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Member, IEEE, S. J. Ben Yoo,Fellow, IEEE, Fellow, OSA

(Invited Paper)

Abstract—This paper proposes a self-taught anomaly detection
framework for optical networks. The proposed framework makes
use of a hybrid unsupervised and supervised machine learning
scheme. First, it employs an unsupervised data clustering module
(DCM) to analyze the patterns of monitoring data. The DCM
enables a self-learning capability that eliminates the require-
ment of prior knowledge of abnormal network behaviors and
therefore can potentially detect unforeseen anomalies. Second,
we introduce a self-taught mechanism that transfers the patterns
learned by the DCM to a supervised data regression and
classification module (DRCM). The DRCM, whose complexity
is mainly related to the scale of the applied supervised learning
model, can potentially facilitate more scalable and time-efficient
online anomaly detection by avoiding excessively traversing the
original dataset. We designed the DCM and DRCM based on
the density-based clustering algorithm, and the deep neural
network structure, respectively. Evaluations with experimental
data from two use cases (i.e., single-point detection and end-to-
end detection) demonstrate that up to99% anomaly detection
accuracy can be achieved with a false positive rate below1%.

Index Terms—Self-taught anomaly detection, Hybrid unsuper-
vised and supervised machine learning, Data clustering module
(DCM), Data regression and classification module (DRCM).

I. I NTRODUCTION

EFFECTIVE fault management is vital for assuring the
correct operations and required quality-of-service of

(QoS) optical networks [1], [2]. Typically, network faults can
be categorized into hard failures (e.g., fiber cuts), and anoma-
lies (or soft failures), which can be caused by various factors,
such as component aging and malfunctioning [3], control and
management plane errors, physical layer attacks [4], etc. While
hard failures can cause immediate service disruptions and
can be easily detected, isolated, and restored [5]–[7], such
anomalies may gradually degrade the performance of optical
networks and are covert before they induce significant devia-
tions of network parameters. Accurate and efficient anomaly
detection and identification in optical networks are therefore
highly desired but also challenging.
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Current network operators mainly rely on preset threshold
systems for anomaly detection while the subsequent identifi-
cation and reasoning procedures are conducted by experienced
technicians. However, owing to the heterogeneity (hetero-
geneity in vendor devices, optical transmission technologies,
applications [8]–[10], etc.), uncertainty (uncertainty in device
conditions, alien wavelength configurations [11], etc.) and
dynamicity of optical networks [12], [13], developing network-
wide threshold systems that are effective over time is difficult.
Loose thresholds may lead to low detection rates or prolonged
detection delays, whereas tight thresholds can trigger vast false
alarms, overburdening the control and management systems.
Hence, excessive resource redundancies are usually reserved
to provide guaranteed performance margins against potential
anomalies [14]. In the meantime, manual anomaly identifica-
tion and reasoning operations are laborious and they frustrate
rapid evolutions of optical networks.

Recently, machine learning (ML) has shown appealing
prospect of facilitating enhanced resource efficiency, QoS
assurances and scalability in optical networks [15]. Specif-
ically, ML enables network operators to realize knowledge-
based autonomous service provisioning [16] by modeling
complicated network behaviors (e.g., end-to-end quality-of-
transmission [11], [17], traffic profile [18]–[20], etc.) and
learning correct online provisioning policies from dynamic
network operations [21], which are intractable with con-
ventional theoretical approaches. The application of ML for
fault management in optical networks has attracted extensive
research attention lately [22]–[26]. In [22], Velaet al.analyzed
four types of soft failures affecting the bit-error-rate (BER) of
lightpaths and proposed two finite state machine based algo-
rithms for detecting significant BER changes and identifying
the corresponding failures patterns. Taking into account similar
failure scenarios, the same authors also investigated ML-aided
algorithms for soft failure localization [23]. The authors of
[24] compared the performance of different ML algorithms
in terms of complexity and accuracy for anomaly detection
and identification in optical networks. In [25], Rafiqueet al.
proposed a cognitive assurance architecture on the basis of
software-defined networking (SDN) and developed a neural
network based classifier to assist anomaly detection. Different
from previous works that focus on exploiting the characteristic
of BER changes, the authors of [25] evaluated their proposal
with experimental data from optical power measurement un-
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der diverse failure modes. In [26], an ML-aided framework,
together with two classification algorithms, were proposed
for detecting and identifying optical network jamming signal
attacks of varying intensities.

