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Summary

Structural health monitoring (SHM) is one of the main research topics in civil,

mechanical and aerospace engineering. In this regard, modal parameters and

their trends over time can be used as features and indicators of damage occur-

rence and growth. However, for practical reasons, output-only techniques are

particularly suitable for the system identification (SI) of large civil structures

and infrastructures, as they do not require a controlled source of input force.

In this context, these approaches are typically referred to as operational modal

analysis (OMA) techniques. However, the interpretation of the OMA identifi-

cations is a labour-intensive task, which could be better automated with artifi-

cial intelligence and machine learning (ML) techniques. In particular,

clustering and cluster analysis can be used to group unlabelled datasets and

interpret them. In this study, a novel multi-stage clustering algorithm for auto-

matic OMA (AOMA) is tested and validated for SHM applications—specifi-

cally, for damage detection and severity assessment—to a masonry arch

bridge. The experimental case study involves a 1:2 scaled model, progressively

damaged to simulate foundation scouring at the central pier.

KEYWORD S

automated operational modal analysis, damage detection, machine learning, masonry arch
bridge, operational modal analysis, structural health monitoring

1 | INTRODUCTION

Structural health monitoring (SHM) is one of the fastest-growing topics among structural engineers, especially when
applied in a machine learning (ML) framework.1 This is also thanks to public opinion, which is becoming more and
more sensitive to the importance of the maintenance of strategic infrastructures, the preservation of cultural heritage
buildings, and the safeguarding of human life. For instance, people interact with ageing infrastructures more than ever
as modernisation cannot keep up with the increasing demand for transport flows.

The constant monitoring of structures and infrastructure can give some important information about the possible
damages which may arise during their service life. Moreover, an assessment of the residual life can be estimated, and
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maintenance strategies may be planned in time to avoid risks to human life and structural failure which may generate
damage to other buildings.

To extract useful features that characterise the behaviour of a structure or the changing of these with time, different
methods of investigation can be pursued for system identification (SI).2 The choice of the most appropriate method and
the planning of study strategies depend on the typology of the object of study, the budget and many other factors.1

A common method is the use of vibration-based SHM, aimed at extracting useful features from the dynamic
response of a structure,3 especially in the form of modal parameters (i.e., natural frequencies, modal damping ratios
and mode shapes). This is the basic concept of modal analysis, which is arguably the most common approach for SI and
damage detection. When the structure can be excited with a known input, experimental modal analysis (EMA) can be
applied to this aim. Several EMA approaches exist; a recent method was applied as well for masonry bridges in recent
studies.4,5 However, for massive structures and infrastructures and/or for continuous monitoring over a prolonged time,
output-only methods should be preferred.

When ambient vibrations (AVs) are utilised for output-only MA, the term operational modal analysis (OMA) is
used.6 Some examples of OMA applications for large civil infrastructures can be found in the works of several
authors.7–11

The main problem for large and complex systems is that the number of relevant modes is not known a priori.
Therefore, it is not possible to guess the model order for SI. The common practice is thus to re-run the SI procedure
repeatedly for an arbitrary range of model orders. The result is called a stabilisation diagram, where both physical and
numerical poles (due to the overfitting of the higher order models over noisy data) are included. Thus, the actual vibra-
tional modes need to be selected among all the identified poles, discarding the rest. This is generally performed by an
expert user. Consequently, the main limitation to the extensive use of OMA for continuous monitoring is the require-
ment of constant supervision by a skilled professional.

This is incompatible with the need for uninterrupted structural surveillance. Therefore, the automation of the whole
modal extraction procedure is a necessary step for the future generation of civil buildings; this is generally known as
automatic (or automated) OMA, i.e., AOMA for short. In this regard, two extensive reviews of OMA and AOMA
approaches can be found in Peeters and de Roeck and Reynders.12,13

A recent example of application in the ambit of continuous SHM for civil engineering is the AOMA system deployed
at the Sanctuary of Regina Montis Regalis in Vicoforte, Italy.14 Similar applications were also deployed for the famous
case studies of the Z24 bridge in Switzerland15 and the Tamar suspension bridge in Southwest England.16 Some inter-
esting aspects can be found in Rainieri and Fabbrocino.17

Very recently, Cheema et al.18 applied a Dirichlet process Gaussian mixture model (DP-GMM) clustering
approach to discern true physical modes from the mathematically spurious modes on a cable-stayed bridge in New
South Wales, Australia. He et al.19 applied a modified version of fuzzy C-means (FCM) clustering to the Fourth
Nanjing Yangtze River Bridge. Zeng and Hoon Kim20 tested a self-adaptive clustering approach with a weighted
multi-term distance on the Z24 and Downing Hall benchmarks. The classic hierarchical clustering-based AOMA
was applied by Anastasopoulos et al.21 to almost one year of acquisitions from a steel single-span tied arch railway
bridge. Indeed, the Structural Mechanics Section of KU Leuven developed a MatLab® Toolbox,22 which, similarly to
the algorithm applied here for this study, includes (among some other options) an SSI algorithm.23 The method was
tested on footbridges24 and other steel, concrete or even composite infrastructures (e.g., Reynders et al. and Liu
et al.25,26).

Among all the large civil constructions, bridges are arguably the ones of major interest, for several reasons. The
main factor derives from their strategic importance as the commercial arteries of any country. They also pose a poten-
tially serious threat to human lives due to the intense traffic which they sustain daily. Some recent events, for instance,
are well-descriptive of the risks of bridge structural failures. The collapse of the Morandi Bridge in Genoa on 14 August
2018 caused tens of victims, hundreds of displaced inhabitants and millions of euros of direct economic losses, even
without considering the long-term socio-economic consequences of the disruptions. On a smaller scale, these were the
same aftermaths faced after the 19th April 2017 viaduct collapse in Fossano (Piedmont), the 9th March 2017 viaduct
collapse in Camerano (Marche), the 23rd January 2017 event of Fiumara Allaro (Calabria), the 28th October 2016 event
of Annone and the very recent collapse of the bridge of Albiano Magra (Tuscany) happened the 8th April 2020, just to
cite some of the most recent bridge and viaduct failures in Italy.

