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Summary 

Electrification of on-road vehicles is one of the most recognized technology 
transformations worldwide and is nowadays pushing the world towards new 
mobility scenarios. New national and international regulations have born which 
introduce restrictions for conventional vehicles and set goals for green mobility. 
The infrastructure is evolving to welcome charging devices, zero-emissions are 
required to drive within specific city centers, stops are occasionally imposed to 
“old” vehicles in case of high pollution periods. Many resources are being 
worldwide invested into the research and development of innovative technologies 
for electrified vehicles, similar to what happened for fuel-based vehicles. 

An outstanding progress has occurred also to computer systems during the last 
years. Specifically, the improvement of the computational power achieved by 
newest processors has promoted the possibility of establishing new connections 
between engineering and informatics. Amongst all, techniques based on Artificial 
Intelligence (AI) have seen a spread in their application to very different 
engineering fields, such as robotics, computer vision, semantics, etc. 

In the present dissertation, a journey into the optimization of the design and the 
real-time control of electrified vehicles through computer-assisted simulation is 
made which aims at demonstrating some of the potentials enclosed in AI-based 
approaches. Different techniques have been analyzed and their performances have 
been thoroughly discussed to provide the reader with a clear view of the integration 
of AI into the research about electrified vehicle technologies. Hybrid configurations 
have been taken into account among the variety of electrified powertrains to be 
possibly analyzed (hybrid, fuel cell, full electric). The availability of different and 
multiple power sources within the same driveline introduces complexity both when 
the optimal design and the optimal real-time control are investigated. A demanding 
test case has hence been selected to stress AI systems. 
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Chapter 1 

Introduction 

1.1 Problem overview 

Global warming is nothing new. Especially, the contribution of carbon dioxide 
(CO2) to the greenhouse effect is nothing new. One of the first scientific papers that 
addressed the problem dates back to 1896, in which Arrhenius ([1]) introduced a 
model for the estimation of the effects produced by the presence of heat-absorbing 
gases in the atmosphere. Following his first article, in [2] Arrhenius suggested the 
possibility of global warming to show up sooner than it was thought. In 1938, 
Callendar ([3]) claimed that doubling the CO2 level could have turned into an 
Earth’s warm of roughly 2°C. Forty years later, Keeling et al. ([4]) published the 
results of a statistical analysis carried over atmospheric CO2 concentrations of the 
air near Hawaiian Islands and proved that the average seasonal oscillation could 

 

Part of the present section has been extracted from: 

Misul, D. A. et al. (2020). Development and assessment of a random-forest model for real-time 
prediction of diesel engine-out particulate matter emissions. International Journal of Mechanics and 
Control. Levrotto & Bella Co., 21(02), pp. 95–110. 

Maino, C. et al. (2021). A deep neural network based model for the prediction of hybrid electric 
vehicles carbon dioxide emissions. Energy and AI. Elsevier Ltd, 5, p. 100073. Doi: 
10.1016/j.egyai.2021.100073. 

Maino, C. et al. (2022). Project and Development of a Reinforcement Learning Based Control 
Algorithm for Hybrid Electric Vehicles. Applied Sciences, 12, p. 812. Doi: 
https://doi.org/10.3390/app12020812. 



Hybrid and Electric Vehicles Optimal Design and Real-time Control based on Artificial Intelligence 

 

2 

have been described by an increasing function.  

In 1988, Hansen et al. ([5]) presented the results of a model forecasting an 
almost immediate increase of the global mean surface air temperature and 
demonstrated the necessity of introducing urgent measurements to mitigate the 
climate change process and deal with it. From that moment onwards, more and more 
attention has been paid to the problem. The International Panel on Climate Change 
(IPCC) has been established in December 1988 ([6]), many international meetings 
have been held and two important documents have been subscribed by multiple 
countries in the world: the Kyoto Protocol in 1997 ([7]) and the Paris Agreement in 
2015 ([8]). Nevertheless, today’s world condition is still of suffering. In Figure 1, 
the Earth’s ground temperature variation measured from 1896 to 2020 is reported 
([9]). A worryingly increasing trend can be appreciated along with the absence of a 
curve slope modification in correspondence of the international agreements period. 
According to data presented in [10]-[13], the CO2 emissions level has risen from 
315 parts per million (ppm) to 400 ppm between 1958 and 2015. At the actual global 
emission rate, projections show the level could exceed 900 ppm. As demonstrated 
by Parmesan et al. in [14], such a scenario involves the possibility of irreversible 
alterations to the Earth’s natural systems. 

