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A Waveform Relaxation Solver for Transient
Simulation of Large-Scale Nonlinearly Loaded

Shielding Structures
Marco De Stefano, Student Member, IEEE, Torben Wendt, Student Member, IEEE, Cheng Yang, Member, IEEE,

Stefano Grivet-Talocia, Fellow, IEEE, and Christian Schuster, Senior Member, IEEE

Abstract—This paper introduces an algorithm for transient
simulation of electromagnetic structures loaded by lumped
nonlinear devices. The reference application is energy-selective
shielding, which adopts clipping devices uniformly spread along
shield apertures to achieve a shielding effectiveness that increases
with the power of the incident field, thereby blocking high-
power interference while allowing low-power communication.
Transient simulation of such structures poses a number of
challenges, related to their large-scale and low-loss nature. In
this work, we propose a waveform relaxation scheme based on
decoupling the linear electromagnetic structure from its nonlinear
terminations. In a preprocessing stage, the electromagnetic sub-
system is characterized in the frequency domain and converted
into a behavioral rational macromodel. Transient simulation is
performed by refining estimates of the port signals through
iterations. The proposed scheme combines a time partitioning
approach with an inexact Newton-Krylov solver. This combina-
tion provides fast convergence also in those cases where standard
Waveform Relaxation schemes fail due to a strong mismatch at
the decoupling sections. Numerical results on several test cases
of increasing complexity with up to 1024 ports show that the
proposed approach proves as reliable as HSPICE in terms of
accuracy, with a speedup ranging from one to three orders of
magnitude.

I. INTRODUCTION

This work focuses on the transient simulation of energy-
selective shielding structures [1]–[3]. In contrast to regular
shields [4]–[6], such structures have the ability of protecting
sensitive equipment or devices from high-power electromag-
netic fields, while still allowing low-power communication.
This power-dependent shielding characteristics are usually
achieved by connecting nonlinear devices to shielding enclo-
sures at a number of lumped ports, which are spread across
the shield apertures [3], [7], [8], see Fig. 1 for a schematic
illustration.

The electrodynamic behavior of energy-selective shields
must be analyzed in time domain due to the presence of
nonlinear terminations. To this end, transient full-wave elec-
tromagnetic solvers can be adopted, such as Time Domain
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Fig. 1: Graphical illustration of the shielding enclosure sim-
ulation framework: original electromagnetic problem (left) is
converted to an equivalent circuit simulation problem (right).
See text for details.

Integral Equation (TDIE) [9], Finite-Difference Time-Domain
Method (FDTD) [10], Time Domain Finite-Element Method
(TDFEM) [11] and Partial Element Equivalent Circuit (PEEC)
[12]. Nonetheless, nonlinear interactions are only lumped at
the ports where discrete nonlinear devices are connected. Re-
moving such components leaves an unloaded enclosure whose
behavior is governed by linear Maxwell’s equations, and which
can be characterized both in time an frequency domain. This
consideration enables hybrid simulation approaches [13], [14]
based on partitioning the system into the linear electromag-
netic (yellow box and dark strips in Fig. 1) and nonlinear
(red blocks) sub-domains, which are characterized separately.
Indeed, the unloaded box can be regarded as a (passive) linear
multi-port network, which can be generally represented by a
multiport transfer matrix H(s). This frequency response can
be approximated with a lumped behavioral macromodel com-
puted through a rational approximation using a Vector Fitting
(VF) engine [15], [16]. Such macromodel can be synthesized
as an equivalent circuit, so that loading the ports with nonlinear
devices casts the original transient field simulation problem
into a lumped circuit simulation problem. The latter is solved
using any circuit solver of the SPICE family. The presence
of an incident field excitation is easily taken into account by
computing the transient open-circuit voltage waveforms, which
are embedded as lumped time-dependent sources at the ports
of the macromodel, see Fig. 1.

This approach is particularly appealing for the design of
energy-selective structures, which may require repeated tran-
sient analyses aimed at selecting the best types of lumped
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terminations for specific shielding applications [3], to be
solved in time domain for various different incident field exci-
tation configurations. For these problems, the electromagnetic
characterization does not need to be repeated and can be reused
in subsequent circuit simulations.

One of the objectives of this work is to show that much
better alternatives are available for such repeated transient
simulations with respect to general-purpose circuit solvers
such as SPICE. Building on the decoupling between linear
electromagnetic and lumped nonlinear blocks [13], a natural
approach is to apply a Waveform Relaxation (WR) algo-
rithm [17], [18], that starting from an initial estimate of the
transient port signals to be computed over a given time inter-
val, iteratively refines such estimates until convergence. The
procedure stabilizes if the iteration operator is a contraction,
regardless of the selected formulation [18]–[21]; the number of
iterations can be reduced by optimizing the WR decoupling
parameters [22]–[24]. A general procedure that allows such
optimizations is the definition of some reference impedance
level, used to build the decoupling network so that exchange
of signals between iterations is performed through equivalent
scattering waves referenced to this optimal impedance.

Impedance matching, constant (real) or time-varying, for
the considered application is nearly impossible. On one hand,
the considered shielding enclosures are nearly lossless, with
highly reactive driving-point impedances and very pronounced
resonance peaks. On the other hand, nonlinear terminations
such as clipping diodes or diode pairs behave at different
time instants almost as short circuits (during conduction) or
open circuits (during cutoff). For this reasons, any standard
WR scheme would require an enormous number of iterations.
An example is provided in Fig. 2, where decoupling through
a constant resistance R0 = 50Ω is used to solve for port
signals of a nonlinearly loaded enclosure, as in Fig. 1 but
with P = 100 ports and excited by an incident plane wave
pulse (see Sec. V-A for a full description). The number of
WR iterations that are required to reach convergence exceeds
several hundreds, making the overall scheme highly inefficient.