This is even more accentuated for historical bridges, as they do not only have an economic and practical value but
also an architectural and cultural one. More specifically, masonry structures are notoriously difficult to handle, model27

and investigate.28 Their dynamic response is also very sensitive to damage.29 All these aspects are mainly due to the

2 of 23 CIVERA ET AL.



uncertainties and complex interactions which are characteristic of their building materials.30 The natural ageing of
these materials (with most of the cultural heritage being centuries-old) can only aggravate the situation. In this regard,
the non-destructive testing (NDT) and the continuous monitoring of existing masonry arch bridges are a complex yet
necessary requirement. An investigation about a recent and interesting case of scour-induced collapse for a multi-span
masonry arch bridge can be found in Scozzes et al.31 Two examples concerning railway masonry bridges are reported in
Costa et al.32,33

All the previous studies reported in the scientific literature point out the effectiveness and efficiency of OMA and
AOMA for the SHM of bridges of any size and use,34–36 ranging from long-span cable-stayed bridges37 to iron arch
ones38 and pedestrian walkways.39 However, to the best of the authors' knowledge, there is still a lack of AOMA
applications to masonry arch bridges in the scientific literature to this day.

The procedure described here is characterised by a novel approach for discerning the physical modes from the
computational ones. This overcomes the current issue of spurious modes, which can affect the results. In the scenario
investigated in Politecnico di Torino's laboratories, the scouring of the central pile was emulated by means of imposed
foundation settlements and rotations; further detail will be provided in the next sections.

The rest of this paper is organised as follows. Section 2 briefly discusses the AOMA procedure. Section 3 describes
the case study, i.e., the 1:2 scaled model of the masonry two-span arch bridge. Section 4 reports the results, and the
paper ends with the Conclusions.

2 | THE AOMA PROCEDURE

The algorithm applied and tested here for SHM purposes consists of the preliminary application of the stochastic
subspace identification (SSI) algorithm, followed by four consecutive steps:

1. application of SSI for an arbitrary range of model orders;
2. a preliminary partition by hard validation criteria (HVC);
3. a further selection by soft validation criteria (SVC);
4. the cluster-based modal identification; and
5. the modal parameters identification.

After the initial identification of the poles, the four-stepped concept follows closely the classic procedure defined by
Reynders and colleagues40; this is intended for the cleansing of the stabilisation diagram. The main aspects are here
recalled for completeness.

The HVC are physically based and enforce commonsense rules. The SVC, on the other hand, are purely data driven
and do not rely on any further assumptions. In this aspect, clustering and cluster analysis, which are important ML
techniques, can be used. The concept is to binary classify the remaining poles as stable or unstable and discard the latter
ones, while the elements of the first group are passed to the next phases.

The same ML approaches can be applied for the following steps as well. In the clustering phase, the poles that pas-
sed both HVC and SVC selections are grouped together according to their distances. These clusters are then further
sifted: The ones classified as ‘most probably physical’ are considered as representing a distinct vibrational mode, while
the others (assumed as certainly numerical) are discarded. Finally, in the last step, the modal parameters which best
characterise any remaining cluster (i.e., its natural frequency, damping ratio, and mode shape) are statistically defined,
based on the poles included in it.

The four steps can be further detailed as reported in the following subsections.

2.1 | Hard validation criteria

Three rules are implemented for the HVC. These reflect the suggestions made by Reynders et al.13,40 The poles
with negative or excessively high damping ratios are immediately discarded as unrealistic. The higher boundary is
set to 20% according to Cabboi et al. and Demarie and Sabia.38,41 Real-valued poles are rejected as well since a
zeroed imaginary part would mean a non-vibrational free decay, which is certainly spurious for an oscillatory
response.
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2.2 | Soft validation criteria

Five parameters are considered for the definition of the SVC: the eigenvalues λ, the natural frequencies f , the damping
ratios ξ, the complementary of the modal assurance criterion ν¼ 1�MAC, and the mean phase deviation MPD. These
will be described in more detail later on. For each one of these parameters, the absolute differences between the poles
for different model orders are computed. These are then utilised to define if the pole is stable or not. The rationale for
preferring absolute differences over the more traditional approach (relative differences) was investigated and described
in previous works.42

In this discussion, the model order is defined accordingly to the number of corresponding poles. Since
poles are complex conjugated, the model order ranges between the (arbitrarily defined) nmin and nmax with
increments of two (nmin, nminþ2,nminþ4, …, nmax). ln nð Þ¼n�nmin indicates the number of poles belonging to the nth
model order. Therefore, the comparison parameters are defined for any i¼ 1,2,…, ln pole belonging to the model order
n when coupled to any m¼ 1,2,…, lnþ2 pole belonging to the next model order n+ 2. For a generic parameter p, that
means

Δpn
i :Δp

n
i,m ¼ pni�pnþ2

m

�� ��, ð1Þ

where Δpn
i denotes the array of absolute differences for the ith pole of the nth model order, while Δpni,m is its mth

term. Equation (1) can be rewritten to accommodate p¼ λ, f , ξ, 1�MAC, or MPD, considering that Δλni � C1�lnþ2 for
the complex-valued eigenvalues, while the arrays of the other parameters are subsets of ℝ1�lnþ2 .