The above ML-based anomaly detection and identification
schemes suffer from a fundamental issue: they employ su-
pervised learning models relying on specific knowledge of
abnormal network behaviors and large amount of anomaly data
which are difficult to obtain in a real network scenario where
anomalies occur infrequently. On the other hand, it is known
that anomalies typically exhibit unique patterns deviating
from normal network behaviors [22], [27]. Unsupervised ML
techniques that can learn patterns of data by directly analyzing
the similarities among data instances thereby would become
promising tools for identifying anomalies from huge volumes
of monitoring data.

In this context, our previous work [28] proposed a self-
taught anomaly detection framework with a hybrid unsuper-
vised and supervised ML approach. The proposed framework
employs an unsupervised data clustering module (DCM) to
analyze the patterns of optical performance monitoring data.
Then, a supervised data regression and classification mod-
ule (DRCM) is trained with the learned patterns for online
anomaly detection. Such a self-learning/-taught mechanism
potentially enables detecting unforeseen anomaly without re-
quiring prior knowledge of abnormal network behaviors. This
paper extends the conference paper [28] by providing a more
comprehensive description of the self-taught anomaly detec-
tion framework and the designs of the DCM and DRCM, and
presenting a new set of results considering two use cases. In
particular, we detailed the DCM design with the density-based
clustering algorithm and elaborated on the principle of the
DRCM enabled by a deep neural network (DNN) architecture.
We evaluated the performance of the proposed framework
with experimental data of both single-point and end-to-end
detections. Results show that below1% false positive and false
negative rates can be achieved.

The organization of the paper is as follows. Section II
presents the proposed self-taught anomaly detection frame-
work. Sections III and IV detail the designs of the DCM and
DRCM, respectively. Section V provides the evaluation results
and related discussions. Finally, Section VI summarizes the
paper and discusses potential future research topics.

II. SELF-TAUGHT ANOMALY DETECTION FRAMEWORK

Fig. 1 shows the schematic of the proposed self-taught
framework for anomaly detection in optical networks. The
framework requires that network operators deploy optical
performance monitoring (OPM) modules at certain network
locations to perform real-time surveillance of data plane oper-
ations, e.g., monitoring the spectrum utilization, signal power,
noise level and so forth, on different links. SDN-based network
telemetry services [29] can be utilized to assist remote and
on-demand monitoring data collection. The data preprocessing
module (DPM) retrieves the obtained performance monitoring
data from the database and tailors the original data (i.e., feature
engineering) for different anomaly detection purposes. For

instance, to surveil the behavior of an end-to-end lightpath,
DPM would generate a new proprietary dataset by extract-
ing and concatenating the lightpath’s parameters at different
monitoring sites over time.

Optical 

Performance 

Monitoring

Anomaly Detection 

Module

Database

Self-Learning/-Taught

SDN 

Controller

Data 

Preprocessing

Data 

Clustering

(Pattern Analysis)

Data 

Regression & 

Classification

(Online Detection)

Localization 

& Reasoning

Learned 

Patterns

Classified 

Data

Anomalies
Alarms

Features

Fig. 1. Proposed self-taught anomaly detection framework.

The learning phase applies a hybrid unsupervised and super-
vised learning approach. Firstly, the processed data are input
to an unsupervised DCM for pattern analysis (aself-learning
mechanism). The DCM exploits the similarities among data
instances and hereby divides the performance data into a
number of clusters and outliers. Following a consensual as-
sumption that the occurrence of network anomalies are much
less frequent than that of normal behaviors, the DCM labels
outliers as anomalies. Since the DCM learns the patterns of
the input data directly without relying on any prior knowledge
about abnormal behaviors, it can potentially detect unknown
anomalies in optical networks. Then, the learned patterns are
transferred to train a supervised DRCM for online anomaly
detection (aself-taughtmechanism). Specifically, the DRCM
examines each new data instance by integrating the functions
of both a regressor that predicts key features of the instance,
and a classifier that attempts to classify the instance into one of
the classes identified by the DCM. The rationale of employing
a DRCM for online detection is that once trained, its time
complexity is fixed, mainly determined by the scale of the
adopted supervised learning model (i.e., the number of model
parameters). On the contrary, the complexity of the DCM
scales up with the size of the database, and can become an
issue as it has to traverse the whole database every time a new
data instance is received.

