding scheme

Methodology for approximating DNN 
through non-linear quantization

Specialized complementary 
computational array

Pretrained DNN

Energy-/performance-
efficient DNN inference

1

4

3

2

Fig. 1: System overview with our novel contributions and flow

II. PRELIMINARIES

This section introduces the key terms used in this paper.

A. Deep Neural Networks (DNNs)

A DNN is an interconnected network of neurons, where each
neuron performs a weighted sum operation, and then passes the
output through a non-linear activation function. The functionality
of a neuron can mathematically be written as O = F (

∑
iWi ∗

Ai + b), where O represents the output, Wi represents the ith

weight, Ai represents the ith input (a.k.a. activation), b represents
the bias, and F represents the non-linear activation function. In
DNNs, neurons are arranged in the form of layers. The layers
are then connected in a specialized format to form a DNN.

B. Convolutional Neural Networks (CNNs)

A CNN is a type of DNN specialized for processing spatially
correlated data such as images [1]. It is mainly composed of
convolutional (CONV) layers and fully-connected (FC) layers
(see Fig. 2(a)). The CONV layers are used to extract features
from the input by convolving it with a set of filters (see Fig. 2(b)).
The output generated by convolving a filter with the input is
referred as a feature map. The FC layers are typically used at the
end of the network for classification. A FC layer is composed of
several neurons where each neuron receives the complete output
vector of the previous layer to generate an output.

III. STRATEGIES FOR ENABLING LOW-PRECISION AND
ENERGY-EFFICIENT DNN INFERENCE

A. Strategy 1: Select a quantization scheme that is aligned with
the data distribution

Fig. 3 shows the distributions of weights, biases, and acti-
vations of the layers of a trained AlexNet. It can be observed
from the figure that the distributions of weights and activations
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Fig. 2: (a) Architecture of AlexNet. (b) Illustration of a CONV.

have long tails, i.e., in each data-structure, majority of the values
have small magnitude and only a limited number of values have
large magnitude. Moreover, for each layer, the distribution of
weights is close to a Gaussian distribution with mean equal
to zero. Considering the data distributions, a low precision
uniform quantization (for example, see Fig. 4(a)) would result
in high overall quantization error compared to a non-uniform
quantization (for example, see Fig. 4(b)) having the same (or less)
number of quantization levels, assuming the levels are distributed
based on the data distribution, i.e., more number of narrowly-
spaced quantization levels in dense regions and less number
of widely-spaced quantization levels in light regions. Therefore,
aligning quantization scheme with the data distribution can help
in reducing the overall/average quantization error. However, a
potential limitation of this is that, in case of low-precision non-
uniform quantization, it can result in a significant increase in
the maximum quantization error leading to high error variance.
Hence, the ideal quantization scheme should balance between the
average and the maximum quantization error to achieve minimum
quality degradation.

Long tails

(a) Distribution of weights of the
layers

(b) Distribution of biases of the
layers

(c) Distribution of input and output activations of the layers

Fig. 3: Distribution of weights, biases and activations of the first
four convolutional and layers of the AlexNet (in the form of half-
violin plots and box plots). Note that the output activations here
represent the output of the layer before passing through activation
functions.

B. Strategy 2: Exploit correlation between neighboring feature
map values to reduce the effective variance and mean of quan-
tization error

Here, we first analyze the impact of variations in the bias
values of a CNN on its classification accuracy. Note that this

(b) Quantization levels of a non-uniform 
quantization scheme 

(a) Quantization levels of a uniform 
quantization scheme 0

Distribution 
of weights

0

Uniform 
interval size

Non-uniform 
interval size

Dense region = 
Higher number of 
quantization levels

Long tail

Fig. 4: Comparison between uniform and non-uniform quantiza-
tion.

analysis mainly helps us understand the effects of errors that af-
fect the mean of activation values. Then, we study the correlation
of data within and across input feature maps of a layer to see if
quantization errors can be partially compensated by distributing
them across weights in the same filter/neuron. Afterward, we
present a mathematical analysis and show how the gained insights
can be exploited to reduce the impact of quantization errors.