The modal assurance criterion (MAC) is computed between the mode shapes ϕi
n and ϕm

nþ2 according to its classic
definition43

MAC ϕi
n,ϕm

nþ2� �¼ ϕi
nð Þ� ϕm

nþ2� �� �2
ϕi

nð Þ� ϕi
nð Þ½ � � ϕm

nþ2� ��
ϕm

nþ2� �� � , ð2Þ

while MPD is defined as in Philips and Allemang.44 In conclusion, these comparison parameters form a five-
dimensional (5D) space, where the poles can be clustered.

To do so, once these five arrays have been defined, the distance between poles of subsequent model orders is evalu-
ated as

dn
i ¼Δf � þν�, dn

i �ℝ1�lnþ2 , ð3Þ

with the first term computed as in Equation (1) (for Δp¼Δf ) and then min-max normalised, that is to say,

Δf � ¼ Δf ni�min Δf nið Þ
max Δf nið Þ�min Δf nið Þ : ð4Þ

Such that Δf � is defined between 0 and 1 and thus comparable with ν� � νni (in both cases, zero corresponds to no
correlation, and maximum similarity tends to 1). Please note that Equation (3) is similar yet different to the classic pro-
cedure described in Reynders et al.,13 where the (min-max normalised) eigenvalue distance in the complex plane Δλ is
utilised in lieu of the (min-max normalised) difference of eigenfrequencies Δf . The rationale for this design choice
implemented here was to not include the dependence on the damping estimates, which are well-known to be less reli-
able and subject to greater variability than frequency and mode shape estimates.45

At this point, for the ith pole of the nth model order, the ‘neighbouring pole’ is defined as the single pole belonging
to model order n + 2 corresponding to the minimum value of dn

i , i.e.

Δpni ¼Δpn
i argmin dn

i

� �� �
: ð5Þ
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Therefore, five scalars are extracted from the five arrays Δpn
i. This process is reiterated for all the poles belonging

to a model order and then to all model orders. The resulting values are then concatenated (for any of the five parame-
ters) into a unique vector Δp, defined as

Δp¼ ΔpnminΔpnminþ2Δpnminþ4…Δpnmax�2
� �T

, ð6Þ

where for any model order

Δpn ¼ Δpn1Δp
n
2…Δpnln nð Þ

h iT
, ð7Þ

with Δpn1 , Δp
n
2 , …Δpnln nð Þ defined as for Equation (5).

Remembering that Δp is intended here as a shorthand for Δλ, Δf , Δξ, ν, or ΔMPD, the stable and unstable poles
will be defined through k-means clustering (with k¼ 2) in the 5D space defined by the comparison parameters,
according to their distance. However, before doing so, another intermediate step is required.

The clustering algorithm assumes a Gaussian distribution of these parameters.46 Since this may be not satisfied by
the raw parameters (as highlighted by Neu et al.47), a Box–Cox transformation is applied to each one of the five arrays
Δp¼Δλ, Δf ,Δξ,ν, ΔMPD, as

h γð Þ¼ Δp�1ð Þ=γ
ln Δp,

�
,γ≠ 0

γ¼ 0
ð8Þ

where the transformation parameter γ is defined through profile log-likelihood maximisation as described in the original
paper of Box and Cox.48 At this point, the z scores of the obtained h arrays are computed, separately for the five cases, as

zi
n ¼ hi

n�μp
σp

, ð9Þ

where μp is the global mean and σp the global standard deviation, respectively computed as

μp ¼
1
L

X
n � N

Xln
i¼1

hi
n, ð10Þ

and

σp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L

X
n � N

Xln
i¼1

hi
n�μp

	 
2

vuut , ð11Þ

where N ¼ nmin,nminþ2,nminþ4,…,nmax½ � is the array of the considered model orders. Note that the length of the resulting
z array is equal to L¼P

n � Nln nð Þ. At this point, is finally possible to define the two clusters—stable and unstable
poles—in the 5D space defined by the z scores of the Box–Cox transforms of the five Δp arrays.

2.3 | Cluster-based modal identification

In this third step, the poles are firstly clustered according to their distances and by means of hierarchical clustering.
Then, the obtained clusters are in turn divided between physical and non-physical (computational) modes. Finally, for
any remaining cluster, the poles flagged as outliers are removed.

CIVERA ET AL. 5 of 23



2.3.1 | Hierarchical clustering

At this point, the vector dn
i described in Equation (3) is extended to include all model orders, resulting in the L-by-L

distance matrix D, the generic term of which can be defined (for the uth row and vth column) as

Du,v ¼
Δf u,v�min Δf u,v

� �
max Δf u,v

� ��min Δf u,v
� �þνu,v, ð12Þ

considering

Δf u,v ¼ f u� f vj j, νu,v¼ 1�MAC ϕu,ϕvð Þ: ð13Þ

The symmetry of the square matrix D is exploited by considering only its lower triangular part. Moreover, the dis-
tances among the poles belonging to the same model order are not considered. This reflects the fact that, by definition,
two poles from the same identification cannot represent the same mode. This is intended to manage pole splitting at
high model orders, as evidenced in Mugnaini et al.,42 Section 2.6. Thus, Du,v ¼NaN was forcefully imposed in these
cases.

The terms in D are then used to hierarchically cluster the poles according to their neighbourhood. The
agglomerative (bottom-up) process is stopped when the inter-cluster distance, defined with the average linkage
method49 as

ℓ q, tð Þ¼ 1
nqnt

Xnq
i¼1

Xnt
j¼1

D u¼ xqi,v¼ xtj
� � ð14Þ

reaches a threshold value ed, defined according to the algorithm detailed in Neu et al.47 It is worth mentioning that
Reynders et al.40 proposed a stricter threshold definition; however, this alternative was tested here as well and found to
be almost inconsequential.

