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Abstract—This paper proposes a self-taught anomaly detection ~ Current network operators mainly rely on preset threshold
framework for optical networks. The proposed framework makes  systems for anomaly detection while the subsequent identifi-
use of a hybrid unsupervised and supervised machine leaming atjon and reasoning procedures are conducted by experienced

scheme. First, it employs an unsupervised data clustering modulet hnici H . to the het itv (het
(DCM) to analyze the patterns of monitoring data. The DCM  echnicians. However, owing (o the heterogeneity (hetero-

enables a self-leaming capability that eliminates the require- 9€neity in vendor devices, optical transmission technologies,
ment of prior knowledge of abnormal network behaviors and applications [8]-[10], etc.), uncertainty (uncertainty in device
therefore can potentially detect unforeseen anomalies. Second,conditions, alien wavelength configurations [11], etc.) and
we introduce a self-taught mechanism that transfers the patterns dynamicity of optical networks [12], [13], developing network-
learned by the DCM to a supervised data regression and - L . N
classification module (DRCM). The DRCM, whose complexity wide threshold systems that are effectlvg over time is difficult.

is mainly related to the scale of the applied supervised learming L0OSe thresholds may lead to low detection rates or prolonged
model, can potentially facilitate more scalable and time-efficient detection delays, whereas tight thresholds can trigger vast false
online anomaly detection by avoiding excessively traversing the alarms, overburdening the control and management systems.
original dataset. We designed the DCM and DRCM based on ance  excessive resource redundancies are usually reserved
the density-based clustering algorithm, and the deep neural . . . .
network structure, respectively. Evaluations with experimental to prow_de guaranteed performance margins agalns_t pot_e_ntlal
data from two use cases (i.e., single-point detection and end-to-anomalies [14]. In the meantime, manual anomaly identifica-

end detection) demonstrate that up t099% anomaly detection tion and reasoning operations are laborious and they frustrate
accuracy can be achieved with a false positive rate below%. rapid evolutions of optical networks.

Index Terms—Self-taught anomaly detection, Hybrid unsuper- Recently, machine learning (ML) has shown appealing
vised and supervised machine learning, Data clustering module prospect of facilitating enhanced resource efficiency, QoS
(DCM), Data regression and classification module (DRCM). assurances and scalability in optical networks [15]. Specif-

ically, ML enables network operators to realize knowledge-

based autonomous service provisioning [16] by modeling

|. INTRODUCTION complicated network behaviors (e.g., end-to-end quality-of-

FFECTIVE fault management is vital for assuring th(t?re;?ﬁirz'Sséz?relcltl](;nhlnz' trrs\f;filscioﬂirsﬂle ()[ﬂg]e_slzf? l;metg.)n:rr:]?c
correct operations and required quality-of-service 0? g P gp Y

(Q0S) optical networks [1], [2]. Typically, network faults Cannetwork operations [21], which are intractable with con-

be categorized into hard failures (e.g., fiber cuts), and ano ventional theoretical approaches. The application of ML for

lies (or soft failures), which can be caused by various factorga ult management in optical networks has attracted extensive
T ed by rgsearch attention lately [22]-[26]. In [22], Vathal. analyzed
such as component aging and malfunctioning [3], control an

. ?ur types of soft failures affecting the bit-error-rate (BER) of
management plane errors, physical layer attacks [4], etc. WI“ tpaths and proposed two finite state machine based algo-
hard failures can cause immediate service disruptions a

can be easily detected, isolated, and restored [5]-[7], s rithms for detecting significant BER changes and identifying

anomalies mav aradually dearade the performance of opti aT corresponding failures patterns. Taking into account similar
Y 9 y deg ° P S PU¢Siure scenarios, the same authors also investigated ML-aided
networks and are covert before they induce significant dewa]—

. - orithms for soft failure localization [23]. The authors of
tions of network parameters. Accurate and efficient anom . .