 

 
Figure 1. Global warming from 1896 to 2020. 



Chapter 1. Introduction 

 

3 

According to the IPCC report of 2018 ([15]), the rise of temperatures should 
not overcome 1.5°C. Flattening the curve of temperature variation has hence 
become a priority all over the world. It is therefore evident that a careful planning 
of short-term and long-term actions is required to the majority of the countries. 

The transportation sector holds a key role within the context of CO2 production. 
In 2019, 24% of European CO2 emissions have been produced by the transportation 
sector ([16]), while roughly 29% in U.S. ([17]). Still, on-road vehicles (including 
passenger cars, light-duty vehicles, heady-duty vehicles, two and three wheelers 
and buses) have contributed for roughly 77% of European CO2 emissions ([18]), 
while for 82% in U.S. ([19]). In 2020, the shares of conventional (petrol or gasoline 
based) passenger cars (pc), vans and heavy-duty vehicles (hdv) sold in Europe with 
respect to the total sales of the relative vehicular segments have reached 75.5%, 
95.8% and 96.6%, respectively ([20]-[22]). A similar situation has occurred in U.S. 
and China, as the share of new non-conventional vehicles sold has nearly achieved 
10% ([23]).  

The World harmonized Light-duty Test Procedure (WLTP) ([24]) and the EPA 
Federal Test Procedure (FTP) ([25]) are the actual test procedures for Europe and 
U.S., respectively. However, new regulations have begun their course promoting a 
shift towards “greener” solutions for the on-road mobility and a consequent 
reduction of the emissions related to fuel combustion. “Fit for 55 Package” ([26]), 
new limits of passenger cars CO2 emissions ([27]) and proposals for Euro 7 
standards ([28]) represent some important examples for Europe; similarly, an 
update of the regulatory framework for light-duty vehicles (ldv) will impact the U.S. 
market in the next few years ([29]). Consistently, electrification of vehicles has 
accelerated and it clearly represents one of the most promising approaches 
identified by the scientific community to face the problem of on-road emissions. 
Electrifying vehicles can assume different meanings. The replacement of the 
conventional power source, i.e. the internal combustion engine (ICE), or the 
integration with an electric assist are two different solutions. In other words, full 
electric vehicles and hybrid electric vehicles (HEV) are nowadays considered as the 
two major solutions. In Figure 2, the typical Usage of Electricity (UoE) is reported 
for different electrified powertrains ([30]-[32]), which is representative of the 
common share of electricity consumed in an electrified vehicle with respect to the 
fuel. Black lines are used to highlight the minimum and maximum UoE boundaries 
for each technology. The green area can hence be considered as the electric 
operational region of the vehicles. Conventional vehicles (CVs) are the common 
liquid fuel-based vehicles and do not imply the usage of electricity. Micro hybrids 
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(mHEVs), mild hybrids (MHEVs) and full hybrids (FHEVs) represent the ICE-
based hybrid architectures with a progressively increasing electric contribution 
(from 5-10% to 40-50%) without the possibility of being recharged from an external 
source. On the other hand, plug-in hybrids (PHEVs) are the ICE-based hybrid 
architectures with the possibility of being recharged from the grid; larger battery 
packs and oversized motor-generators are typically involved in these architectures 
and wider electric ranges can be exploited, further reducing the fuel-related 
emissions. Finally, battery electric vehicles (BEVs) and fuel cells electric vehicles 
(FCEVs) represent the on-road emissions-free technologies since any polluting 
component is removed from the driveline and the whole driving experience takes 
advantage of electricity. For a deeper dissertation about (P)HEVs (i.e. hybrid and 
plug-in hybrid systems) and electric vehicles, please refer to [33] and [34], 
respectively. 