In Equation (14), xqi and xtj indicate the ith and jth elements of the two clusters q and t, where nq and nt are the
number of elements included in these two groups. The algorithm of the hierarchical clustering described in Algorithm
6.4.1 from Aggarwal50 was only slightly modified to account for the presence of the NaN terms. The complete imple-
mentation is reported in detail in Mugnaini et al.42 (Algorithm 1) and is here omitted for brevity.

2.3.2 | Selection of physical clusters

This step represents the main novelty (even if not the only one) with respect to the similar, already-existing AOMA pro-
cedures such as the ones of Reynders et al.40 and Neu et al.47 As in these two well-known procedures, the clusters are
labelled as ‘possibly physical’ (PP) or ‘certainly mathematical’ (CM) according to the number of poles included. The
rationale is that clusters with very few poles are almost surely computational. However, in all classic implementations,
this is performed (again) through 2-means clustering.40 This approach is understandable since it is intended to distin-
guish between only two categories—CM and PP. However, the use of the adjective possibly physical in Reynders et al.40

(and probably physical in Neu et al.47) implicitly states that the use of 2-means clustering is largely conservative, in the
sense that it tends to preserve non-physical modes rather than risking to discard actual ones. On the one hand, this
unbalance makes practical sense since the risk of missing a weakly excited mode is far more consequential than the
outcomes of retaining a few spurious identifications. However, on the other hand, this was found to be excessively
unbalanced, often leaving too many mathematical modes to be discarded in the next subsequent step or by user manual
selection. This was found as well in previous numerical and experimental applications,42 which motivated this research
for a stricter sifting strategy.

To bypass this problem, a tuneable method is here proposed. This can be seen as a variation of the previous tech-
nique. The procedure is as follows:
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1. To improve the stability of the process, a number w of empty clusters is artificially added (with w corresponding to
20% of the number of poles included in the largest cluster, as suggested by Reynders et al.40)

2. The k-means clustering is performed, with k = 2, to obtain the two CM and PP centroids.
3. For any potential mode, the distances from the CM and PP centroids are calculated as DICM and DIPP.
4. The total index is computed as DITOT ¼ DICM

max DICMð Þþ 1� DIPP
max DIPPð Þ

	 
	 

=2.

5. For any candidate mode, the percentage DI% is obtained as DI% ¼ DITOT
max DITOTð Þ �100.

At this point, DI% can be seen as a probability of physical meaningfulness. The upper limit (100%) is set by the
point(s) closer to the PP centroid and farther from the CM one and thus certainly physical. The user can then manually
set the threshold of probability as desired. It derives from the classic implementation of the k-means clustering that for
k = 2, the threshold is implicitly set to 50%. The proposed variant allows selecting a different value to require a stricter
selection of physical modes, discarding the other (less probably physical) ones.

Regarding Step (1), the addition of the empty clusters did not produce any noticeable improvement, at least for the
case study here inspected. The resulting modes did not change significantly even by adding empty clusters as suggested
by Reynders et al.40 However, this can be a specific aspect of the case analysed, and no detrimental effects were caused
by it. Therefore, the 20% value suggested in the literature was kept in use.

After these, only the physically meaningful clusters are passed to the next step.

2.3.3 | Outlier removal

An outlier detection procedure is run on the remaining clusters. Specifically, the mean absolute deviation (MAD)51 is
calculated among the poles belonging to the same group. The poles that have at least one among Δf , Δξ, or ν higher
than 3 scaled MAD from the cluster median are removed. The remaining poles are used to characterise the modal
parameters of their corresponding cluster in the next step.

2.4 | Identification of the modal parameters

Four statistical measures were investigated to better define the cluster-wide parameters. These four options were found
to be equivalent with no major differences in the results. These methods can be briefly described as follows:

1. Method 1: Assigning to each cluster the mean of frequency, damping ratio, and (normalised) mode shape (f , ξ, and
ϕ, in this order).

2. Method 2: Assigning to each cluster the modal parameters of the pole which minimise the distance between the
mean of the damping ratios ξ and its own ξ.

3. Method 3: Assigning to each cluster the modal parameters of the pole which minimise the sum of the three distances
f � f , ξ� ξ, and ϕ�ϕ.

4. Method 4: Assigning to each cluster the modal parameters of the pole which minimise ϕ�ϕ.

Having defined the whole AOMA procedure, the shifts in frequency and the other modal parameters can be directly
linked to the developing damage, as this induced a stiffness reduction in the monitored system. This is here validated
on the 1:2 scale model of the masonry arch bridge.

3 | THE MASONRY TWO-SPAN ARCH BRIDGE

The test structure is not an exact reproduction of an existing bridge but was purposely designed taking into account
common features, geometric proportion, and historical design codes. The intent was to recreate the main characteristics
of Italian masonry arch bridges.
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3.1 | The experimental setup

The model (portrayed in Figure 1a) was built with clay bricks sized according to the adapted scale law
(130 � 65 � 30 mm). The geometry of the two-span arch bridge is described in Table 1; its mechanical properties
(Young's modulus E, Poisson ratio ν, and the S and P wave velocities Vs and Vp) are reported in Table 2. Construction
materials (bricks and mortar) with poor mechanical resistances were purposely chosen to be similar to the aged mate-
rials of historical buildings.52 The arch barrels were stabilised with a backfill made up of a mix of gravel, sand, and
debris, topped by a levelled 10 cm-thick concrete layer. The whole structure rested on two reinforced concrete slabs,
fixed to the floor. Further details can be found in Ruocci et al.52,53