1) Impact of modifying the bias values in DNNs: Fig. 5 shows
the impact of varying the bias of different number of filters of
a layer of a pre-trained AlexNet on its classification accuracy.
From Fig. 5(a) and Fig. 5(c) it can be observed that, when a
small constant value, i.e., a value close to the range of original
bias values (see Fig. 3(b)), is added to the bias values of a
number of filters, the accuracy of the network stays close to its
baseline. However, when the magnitude of the constant is large,
it degrades the accuracy. The difference between the impact of
positive and negative noise is mainly due to the presence of ReLU
activation function in the AlexNet, as a large negative bias leads
to a large negative output which is then mapped to zero by the
ReLU function and thereby limits the impact of error on the final
output. Fig. 5(b) and Fig. 5(d) show that, when the bias values
of half of the filters are injected with positive noise and half with
negative noise (all having the same magnitude), the behavior of
classification accuracy is dominated by the behavior of filters that
are injected with positive noise.
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High negative 
bias is similar 

to pruning

Low bias 
values do not 

affect the 
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3σ range of input 
activations of Layer 1

3σ range of input 
activations of Layer 4

σ of input activations

High bias 
values 

degrades the 
accuracy

σ of input activations

Fig. 5: Impact of altering the bias values of different number
of randomly selected filters/neurons (NF) of different layers
of a trained AlexNet (trained on the ImageNet dataset) on its
classification accuracy. (a) and (c) show the impact when same
amount of positive (or negative) value is added to the bias values
of the selected filters of layer 1 and 4, respectively. (b) shows
the impact when the bias values of half of the selected filters of
layer 1 are injected with positive noise and half with negative
noise having the same magnitude. Similar to (b), (d) shows the
results for layer 4.

To further study the impact of mean shifts in the output
feature maps, we performed an experiment where we added noise



generated using a Gaussian distribution to the bias values of
the filters/neurons of different layers of a pre-trained AlexNet
(see Fig. 6). We observed that when the noise is generated
using smaller standard deviation values and is injected to the
intermediate layers of the network, it does not impact the
accuracy much. However, if the noise is injected to the last layer
of the network or is generated using larger standard deviation
values, it leads to a significant drop in the DNN accuracy.
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Low variations in bias values do 
not impact the accuracy much

High variations in bias 
values significantly 
affect the accuracy

Fig. 6: Impact of adding noise generated using a Gaussian
distribution to the bias values of filters/neurons of different layers
and different number of layers of a trained AlexNet on its
classification accuracy.

From the above analysis, we deduce the following three
conclusions. (1) Small to moderate level of variations due to
any error/noise source in the mean of activation values of all the
layers except the last layer do not impact the accuracy much. (2)
Mean shift in the output degrades the accuracy only if it is large
in magnitude or it is in the output of last layer of a DNN. (3)
Resilience of DNNs to small-to-moderate level of errors in bias
values points to the significance of large activation values.

2) Correlation between activation values of input feature
maps: Intra-Feature Map Correlation: Fig. 7 shows the corre-
lation between neighboring input activation values located at a
constant shift from each other (represented using i and j in the
figure) within input feature maps of a convolutional layer. Based
on the correlation values in the figure, it can be said that, in all the
convolutional layers of a DNN, there is a significant correlation
between the neighboring activation values.
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Fig. 7: Intra-feature map correlation of input activations of
different layers of the AlexNet and the VGG16. (a) Illustration
of an input feature map (shown in blue) and its shifted variant
(shown with red border). i and j define the shifts in x and y
directions, respectively. (b) and (c) show the correlation between
the input feature maps and their shifted variants of layer 1
and layer 3 of the AlexNet, respectively. (d) shows correlation
between neighboring input activations of layer 12 of the VGG16.