In this paper, we present an iterative solver that is able to
overcome the above WR convergence issues. The proposed
solver draws the main idea of waveform relaxation, which is
however achieved through an inexact Newton-Krylov iteration.
The approach is similar to [25]. This iteration is combined with
a second (outer) iteration that processes sequentially different
time subintervals, with an appropriate re-initialization of any
required initial conditions. We show that this time partitioning
process is able to drastically reduce number of iterations per
window and overall runtime. Numerical results on several test
cases of increasing complexity with up to 1024 nonlinearly
loaded ports show that the proposed approach proves at least
as reliable as HSPICE in terms of accuracy, with a speedup in
overall runtime ranging from one to three orders of magnitude.

II. NOVEL CONTRIBUTIONS AND MANUSCRIPT
ORGANIZATION

This work finalizes a series of papers that analyzed sepa-
rately various aspects of this challenging numerical simulation

Fig. 2: Transient solution of a nonlinearly loaded 100-port
shielding enclosure. Scattering signals at Waveform Relaxation
(WR) iterations for the first port. Iteration error drops below
10−6 after 807 iterations, causing a long runtime.

problem. In particular, the proposed transient solver heavily
depends on a set of prerequisite results and formulations which
form a comprehensive and self-consistent method. One of
the novel aspects of this work is indeed the combination
of all these ingredients into a complete framework: if one
ingredient is removed, the effectiveness of the entire approach
is hindered. Section III below itemizes all this required back-
ground material. Based on all these prerequisites, Section IV
presents the proposed transient simulation algorithm, whereas
numerical results, validation and performance assessment are
presented in Sec. V.

The presented WR-based solver starts from the results
of [13], which provides a macromodeling-based decoupling
scheme to solve the electromagnetic problem, and extends the
state-of-the-art circuit solver [25] by addressing the problem of
a poor matching condition at the interface ports. With respect
to [25], a time-partitioning strategy [18] is embedded in the
solver formulation to improve the convergence property of the
WR-NGMRES scheme and to handle the large number of ports
of the presented application. A different approach, still within
the adopted decoupling and WR framework, was introduced
in [14]. Nevertheless, the presented solver significantly differs
from [14] for several reasons:

1) The basic WR scheme was modified in [14] with an
iteration-dependent strategy that changes the macromodel
reference impedance (i.e. R0) to match a time-varying
impedance level at the decoupling ports. This choice
requires the generation of a possibly large number
of scattering macromodels referenced to different port
impedances, increasing the runtime requirements of the
preprocessing phase, whereas the proposed approach is
based on a single (compressed) macromodel and does
not include any iteration-dependent parameter.

2) The proposed approach takes advantage of the WR-based
iteration of the WR-NGMRES scheme [25], while [14]
solves for the basic WR-LP iteration.

3) The presented strategy splits the simulation interval in
different chunks (time windowing) to improve the solver
convergence rate. The strategy of [14] is applied to the
entire simulation window.

4) Even if the same application is used in both strategies
(i.e. energy-selective shielding enclosures), the presented
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strategy demonstrates its efficiency on a significantly
larger size examples (maximum number of ports 1024)
with respect to [14].

We remark that the focus of this work is the transient
numerical simulation problem rather than the engineering ap-
plication and the design of energy-selective enclosures, which
are comprehensively developed in [3]. Therefore, the target
readers for this paper are R&D experts in numerical simulation
both in the academia and in the private sector, specifically field
solver and CAD tool developers.

III. BACKGROUND FRAMEWORK

We start setting the basic notation used in this manuscript.
We denote scalars with normal font x, vectors with lower
case bold fonts x, and matrices with upper case bold fonts
X, with In being the identity matrix of size n. The transpose
of matrix X will be indicated with XT, while Re {X} and
Im {X} extract its real and imaginary part, respectively.

With reference to Fig. 1, the objective of this work is
to compute the transient electromagnetic fields scattered by
a metallic shielding structure loaded with lumped nonlinear
loads. This goal is achieved by first computing the transient
port voltages and currents at each of the lumped terminations.
The framework discussed in [13] is then applied to exploit
knowledge of these signals to evaluate the transient electro-
magnetic field at any desired location, through a postprocess-
ing stage. This formulation is not repeated here, the Reader is
referred to [13].

A. Decoupling ad Characterization

Assuming an incident electric field excitation einc(t) and
defining the incident scattering waves a(t) ∈ RP at the P
ports, we can define the reflected waves b(t) at these ports as:

b(t) = h(t) ∗ a(t) + ϑ(t) (1)
ϑ(t) = (IP − h(t)) ∗ voc(t)/2 (2)

voc(t) = hoc(t) ∗ einc(t) (3)

where voc(t) ∈ RP collects the open-circuit voltages induced
by the external incident field, L{hoc(t)} = Hoc(s) ∈ CP

is a suitable set of linear transfer functions, where L is
the Laplace transform operator, ϑ(t) ∈ RP represents the
contribution of einc(t) under port matching conditions, and
L{h(t)} = H(s) ∈ CP×P is the scattering matrix of the
unloaded box.

A frequency-domain characterization of the unloaded
shielding structure is performed through a full wave solver
based on the Method of Moments (MoM) [26]. The result
is a set of tabulated frequency data of the scattering matrix
H̆(jωℓ) and the open-circuit transfer function vector H̆oc(jωℓ)
for ℓ = 1, · · · , L. It should be noted that samples H̆(jωℓ)
are invariant once the geometry is fixed, whereas H̆oc(jωℓ)
should be recomputed if the orientation and polarization of
the incident field einc(t) are varied.

B. Data conditioning

A necessary condition to obtain a reliable model of the
system is a well defined set of training samples covering
the full bandwidth of interest, including low frequency and
DC. Well-known MoM or FEM field solver limitations may
provide incorrect, inaccurate or incomplete characterizations.
For this reason, a fundamental step in the overall proposed
flow is the data conditioning phase presented in [27], which
involves enriching the original dataset H̆(jωℓ) with a set of
self-consistent low-frequency samples obtained through an
extrapolation (and regularization) procedure.