A settlement application system was inserted under the central pile to investigate the effect of the displacements
and rotations imposed at the masonry pier. These were intended to emulate riverbank erosion and calibrated accord-
ingly to ad hoc hydraulic flume tests.53 A thin layer of polystyrene, set in between the top steel plate of the settlement

FIGURE 1 (a) Photo portrait of the 1:2 scaled bridge model. (b) The settlement application system, front view (adapted from Ruocci

et al.53,54)

TABLE 1 Geometry of the bridge model

Parameter Value Measurement unit

Total width 1.55 m

Total height 1.73 m

Total length 5.87 m

Arch span 2.00 m

Arch radius 2.00 m

Arch angular opening 30 �

Note: Values were retrieved from Ruocci.53
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application system and the bottom of the mid-length pier, simulated the riverbed sediment. This was progressively
taken off to simulate the progressive erosion. Special attention was dedicated to replicating in situ effects; all details can
be found in Civera et al. and Ruocci.5,53

3.2 | Damage scenarios

An increasing amount of damage was induced by applying controlled displacements and rotations at the central pier
and by progressively removing the 100-mm-thick polystyrene ring layer that surrounded the pier (as shown in
Figure 1b). The rotations were set to simulate natural scouring conditions, according to the procedure and assumptions
detailed in Ruocci53 (Section 9.2) and Civera et al.5 (Section 5.1.1), arbitrarily considering one flank of the bridge to rep-
resent the upstream side.

The tests were performed in two separate experimental campaigns, following the consecutive damage steps (DSs)
detailed in Table 3. After the end of the last DS (DS9), the central pier was further let settle at around 10.9 mm with all
the polystyrene being removed and for the same rotation as in the last step.

Two sensor layouts, named Setups #1 and #2, were used for each DS. Their disposition was set as discussed in
Ruocci53 (Sections 6.1.2 and 10.2.2) and portrayed in Figure 2. These layouts were selected according to practical con-
cerns, which considered as well the results from some optimal sensor placement (OSP) algorithms, specifically the
effective independence, the eigenvalue vector product and other methods. These and other classic algorithms are
described in more detail with an example of masonry structures in Civera et al.29 Eighteen monoaxial PCB Piezotronics
accelerometers were utilised in both configurations. Each sensor had a sensitivity of 1 V/g, a measurement range of
±3 g, and a resolution of 30 μg, for a weight of 17.5 g and a sampling frequency fs of 400 Hz. The AV tests were per-
formed by recording the output-only structural behaviour for 180 s. The two-span masonry arch bridge was investigated

TABLE 2 Construction materials

Material E (MPa) ν (�) ρ (kg/m3) Vp (m/s) Vs (m/s)

Masonry 1500 0.20 1900 937 574

Backfill material 50 0.10 2000 160 107

Concrete 5000 0.15 2200 1549 994

Reinforced concrete 30,000 0.15 2400 3633 2331

Note: Values were retrieved from Ruocci.53

TABLE 3 Experimental campaigns

Damage step Time
Settlement at the central
pier (mm)

Rotation at the central
pier (rad)

Polystyrene
removed (%)

First exp.
campaign

Healthy state
(HS)

April 2009 0 0 0%

DS1 // 0 0 18.0%

DS2 // 0.25 0 25.0%

DS3 // 1.00 4.21 10�4 37.5%

DS4 // 2.25 1.01 10�3 47.0%

Second exp.
campaign

DS5 (post-
relaxation)

September
2010

2.25 1.23 10�3 56.0%

DS6 October
2010

2.80 1.23 10�3 72.0%

DS7 // 3.60 1.27 10�3 81.0%

DS8 // 4.70 1.30 10�3 91.0%

DS9 // 7.60 1.28 10�3 100.0%
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as well by means of input–output approaches via hammer and shaker harmonic tests, as reported in other studies
(e.g., Civera et al. and Zanotti Fragonara et al.5,55).

Due to both the material non-linearities and the developing cracks, the structural response was affected by the pres-
ence of strong non-linear distortions (a complete discussion about the non-linear characterisation of the structure is
reported in Zanotti Fragonara et al.55). However, these noise-like effects did not undermine the AOMA procedure,
which proven to be robust to non-linearities and measurement noise. The effects of the simulated scouring on the
modal parameters of the target structure were linked to the cracks developing after the application of the settlements,
as already noticed in Ruocci et al.54 These cracks are represented by the thick red lines in Figure 3; they were mostly
encountered on the upstream side at the interface between the arches and the spandrel and on the arch barrels
themselves.

4 | RESULTS

4.1 | SSI identification: Range of model orders and Hankel matrix

Before moving to the results of the case study, it is necessary to define how the SSI parameters have been set. The
dimension of the Hankel matrix for OMA depends on the range of model orders considered in the process. Specifically,
it consists of i block rows and j block columns, where this latter parameter is generally assumed as a dependent vari-
able. That is to say, van Overschee and de Moor56 suggested using the empirical relations

j¼ s�2iþ1, ð15Þ

where s indicates the number of available measurements and i is defined as

i¼ int 2
nmax

nch

� �
, ð16Þ

where nch is the number of output channels. The function intðÞ means the integer part. However, this is not the only
option for the definition of the block rows of the Hankel matrix. Another common formulation, which is independent
of the number of channels and the maximum order but dependent on the sampling frequency, is

FIGURE 2 Sensor Setup #1 and #2. Adapted from Ruocci et al.52

FIGURE 3 Cracks detected on the external masonry surface (upstream side) due to the applied rotations and settlements. Adapted from