Inter-Feature Map Correlation: Fig. 8 shows the distribution
of correlation between different input feature maps of a layer of
a pre-trained AlexNet. Fig. 8(a) shows that there is a significant
correlation between the input feature maps of layer 1 of the
network. The distributions in Figs. 8(b), 8(c), and 8(d) show
that as we move deeper into the network the across-feature map
correlation moves towards zero.

Based on the above analysis, we conclude that only intra-
feature map correlation can be exploited for error compensation.
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(b)                       (c) (d)

Fig. 8: Correlation between input feature maps of different layers
of the AlexNet. (a) Correlation matrix of input feature maps of
layer 1. (b) Distribution of the correlation between input feature
maps of layer 2. Similar to (b), (c) and (d) show distribtions of
layer 4 and layer 7, respectively.

3) Analysis of quantization error: To analyze the effects of
quantization on the output quality, let us consider a scenario in
which we quantize the weights of a layer of a DNN and keep
the activations in full-precision format. A quantized weight can
be written as

Wq = W + ∆W (1)

where W represents unquantized weight and ∆W represents
quantization error. If we assume W ∼ N (µW , σ2

W ) and ∆W ∼
N (µ∆W , σ2

∆W ), and W and ∆W to be independent, then

Wq ∼ N (µW + µ∆W , σ2
W + σ2

∆W ) (2)

Similar to the distribution of W , for activations, we assume

A ∼ N (µA, σ
2
A) (3)

Now, for Oq =
∑n

i=1Wqi ∗Ai, using the above equations and
assuming the weights and activations to be independent, we get

Oq ∼ N (n ∗ µA ∗ (µW + µ∆W ), n ∗ ((σ2
W + σ2

∆W +

(µW + µ∆W )2) ∗ (σ2
A + µ2

A)− µ2
A ∗ (µW + µ∆W )2)) (4)

As highlighted in the earlier analysis, small deviations in the
mean of output activations do not impact the accuracy much;
therefore, we mainly focus on comparing the variance of Oq

with the variance of O =
∑n

i=1Wi ∗Ai. Subtracting variance of
O from the variance of Oq , we are left with

n∗(σ2
∆W ∗σ2

A+σ2
∆W ∗µ2

A+σ2
A∗µ2

∆W +2∗σ2
A∗µW ∗µ∆W )

(5)

Now, to reduce the intensity of this additional term, we need
to reduce the intensity of σ∆W and µ∆W . We can achieve
this by exploiting the high correlation among the neighboring
activation values in feature maps. Fig. 9(a) shows a possible
way of decomposing activation values of a block of feature map
based on correlation among neighboring values. In case of high
correlation (for example, see Fig. 9(b)), the variables x, y and z
(in Fig. 9(a)) have high values (i.e., close to 1). As ā2, ā3 and
ā4 represent the elements of a2, a3 and a4 (respectively) that are
orthogonal to a1, the variables ā2, ā3 and ā4 exhibit low variance
compared to a2, a3 and a4 in the case of high correlation with
a1. We can exploit the presence of xa1, ya1 and za1 in the



neighboring activations to partially compensate/balance the error
introduced in the dot-product of weights and activations due to
quantization of weights by modifying the quantization scheme in
such a way that it balances the mean quantization error of the
neighboring weights.

Example: To understand this, consider the activation block
A shown in Fig. 9(c) and 2D filter W shown in Fig. 9(d). The
output of dot-product of A and W comes out to be 50.32. Now,
if we quantize the weights of the filter to the nearest integer
values and perform the dot-product operation, we get 57.7 as
the output; see Fig. 9(e). However, if we map the value of the
second weight to its other nearest integer value, i.e., 2 instead
of 3 (see Figs. 9(e) and 9(f)), we can reduce the mean absolute
error (MAE) in weights from 0.225 to 0.025 and the absolute
error in the output of dot-product from 7.38 to 1.12. This shows
that high correlation among the neighboring values enable us to
reduce effective mean and variance of ∆W by minimizing the
local mean quantization error inside filter channels.