: : PO . 4] compared the performance of different ML algorithms
detection and identification in optical networks are therefore

hiahlv desired but also challenain IN terms of complexity and accuracy for anomaly detection
gnly ging. and identification in optical networks. In [25], Rafiqeé al.
- , _ groposed a cognitive assurance architecture on the basis of
X. Chen, R. Proietti and S. J. B. Yoo are with the Department of Electrical Fow defined Ki SDN d d | d |
and Computer Engineering, University of California, Davis, Davis, CA 9561@,0 are-define net_wor ing ( ) an eve ope a _neura
USA (Email: xlichen@ucdavis.edu, shyoo@ucdavis.edu). network based classifier to assist anomaly detection. Different
B. Li and Z. Zhu are with the School of Information Science angrom previous works that focus on exploiting the characteristic
Technology, University of Science and Technology of China, Hefei, Anhwf BER ch h h f 125 | d thei |
230027, P. R. China (Email: zqzhu@ieee.org). or changes, the authors o [ | evaluated their proposa
Manuscript received October 23, 2018. with experimental data from optical power measurement un-
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der diverse failure modes. In [26], an ML-aided frameworkinstance, to surveil the behavior of an end-to-end lightpath,
together with two classification algorithms, were proposddPM would generate a new proprietary dataset by extract-
for detecting and identifying optical network jamming signaihg and concatenating the lightpath’'s parameters at different
attacks of varying intensities. monitoring sites over time.

The above ML-based anomaly detection and identification
schemes suffer from a fundamental issue: they employ s''-
pervised learning models relying on specific knowledge oﬂ“’ma'y Detec“"”l oo

Module
Data Patterns

abnormal network behaviors and large amount of anomaly da o e
. . . . ata AR SRR d
which are difficult to obtain in a real network scenario where preprocessingﬁ-e;m;es Clustering Classification !

anomalies occur infrequently. On the other hand, it is know Classinied
that anomalies typically exhibit unique patterns deviating

from normal network behaviors [22], [27]. Unsupervised ML : Alarms

techniques that can learn patterns of data by directly analyzi\ | paabase mcj,?,zler

the similarities among data instances thereby would beconK A

promising tools for identifying anomalies from huge volumes--> Self-Leaming/-Taught

of monitoring data. A BN N Optical
In this context, our previous work [28] proposed a self- "’;f;‘;q[g:g;e

taught anomaly detection framework with a hybrid unsupet P %

vised and supervised ML approach. The proposed framewo =

employs an unsupervised data clustering module (DCM) t (é;/ \

analyze the patterns of optical performance monitoring dat 5?3\ =

Then, a supervised data regression and classification mc ~% %/, e

ule (DRCM) is trained with the learned patterns for online
anomaly detection. Such a self-learning/-taught mechanigff) 1. proposed self-taught anomaly detection framework.
potentially enables detecting unforeseen anomaly without re-
quiring prior knowledge of abnormal network behaviors. This The learning phase applies a hybrid unsupervised and super-
paper extends the conference paper [28] by providing a mdfiged learning approach. Firstly, the processed data are input
comprehensive description of the self-taught anomaly detd@-an unsupervised DCM for pattern analysissgf-learning
tion framework and the designs of the DCM and DRCM, an€chanism). The DCM exploits the similarities among data
presenting a new set of results considering two use casesingfances and hereby divides the performance data into a
particular, we detailed the DCM design with the density-bas@ymber of clusters and outliers. Following a consensual as-
clustering algorithm and elaborated on the principle of tH@/mption that the occurrence of network anomalies are much
DRCM enabled by a deep neural network (DNN) architecturtess frequent than that of normal behaviors, the DCM labels
We evaluated the performance of the proposed framewditliers as anomalies. Since the DCM learns the patterns of
with experimental data of both single-point and end-to-ertB€ input data directly without relying on any prior knowledge
detections. Results show that belaf false positive and false @Pout abnormal behaviors, it can potentially detect unknown
negative rates can be achieved. anomalies in optical networks. Then, the learned patterns are
The organization of the paper is as follows. Section f[ansferred to train a supervised DRCM for online anomaly
presents the proposed self-taught anomaly detection frarfi§lection (aself-taughtmechanism). Specifically, the DRCM
work. Sections Il and IV detail the designs of the DCM an§X@mines each new data instance by integrating the functions
DRCM, respectively. Section V provides the evaluation resulé Poth a regressor that predicts key features of the instance,
and related discussions. Finally, Section VI summarizes tR8d a classifier that attempts to classify the instance into one of