Ruocci53
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i≥
f s
2f 0

: ð17Þ

Both Equations (16) and (17) were found to be unfitted for the specific case study described here. Specifically,
Equation (16) returned an underestimated value of i, while Equation (17) returned an arguably excessive dimension.
This did not negatively affect the results but it might cause an unnecessary computational burden since the computa-
tional requirement increases proportionally to i2 (van Overschee and de Moor,56 Appendix B.2.1). For this reason, the
formulation

i¼ int 6
nmax

nch

� �
ð18Þ

will be used. While being more cautionary than Equation (16), Equation (18) does not increase the computational need
to the same level as Equation (17). Moreover, the AOMA algorithm was found to work well with the range of model
orders defined as follows:

• nmin at least as high as the number of the degrees of freedom (DoFs) of the structure, if known, or of the DoFs of
interest, otherwise (this lower bound can be nevertheless increased at will);

• nmax at least four times the number of DoFs of interest and guaranteeing at least 25 model orders in each analysis.

This aspect will be further discussed at the end of this section.

4.2 | Results of the automatic OMA procedure

For brevity, only the analysis of a single acquisition for the healthy state (HS) with Setup #1 is here discussed in detail,
for illustrative purposes only. The same steps were applied to the other acquisitions and damage scenarios, returning
similar intermediate results. The overall aim was to define at least the first four modes of the structure, which were
deemed as the most important ones. These correspond to the first vertical bending, the first longitudinal bending, the
first lateral bending, and the first torsional mode, in this order. They were all expected to be found in the 0–50 Hz
range. The range of model orders was set between nmin ¼ 40 and nmax ¼ 90, i.e. with nmin and nmax larger than the mini-
mum values as defined in the previous Section 4.1 and distanced by 25 orders as deemed necessary. The Hankel matrix
was dimensioned according to Equation (18).

Out of all the identified poles, 154 of them were discarded after the preliminary partition by HVC (the vast majority
because of the damping ratio exceeding the higher bound at 20%). Were further reduced to 345 after SVC. These cor-
responded to the modes deemed as stable, accordingly to the following data-driven thresholds (Table 4):

The distribution of poles satisfying these requirements is depicted in Figure 4. As it can be seen from Figure 4b, 87%
of the poles deemed as stable presented a value Δf less than or equal to 0.1Hz. The stability of the other comparison
parameters is even better, with 97% of the poles having a value of (1-MAC) lower than 0.05.

TABLE 4 Data-driven thresholds for the soft validation criteria

Comparison parameter Maximum value allowed for stable poles

Δλj j 2.375 [�]

Δf 0.262 Hz

Δξ 0.83%

ν 0.447 [�]

ΔMPD 0.100 [�]
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The resulting 25 clusters, shown by the dendrogram in Figure 5, were found for a threshold of ed¼ 0:4377, obtained
from the fitting depicted in Figure 6a. The distribution follows the Weibull distribution for the majority of its data. The
quality of the clustering can be appreciated by the Silhouette profile57 reported in Figure 6b.

At this point, the selection of the physical clusters was initially performed via the classic approach, i.e., through
2-means clustering. As a result, any cluster with nine or more poles inside was labelled as a ‘PP’ mode. Eight clusters
satisfied this further requirement in the 0–50 Hz range; they are portrayed in the top row of Figure 7. However, from a
comparison with the reference benchmark (Ruocci,53 Section 10.4), it was found that some modes (enclosed in red
frames in Figure 7a,b) were not physical. Remembering that the 2-means clustering corresponds to a 50% probability of
being physically meaningful (accordingly to the definition proposed in Section 2.3.2), it is evident that this value is not
optimal; the last accepted mode has DI% ¼ 51:96% while the first one rejected has DI% ¼ 47:79%. The difference
between these two is too small to be significant.

According to this reasoning, the threshold was raised to include only modes with an 80% probability. This stricter
requirement was found to correspond to at least 14 poles per cluster, resulting in the diagrams of Figure 7c,d. This new
set of results matches well the expectations.

Finally, the outliers were removed from within each one of the five clusters encountered in the range of interest (0–
50 Hz), accordingly to the procedure described in Section 2.3.3. The resulting modal damping ratios and natural fre-
quencies were estimated according to the procedure described in Section 2.4; the results are reported in Table 5. These
correspond to the mode shapes portrayed in Figure 8. For comparability, the MAC values between the identified mode

FIGURE 4 Distribution of the comparison parameters: Difference of eigenvalue (a), difference of frequency (b), difference of damping

ratio (c), 1-MAC (d), and difference of MPD (e)

FIGURE 5 Dendrogram for HS. The dotted red line represents the cut-off corresponding to the data-driven threshold. Each cluster

below the threshold was accounted as representative of a single mode, indicated by a different colour.
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shapes and the known targets are reported in Table 6. Regarding the first four modes, these were found to be overall
consistent with the estimates reported in the previous works from Ruocci and co-authors.52–54 The second lateral bend-
ing mode was also encountered here, very close to the upper limit of the investigated frequency range. The estimated
damping for this latter mode diverges significantly from the expected value; however, as it will be shown later, this was
due to the specific sensor layout. The second setup returned more realistic results.

4.2.1 | Identified shifts in the modal parameters

The modal parameters were then extracted from the subsequent recordings, to track their changes for an increasing
amount of damage. Figure 9 describes these trends for the first four natural frequencies. Please note that for the first
mode, the values of the first two steps (19.14 and 19.22 Hz, respectively) are too close to be clearly distinguishable in
the plot. Again, it was found an overall good agreement with the results reported in Ruocci et al.52 It is important to
remark that in Ruocci et al.,52 the estimated frequencies were obtained by averaging several acquisitions, taken from
both hammer and AV tests, performed with the two sensor setups and at different moments.53 Instead, the results for
the AOMA procedure reported in Figure 9 are derived from a subset of those acquisitions, considering only AV tests,
with three recordings per case and per sensor setup.