C. Compressed Macromodeling

The next step is to approximate this data through behavioral
models obtained by a rational fitting procedure [15], [28], [29],

H(jωℓ) ≈ H̆(jωℓ), Hoc(jωℓ) ≈ H̆oc(jωℓ) , (4)

where

H(s) =

n̄∑
n=1

Rn

s− pn
+R0 (5)

and similarly for Hoc(s). For present application, this step
is particularly challenging due to the large number of input-
output ports P (which can reach several hundreds or even
thousands) and a large expected dynamic order n̄ to properly
capture all resonances within the required modeling band-
width. For this reason, we exploit the framework introduced
in [27], [30], which computes a low-complexity macromodel
by rational fitting a compressed dataset obtained by a modified
(causality-preserving) Singular Value Decomposition (SVD).
This entire procedure is well-documented in [27], [30], includ-
ing application to the very same shielding enclosures consid-
ered in this work, and is not repeated here. This optimized
macromodel generation flow includes of course a dedicated
passivity verification and enforcement, based on an iterative
perturbation algorithm [31] of passivity violations identified
through the adaptive sampling process [32].

D. Transient analysis and Waveform Relaxation

Several alternatives are available for time-domain simulation
of a rational macromodel in form (5), possibly loaded with
nonlinear devices. A popular approach realizes the model as a
state-space system (a system of coupled Ordinary Differential
Equations, ODE), which is then converted into an equivalent
(behavioral) circuit. Transient simulation is thus performed
using a standard circuit solver of the SPICE class. Modern
circuit solvers (e.g. HSPICE [33]) allow direct specification
of behavioral blocks in the pole-residue format (5), usually
denoted as Foster form, making the state-space realization
and circuit synthesis unnecessary. The Foster format is par-
ticularly convenient since the numerical integration of pole-
residue models can be carried out via recursive convolutions
in significantly reduced runtime. This aspect will be discussed
in detail in the following.

The proposed approach for the evaluation of the transient
port voltages stems from a scattering-based Waveform Relax-
ation (WR) [17], [18] formulation. In particular, we exploit
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the Longitudinal Partitioning (LP) decoupling scheme [20]
depicted in Fig. 3, which splits linear and nonlinear parts
through decoupling networks including relaxation sources, the
latter defined in terms of voltage-normalized scattering waves.
Splitting and relaxation are discussed in more detail below.

The WR-LP scheme solves the nonlinear system associated
with the simulation problem depicted in Fig. 1 through a fixed-
point iteration,{

bν(t) = (Haν−1) (t) + ϑ(t)

aν(t) = G(bν(t))
(6)

where ν is the iteration index, the operator H denotes con-
volution with the macromodel impulse response matrix, and
G is a purely algebraic operator collecting the nonlinear
characteristics of the loads expressed in terms of scattering
variables. Upon a suitable initialization (usually a0 = 0), the
two equations are evaluated alternatively using the estimate of
the port signals computed from previous iteration. Iterations
are stopped when a suitable convergence threshold is reached,

∥aν − aν−1∥∞ < ϵ (7)

where the worst-case ∞-norm is used, corresponding to the
maximum magnitude among all signal components of its
vector argument. The above scheme is effective if

1) the scheme converges;
2) both operators H and G can be efficiently evaluated;
3) few iterations are sufficient to reach convergence.

The first two aspects will be discussed below. The rest of this
work is devoted to attain the third goal.

1) Convergence: A fixed-point iteration such as WR-LP
converges if the operator that describes the map between two
successive iterations is a contraction. This condition is easily
established in case of linear terminations, that fit the above
WR framework by replacing operator G with a linear scattering
convolution operator. Using a frequency-domain description,
convergence holds if,

ρmax{ΓH} = max
ω,i
|λi{Γ(jω)H(jω)}| (8)

where Γ = Γ(jω) ∈ CP×P are the scattering matrix of the
linear terminations, and where ρmax is the spectral radius. A
sufficient condition for convergence [20] is the strict passivity
of both shielding enclosure and terminations,

∥H(jω)∥2 < 1 , ∥Γ(jω)∥2 < 1 ∀ω . (9)

Intuitively, this condition states that the more dissipative are
the two systems at a specific frequency, the faster will be
the convergence of the WR scheme. In our framework H(jω)
is passive by construction, and also the nonlinear elements
(diodes or diode pairs) to be used as terminations are passive.
However,

• in case of a low-loss and highly resonant shielding struc-
ture, we usually have ∥H(jω)∥2 ≲ 1 so that dissipation
in the shield and radiation losses are minimal;

• diodes or diode pairs nearly behave as short or open
circuits in their conduction or cutoff state, with a slightly
dissipative resistive behavior during switching. Replacing

H(s)

− +

voc,1(t)
R0 i1

−
+2aν−1,1(t) −

+2bν,1(t)
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+

−
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R0 i4

−
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+
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... ...

Fig. 3: Illustration of the standard WR decoupling scheme
corresponding to the structure of Fig. 1.

such elements with equivalent linear circuits in conduc-
tion or cutoff states would lead to a worst-case scenario
where ∥Γ(jω)∥2 = 1, so that almost no dissipation occurs
in the termination.

Under these conditions, the spectral radius of the iteration
operator ρmax ≲ 1 and the associated convergence rate is
so poor not to justify any sort of WR approach. We will see
below that, even in this challenging situation, convergence can
be attained by a suitable reformulation.

2) Operators Evaluations: To obtain a fast evaluation of
the linear operator H we adopt the same approach of [13],
[14]. Since both h(t) and hoc(tk) are the impulse responses
of systems modeled in a pole-residue form (5), the evaluation
of their convolution can be efficiently computed with an
IIR filter (equivalently, as recursive convolutions), see [34].
Details will be provided next. Note that the source term ϑ(t)
can be precomputed before starting iterations. Regarding the
nonlinear operator G, in this work we consider only nonlinear,
static, identical and uncoupled terminations at all ports, for
which G can be represented as a set of identical input-output
maps to be applied component-wise. In our implementation,
this evaluation is performed by a single lookup table obtained
as a fine sampling of the load characteristic in the scattering
representation as in [14]. The extension to more complex
terminations requires a suitable definition of the operator G
and a procedure for its fast evaluation. For instance, more
sophisticated diode models including dynamic terms and par-
asitics would make G a linear and dynamic operator, requiring
a dedicated (small-scale) ODE solver, including SPICE as a
standard alternative. The proposed decoupling framework is
thus applicable regardless of the termination model, although
the efficiency in the evaluation of the corresponding operator
depends on the particular implementation. This is left for
future investigations.