During online operations, the DRCM raises an alarm upon
detecting an anomaly and inform the SDN controller, which in
turn can take certain reactions (e.g., service reconfigurations)
to mitigate the risk of potential severe service disruptions. The
DRCM also sends out the abnormal data instance for further
anomaly localization and reasoning. In the meantime, the
hybrid learning process is periodically invoked for attaining
the state-of-art network behaviors.
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I II. D ESIGN OF THEDCM

The distribution of optical performance monitoring data may
present irregular shapes. Fig. 2 shows such an example in a
two-dimensional space. In this context, we designed the DCM
with the density-based clustering algorithm in [30], which is
known to be able to identify any shape of clusters.

Outlier

Cluster

Border Node Core Node

Normal Instance

Fig. 2. An example showing the principle of density-based clustering.

LetS denote the input dataset anddi,j represent the distance
between data instancessi and sj (si, sj ∈ S). In this work,
we measuredi,j with the Euclidean distance as it has been
widely applied in the anomaly detection domain thanks to its
capability of showing clear differences between normal and
abnormal instances [31]. In particular, we calculatedi,j as,

di,j =

√

∑

k

(si,k − sj,k)2, (1)

where si,k is the k-th dimension ofsi. The following def-
initions are prerequisites for discussing the density-based
clustering algorithm. Firstly, theε-neighborhood of an instance
si is defined as the set of instances whose distances tosi are
within ε, i.e.,

Ei = {sj |di,j ≤ ε,∀sj} . (2)

The dashed circles in Fig. 2 show theε-neighborhoods of the
corresponding centric nodes1. We refer to the size ofEi as
the density ofsi, denoted asδi. Then, the core node condition
for eachsi is defined as,

δi ≥ MinPts, (3)

whereMinPts is a preset parameter for the algorithm. Lastly,
sj is called directly density-reachable fromsi if sj ∈ Ei and
δi ≥ MinPts. The basic idea of density-based clustering
stems from the intuition that clusters normally center on
instances with high densities. Algorithm 1 summarizes the
principle of density-based clustering [30]. In each iteration, the
algorithm starts from a core node and iteratively add density-
reachable instances from it to form a cluster. Specifically, in
line 2, the distance between each pair of instances is first
calculated. The for-loop covering lines 3-22 goes through
every instance in the dataset and expands from the instance
to form a new cluster if the instance has not be clustered and
satisfies the core node condition. The inner loop from lines

1We use “node” and “data instance” interchangeably in the rest of the paper.

9-20 accomplishes the recursive expansion. We initiate a new
cluster if the ε-neighborhoods of all the core nodes in the
current cluster have been included (line 9). Finally, all the
instances that cannot be clustered into any of the identified
clusters are categorized as outliers/anomalies.

Algorithm 1: Procedures of density-based clustering.

Input: DatasetS, ε, MinPts

Output: Set of clustersC, set of outliersU
1 C = ∅;
2 calculatedi,j ,∀si, sj ∈ S;
3 for eachsi ∈ S do
4 if si belongs to any cluster ORδi < MinPts then
5 continue;
6 end

7 Ĉ = {si}, Λ = Ei;

8 remove fromΛ the instances belonging toC or Ĉ;
9 while Λ 6= ∅ do

10 storeΛ in Ĉ;
11 Γ = ∅;
12 for eachsj ∈ Λ do
13 if δj ≥ MinPts then
14 Γ̂ = Ej ;

15 remove fromΓ̂ the instances belonging toC,
Ĉ , or Γ;

16 storeΓ̂ in Γ;
17 end
18 end
19 Λ = Γ;
20 end

21 storeĈ in C;
22 end
23 store instances that do not belong to any cluster inU ;