The resulting frequency shifts of the first four vibrational modes follow the same behaviour observed and described
in Ruocci et al.52,53 They can offer some useful insights into the structural changes undergone by the masonry bridge.

During the 2009 campaign, a monotonic decrease was observed, due to the global stiffness degradation (mainly
localised in the central pier because of the changing boundary conditions). The slight increase of the first natural fre-
quency between HS and DS1 was due to the concurrent addition of masses located at the central pier to mimic the
weight of the lower half of the same.53 In between the 2009 and the 2010 campaign, the central pier, which was almost
suspended at the end of DS4, had the time to settle and recover some boundary stiffness in the vertical direction. This
induced a counterintuitive and unexpected increase of the first natural frequency (linked to the vertical bending)
despite the induced rotation and the removed material in DS5. This recovery was almost immediately lost with the
application of the further DSs. All these aspects were documented in Ruocci53 and found in these studies as well.

For context, the effects of damage-unrelated confounding influences, especially environmental and operational vari-
ations (EOVs58,59), are one open challenges for frequency-based damage detection (FBDD). For instance, without
proper compensation and/or data normalisation, temperature-induced softening or hardening (in warmer/colder condi-
tions, respectively) can easily exceed, e.g., crack-induced effects, causing false alarms or masking the development of
damage.60 This applies to all building materials, yet it is even more relevant for masonry structures due to their specific
temperature-dependent behaviour, which makes them harder to accurately predict61 and highly influenced by seasonal
trends in temperature.62 For the case study of the masonry arch bridge investigated here, these thermal effects were
investigated in Ruocci,53 Chapter 6.4.

FIGURE 6 (a) Weibull fitting for thresholding; (b) silhouette profile for HS
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FIGURE 7 Cleaned stabilisation diagrams (HS). (a and b) Mode selection by 2-means clustering. (c and d) Mode selection with the

proposed variant (acceptance threshold: 80%). The modes consistent with Ruocci53 are enclosed by a green frame; the inconsistent ones by a

red frame.
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TABLE 5 Identified modal parameters

Mode

AOMA procedure (healthy state) Benchmark (Ruocci,53 Section 10.4)

Natural frequency (Hz) Damping ratio (%) Natural frequency (Hz) Damping ratio (%)

I 19.14 2.5 18.94 5.5

II 31.61 2.2 30.65 3.1

III 36.23 1.8 36.23 3.6

IV 41.38 1.3 40.93 2.5

V 49.45 0.1 51.95 5.1

FIGURE 8 Resulting mode shapes. The dotted red lines represent the external edges; HS.
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On the other hand, the damping ratios were found to follow no particular trend, again similar to what was
evidenced by Ruocci.53 Indeed, it is known that, while theoretically possible,63 the shift of modal damping alone is gen-
erally too variable to be useful as a robust damage-sensitive feature. This mainly derives from the reasons explained in
the previous sections, that is to say, the high uncertainties typical of damping estimation,45 which is also strongly
affected by the sensor layout.45

Finally, the difference between the damaged and undamaged mode shapes can be used as well as a damage indica-
tor, even if the magnitude changes in the measured modal vectors might be minimal.64 This is reported in Figure 10 in
terms of MAC values. In this case, the first mode showed limited degradation over the consecutive settlement steps,
never falling below 92%. This decrease is more pronounced for the higher modes, reaching a minimum slightly below
80% for both the second and third modes and at about 85% for Mode 4. The mode shapes, however, seem to be less
affected by the relaxation issue between the first and the second campaigns.

4.2.2 | Variability over multiple acquisitions or different sensor layouts

Figure 11 investigates the variability of the recordings by comparing the three acquisitions for the first setup. Please
note that Acquisition #3 (in blue) is the one analysed in detail so far. One can notice that Acquisition #2 (in yellow) ret-
urned a spurious mode at ~46:6 Hz, even considering the higher 80% confidence threshold.

Figure 12 presents a similar comparison, superposing two acquisitions taken with the two sensors setups. Please
note that the signal for Setup #1 (in pink) is, again, the one discussed step by step in the previous parts of this section,
i.e., the one labelled as Acquisition #3 in Figure 11.

TABLE 6 Modal assurance criterion (MAC) values between the mode shapes of Figure 8 and the known targets; HS

Mode I Mode II Mode III Mode IV Mode V

MAC value (identified vs. target) (�) 0.9934 0.8813 0.9317 0.9415 0.8952

FIGURE 9 Trends of the first four natural frequencies for an increasing level of damage induced by the simulated scouring

FIGURE 10 Trends of the MAC value of the first four mode shapes
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All the recordings with the second setup were performed on 8 April 2009; the ones from the first setup on
2 April 2009. Temperature and relative humidity were checked and found to be comparable to exclude potential
environmental effects53 since they are known to be non-negligible on masonry structures.61 Nevertheless, it can be
seen that there is a large variability between the two layouts, especially regarding the estimation of the modal
damping ratios. On the one hand, as anticipated above, the second returned more realistic values for the damping
coefficient of the fifth vibrational mode. On the other hand, this second setup was found to struggle more to identify
the third and the fourth modes, which (as it will be better explained later) were the most difficult to detect (as also
discussed in Ruocci53).