(b) Example Correlation b/w 
Neighboring Activations 

(d) Example 
2D Filter (W)

(e) Nearest Integer 
Quantization (WNI)

(f) WNI + Compensation 
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(c) Example 
Activation Block (A)
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Fig. 9: Decomposition of activations, and an example illustrating
the impact of exploiting correlation for error compensation on
the output of dot-product operation.

4) Impact of Adjusting Intra-channel Mean Quantization Er-
ror in Weights: To study the impact of adjusting the mean
error in filters, we performed an experiment where we injected
noise generated using a Gaussian distribution to the weights of
the filters of layer 1 and layer 4 of the AlexNet. We studied
three different cases: (1) No adjustment in the mean error of
the weights; (2) Mean error adjustment case 1, where the mean
error of each filter is subtracted from the corresponding weights;
and (3) Mean error adjustment case 2, where the mean error
of each filter channel is subtracted from the corresponding
weights. Fig. 10 shows that, among the three cases, intra-channel
adjustment (i.e., Mean error adjustment case 2) leads to highest
compensation and thereby best results.

Channel-wise mean adjustment 
leads to best accuracy
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Fig. 10: Impact of adjusting the inter- and intra-channel mean
quantization error in the weights of AlexNet. (a) Layer 1; (b)
Layer 4.

IV. TYPE OF NON-UNIFORM QUANTIZATION AND DESIGN
OF SUPPORTING DNN HARDWARE

Strategy 1 in Section III states that aligning quantization
scheme with the data distribution helps in restricting the overall
quantization error. However, the key challenge is how can
this observation be exploited for improving the efficiency of a
DNN-based system. To address this, we propose Encoded Low-
Precision Binary Signed Digit (ELP BSD) representation that
evolves from power-of-two representation and thereby enables
the use of shift operations instead of multiplications in processing
arrays of DNN accelerators. In the following, we discuss the
details of our data representation format, starting with the initial
concept, limitations of initial proposition, and how ELP BSD
overcomes these limitations.

1) Initial Proposition: In this work, the key focus is on
exploiting non-uniform quantization for simplifying the MAC
unit design as well as in reducing the bit-width of weights, as
both contribute towards improving the energy-efficiency. Power-
of-two quantization is one potential solution, as it allows to
replace a costly multiplication operation with a shift operation
and reduce the bit-width by storing only the power of 2.
Moreover, the distribution of quantization levels of power-of-two
quantization is aligned with the distribution of DNN weights,
as can be observed from Fig. 11(b). However, use of power-
of-two quantization results in a significant drop in application-
level accuracy due to a significant reduction in the number of
quantization levels compared to a traditional FP quantization,
which can be observed by comparing Fig. 11(b) with Fig. 11(a).
Therefore, almost all the previous works that use power-of-two
quantization employ retraining to re-gain the lost accuracy. To
offer additional quantization levels to avoid significant accuracy
loss due to quantization while benefiting from the advantages of
power-of-two quantization scheme, we propose to use sum of
signed power-of-two quantization, where more than one signed
power-of-two digits are combined to offer additional quantization
levels. Fig. 11(c) shows that addition of only a single low-
range low-precision signed power-of-two digit can significantly
increase the number of unique quantization levels and thereby
can help in achieving an ultra-efficient system.

Vertical black lines represent the quantization 
levels offered by the number format Distribution of weights

Range of FP stored in sign-magnitude format

0 2-m …… 2n-2-m……-2n+2-m

-2n -2n-1 2-m 2n-1 2n……

Range of signed power-of-2 digit

0

Range of 1st signed power-of-2 digit

Range of 2nd signed power-of-2 digitOverlapping, i.e., redundancy

2n-2-m-2n+2-m
0

Less overlapping compare to (c)

Range of 1st ELP_BSD digit

Range of 2nd digit

2n-2-m-2n+2-m
0

(a)

(b)

(c)

(d) At the loss of some levels

(e)
Less overlapping compared to (c)

Range of 1st ELP_BSD digit
2n-2-m-2n+2-m

0

Range of 2nd digit (unsigned)

Fig. 11: Illustration of different data representation formats that
show step-by-step evolution of traditional quantization scheme to
our ELP BSD representation.