We developed a simple method to facilitate determining
proper values forε and MinPts. First, based on the as-
sumption that the number of anomalies is much smaller than
that of normal instances, we can setMinPts as a small
number, i.e., assuming that there will not beMinPts simul-
taneous anomalies of the same types. Typically, we can set
MinPts = 4 according to [30]. For larger-scale datasets with
sufficient amounts of normal data, a larger value ofMinPts
may be applied for improved anomaly detection rate. Then, we
can determine the value ofε by gradually increasingε from a
very small value and observing the variation in the number of
detected anomalies, i.e.,|U |. In the beginning,|U | decreases
sharply because a largerε encourages forming of clusters. As
the true anomalies are located farther away from neighboring
nodes compared with normal instances, the decreasing rate of
|U | will become very low at a certain point (sayε∗) when
the majority of normal instances have been clustered. In other
words, a much larger increase ofε is required for the algorithm
to further include anomalies in normal clusters. Therefore, we
can setε asε∗.

The complexity of Algorithm 1 isO(|S|2). Note that,
when applying the density-based clustering algorithm to online
anomaly detection, we need to revisit every instance in the
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dataset (in the worst case) for each newly collected instance
to check whether it can be included in one of the identified
clusters. Such operations introduce a complexity ofO(|S|).
Moreover, there should also be a procedure to readjust (e.g.,
merge or further expand) the identified clusters upon the
joining of a new instance. As the complexity of the DCM
scales up with|S|, it may become a bottleneck to online
operations. Restricting|S| by discarding some non-critical
2 or outdated data instances can be beneficial but does not
resolve the problem essentially. Therefore, a time-efficient
scheme irrelevant of|S| is desired for realizing online anomaly
detection.

IV. D ESIGN OF THEDRCM

Recall the example in Fig. 2, one intuitive observation is
that the patterns of data, i.e., the sizes, shapes and locations
of clusters, critically determine the identifications of new
data instances. Further, if we can teach a module to acquire
such knowledge learned by the DCM, we can thereby omit
the traversal of the dataset during each online detection and
significantly reduce the complexity. To this end, we first
encode the output of the DCM by constructing a new labeled
datasetS′ = {(si, li) , si ∈ S}, where each original instance
si is labeled with its cluster IDli (li ∈ {1, ..., |C|+1}). Here,
all the abnormal instances are assigned cluster ID|C| + 1.
Then, we can train a classifier withS′ and make it predict
the cluster ID of a new instance. However, the amount of
abnormal data is usually small and cannot represent the space
of anomalies very well. Applying the classifier alone would
result in low detection accuracy. For instance, an anomaly may
be incorrectly classified into one of the surrounding clusters if
it is close to the cluster boundaries or no similar anomaly has
been detected previously. On the other hand, the discussions in
Section III have suggested that node densities actually provide
more comprehensive information about the distribution of the
data than the final clustering results. Typically, border nodes
of clusters have lower densities than core nodes while the
densities of anomalies are the lowest, yielding a potential field
of densities. This gives us a hint that we can leverage such an
additional dimension of knowledge and train a density regres-
sor to work cooperatively with the classifier, i.e., employing
the DRCM, for more accurate anomaly detection. Specifically,
the DRCM predicts the densitỹδi (regression) and cluster ID
l̃i (classification) of each new instancẽsi simultaneously.̃si is
detected as an anomaly when eitherl̃i = |C|+1 or l̃i 6= |C|+1
but δ̃i is smaller than a preset thresholdδ0(l̃i) which should
be determined by the minimum density value of instances in
cluster l̃i. Here, we call the latter case as weakly positive as
by definition, the density of a border node can be as low as
those of anomalies. For such case, we invoke an additional
validation process by comparing̃si with instances in cluster
l̃i according to the principle of density-based clustering. Note
that, node densities can range from1 to tens of thousands, but
the DRCM is only sensitive to prediction errors on densities
of small values. For instance, mistakenly predictingδi = 1

2Non-critical instances refer to instances whose removals do not change
the structures of the identified clusters.

Fig. 3. Architecture of the DNN-based DRCM design.

as δ̃i = 5 may completely change the judgement of the
DRCM (failed to detect an anomaly), whereas an error of
δi = 1000 to δ̃i = 1100 would not affect the performance of
the DRCM. Hence, we make the DRCM predict the logarithms
instead of the absolute values of densities, concentrating on
especially optimizing the prediction accuracy regarding low-
density instances.