paper and discusses potential future research topics. the classes identified by the DCM. The rationale of employing
a DRCM for online detection is that once trained, its time

complexity is fixed, mainly determined by the scale of the
Il. SELF-TAUGHT ANOMALY DETECTIONFRAMEWORK  aqopted supervised learning model (i.e., the number of model

Fig. 1 shows the schematic of the proposed self-taugb@rameters). On the contrary, the complexity of the DCM
framework for anomaly detection in optical networks. Th&cales up with the size of the database, and can become an
framework requires that network operators deploy opticiisue as it has to traverse the whole database every time a new
performance monitoring (OPM) modules at certain netwof@ta instance is received.
locations to perform real-time surveillance of data plane oper-During online operations, the DRCM raises an alarm upon
ations, e.g., monitoring the spectrum utilization, signal powetgetecting an anomaly and inform the SDN controller, which in
noise level and so forth, on different links. SDN-based netwotlrn can take certain reactions (e.g., service reconfigurations)
telemetry services [29] can be utilized to assist remote atamitigate the risk of potential severe service disruptions. The
on-demand monitoring data collection. The data preprocessiDBCM also sends out the abnormal data instance for further
module (DPM) retrieves the obtained performance monitorirignomaly localization and reasoning. In the meantime, the
data from the database and tailors the original data (i.e., featbgdrid learning process is periodically invoked for attaining
engineering) for different anomaly detection purposes. Ftre state-of-art network behaviors.
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[1l. DESIGN OF THEDCM 9-20 accomplishes the recursive expansion. We initiate a new

The distribution of optical performance monitoring data magUSter if thee-neighborhoods of all the core nodes in the
present irregular shapes. Fig. 2 shows such an example ifUgent cluster have been included (line 9). Finally, all the
two-dimensional space. In this context, we designed the DCRftances that cannot be clustered into any of the identified
with the density-based clustering algorithm in [30], which i§IUSters are categorized as outliers/anomalies.
known to be able to identify any shape of clusters.

Algorithm 1: Procedures of density-based clustering.

« Input: DatasetS, e, MinPts
Output: Set of clusters”, set of outliersU
Core Node 1C=0;
§=12 2 calculated; ;,Vsi, s; € S,
. 3 for eachs; € S do
* 4 if s; belongs to any cluster OB < MinPts then
5 continue;
::’. 6 end
::::. 7 C’:{sl},A:El,
x * %o oo 8 remove fromA the instances belonging 6 or C;
Cluster e %° .
° 9 while A # 0 do
% Outlier o Normal Instance 10 storeA in C;
. . . . . 1 =0
Fig. 2. An example showing the principle of density-basedteling. " for eachs; € A do
Let S denote the input dataset aig; represent the distanceis if 6; > MinPts then
between data instances and s; (s;,s; € S). In this work, 14 I'= Ej;
we measurel; ; with the Euclidean distance as it has been remove froml* the instances belonging @,
widely applied in the anomaly detection domain thanks to its C,orT;
capability of showing clear differences between normal and storel’ in T;
abnormal instances [31]. In particular, we calculdtge as, 17 end
18 end
dig = > (sik = 556)% 1) 19 A=T;
k 20 end

where s; i, is the k-th dimension ofs;. The following def- 21 storeC in C;

initions are prerequisites for discussing the density-basedend

clustering algorithm. Firstly, the-neighborhood of an instancezs store instances that do not belong to any clusteljn
s; IS defined as the set of instances whose distances doe

within ¢, i.e., We developed a simple method to facilitate determining
B ={sjldi; < &,s5} - 2) proper values fore and MinPts. First, based on the as-