2) Limitations of Initial Proposition and New Improvements:
One key issue with sum of signed power-of-two quantization is



redundant representations of values. For example, 2x1 − 2x2 = 0
∀ x1 = x2. To reduce the amount of redundancy, we propose to
reduce the number of possible power of 2 values per digit. For
example, if a number representation is given as 2x1 − 2x2 and
x1, x2 ∈ {0, 1, 2, 3}, to reduce the redundancy, we can reduce
the set of possible values of x1 to {1, 3}. Fig. 11(d) shows
that reducing the number of possible power of 2 values for the
first digit leads to a reduction in the amount of redundancy,
which can be observed from the reduced number of yellow semi-
circles (representing the range of the second digit) centered at
every possible quantization level of the first digit. Note that the
reduction in redundancy can be exploited to reduce the bit-width
of numbers as well as to further simplify the MAC unit design.
However, a drawback of this is that it can result in a small
decrease in the number of quantization levels, as highlighted in
Fig. 11(d). The redundancy can also be reduced by allowing
some digits to have signed values and some only positive (i.e.,
unsigned) values. This is illustrated in Fig. 11(e) by restricting the
range of the second digit to only positive values. Note that even
though the sum of power-of-2 digits leads to some redundancy, it
enable us to use shifters instead of multipliers in the hardware,
which significantly improves the energy efficiency of DNN systems
(as will be highlighted in Section VI). Moreover, the above
explanation shows that the redundancy can be controlled by
intelligent selection of the exact number representation format.

3) ELP BSD data representation: To efficiently represent
low-precision sum of signed power-of-two numbers, we define a
novel data representation format, Encoded Low-Precision Binary
Signed Digit (ELP BSD) representation. Fig. 12(a) shows how
the specifications of a ELP BSD representation are defined, and
Fig. 12(b) shows the corresponding binary representation format.
As shown in Fig. 12(b), the bits are divided into m groups, where
each group is responsible for representing a single signed power-
of-two digit. Each group consists of a sign bit and ceil(log2(ni))
bits to represent the index of shift count in the digit specification,
where ni is the number of different shift counts mentioned for
ith digit in the specification. Note that the sign bit is optional and
only used when the corresponding digit is signed. Fig. 12 also
presents two examples to explain the conversion of ELP BSD
numbers to FP values.

ELP_BSD{SF,[Signed, Shift count1,0,…,Shift count1,n1-1],…,[Signed, Shift countm,0,…,Shift countm,nm-1]}

Sign1 Shift count index1 Sign2 Shift count index2

Specifications of 1st digit

0=Unsigned 1=Signed

Specifications of mth digit

Bits to represent 2nd digit

Signm Shift count indexm
…

ceil(log2(nm))1-bit if Signed = 1
else 0-bit

ELP_BSD{2-2, [1, 0, 1, 2, 3], [1, 0, 1]}:  

1 1 0 0 0 2 = 2-2 x (-1 x 22 + 1 x 20)

ELP_BSD{2-2, [0, 0, 1, 2, 3], [1, 0, 1]}:  

1 0 0 02 = 2-2 x (22 + 1 x 20)

ceil(log2(n1)) bits

Number in Binary  Value

(a)

(b)

(c) (d)

Scaling factor

Fig. 12: (a) Specifications of an ELP BSD format. (b) ELP BSD
format. (c) and (d) Examples to explain conversion between
ELP BSD format and values.