We designed the DRCM with the DNN architecture
due to its well-recognized capability of representing high-
dimensional data and molding complex functions. Instead of
implementing the regressor and the classifier with two separate
DNNs, we integrated them into one unified DNN structure for
lower system complexity and better scalability. Fig. 3 shows
the detailed structure of the DRCM. The DRCM takes as
input each monitoring data instancesi. The input is processed
by a few shared fully-connected hidden layers for feature
extraction. Each neuronvn,m in hidden layern calculates its
output as,

hn,m = g
(

(

w
n,m
n−1

)T
hn−1 + bn,m

)

, (4)

where g(·) represents the activation function,wn,m
n−1

is the
vector containing the weights of connections from neurons in
layern−1 to vn,m, andbn,m is the bias. Two separate blocks
are deployed after the shared hidden layers for the regression
and classification tasks, respectively. Each of the blocks is a
neural network of two layers. The regressor outputs the real-
valued predicted densitỹδi with no activation function for
the output layer. The classifier applies theSoftmaxfunction
to generate the class probabilitiespci (c ∈ {1, ..., |C| + 1})
to assist classification3. In particular, theSoftmaxfunction is
given by,

g(x, c) =
exc

∑

t
ext

. (5)

We define the regression and classification losses as the mean
squared error and the cross-entropy loss, respectively, i.e.,

Lre(θ) =
1

|S|

∑

si∈S

(

δi − δ̃i

)2

, (6)

Lcl(θ) = −
1

|S|

∑

si∈S

∑

c

(χc
i log p

c
i + (1− χ

c
i) log (1− p

c
i )) , (7)

3Note that, during online operations when|C| can potentially increase with
the growth ofS, we may need to extend the scale of the classifier appropriately
upon periodical system retraining. Alternatively, we can obviate changing the
classifier architecture by combining normal classes to fix the number of classes
as2 (i.e., normal and abnormal).
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whereθ is the set of parameters of the DNN,χc
i equates to

1 if li = c and0 otherwise. Finally, the DNN can be trained
(i.e., tuningθ) by minimizing the overall loss as,

L(θ) = Lre(θ) + γLcl(θ) + ς ||θ||2 , (8)

where γ and ς are weighting coefficients and||θ||2 is the
regularization loss introduced to prevent overfitting.

After detecting an anomaly with the DRCM, we can per-
form anomaly localization and reasoning by first examining
whether similar anomalies have been identified. If not, we
proceed to compare the detected anomaly with normal in-
stances surrounding it. In particular, we can calculate the
distance between two instances in each dimension and possibly
discern from the distance vector (1) distinct variations in
certain dimensions, e.g., an abrupt increase of the noise level
at an intermediate node of a lightpath caused by the amplifier
malfunction, or (2) a unique pattern, e.g., a gradual decrease of
the channel power gain due to the amplifier aging. Meanwhile,
if multiple concurrent anomalies are detected, correlation
schemes [32] can be applied for localizing the faults.

V. PERFORMANCEEVALUATION

A. Dataset Generation

We evaluated the performance of the proposed self-taught
anomaly detection framework by using experimental data
collected from a7-node optical network testbed (see Fig. 4)
with six different routing paths. In particular, we launched17
and four wavelength channels at Nodes A and B, respectively.
By reconfiguring the wavelength selective switches (WSSs)
parameters (i.e., ports’ bandwidth and attenuation) at each
node, we created diverse network link load scenarios. For each
scenario, we processed the readings from the optical spectrum
analyzers (OSAs) located at six fixed locations to obtain the
values of optical power at each wavelength and out-of-band
noise floor, which constitute the original dataset. For a small
portion of these network instances, we purposely increased
the attenuations introduced by the WSSs for certain specific
wavelength channels, emulating abnormal power distributions
in certain links. Fig. 5 shows an example of normal and
abnormal data instances from the experiment. In this way,
we emulated soft-failures such as the malfunctioning of a
tunable filter [22], a power equalizer or an erbium-doped fiber
amplifier (EDFA), or a jamming attack [4], which can also
cause abnormal power distributions.
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Fig. 5. Examples of normal and abnormal data instances.