The dashed circles in Fig. 2 show theeighborhoods of the sumption that the number of anomalies is much smaller than

corresponding centric nodeswe refer to the size ofz; as that of normal instances, we can skfinPts as a small

the density ofs;, denoted ag;. Then, the core node conditionnumber, i.e., assuming that there will not béinPts simul-
for eachs; is defined as, taneous anomalies of the same types. Typically, we can set

MinPts = 4 according to [30]. For larger-scale datasets with
sufficient amounts of normal data, a larger valueldfn Pts

whereMinPts is a preset parameter for the algorithm. Lastly"@y be applied for improved anomaly detection rate. Then, we
s; is called directly density-reachable from if s, € E; and can determine the value efby gradually increasing from a

§; > MinPts. The basic idea of density-based cIusterinaery small value and observing the variation in the number of
stems from the intuition that clusters normally center ofietected anomalies, i.gl/|. In the beginning|U| decreases
instances with high densities. Algorithm 1 summarizes ti®arply because a largerencourages forming of clusters. As
principle of density-based clustering [30]. In each iteration, t{B€ true anomalies are located farther away from neighboring
algorithm starts from a core node and iteratively add densitjodes compared with normal instances, the decreasing rate of
reachable instances from it to form a cluster. Specifically, if/| Will become very low at a certain point (say) when

line 2, the distance between each pair of instances is filee majority of normal instances have been clustered. In other
calculated. The for-loop covering lines 3-22 goes througﬁords,amuch larger increasesis required for the algorithm
every instance in the dataset and expands from the instaffe&urther include anomalies in normal clusters. Therefore, we
to form a new cluster if the instance has not be clustered af@f? Set ase™.

satisfies the core node condition. The inner loop from lines The complexity of Algorithm 1 isO(|S|?). Note that,
when applying the density-based clustering algorithm to online

1we use “node” and “data instance” interchangeably in the rest of the papgnomaly detection, we need to revisit every instance in the

8; > MinPts, )
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dataset (in the worst case) for each newly collected instance
to check whether it can be included in one of the identified
clusters. Such operations introduce a complexityOgfS]).
Moreover, there should also be a procedure to readjust (e'gbhitoring ;
merge or further expand) the identified clusters upon the pata
joining of a new instance. As the complexity of the DCM
scales up with|S]|, it may become a bottleneck to online
operations. RestrictingS| by discarding some non-critical

2 or outdated data instances can be beneficial but does not
resolve the problem essentially. Therefore, a time-efficient
scheme irrelevant df5| is desired for realizing online anomaly

detection. Fig. 3. Architecture of the DNN-based DRCM design.

Class
Probabilities

Predicted
Density

Input Shared Hidden Layers Output

IV. DESIGN OF THEDRCM as &; = 5 may completely change the judgement of the

Recall the example in Fig. 2, one intuitive observation i#RCM (failed to detect an anomaly), whereas an error of
that the patterns of data, i.e., the sizes, shapes and locatidns 1000 to 6; = 1100 would not affect the performance of
of clusters, critically determine the identifications of neWhe DRCM. Hence, we make the DRCM predict the logarithms
data instances. Further, if we can teach a module to acqultétead of the absolute values of densities, concentrating on
such knowledge learned by the DCM, we can thereby on@igPecially optimizing the prediction accuracy regarding low-
the traversal of the dataset during each online detection ##fNsity instances.
significantly reduce the complexity. To this end, we first We designed the DRCM with the DNN architecture

encode the output of the DCM by constructing a new labelétyie to its well-recognized capability of representing high-
datasets’ = {(s;,;),s; € S}, where each original instancedimensional data and molding complex functions. Instead of