4.2.3 | Robustness to measurement noise

The proposed algorithm performed efficiently with the noise measurement naturally included in the experimental data.
However, in situ applications on real-scale structures might be affected by higher levels of noise in the acceleration
records. Therefore, to further verify the robustness of the proposed algorithm, a sensitivity analysis was performed by
artificially adding signal noise (assumed to be normally distributed, with zero mean and increasing standard deviation)
to one signal recorded of the baseline (undamaged) structure. For comparability, Acquisition #3, seen in the previous
subsection, was selected.

FIGURE 11 Extracted modes from three distinct AV acquisitions (Setup #1, HS). Results from Acquisition #1 in pink, Acquisition #2 in

yellow, and Acquisition #3 in blue
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The results reported in Table 7 refer to σn ¼ 0:01,0:02,0:05, and 0:10.

4.3 | Sensitivity analysis on the range of modal orders

To conclude, in previous works42 it was highlighted the importance of the range of modal orders considered for the
stabilisation diagram. Thus, a sensitivity analysis is reported here as the last study, considering the two variables nmin

and nmax . These were varied between nmin ¼ 20	40 and nmax ¼ 70	90 respectively. Thus, the resulting study spanned
over 121 possible nmin=nmax combinations. The resulting ranges included a minimum of 15 orders (nmin ¼ 40 to
nmax ¼ 70) to a maximum of 35 orders (nmin ¼ 20 to nmax ¼ 90). Figure 13 summarises the findings of this investigation
on the HS condition (Setup #1, Acquisition #3), i.e., the same dataset described previously throughout the whole
Section 4.2. The semiaxes of the ellipses along the x- and y-axes represent three standard deviations (i.e., a 99.73% prob-
ability for a Gaussian distribution) around the mean natural frequency and damping ratio. It can be seen that the two
spurious modes encountered before (Figure 8a,b) are still rarely found; their ellipses are marked in red. Of the
remaining five physically meaningful modes, only the second one is always identified for any range of model orders.
The fifth mode is almost always identified as well, missing only five times for nmax ¼ 70. The other modes follow the dis-
tribution represented in Figure 14.

FIGURE 12 Extracted modes from the two sensor setups (HS). Results from Setup #1 in pink, Setup #2 in green. This latter layout fails

to identify the third mode (first lateral bending) at circa 36 Hz.
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Basically, the third and fourth modes are consistently found for nmax >86 and nmax >84 respectively, quite indepen-
dently from the number of orders considered. The first mode as well can be found for almost all cases with nmax >86,
regardless of nmin; however, for lower values of nmax , it is counterintuitively easier identified for higher values of nmin

(i.e., for shorter ranges). For unknown reasons, nmax ¼ 72 was particularly sensitive to this specific mode. It can be seen
that, on the other hand, the spurious modes appear for larger ranges, with high nmax and low nmin. Therefore, the
empirical findings of this conclusive sensitivity analysis can be enlisted as follow:

• The maximum order considered, nmax , is the most sensitive parameter for the identification of physical modes.
• Shorter ranges, with higher values of nmin for high enough nmax , can help in stabilising the identification of some

modes.
• Longer ranges not only produce more clusters but also increase the probability of labelling a computational mode as

a physical one.

The main conclusion is that, for civil structures where only the lowest vibrational modes are the ones of practical inter-
est, it is arguably more useful to use shorter ranges with high nmax and high nmin to extract only the low-frequency modes
with a good probability of being physically meaningful. However, these findings may be case specific and will require fur-
ther investigations over a larger experimental dataset of similar masonry arch bridges before being fully validated.

TABLE 7 The first five natural frequencies for an increasing level of artificially added measurement noise

Mode AOMA procedure (healthy state)

Natural frequency (Hz)

σn ¼ 0 (noiseless) σn ¼ 0:01 σn ¼ 0:020 σn ¼ 0:05 σn ¼ 0:10

I 19.14 19.14 19.15 — —

II 31.61 31.60 31.59 31.61 31.64

III 36.23 36.22 34.68 — —

IV 41.38 41.32 — — —

V 49.45 49.45 49.44 49.46 49.46

Damping ratio (%)

σn ¼ 0 (noiseless) σn ¼ 0:010 σn ¼ 0:020 σn ¼ 0:050 σn ¼ 0:100

I 2.5 2.4 2.4 — —

II 2.2 3.4 2.3 2.7 3.3

III 1.8 2.2 1.9 — —

IV 1.3 1.8 — — —

V 0.1 0.1 0.1 0.1 0.2

FIGURE 13 Identified modes for varying ranges of orders. The interval of confidence is coloured in red for mathematical modes and in

green for the physical ones (HS, Setup #1, Acquisition #3)
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5 | CONCLUSIONS

This paper showed how the proposed AOMA algorithm can be applied for the continuous SHM of masonry arch brid-
ges. To the best of the authors' knowledge, this is the first experimental investigation for such application to this typol-
ogy of historical infrastructures. The procedure returned the vibrational modes of a compelling experimental case
study—a 1:2 scale model, subject to several steps of increasing damage. This experimental validation proves that the
proposed algorithm can be reliably applied to masonry structures, especially arch bridges, for their SI and damage
assessment.

Furthermore, it has been shown how the selection of physical mode by k-means clustering, commonly found in the
inherent scientific literature, might be overconservative for signals with high noise levels and/or noise-like non-linear
distortions. This results in mathematical (unphysical) modes still being accepted as probably physical. The variation
proposed here allows to arbitrarily vary this selection criterion, making it as stricter as required. The process is statisti-
cally principled since it considers the distance between the two centroids for the ‘CM’ and ‘PP’ clusters. For the appli-
cation investigated here, good results were obtained by discarding any pole closer to CM than 80% of this distance.
Finally, a comprehensive investigation of the effects of varying the range of model orders was reported. Future works
will be needed to validate the proposed algorithm on real-scale, in situ masonry arch bridges.
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