B. Use Case I: Single-Point Anomaly Detection

We focused on detecting abnormal patterns of data collected
at each monitoring point. Each data instance contains22
features, including the power of21 wavelength channels (i.e.,
the17 and four wavelength channels launched at Nodes A and
B) and the noise floor. In total, we obtained18, 680 normal
instances and50 anomalies. All the data instances were scaled
[33] before being processed by the DCM and DRCM. We
measured distances among data instances as their Euclidean
distances (see Eq. 1).

To determine the correct configuration ofε for the DCM,
we first setMinPts = 4 and plot the variation in the number
of detected anomalies as function ofε in Fig. 6. Based on the
parameter selection method presented in Section III, we can
see thatε should be assigned a value of around0.4. Table I
shows the results of false negative rate (denoted asfn) and
false positive rate (denoted asfp) from the DCM with different
setup ofMinPts and ε. The results indicate that a largerε
leads to higherfn but lower fp, whereas a largerMinPts
results in an opposite trend. This is because with larger values
of ε (whenMinPts is fixed), anomalies are more likely to be
included in theε-neighborhoods of normal instances, making
them more difficult to be detected. On the contrary, increasing
MinPts discourages the forming of clusters and generates
more outliers, which facilitates anomaly detection but raises
more false alarms as well. WithMinPts and ε being set
as4 and0.4, respectively, the DCM can achieve up to100%
anomaly detection and0.01% false positive rate for the dataset
under evaluation, which clearly demonstrates the effectiveness
of the proposed method.

We compared the performance of the DCM with that of the
K-means clustering algorithm [34]. Table II presents the results
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TABLE I
FALSE NEGATIVE AND FALSE POSITIVE RATES OF THEDCM ((fn, fp) %).

ε

MinPts
2 4 6

0.20 0.0, 30.3 0.0, 35.6 0.0, 48.0

0.30 0.0, 4.12 0.0, 7.17 0.0, 22.9

0.35 0.0, 0.30 0.0, 0.57 0.0, 12.0

0.40 4.0, 0.0 0.0, 0.01 0.0, 7.19

0.45 8.0, 0.0 0.0, 0.0 0.0, 4.80

0.50 1.00, 0.0 2.00, 0.0 2.00, 4.00

of fn and fp from K-means. SinceK-means does not define
outliers and groups all the instances into clusters, we slightly
modified K-means to make it detect instances that belong to
a certain ratio (η) of the farthest nodes to the core node of
each cluster as anomalies. Meanwhile,K-means requires that
the number of clustersN is provided as an input parameter.
We can see that the lowest false negative rateK-means can
achieve is28.0%, which is inadequate for anomaly detection.
The reason is that the application ofK-means is only limited to
problems with spherical clusters other than those with clusters
of irregular shapes (see the example in Fig. 2).

According to the clustering result of the DCM (with
MinPts = 4 and ε = 0.4), we obtained621 normal classes
and 1 abnormal class, as well as the density of each data
instance. We implemented the DRCM with a DNN consisting
of four shared hidden layers ([32, 32, 32, 32]), a classification
block of two layers ([32, 622]) and a regression block of two
layers ([16, 1]). Except for the output layers, we usedELU
as the activation function. For the loss function in Eq. 8,γ
and ς were set as0.1 and10−4, respectively4. We conducted
10 independent experiments by randomly dividing the dataset
into the training, validation and testing sets with a ratio of
7 : 1 : 2. Fig. 7 shows the training and validation losses
of the DRCM averaged from10 experiments, indicating that
the training converges without notable overfitting. Evaluations
with the testing set show that the DRCM can achieve a mean
square error of14.4 for density prediction and an average

4We have tested different DNN architectures and parameters for the DRCM
and this paper presents the most appropriate setup.

TABLE II
FALSE NEGATIVE AND FALSE POSITIVE RATES OFK-MEANS ((fn, fp) %).