s; is labeled with its cluster I1D; (I; € {1,...,|C|+1}). Here, |mplementi_ng the regressor_and the cla_s_sifier with two separate
all the abnormal instances are assigned clusteidp+ 1. DNNs, we integrated them into one unified DNN structure for
Then, we can train a classifier witf’ and make it predict lower system complexity and better scalability. Fig. 3 shows
the cluster ID of a new instance. However, the amount §t€ detailed structure of the DRCM. The DRCM takes as
abnormal data is usually small and cannot represent the sp#iiit €ach monitoring data instaneg The input is processed
of anomalies very well. Applying the classifier alone woul®y & few shared fully-connected hidden layers for feature
result in low detection accuracy. For instance, an anomaly m@ytraction. Each neuron, ,,, in hidden layem calculates its
be incorrectly classified into one of the surrounding clusters@tHtput as,
it is close to the clu_ster boundaries or no similar a_nomaly has_ [S— <(wZﬁ)T Bt & bn,m) 7 @
been detected previously. On the other hand, the discussions in
Section |1l have suggested that node densities actually proviaBere g(-) represents the activation functions,””] is the
more comprehensive information about the distribution of thgctor containing the weights of connections from neurons in
data than the final clustering results. Typically, border nodé&yern — 110 v, ,,, andb, ., is the bias. Two separate blocks
of clusters have lower densities than core nodes while tBee deployed after the shared hidden layers for the regression
densities of anomalies are the lowest, yielding a potential fiekhd classification tasks, respectively. Each of the blocks is a
of densities. This gives us a hint that we can leverage suchrgural network of two layers. The regressor outputs the real-
additional dimension of knowledge and train a density regregalued predicted density; with no activation function for
sor to work cooperatively with the classifier, i.e., employinghe output layer. The classifier applies tBeftmaxfunction
the DRCM, for more accurate anomaly detection. Specificalkg generate the class probabilitipg (c € {1,...,|C| + 1})
the DRCM predicts the density (regressiof and cluster ID to assist classificatidn In particular, theSoftmaxfunction is
I; (classification of each new instanc& simultaneouslys; is  given by, .
detected as an anomaly when either |IC|+1 orl; # |C|+1 g(z,c) = _e° (5)
but ¢, is smaller than a preset threshalgl/;) which should 2o
be determined by the minimum density value of instances Yde define the regression and classification losses as the mean
clusterl;. Here, we call the latter case as weakly positive &§juared error and the cross-entropy loss, respectively, i.e.,
by definition, the density of a border node can be as low as Loo(0) = 1 Z (6- B 8-)2 ©)
those of anomalies. For such case, we invoke an additional TS BV
validation process by comparing with instances in cluster 1
l; according to the principle of density-based clustering. NoteL,(0) = 15 > (X logpi + (1 x§)log (1-p5)), (7)
that, node densities can range frano tens of thousands, but s;€S ¢
the DRCM is only sensitive to prediction errors on densities, _ , . e .

. . . Note that, during online operations whifi| can potentially increase with
of small values. For instance, mistakenly predictiig= 1 the growth ofS, we may need to extend the scale of the classifier appropriately

upon periodical system retraining. Alternatively, we can obviate changing the

2Non-critical instances refer to instances whose removals do not chargassifier architecture by combining normal classes to fix the number of classes
the structures of the identified clusters. as2 (i.e., normal and abnormal).

s;€S
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where@ is the set of parameters of the DN equates to
1if I; = ¢ and 0 otherwise. Finally, the DNN can be trained
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where vy and ¢ are weighting coefficients anfjd||* is the
regularization loss introduced to prevent overfitting.