Given the differences between the electrified vehicle technologies, different are 
the related advantages and drawbacks. Full electric powertrains are characterized 
by a simpler design as the conventional energy source (and any other related 
component) is completely neglected. Consequently, a green driving experience can 
be accomplished with a complete abatement of on-road emissions. In turn, the costs 
related to the electric components, the necessity of an efficient recharging 
infrastructure as well as the limited driving ranges are important barriers to be 
overcome ([35]). In fact, several factors, such as the environmental temperature, the 
efficiency of the battery thermal management system (BTMS) or the driving 
conditions should be taken into consideration for a quantification of the real benefits 
brought by a complete vehicle electrification ([36]). On the other hand, (P)HEVs 
are featured by the combination of multiple energy sources and thus are capable of 
reducing range anxiety and recharging issues ([37]). Furthermore, users’ 

requirement about vehicle drivability and performance (e.g. maximum 
acceleration) can be met displacing undersized electric components with respect to 
BEVs while adding an ICE ([38]). Obviously, the presence of the thermal 
propulsion system constrains the possibility of minimizing the on-road emissions. 
To this end, two demanding operations have to be carried out. First, a design 
optimization aimed at defining the hybrid optimal layouts (i.e. configurations of the 
electric components in terms of number and location in the driveline) for different 
driving scenarios. Second, a complex control problem aimed at identifying a smart 
usage of the on-board power components with the capability of maximizing the 
system efficiency. 
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Figure 2. Typical usage of electricity for different electrified vehicles. 

 

Supporting the shift towards new powertrains by means of innovative 
methodologies with the capability of solving the problems introduced by 
electrification is mandatory. Exploiting the maximum performances of both hybrid 
and electric vehicles can be obtained only by defining the optimal design (mainly 
for (P)HEVs) and the optimal control (BEVs, (P)HEVs and FCEVs). 

Within this framework, several research works have been presented in the 
literature focused on solving the problem with various approaches. Nevertheless, 
few steps have been taken in the direction of developing and applying intelligent 
systems for design and real-time control of electrified vehicles. As experienced in 
very different research fields, such as Internet of Things (IoT) or medicine, the 
progress in processors and numerical computation can play a key role in the 
evolution of the tools and the maximization of their accuracy. In fact, even if 
intelligent approaches had been introduced already in 1950s ([39]-[41]), the 
computational power needed to solve complex problems was unreachable at that 
time. Thanks to the research in computer systems and to their actual performances, 
learning-based approaches have nowadays become a widely used support for the 
development of breakthrough methodologies. The latter are typically classified with 
the famous signature of Artificial Intelligence (AI). Among the possible definitions 
given to AI, the following is considered for this discussion ([42]): 
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"Artificial intelligence (AI) systems are software (and possibly also hardware) 
systems designed by humans that, given a complex goal, act in the physical or 
digital dimension by perceiving their environment through data acquisition, 
interpreting the collected structured or unstructured data, reasoning on the 
knowledge, or processing the information, derived from this data and deciding the 
best action(s) to take to achieve the given goal. AI systems can either use symbolic 
rules or learn a numeric model, and they can also adapt their behaviour by 
analysing how the environment is affected by their previous actions." 

According to the present definition, the usage of AI techniques can be extended 
to any engineering problem featured by complex optimizations and/or predictions 
in presence of tons of data. The algorithmic structures are generally referred to as 
Machine Learning (ML), recalling the algorithms capability of operating through a 
learning process. Three macro-categories are typically defined for ML algorithms: 
supervised learning (SL), unsupervised learning (UL) and reinforcement learning 
(RL). A SL algorithm is trained on labeled data (i.e. data with a known class or 
value) so as that predictions about future and unknown data could be generated 
([43], [44]). An UL algorithm is instead employed when unlabeled data (i.e. data 
without a known class or value) are available and is generally employed to catch 
patterns underneath the data as well as intercepting particular trends ([45]). Finally, 
a RL algorithm is characterized by a learning process based on numerical rewards 
and/or punishments aimed at maximizing the numerical reward value ([46]-[47]). 
A pre-determined link between ML categories and engineering applications cannot 
be identified; indeed, a preliminary accurate analysis of the task to be solved is 
needed. 

In the present dissertation, two of most debated aspects in the literature about 
electrified vehicles have been considered as test cases: optimization of design and 
optimization of real-time control for HEVs. Showing the potentials of intelligent 
systems and allowing the research on vehicular technologies for taking a step 
forward in the utilization of AI-based techniques have been set as main goals of this 
work. 
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1.2 Optimal design and real-time control of hybrid and 
electric vehicles: a literature review 