IV. FAST TRANSIENT SIMULATION VIA WINDOWED
NEWTON-KRYLOV ITERATIONS

The above discussion pointed that a direct application of
a WR scheme to our problem is likely to fail due to poor
convergence properties. This motivates the proposed numerical
approach, which is based on two main ingredients:
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• a time-partitioning approach is exploited, to improve
convergence of the basic WR-LP scheme;

• instead of a pure WR scheme, we adopt a more general
Newton-Krylov solver [25].

As in basic WR iterations, a concurrent estimate of chuncks of
time samples of the port signals is computed at each iteration.
A SPICE-like solver would apply Newton iterations to evaluate
all signals at a single time step, within an outer time-stepping
loop. The proposed approach reverses the loops and applies
an approximate Newton iteration to refine the estimate of a
vector of time samples within a given time interval. An outer
loop processes disjoint time intervals until the entire transient
simulation window is complete.

A. Time Windowing

Time partitioning or windowing approaches are well known
in the WR context [18], [35], with proven effectiveness in
algorithm parallelization [19]. The most relevant advantage
of time windowing that we exploit in this work is a drastic
improvement in convergence rate and consequent reduction in
overall runtime.

Figure 4 demonstrates the impact of windowing on conver-
gence through a simple example. A shielding enclosure with
P = 100 ports is terminated by antiparallel diode pairs at
each port and excited by an incident plane wave. Details of
the simulation setup are provided in Section V-A. The time
interval over which the transient port signals are required is
tmax ≈ 15.5 ns. The basic WR-LP scheme of (6) is executed,
and the convergence through iterations is observed by restrict-
ing the evaluation of the solution error to different portions
of this time interval [0, σtmax] with σ ∈ {0.25, 0.5, 0.75, 1}.
The evolution of the error through iterations ν is depicted in
Fig. 4, both referred to the exact solution (top panel) and to
the solution estimate available at the previous iteration ν − 1
(bottom panel). Both panels clearly show that the number
of iterations required to attain an accuracy below a given
threshold drops when reducing the size of the observation
window.

These results indicate the opportunity of breaking a long
simulation interval into chunks to be solved individually within
an outer iteration. In this work we adopt a uniform subdivision
induced by a set of M control points,

0 = T0 < T1 < · · ·Tm < · · ·TM = tmax = K∆t (10)

such that each subinterval includes a fixed number k̄ of
uniformly spaced time samples, with Tm − Tm−1 = k̄∆t.
This is not a restriction but is convenient for implementation
purposes. In the limit k̄ = 1 (equivalently, M = K) only one
time sample is evaluated at each outer iteration, similarly to
common time-stepping ODE solvers and SPICE. In the latter
case, Newton iterations are used to evaluate the unknowns at
the considered time step. On the other end, the limit k̄ = K
or equivalently M = 1 considers a single time window for
which all time samples are computed concurrently through
WR iterations. This corresponds to the red dots in Fig. 4.

The proposed approach attempts to find a compromise
between these two opposite situations, by solving concurrently

Fig. 4: WR errors evolution on scattering incident wave a(t)
during iterations at different instant of time. Top: reference
is the WR solution â(t) computed with threshold ε = 10−8;
bottom: reference previous iteration.

for k̄ > 1 time samples within a WR loop, and at the same
time limiting this number of concurrent samples to enhance
convergence speed. Since different time windows are to be
solved iteratively, initial conditions are required in order to
properly restart WR iterations on each subinterval (except the
first, for which zero initial conditions can be safely adopted).
The proposed strategy for handling initial conditions will be
discussed later, after introducing the iterative solver that we
proposed to use instead of plain WR.

B. Inexact Newton-Krylov Iterations
Applying a uniform time discretization tk = k∆t with k =

0, . . . , k̄, the continuous-time WR-LP system of Sec. III can be
conveniently rewritten in terms of discrete algebraic operators.
Defining a vector

ã = vec (a(t1), . . . ,a(tk̄)) ∈ Rk̄P (11)

collecting all time samples of the port signals a(t), and
similarly for b(t) and ϑ(t), leads to the following discretized
system of equations{

b̃ = H̃(x̃0,a0) · ã+ ϑ̃

ã = G̃(b̃)
(12)

where operator H̃ denotes discrete convolution, and G̃
evaluates the nonlinear characteristic of the terminations
component-wise, i.e. at each port and for each independent
time step. The evaluation of the discrete convolution operator
is performed as follows. Individual contributions of model
poles in (5) are accounted for by defining auxiliary state
vectors xn(t) ∈ RP , whose discrete time samples evaluations
are approximated as time-domain recursive convolutions,

∀k = 1, . . . , k̄ : (13)
xn(tk) ≈ αnxn(tk−1) + β0,na(tk) + β1,na(tk−1),
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where αn = epn∆t and βj,n defined according to the adopted
discretization strategy, see [34]. Time samples of the output
signals are then evaluated by superposition of these state
variables,

∀k = 1, . . . , k̄ : (14)

b(tk) ≈
n̄∑

n=1

Rnxn(tk) +R0a(tk) + ϑ(tk).

Therefore, although the first row in (12) formally states
discrete convolution as a multiplication by a (sparse) matrix
H̃, the actual numerical evaluation applies (13) to compute
the auxiliary state variables at all time steps, and then uses
the results to evaluate the output samples based on (14). These
samples are finally assembled in the output vector b̃. Both (13)
and (14) need to be initialized by suitable initial conditions
at t = 0 for the input signal a0 = a(t = 0) and auxiliary
state vector x̃0 collecting as components all xn(t = 0). These
initial conditions are essential parts for the characterization of
the discrete convolution operator, so that they are specified in
the operator symbol H̃(x̃0,a0) in (12).