After detecting an anomaly with the DRCM, we can per-
form anomaly localization and reasoning by first examining -60
whether similar anomalies have been identified. If not, we
proceed to compare the detected anomaly with normal in-
stances surrounding it. In particular, we can calculate tlf@. 5. Examples of normal and abnormal data instances.
distance between two instances in each dimension and possibly
discern from the distance vector (1) distinct variations iB. Use Case I: Single-Point Anomaly Detection

certain dimensions, €.g., an abrupt increase of the noise 1evely, 5,56 on detecting abnormal patterns of data collected
at an mtt_armedlate nod(_a of a lightpath caused by the amphfgtr each monitoring point. Each data instance contais
malfunction, or (2) a unique pattern, e.g., a gradual decreasqQfy o5 including the power afl wavelength channels (i.e.,
Fhe chqnnel power gain due to t_he amplifier aging. Meanwhll e 17 and four wavelength channels launched at Nodes A and
if multiple concurrent anpmalles are _detected, correlaﬂcgs and the noise floor. In total, we obtaindd, 680 normal
schemes [32] can be applied for localizing the faults. instances and0 anomalies. All the data instances were scaled
[33] before being processed by the DCM and DRCM. We
V. PERFORMANCE EVALUATION measured distances among data instances as their Euclidean
distances (see Eg. 1).

To determine the correct configuration offor the DCM,

We evaluated the performance of the proposed self-taugie first setMinPts = 4 and plot the variation in the number
anomaly detection framework by using experimental datd detected anomalies as function=in Fig. 6. Based on the
collected from a7-node optical network testbed (see Fig. 4parameter selection method presented in Section Ill, we can
with six different routing paths. In particular, we launchegd see that should be assigned a value of around. Table |
and four wavelength channels at Nodes A and B, respectivedfrows the results of false negative rate (denoted’,asand
By reconfiguring the wavelength selective switches (WSSH)Ise positive rate (denoted gs) from the DCM with different
parameters (i.e., ports’ bandwidth and attenuation) at eagttup of MinPts andes. The results indicate that a larger
node, we created diverse network link load scenarios. For edehds to higherf,, but lower f,, whereas a largeMinPts
scenario, we processed the readings from the optical spectm@sults in an opposite trend. This is because with larger values
analyzers (OSAs) located at six fixed locations to obtain tlod e (whenMinPts is fixed), anomalies are more likely to be
values of optical power at each wavelength and out-of-bairtluded in thes-neighborhoods of normal instances, making
noise floor, which constitute the original dataset. For a smalfilem more difficult to be detected. On the contrary, increasing
portion of these network instances, we purposely increaséfinPts discourages the forming of clusters and generates
the attenuations introduced by the WSSs for certain specifiore outliers, which facilitates anomaly detection but raises
wavelength channels, emulating abnormal power distribution®re false alarms as well. With/inPts and ¢ being set
in certain links. Fig. 5 shows an example of normal anas4 and0.4, respectively, the DCM can achieve up 100%
abnormal data instances from the experiment. In this wanomaly detection an@l01% false positive rate for the dataset
we emulated soft-failures such as the malfunctioning of under evaluation, which clearly demonstrates the effectiveness
tunable filter [22], a power equalizer or an erbium-doped fibef the proposed method.
amplifier (EDFA), or a jamming attack [4], which can also We compared the performance of the DCM with that of the
cause abnormal power distributions. K-means clustering algorithm [34]. Table Il presents the results

Power (dBm)

0 5 10 15 20
Wavelength

A. Dataset Generation
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6
10* TABLE II
" - FALSE NEGATIVE AND FALSE POSITIVE RATES OFK-MEANS ((fn, fp) %).
= -
: N )
e 0.03 0.05 0.08
é 103 \‘\\ e N
§ \\ — 10 70.0, 2.90| 70.0, 4.91| 64.0, 7.90
Yo \ o 20 | 44.0, 2.80| 38.0, 4.81| 280, 7.77
= 102 N 30 | 44.0,2.78| 34.0, 4.78| 32.0, 7.76
B = S 40 | 50.0, 2.78| 46.0, 4.79| 28.0, 7.72
E .
Z e
1 age .
105 025 03 035 04 045 05 classification accuracy &4.8%. Taple [l presents the resqlts
c of the DRCM for anomaly detection. Recall that we defined
a preset threshold to assist triggering validation processes for
Fig. 6. Variation in the number of detected anomalies as fonatf e. cases where instances are classified into normal classes but
TABLE | their predicted densities are lower than the threshold. For the