N

η
0.03 0.05 0.08

10 70.0, 2.90 70.0, 4.91 64.0, 7.90

20 44.0, 2.80 38.0, 4.81 28.0, 7.77

30 44.0, 2.78 34.0, 4.78 32.0, 7.76

40 50.0, 2.78 46.0, 4.79 28.0, 7.72

classification accuracy of94.8%. Table III presents the results
of the DRCM for anomaly detection. Recall that we defined
a preset threshold to assist triggering validation processes for
cases where instances are classified into normal classes but
their predicted densities are lower than the threshold. For the
sake of simplicity, a unified thresholdδ0 was applied for all
the classes. By settingδ0 as0, we made the DRCM only rely
on the classification results. Here, we denote the frequency of
validation asfval, which is a performance metric defined as
the ratio of the number of instances triggering the validation
process to the total number of instances under examination.
We can observe that the DRCM fails to detect more than1/3
of the anomalies without taking into account the predicted
densities. This is because the number of anomaly samples in
the training set is too small to provide sufficient supervision
signals for training a DNN classifier that can accurately detect
anomalies. By introducingδ0, we remarkably improved the
anomaly detection rate of the DRCM but at the cost of
increasedfval, which shows a trade-off between detection
accuracy and system complexity. The false negative rate could
be reduced to below1% with fval being29.82%.
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Fig. 7. Losses of the DRCM during training.

TABLE III
FALSE NEGATIVE AND FALSE POSITIVE RATES, AND FREQUENCY OF

VALIDATIONS OF THE DRCM (%).

δ0 0 3 5 7 9

fn 36.36 24.54 10.91 1.82 0.91

fp 0.07 0.07 0.07 0.07 0.07

fval 0.0 0.60 10.24 22.81 29.82
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C. Use Case II: End-to-End Anomaly Detection

Next, we conducted anomaly detection with performance
data of end-to-end lightpaths. In particular, we focused on
analyzing the behavior of a specific lightpath (i.e., lightpath
A-B-D-F-E-G at wavelength7) and obtained300 normal and
10 abnormal data instances by extracting and combining the
signal power and out-of-band noise floor at each monitoring
point along the lightpath. Again, we scaled the data and mea-
sured the Euclidean distances. We did not apply the parameter
selection method for this use case as the dataset is too small.
Table IV summarizes the false positive and false negative rates
of the DCM with different setup ofε andMinPts. Basically,
the results in Table IV show a similar trend with the ones
from Table I. In the best cases, the DCM can achieve100%
anomaly detection without any false alarm. Note that, in real
network operations where normal and abnormal scenarios are
more diverse and where larger volumes of data are available,
the parameters and performance of the proposed approach may
differ from those in this experiment. Meanwhile, we do not
show the results from the DRCM because the amount of data
is too small to train a DNN.

TABLE IV
FALSE NEGATIVE AND FALSE POSITIVE RATES OF THEDCM FOR

END-TO-END DETECTION((fn, fp) %).

ε

MinPts
2 3 4

0.8 0.0, 0.0 0.0, 0.0 0.0, 18.97

1.0 0.0, 0.0 0.0, 0.0 0.0, 16.65

1.2 10.0, 0.0 10.0, 0.0 10.0, 12.26

1.4 50.0, 0.0 10.0, 0.0 10.0, 8.33

VI. CONCLUSION

In this paper, we proposed a self-taught anomaly detection
framework based on a hybrid unsupervised and supervised ML
approach. The proposed framework employs an unsupervised
DCM for pattern analysis and a supervised DRCM for online
anomaly detection. We designed the DCM and DRCM based
on the density-based clustering algorithm and the DNN struc-
ture, respectively. Assessments based on experimental data
demonstrated below1% false positive and false negative rates
when using the proposed framework.

Our future work will aim at improving the performance
of the DRCM by collecting more normal data, taking into
account more comprehensive and diverse failure scenarios,
and applying more effective DNN architectures and training
schemes. Other potential research topics include: (1) extending
the current framework to incorporate cognitive anomaly local-
ization and reasoning functions and (2) developing anomaly
detection frameworks for multi-domain multi-layer networks
with hierarchical monitoring [35] and multi-agent ML ap-
proaches [36].

ACKNOWLEDGMENTS

This work was supported in part by DOE DE-SC0016700,
and NSF ICE-T:RC 1836921. The authors would like to

thank G. Liu and K. Zhang at UC Davis for providing the
experimental dataset. The authors would also like to thank
Prof. Luis Velasco from Universitat Politécnica de Catalunya
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