In the last years, attention has been paid in the literature about the topics of optimal 
design and optimal real-time control of electrified vehicles. The most complex 
operations of design and energy management occur when (P)HEVs are analyzed 
since a wide set of architectures and layouts can be realized (with respect to full 
electric vehicles) and their relative performances can strongly differ according to 
the change in the driving conditions (e.g. driving style, driving mission, traffic, 
etc.). Therefore, the methodologies with the capability of solving design and control 
problems of (P)HEVs can be exploited also when simpler electrified powertrains 
have to be focused. In this section, the main outcomes of past research activities 
about design and energy management optimizations are going to be discussed 
separately based on the findings about the most complex electrified architectures, 
i.e. (P)HEVs. For the sake of clarity, “hybrid architecture” refers to the 

configuration of the traction system, such as parallel, series, power-split or complex 
series/parallel ([48]). On the other hand, “hybrid layout” refers to the number, the 

location and the sizing of the electric components embedded in a given architecture. 

A typical (P)HEV optimal design problem can be represented through the 
scheme illustrated in Figure 3. A set of design variables (e.g. ICE sizing, battery 
sizing, position of the electric motors, gear ratios, etc.) has to be defined for a given 
hybrid architecture. Each set of design variables is representative of the specific 
hybrid layout to be analyzed. Then, the driving conditions have to be identified, 
including the vehicle velocity trajectory (possibly including information about 
average traffic conditions) and the road slope. Still, an optimization target has to be 
defined according to the specific design objective, such as minimizing the fuel 
consumption and/or the pollutant emissions rather than maximizing the electric 
range. Finally, an energy management optimizer (or simply “optimizer”) has to be 
adopted for solving the control problem related to the optimal management of the 
main powertrain components considered for a specific configuration (i.e. hybrid 
architecture and layout, driving conditions and optimization target) from an 
energetic perspective. The target of the optimizer corresponds to the design-related 
optimization target. In fact, given the need of defining a method for comparing 
different powertrains, the problem of a (P)HEV optimal design has to be necessarily 
linked to the relative problem of optimal control. 

Within the framework of (P)HEV optimal control, several approaches have 
been developed and their relative performances have been thoroughly analyzed in 
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the literature ([49], [50]). A first distinction can be made between real-time capable 
energy management systems (EMSs) and global optimizers (GOs). The first are 
typically featured by a sub-optimal fast-running algorithmic structure, whereas the 
latter comprise computationally heavier procedures aimed at evaluating the optimal 
solution to a control problem ([51]). Thanks to the knowledge of the entire driving 
mission, GOs have proved to outperform other approaches (such as heuristics, rule-
based or static optimizers) in the evaluation of the maximum performances of a 
(P)HEV. The assessment of the maximum performances obtained by a specific 
hybrid powertrain is a fundamental milestone to be achieved for comparing 
different configurations. Therefore, the definition of a proper control strategy for 
(P)HEVs assumes a relevant role among the four macro-inputs of Figure 3. Since 
the optimization of the real-time control is performed only after the identification 
of the vehicle design, GOs are generally preferred for design optimization 
operations. 

 

Figure 3. General framework of hybrid electric vehicles design optimization. 

 

A typical distinction about GOs is made between dynamic optimization and 
static optimization methods ([52]). Dynamic optimization methods include 
methods based on optimal control theory and are capable of obtaining the optimal 
solution to a control problem. One of the most used and popular GOs is represented 
by Dynamic Programming (DP) ([53]). The standard DP formulation is 
characterized by a multi-stage decisional process aimed at providing the solution to 
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the Bellman optimality equations ([54]) in a time-discretized environment. A large 
number of DP applications to (P)HEV control has been explored in the literature. 
Sundström and Guzzella ([55]) presented a famous first DP implementation in 
2009, which paved the way for several other studies during the following years. In 
[56], the design of a complex parallel HEV equipped with two motor-generators 
(MGs) has been optimized through DP to minimize the fuel consumption (i.e. on-
road CO2 emissions) and the pollutant emissions of the vehicle over several driving 
missions. In [57], the same operation has been performed for a parallel through-the-
road architecture. Few years later, Finesso et al. ([58]) have refined the optimization 
methodology to design a dual-mode HEV architecture with the capability of 
minimizing fuel consumption and pollutant emissions while considering battery 
ageing effects. In this case, an enhanced formulation of the DP objective functional 
has been taken into account. Other approaches have been exploited through the 
years. Hybrid formulations of DP have also been exploited in the last years. As 
example, Nüesch ([59]) and Gissing ([60]) have shown the potentials of coupling 
DP with Convex Optimization (CO) for controlling a parallel HEV and with 
heuristics for controlling a series HEV, respectively. A different dynamic 
optimization method has been presented in [61], in which the Pontryagin’s 

Minimum Principle (PMP) has been used to solve the problem of minimizing the 
fuel consumption of a parallel HEV while cutting the computational time needed to 
identify the solution. 