Instead of applying the WR fixed-point iteration to (12), we
reformulate the problem in terms of computing the solution
of a nonlinear multivariate system. Elimination of the output
variables from (12) leads to the equivalent formulation

F̃(ã) = 0, F̃(ã) = ã− G̃(H̃(x̃0,a0) · ã+ ϑ̃) (15)

where F̃ : RPk̄ → RPk̄ is a nonlinear multivariate map
providing the discrete time samples of the residual. Applying
the classical Newton method to find the solution of (15)
provides the following update equation,

ãη+1 = ãη − [J̃(ãη)]
−1F̃(ãη) (16)

where J̃(ãη) is the Jacobian of the system and ãη is the
solution estimate at the iteration η. Since the evaluation of
the large-scale Jacobian is a very expensive operation, we
propose as in [25] to use an inexact Newton condition by re-
placing the Jacobian solve with an approximation constructed
through a suitable Krylov subspace. We closely follow the
implementation of [36], which is based on the Generalized
Minimal RESidual (GMRES) method. The resulting scheme is
further enhanced by precomputing an initial condition to setup
the inexact Newton iterations through a (small) number νi of
WR-LP (fixed-point) iterations. The resulting scheme is code-
named WR-NGMRES as in [25], to which we refer the reader
for additional details. The condition for stopping iterations is
associated to the nonlinear residual error. Iterations are stopped
when ∥∥∥F̃(ãη)

∥∥∥ < τr

∥∥∥F̃(ãη−1)
∥∥∥+ τa (17)

where τr and τa are two control parameters accounting for the
relative and the absolute accuracy, respectively.

The main advantages of this formulation are that
• the convergence of the scheme is always guaranteed if

a suitable initial condition is provided to the GMRES.
This is the main reason for running νi iterations of WR;
we have verified that νi = 1 is adequate in all tested
examples;

• the NGMRES approach requires a much smaller number
of iterations with respect to the classical WR scheme.
This will be demonstrated on several test cases in Sec. V.

On the other hand, one should consider that
• many function evaluations may be needed to build an

adequate basis of the Krylov subspace;
• the nonlinear problem (15) does not scale favourably with

the size of ã.
For both these reasons, we suggest a combination with a time
windowing and restart process, discussed next.

C. Time-Windowed WR-NGMRES Iterations

In this section, the proposed simulation scheme is presented
by combining the inexact Newton iteration presented in Sec-
tion IV-B with the time partitioning technique of Section IV-A.
The result is a flexible and general framework for extending
WR solvers to large-scale simulation problems for which con-
vergence cannot be ensured with proper matching conditions at
the decoupling sections. The proposed approach is summarized
in Algorithm 1 and discussed below.

Considering the time partition induced by the control
points (10) with k̄ samples in each sub-interval Im =
[Tm−1, Tm], we introduce the following double-subscript no-
tation for all discretized signals

ãν,m = vec
(
aν(t

m
1 ), . . . ,aν(t

m
k̄ )

)
∈ Rk̄P (18)

where ν denotes the inner (WR or inexact Newton) iteration
index and m denotes the outer iteration index referring to the
m-th time interval Im. The time samples in (18) are

tmk = Tm−1 + k∆t, with tm0 = tm−1
k̄

= Tm−1 (19)

to ensure that all subintervals are adjacent so that the last time
sample within Im−1 coincides with the initial time step of Im.

Algorithm 1 requires on input the description of all model
coefficients that are necessary to evaluate the discrete con-
volutions and the nonlinear termination operators, as well as
all algorithm control parameters related to time partitioning
and convergence thresholds. Initial states and initial solution
vector are initialized to zero-valued vectors (lines 1-2). The
outer loop over time windows is then started (line 3). Before
starting iterations on the current m-th time window, all k̄
samples of the solution vector are set to the same constant
value âm−1, which at the first iteration is identically zero
(line 4). The recursive convolution operator is configured with
the proper initial conditions (line 5). Note that we use the
shorthand notation H̃m = H̃(x̂m−1, âm−1) to denote this
operator equipped with the initial conditions defined for the
current time window.

The inner loop over WR-NGMRES iterations is then started
in line 6. For the first νi iterations a basic WR scheme is
used, by alternating the evaluation of the discrete convolution
operator and the termination characteristics{

b̃ν,m = H̃m · ãν−1,m + ϑ̃

ãν,m = G̃(b̃ν,m)
(20)
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Algorithm 1 Pseudocode of the proposed scheme

Require: ϑ̃, {αn, β0,n, β1,n}, {Rn}, G̃
Require: M , k̄, νi, ϵ, νmax, τr and τa

1: Initialize states x̂0 = 0 ∈ RPn̄

2: Initialize solution â0 = 0 ∈ RP

3: for m = 1 to M do
4: Initialize ã0,m = (1k̄ ⊗ âm−1)

5: Initialize operator H̃m = H̃(x̂m−1, âm−1)
6: for ν = 1 to νi do
7: Apply convolution b̃ν,m = H̃m · ãν−1,m + ϑ̃

8: Apply terminations ãν,m = G̃(b̃ν,m)
9: if ∥ãν,m − ãν−1,m∥∞ < ϵ then

10: Break
11: end if
12: end for
13: while ν < νmax do
14: ν ← ν + 1
15: Solve F̃m(ãν,m) = 0 via NGMRES
16: if ∥F̃m(ãν,m)∥ < τr∥F̃m(ãν−1,m)∥+ τa then
17: Break
18: end if
19: end while
20: Update b̃ν,m = H̃m · ãν−1,m + ϑ̃
21: Store final states x̂m = x̃ν,m(Tm)
22: Store final solution âm = aν,m(Tm)
23: end for
24: Merge converged signals for all m windows
25: return Converged port signals ã and b̃

Iterations are stopped if there is no significant update (line 10).
A maximum number νmax NGMRES iterations are performed
by solving

F̃m(ãν,m) = ãν,m − G̃(H̃m · ãν,m + ϑ̃) = 0 (21)

until convergence is detected (line 17). The estimate of the
output signals b̃ν,m is computed by applying one last time
the linear convolution operator, so that also all state variables
are updated. These are used to define the appropriate initial
conditions for the successive outer iteration on the time
windows. Such initial conditions are defined by extracting both
state variables and port variables at the last time step (lines 20-
22). At the end of the time windowing iterations, all samples
of converged signals are collected and returned on output.