FALSE NEGATIVE AND FALSE POSITIVE RATES OF THEDCM ((fx, fp) %). sake of simplicity, a unified thresholg) was applied for all
the classes. By setting as0, we made the DRCM only rely

MinPts 2 4 6 on the classification results. Here, we denote the frequency of
€ validation asf,.;, which is a performance metric defined as
0.20 0.0, 30.3| 0.0, 35.6| 0.0, 48.0 the ratio of the number of instances triggering the validation
0.30 0.0, 4.12| 0.0, 7.17| 0.0, 22.9 process to the total number of instances under examination.
0.35 0.0, 0.30] 0.0, 0.57| 0.0, 12.0 We can observe that the DRCM fails to detect more théh
0.40 4.0,00 | 00, 0.01| 0.0, 7.19 of the anomalies without taking into account the predicted
045 8.0, 0.0 | 0000 | 00 4.80 denS|t|_e§. This is because the numl:_)er of a_n(_)maly samplc_es in
050 100001 200 001 200 200 the training S(_—:tt_ is too small to _p_rowde sufficient supervision
i i i signals for training a DNN classifier that can accurately detect

anomalies. By introducing,, we remarkably improved the
f . o , om K means. Snokmeans does ot cetnaoT A (€100 12 B e PROVL bl B e o o
outliers and groups all the instances into clusters, we S"gh{&;curac a"r’]“é’s stem complexity. The false neaative rate could
modified K-means to make it detect instances that belong ?% redu?:/ed o t)J/eIovW witﬁ 7 y.bein 99 82 9

a certain ratio +f) of the farthest nodes to the core node 0? ¢ val g29.8270.

each cluster as anomalies. MeanwhKemeans requires that

the number of clusterév is provided as an input parameter. 14 ‘ _
We can see that the lowest false negative means can 1.2 —_ Training |
. . . . . — Validation
achieve is28.0%, which is inadequate for anomaly detection.
The reason is that the applicationkfmeans is only limited to ! ]
problems with spherical clusters other than those with clusters 0.8 i
of irregular shapes (see the example in Fig. 2). 2
According to the clustering result of the DCM (with — 06 ]
MinPts = 4 ande = 0.4), we obtaineds21 normal classes 04 ]
and 1 abnormal class, as well as the density of each data
instance. We implemented the DRCM with a DNN consisting 0.2 Tt
of four shared hidden layer$3g, 32, 32, 32]), a classification
block of two layers 32, 622]) and a regression block of two % 50 100 150 200 250 300
layers (16, 1]). Except for the output layers, we us&d U Epoch
as the activation function. For the loss function in Eq~8, _ , .
ands were set a$.1 and 10~4, respectivel§. We conducted Fig. 7. Losses of the DRCM during training.
10 independent experiments by randomly dividing the dataset TABLE I
into the traln.lng, Va“datlon and _te,Stmg sets v.wth.a ratio Of FALSE NEGATIVE AND FALSE POSITIVE RATES AND FREQUENCY OF
71 : 2. Flg 7 shows the training and validation losses VALIDATIONS OF THE DRCM (%).
of the DRCM averaged from0 experiments, indicating that
the training converges without notable overfitting. Evaluations do 0 3 5 7 9
with the testing set show that the DRCM can achieve a mean fn | 36.36| 24.54| 1091| 1.82 | 0.91
square error ofl4.4 for density prediction and an average £ 007 | 007 | 007 | 007 | 0.07
4We have tested different DNN architectures and parameters for the DRCM Fval 0.0 060 | 10.24] 22.81 | 29.82

and this paper presents the most appropriate setup.
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