4) Supporting Hardware Design: As shown in Fig. 12,
ELP BSD format mainly stores power-of-two digits in an en-
coded format. To efficiently implement multiplication with a
power-of-two digit at hardware-level, shifters (e.g., a barrel
shifter) can be used. To realize a MAC unit, the shifter is followed
by an adder that adds previously computed partial sum to the

newly computed product. Fig. 13(a) shows the MAC unit design
for the case when weights are represented using a single signed
power-of-two digit. If we use the same ELP BSD format for
all the weights, we can hard code the indexing functionality in
the shifter and use indexes directly from the encoded weight for
multiplication. Moreover, we can choose the set of possible shift
counts in a manner that it results in a less complex shifter design.

In case weights are represented using an ELP BSD format that
contains multiple digits, we can use multiple of these units (one
per-digit) in parallel to compute the partial sums, which then
have to be added together to generate one output. To achieve
this addition, we propose to use a compressor tree followed by a
multi-bit adder to add the outputs of the shifters and the partial
sum from the previous computation to generate only a single
output. Fig. 13(b) shows how multiple single digit MAC units
can be integrated in the Processing Elements (PEs) of a Neural
Processing Array (NPU), e.g., like the Tensor Processing Unit
(TPU) [19]. Fig. 13(c) shows the processing array design of the
TPU like architecture. This processing array follows a weight
stationary dataflow where weights are kept stationary inside the
PEs during execution. The input activations are fed from the left
and moved towards the right over clock cycles. Similarly, the
partial sums are moved towards the bottom of the array. Note
that, for this work, we choose to represent activations using FP
and 2’s complement format, as changing the format of activations
won’t have any significant impact on the length of the adders in
PEs. It is also important to highlight here that in most of the
case 1-3 single digit MAC units per PE are sufficient to meet the
user-defined accuracy constraints.
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Fig. 13: (a) Single digit MAC design. (b) Modified processing
element for an NPU. (c) A Neural Processing Array architecture.

V. OUR METHODOLOGY FOR EFFICIENT APPROXIMATION OF
CNNS THROUGH NON-UNIFORM QUANTIZATION

Fig. 14 presents our methodology for approximating CNNs
through non-uniform quantization while exploiting the strategies
mentioned in Section III. The following steps explain working
of the methodology.
1) Determine critical FP bit-width of activations: Starting

from maximum allowed FP bit-width activations, we grad-
ually reduce the bit-width to find the critical point after
which the accuracy loss of the input DNN raises above the



user-defined accuracy loss constraint (AC). For this step, we
assume bit-width of all the activations to be the same. The key
intuition behind this step is that a decrease in the activations’
bit-width results in a linear decrease in the width of MAC
units, which can help in improving the energy-efficiency.
This step outputs critical bit-width for activations, denoted
as CBWA.

2) Determine scaling factor for weights: Given the data repre-
sentation format for weights, we compute the scaling factor
for weights of each layer of the input DNN separately. For this
work, in case of ELP BSD format, we compute the scaling
factor as SF = max(weights)/2max(shift counts).

3) Apply nearest neighbor quantization: Using the data repre-
sentation format and the scaling factors, we generate a table of
possible quantization levels (TQL) for each layer of the input
DNN. Then to perform quantization, we replace the weights
with their corresponding nearest values in the tables.

4) Apply error compensation algorithm: For each convolu-
tional layer, we pass the weights to Algo. 1, which (par-
tially) compensates for errors introduced due to quatization
of weights by exploiting Strategy 2 mentioned in Section III.
Note that as most of state-of-the-art architectures use small
filter sizes, e.g., 3x3, Algo. 1 focuses on compensating the
overall channel-level mean quantization error in filter weights.
To achieve this, it computes the mean quantization error of a
channel of a filter, locates the values that can be mapped to
their other neighboring quantization level to reduce the mean
error, sorts all the located values based on a cost function and
starts altering the values starting form the values having least
cost till the point the absolute mean error is decreasing.