V. NUMERICAL RESULTS

In this section, numerical results on several examples are
reported to demonstrate accuracy, efficiency and scalability of
the proposed transient simulation scheme. All examples are
nonlinearly loaded shielding enclosures. The reference struc-
ture (see Fig. 1) is a cubic enclosure (perfectly conducting,
edge length 500 mm), with one square aperture (side length
250 mm) on one face. The aperture is covered by a regular
grid of P = p×p ports, grouped in p series-connected blocks
through 2 mm wide metal strips. Port numbering is consistent
with the notation of Fig. 1. Each port is loaded by two anti-
parallel diodes, each described by the standard characteristic

iD = Is(e
vD/VT − 1) with saturation current Is = 1 nA and

thermal voltage VT ≈ 25 mV. Therefore, the voltage-current
characteristic of each load is i = Is(e

v/VT − e−v/VT ).
The structure is excited by an incident plane wave (normal

incidence, electric field polarized along the same direction
of the diodes), with a time-domain electric field waveform
defined by a Gaussian modulated pulse,

einc(t) = sin(2πfc(t− t0))eg(t), eg(t) = Ee−
(t−t0)2

2σ2 (22)

where fc is the center frequency of the signal, with standard
deviation (pulse width) σ, delay t0, and amplitude E. Different
testing situations are obtained by tuning the shape of the
excitation waveform, in particular amplitude (to stress the in-
fluence of the nonlinearities of the loads and assess the energy
selective shielding effectiveness of the loaded enclosure) and
center frequency.

Four types of numerical investigations are presented. First,
a comparison of several implementations of WR iterations
is reported in Section V-A, confirming that proposed ap-
proach provides the best performance with respect to reference
schemes. Then, the proposed scheme is compared to reference
SPICE results solver in terms of accuracy and efficiency in
Sec. V-B. This section will show that a proper WR iteration
may outperform state of the art SPICE solvers. Section V-C
summarizes the results of 50 simulations obtained changing
the frequency and amplitude of the excitation field einc(t),
completing the comparison of proposed iteration with respect
to SPICE through an extensive numerical simulation cam-
paign. To conclude, Section V-D provides scalability results
for large-scale models, up to P = 1024 ports and 72704
macromodel states.

All test cases in this section were executed by setting
only νi = 1 iteration of standard WR-LP and νmax = 100
maximum inexact Newton iterations (an upper bound that was
never reached, see below). All numerical results were obtained
using a prototypal MATLAB code on a Workstation based on
Core i9-7900X CPU running at 3.3 GHz with 64 GB of RAM,
using only one computing thread.

A. Comparison of WR Schemes

In this section, a comparison of several Waveform Relax-
ation schemes is presented using a 100-port (with a 10×10 ar-
rangement) shielding enclosure as running example, see Fig. 1.
The initial characterization of the structure was performed as
in [13] and Section III: a set of MoM simulations were per-
formed to evaluate frequency samples of all transfer functions,
including the open-circuit voltages induced on the unloaded
structure by the incident field. Compressed macromodels were
then computed to set up the discrete convolution operator H̃.

For this investigation, the incident field waveform einc(t)
in (22) is defined with center frequency fc = 450MHz, pulse
width σ ≈ 0.415 ns, and unit amplitude E = 1. All transient
simulations were run up to tmax ≈ 15.5 ns with a time step
∆t = 2.22 ps.

A common MATLAB-based simulation setup was devel-
oped to validate the proposed scheme of Section IV-C with
respect to the standard WR as implemented in [20], the WR
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TABLE I: Number of iterations and runtime of four different
implementations of WR iterations.

WR - NGMRES [25] Windowing Proposed

Iter (mean) 807 25 (2+23) 90.6 25.45 7.6 6.52
Iter [min,max] - - [1-127] [1-41] [1-9] [1-9]
Windows (M ) 1 1 10 100 10 100
Time (s) 650 779 88.9 30.3 45.4 15.6

Convergence is detected with stopping thresholds ε = τr = τa = 10−6.
When time windowing is applied (last four columns), the number of
iterations is reported both in terms of mean value and minimum-maximum
among all windows.

scheme equipped with a quasi-Newton iteration solver (the
WR-NGMRES presented in [25], without time windowing),
and the basic WR scheme with the time windowing discussed
in Section IV-A. All schemes have been run by setting the
convergence thresholds ε = τr = τa = 10−6. This setup en-
ables us to determine the relative importance of the individual
building blocks in the proposed algorithm.

The performance for all four implementations in terms of
number of iterations required for convergence and overall
runtime is summarized in Table I. From this table we can
draw the following conclusions

• The largest number of iterations occurs for the basic WR
scheme, as expected, with a long runtime (650 seconds)
required by the many sequential evaluations of discrete
convolution and termination operators.

• Including quasi-Newton iterations in the WR-NGMRES
implementation drastically reduces iterations, but with no
advantage in runtime, which is even larger (779 seconds).
This is due to the large number of evaluations required
for the construction of the Krylov subspace basis used to
solve the quasi-Newton iterations. Indeed, about 99.6%
of the overall elapsed time is required for the 23 iterations
of NGMRES.

• using a basic WR with time windowing (M = 100)
drastically reduces runtime by more than 20×, but the
overall number of iterations is still very large (2545
overall, with an average of 25.45 per time window).
Nevertheless, even if more iterations are required, each
evaluation is much faster than for the basic scheme, which
operates on the full time window for 807 times.

• Combining WR-NGMRES with time windowing (M =
100) as in the proposed approach, only 6.52 iterations
are required on average for each time window, and the
overall runtime is the smallest (15.6 seconds).

• Reducing the number of windows to M = 10 results in a
reduced overall efficiency and increased runtime. For this
reason, the choice of M = 100 will be used as reference
in the following investigations.

As a confirmation of the accuracy of all methods, one of
the resulting termination voltages is reported in Fig. 5 and
compared to a reference SPICE simulation.