5) Estimate the overall accuracy loss: In this step, we compute
the accuracy to check if the user-defined accuracy constraint
is met. In case the constraint is not satisfied, the algorithm
increases the value of CBWA by 1 and performs accuracy
evaluation again. If the constraint is still not met and CBWA

becomes equal to BWmax, it outputs the latest quantized
DNN.
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Fig. 14: Our DNN quantization methodology

VI. RESULTS AND DISCUSSION

A. Experimental Setup

To evaluate CoNLoCNN, we extended MatConvNet [20]
framework for FP implementation and our CoNLoCNN method-

Algorithm 1: Pseudo-code for error compensation
Input: Un-quantized weights of a CONV layer

(UnQunat W ); Table of possible quantization levels (TQL)
Result: Quantized weights (Quant W )
Quant W ← NNQuat(UnQunat W , TQL); % Nearest

neighbor quantization
Error W ← UnQunat W – Quant W ; % Error in weights
for (i = 1; i ≤ No of filters ; i+ = 1) do

for (j = 1; i ≤ No of channels ; j+ = 1) do
Mean Err = mean(Error W ( :, :, i, j)); % Mean

error of the channel
S ← Subset of UnQunat W ( :, :, i, j) having

corresponding error opposite in sign to Mean Err
SO ← Values of S quantized to closet levels in the

opposite direction to the nearest neighbor
CostS = abs(S − SO)
Sorted S ← Set of sorted values of S in order of

increasing cost
for (k = 1; i ≤ No of values in Sorted S ; k+ = 1)

do
NewMeanErr ← Mean quantization error if the

quantized value of Sorted S(k) in Quant W is
replaced with the corresponding value from SO

if abs(Mean Err) ¿ abs(New Mean Err) then
Accept the change in quantization level of

value corresponding to Sorted S(k) in
Quant W

Mean Err = New Mean Err
else

break
end

end
end

end

ology. We evaluated CoNLoCNN using two popular DNNs used
for benchmarking FP implementations, i.e., AlexNet and VGG-
16 trained on the ImageNet dataset. For hardware synthesis, we
implemented PEs composed of different MAC unit designs in
Verilog and synthesized for the TSMC 65nm technology using
Cadence Genus.

B. Effectiveness of Our Error Compensation Strategy, i.e., Algo-
rithm 1

To demonstrate the effectiveness of error compensation algo-
rithm, we applied it with FP implementation and compared the
results with conventional FP implementation. Note that for this
experiment, we assumed the bit-width of weights and activations
to be the same and uniform across all the layers of the DNN.
Fig. 15(a) shows the results for the AlexNet. As shown in the
figure, our error compensation strategy helps in improving the
accuracy of the network, specifically at lower bit-widths.

C. Effectiveness of CoNLoCNN for State-of-the-Art DNNs

To demonstrate the effectiveness of our overall methodology,
we considered four different ELP BSD data representation for-
mats. The formats are listed in Table II along with the hardware
characteristics of the PEs implemented using the corresponding
MAC designs for a 32x32 processing array (shown in Fig. 13(c)).
Note that the scaling factor (represented by x in the table) of the
representations is not considered to be the same across layers,
and it is selected based on the statistics of the parameters of
the corresponding layer. For each representation, we considered
five different activation bit-widths, i.e., 8-bit till 4-bit, to study
the impact of change in activation bit-width on the accuracy of
the network and the hardware efficiency. Fig. 15(b) shows the
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Fig. 15: (a) Effectiveness of our error compensation strategy
when used with traditional FP quatization for the AlexNet. (b)
Accuracy of the AlexNet vs. PDP for different ELP BSD data
representations.

accuracy vs. PDP results achieved when CoNLoCNN is used for
the AlexNet considering the ELP BSD configurations mentioned
in Table II. The plots on the left inside Fig. 15(b) are generated
by CoNLoCNN while the two points on the right represent
conventional designs considered for comparison. The plot shows
that as the bit-width of the activations decreases, we observe a
slight decrease till a point after which the rate of decay increases
drastically. Moreover, different ELP BSD formats offer different
accuracy-efficiency characteristics. The key thing to observe in
Fig. 15(b) is that even the most power consuming PE design
generated by the proposed CoNLoCNN framework offers around
50% reduction in PDP compared to conventional designs. In
case 1.44% drop in accuracy is acceptable, the proposed method
can offer around 76% reduction in the PDP. Similar results are
observed for the VGG-16 network.