B. Benchmarking against SPICE

This section provides a systematic comparison between
proposed iterative solver and SPICE, both in terms of accuracy

Fig. 5: Comparison of different WR schemes on a 100-port
shielding enclosure. Table I reports a summary of relevant
statistics. Only results with M = 100 are reported for both
the Windowing and Proposed case.

and runtime. The structure that we use for this assessment is
a 400-port box, excited by a Gaussian incident field einc(t) =
eg(t), with standard deviation of σ ≈ 0.47 ns and field
amplitude E = 104 to exacerbate the nonlinear characteristic
of the loads and further stress the limits of both simulation
engines. All simulations have been run until tmax = 20 ns
with a time-step ∆t = 25 ps for the proposed scheme.

We used a recent version of an industry standard SPICE
solver (HSPICE–L-2016.06-SP2-1 win64), and we performed
a set of transient simulations with different configuration
options, in order to investigate their effect on the solution.
In particular, we remark that

• advanced solvers like HSPICE allow embedding macro-
models both as synthesized equivalent circuits [37] and
in pole-residue (Foster) forms (5). Both representations
were considered in this investigation;

• numerical results of HSPICE were detected to be
highly sensitive to a number of control parame-
ters of the transient solver. In particular, the pa-
rameter OPTION.ACCURATE which, when set, al-
lows to increase the accuracy, and the parameter
OPTION.DELMAX which imposes a cap in the time step;

• HPSICE automatically selects the integration time step,
while our implementation of the WR scheme relies on a
recursive convolution approach that requires a fixed time
step ∆t; this partly affects the comparison of the two
methods in terms of accuracy, since a post-processing
interpolation is required to align the time samples of
the signals for evaluating the errors. An additional er-
ror contribution induced by this interpolation should be
considered.

The results of this investigation are summarized in Fig. 6,
where HSPICE results are compared to proposed scheme in
terms of accuracy (vertical axis), runtime (text annotations)
and equivalent relative speedup of proposed scheme with
respect to HSPICE (size of circles). HSPICE was run in four
different configurations, represented by the four vertical bars
in the figure:

• simulating the model in a state-space representation,
synthesized as a standard equivalent circuit [34], [37],
with default transient simulation options (red bar);

• with default simulation options, but using a pole-residue
(Foster) form to embed the model (green bar, case a);
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Fig. 6: Transient analysis of a nonlinearly loaded 400-port
shielding enclosure. Comparison between proposed solver and
HSPICE in four different configurations (see text).

• as in above case (a) but enabling OPTION.ACCURATE
for improving HSPICE accuracy (cyan bar, case b);

• as in case (b) and capping internal HSPICE time step to
OPTION.DELMAX=10−11 (purple bar, case c).

The proposed scheme was applied by setting all convergence
thresholds to 10−4. The conclusions supported by these results
are the following

1) proposed solver is always faster than HSPICE, with a
relative speedup ranging from 21× up to 185×;

2) HSPICE results are extremely sensitive on how the tran-
sient simulation is set up. In general, the more aggressive
is the HSPICE accuracy control, the closer are HSPICE
results to proposed scheme. This suggests the surpris-
ing conclusion that, at least for this specific case, the
proposed WR implementation should be considered as a
reference for HSPICE rather than the opposite;

3) HSPICE simulations based on Foster macromodels are
always more accurate and faster than with an equivalent
circuit model synthesis.

The two panels of Fig. 7 report a selected transient response
(voltage at port 399) by comparing proposed approach to
HSPICE Foster results with two different settings (correspond-
ing to a and b in Fig. 6). These results confirm some localized
waveform differences affecting HSPICE, which depend on
the transient solver configuration. Based on these results,
all HSPICE results that follow in next sections are set up
as in case (b), e.g. using a Foster realization and setting
OPTION.ACCURATE.

C. A Systematic Performance Comparison

In this section, a systematic comparison of the proposed
transient solver with HSPICE is performed on the same 100-
port enclosure of Sec. V-A, by changing amplitude and center
frequency of the incident field pulse (22). A total of 25
simulations are performed on a 5×5 grid, choosing 5 linearly
spaced values of the center frequency fc ∈ [100, 800] MHz and
5 logarithmically spaced values of the amplitude E ∈ [1, 104].
For each individual frequency, the pulse witdh σ in (22) is
adapted so that the pulse shape is invariant except for a time-
domain stretching/compression. As a result, also the pulse
spectrum is compressed or stretch, remaining centered at fc.

Fig. 7: Transient analysis of a nonlinearly loaded 400-port
shielding enclosure. Comparison between a selected tran-
sient voltage waveform computed by proposed solver and by
HSPICE in two different configurations (see text).

The proposed WR solver is configured with a convergence
threshold ε = 10−6. The integration time step has been
defined as ∆t = 0.001/fc to guarantee a proper sampling
of the open circuit voltages voc induced by the incident field,
according to the selected center frequency. All simulations are
run for K ≈ 7000 time steps. Results are compared with
HSPICE using the two available macromodel representations
(equivalent circuit and Foster), leading to an overall number
of 50 transient results.

A summary of the results is reported in Fig. 8. Each test case
is represented by a circle in terms of runtime for the proposed
WR algorithm (horizontal axis) and HSPICE (vertical axis),
with the size of each circle representing the worst-case RMS
error between the results of HSPICE and proposed solver
among all port voltages. The figure also includes dashed lines
corresponding to constant speedup of proposed solved with
respect to HSPICE.

The figure confirms that proposed solver and HSPICE
are generally in good agreement, with some cases where
some differences are visible, especially for equivalent circuit
macromodel embedding in HSPICE. Selected port voltages
corresponding to the two worst-case RMS error (largest circles
in Fig. 8) are reported in Fig. 9. Proposed solver and HSPICE–
Foster are always superimposed, where the HSPICE simu-
lations based on equivalent circuit realizations exhibit some
notable differences. These results confirm the observations of
Section V-B.

About runtime, Fig. 8 clearly shows that the proposed
method always provided a speedup factor of at least 10× with
respect to HSPICE–Foster simulations, reaching almost 1000×
for HSPICE simulations based on equivalent circuits. In most
cases, the proposed method provided a speedup factor ranging
from 10× to 25× with respect to HSPICE–Foster and from
100× to 250× with respect to the HSPICE with equivalent-
circuits.
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Fig. 8: Summary of simulation results of a 100-port enclosure
excited by sweeping incident pulse amplitude and center
frequency, see text.

Fig. 9: Selected port voltages corresponding to the worst-
case RMS errors among all simulations reported in Fig. 8:
comparison between proposed solver and HSPICE result.

D. Assessing Scalability

In this section, some additional examples are reported to
further demonstrate the effectiveness of the proposed iterative
solver, in terms of scalability with the number of ports where
lumped nonlinear terminations are connected. In particular,
three shielding enclosures with P = 100, 400 and 1024 ports
are considered, and both macromodel generation and transient
simulation steps are discussed.

1) Macromodel generation: A model of each unloaded
enclosure has been built starting from tabulated frequency
data from the MoM solver. Figure 10 (a) shows the accuracy
of a passive model with P = 1024 ports built following
the proposed macromodeling procedure. The complete model
extraction flow, fully documented in [27] involves a number of
steps in order to properly handle all challenges posed by this
structure: a large-scale system with more than 106 responses to
be fitted concurrently, bandlimited data from the MoM solver
and especially very low losses making the port transfer func-
tion only marginally passive. We recall that in order to guar-

Fig. 10: Modelling a 1024-port shielding enclosure: model
validation for a selected set of responses, magnitude (a) and
phase (b); singular values before and after passivity enforce-
ment (c).

antee numerically stable transient simulations, model passivity
is a necessary condition, requiring that σmax{H(jω)} ≤ 1
must hold ∀ω ∈ [0,∞). For this case, the maximum singular
values of the model responses σmax{H(jω)} before and after
passivity enforcement are reported in Fig. 10 (c). To obtain
these results, about 119 seconds were required for the model
generation (including data compression) and about 44.3 hours
for the passivity enforcement, confirming that the latter still
remains the most challenging step in any macromodeling flow.
Obtaining a model with this complexity (1024 ports with
common 71 poles, corresponding to an overall number of
72704 states) with a standard tool (e.g. [38]) is practically
unfeasible, unless complexity (hence accuracy) is reduced by
decreasing the number of poles. A passive model for the 400-
port enclosure with 79 poles (31600 states) has been obtained
after a total of ≈4.3 hours, considering all procedure steps
(data compression, model fitting and passivity enforcement),
while a 100-port passive model with 79 poles has been gener-
ated in ≈ 10 minutes. A discussion on large-scale macromodel
generation and related challenges is available in [27].

2) Transient Simulation: We finally document the transient
simulation results on the two largest-scale nonlinearly-loaded
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TABLE II: Summary of simulations results increasing ports
count.

Ports HSPICE (Foster)
Time

Proposed
Time (s) RMS Error Speed-Up Factor

100 306.5 s 8.2 2.26 · 10−3 37×
400 76 min 112.7 3.67 · 10−3 41×

1024 6.4 h 257.8 1.87 · 10−3 89×

enclosures with P = 400 and P = 1024 ports, in all cases
excited by an incident field pulse (22) with center frequency
fc = 400MHz and amplitude E = 104.

Figure 11 depicts a set of selected responses of the 400-port
structure, demonstrating a small error between SPICE and the
proposed WR scheme. The worst case RMS error computed
after interpolation of the SPICE results is 3.67 · 10−3. The
same level of accuracy (RMS= 1.88 · 10−3) was attained in
the 1024-port case, whose results are depicted in Fig. 12.

In all cases, the proposed approach provided a major
speedup with respect to HSPICE, as summarized in Table II.
The speedup factor increases from 37× to 89× when increas-
ing from P = 100 to P = 1024, confirming better scalability
of proposed WR iteration. The table also confirms the general
agreement between proposed solver and HSPICE with a worst-
case RMS deviation always in the order of 10−3.

We further remark that
• HSPICE has been run only in its best possible configu-

ration, using a pole-residue representation of the model;
• the proposed scheme could be executed on a normal office

notebook (16GB of RAM, Core i5-10210U CPU) to solve
the most demanding case with P = 1024, requiring about
3 minutes using 4 computational threads in MATLAB.
The same simulation could not run using HSPICE due to
memory limitations.

VI. CONCLUSION

This paper presented an iterative transient simulation ap-
proach based on the Waveform Relaxation framework, specif-
ically designed to solve possibly large-scale linear electro-
magnetic structures loaded at several ports with nonlinear
devices. The proposed solver is based on the availability
of a rational macromodel representing the port behavior of
the electromagnetic structure, including a nonhomogeneous
contribution due to internal sources or incident field ex-
citation. The main advantages of proposed approach arise
from a combination of inexact Newton-Krylov iterations for
guaranteeing convergence, and time-windowing in order to
further speedup the convergence rate. We have demonstrated
that the resulting scheme outperforms several other iterative
WR approaches. More accurate results than industry-standard
circuit solvers (HSPICE) were obtained, with speedup factors
always exceeding 10× and reaching in some cases almost
1000×. Results are documented for shielding enclosures with
up to P = 1024 nonlinearly loaded ports.

Several open issues and directions for future investigations
remain. On the algorithmic side, parallelization for multicore
or GPU architecture according to [19] or [39] is expected to
provide a further advantage in terms of runtime, given the

Fig. 11: Simulation results of a 400-port shielding enclosure.
The panels depict selected sets of voltages and currents on
interface ports (top two panels); bottom panels report voltage
and current on port 336, corresponding to the worst case RMS
error (3.67 · 10−3).

Fig. 12: Simulation results of a 1024-port shielding enclosure.
The panels depict a selected set of voltage and current re-
sponses, and in particular the voltage on port 241 correspond-
ing to the worst case RMS error (1.88 · 10−3).
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wide availability of low-cost multi-processors. Moreover, the
possibly automated and dynamic (at runtime) optimization of
number and duration of time windows in proposed approach
remains an open issue. On the formulation side, this work
needs to be extended to more general types of nonlinear de-
vices, including dynamic elements/contributions, overcoming
the current limitation of static nonlinearities.
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