TABLE II: Hardware characteristics of the PEs designed using
our methodology for some of ELP BSD representations and
their comparison with booth multiplier-based and conventional
multiplier-based PEs.

Bit-width With 8-bit Activations

Configuration of MAC for PEs Weights Activations
Area [cell 

area]
Power 
[uW]

Delay 
[ns]

PDP [fJ]

ELP_BSD{x, [1,0,1,2,3,4,5,6,7]} 4
8 556 28.55 2.30 65.68

5 450 23.06 1.99 45.79

ELP_BSD{x, [1,0,1,2,3,4,5,6,7], 
[1,1,2,4,5]}

7
8 838 59.60 1.85 109.96

5 694 46.53 1.71 79.71

ELP_BSD{x, [1,0,1,2,3,4,5,6,7], 
[1,1,5]}

6
8 814 51.65 1.85 95.29

5 676 41.22 1.71 70.65

ELP_BSD{x, [1,0,2,5,7], 
[1,1,2,4,5]}

6
8 835 56.57 1.81 102.61

5 680 43.07 1.62 69.86

Booth Multiplier-based MAC 8 8 1195 86.73 2.49 216.12

Conventional FP 8 8 1179 83.56 3.56 297.47

D. Comparison with the state-of-the-art

To compare the results with the state-of-the-art, we im-
plemented CAxCNN [13] inside our framework. We selected
Canonical Approximate (CA) representation with 1 non-zero
digit, where the weights are converted using their exhaustive
search algorithm (i.e., their best algorithm) to have a fair
comparison. For AlexNet, CAxCNN with 1 non-zero digit CA
representation achieves 50.9% top1 accuracy while CoNLoCNN
achieves 55.4% accuracy (i.e., close to the baseline). This im-
provement is mainly due to our error compensation strategy.
The quantization levels offered by 1 non-zero digit CA are

almost the same as offered by ELP BSD{SF,[1,0,1,2,3,4,5,6,7]}
format with the only difference being of ’0’, which is not
present in ELP BSD{SF,[1,0,1,2,3,4,5,6,7]}. However, absence
of ’0’ does not affect the accuracy due to the presence of
1 and -1 quantization levels and the use error compensation.
Note that the absence of ’0’ in the highlighted case helps in
achieving a simplified PE design. Even in the best possible
scenario, CA representation would require 5 bits per weight while
ELP BSD{SF,[1,0,1,2,3,4,5,6,7]} requires 4 bits per weight.
Similar to the AlexNet, for the VGG-16, we observed 3% higher
accuracy with CoNLoCNN compared to CAxCNN. Note that
CoNLoCNN not only helps in reducing the complexity of the
hardware but also helps in reducing the memory footprint of
DNNs unlike other approximate computing works (e.g., [16])
that operate at 8-bit precision.

VII. CONCLUSION

In this paper, we proposed CoNLoCNN, a framework to enable
energy-efficient low-precision approximate DNN inference. CoN-
LoCNN mainly exploits non-uniform quantization of weights
to simplify processing elements in the computational array of
DNN accelerators and correlation between activation values to
(partially) compensate for the quantization errors without any
run-time overheads. We also proposed, Encoded Low-Precision
Binary Signed Digit (ELP BSD) representation, to reduce the
bit-width of weights while ensuring direct use of the encoded
weight in computations by designing supporting MAC units.
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