On the other hand, static optimization methods include derivative free and 
gradient-based methods ([52]). Unlike dynamic optimization, both derivative free 
and gradient-based methods are typically capable of identifying sub-optimal 
solutions of a control problem with smaller computational effort. In [62] and [63], 
the optimal design of a parallel HEV has been determined after the identification of 
the optimal control trajectory through two different derivative free algorithms, 
specifically Multi-Objective Genetic Algorithm (MOGA) and Particle Swarm 
Optimization (PSO). The MOGA has been employed to maximize the fuel economy 
(and hence the CO2 emissions) while minimizing pollutant emissions, whereas the 
PSO has focused on the minimization of the production costs along with the fuel 
economy maximization. As far as gradient-based methods are concerned, a 
sequential quadratic programming (SPQ) has been presented in [64], in which the 
optimization of the offline control of a parallel HEV has been investigated. Few 
others methodologies have shown the capability of identifying an offline optimal 
solution to a (P)HEV control problem without being explicitly oriented to offline 
optimal control. Specifically, the Equivalent Consumption Minimization Strategy 
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(ECMS) and its adaptive formulation, A-ECMS, have been presented in [65], [66] 
and [67], and represent two of the most promising EMS for HEVs in terms of local 
optimization of the hybrid systems operations. Both ECMS and A-ECMS are 
inspired by PMP optimization logics and are capable of locally optimizing the 
performance of a (P)HEV by means of a proper tuning of equivalence factors 
(ECMS) as well as of adaptation rules (A-ECMS). Thanks to an accurate tuning of 
the main parameters based on the driving mission, the ECMS-related control 
strategies proved to be capable of producing comparison results with respect to DP 
([67]). 

For the sake of clarity, similar considerations can be made about design 
optimizations of BEVs or FCEVs. Certainly, three of the four macro-inputs (vehicle 
architecture, design variables and optimization target) would differ in the design 
optimization framework consistent with the change in the electrified powertrain; 
nevertheless, no modifications are introduced in the general approach. Some 
examples have been presented in [68]-[71]. 

A relevant research effort has hence been given to the development and 
application of different optimizers with the capability of assisting in the 
identification of the optimal design of one or few electrified powertrains. 
Regardless the electrification level of the powertrains, design optimization 
operations might also be intended to identify solutions within huge design spaces. 
Unfortunately, seeking for optimal solutions to a design problem by means of GOs 
has to be paid through time ([72]). In fact, independently from the specific 
combination of design variables, driving conditions and optimization target, the 
selection of a GO, such as DP, introduces a relevant increase in the amount of 
calculations required to solve the control problem of a single architecture ([73]). 
Therefore, the possibility of identifying the optimal solution(s) within huge spaces 
can hardly be pursued. In addition, if the same operation were intended for multiple 
electrified powertrains of a vehicles’ fleet, it can turn into an impossible process. 
Since an a priori knowledge of the driving environment is available, a shift towards 
non-optimal optimizers would not represent a smart solution as a sub-optimal 
solution would be guaranteed. As far as learning algorithms are considered, a lack 
in the literature exists about methodologies with the capability of predicting the 
results of a specific optimizer for new and unknown testing conditions after a proper 
training on previously simulated data. Recalling the definition of AI stressed in the 
Introduction, supervised AI-based methodologies could perfectly fit the problem 
and can be hence considered as potentially promising tools. 
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Once the optimal design of an electrified vehicle has been identified (or a given 
configuration has been selected), the problem of controlling the vehicle under real-
time conditions arises. The complexity of identifying real-time capable, light, 
adaptive and accurate control methodologies explodes in case of (P)HEVs, for 
which the variability of real-world driving conditions becomes a significant 
obstacle to the definition of a real-time optimal management of the main power and 
energy components. Concerning real-time control of hybrid electric powertrains 
(for simplicity “hybrid powertrains”), an extensive amount of researches can be 
found in the literature ([74]-[77]). The simplest non-optimal approaches date back 
to the 1990s, when rule-based controllers (RBC) have been developed starting from 
dynamometer test and road test data ([74]). Indeed, the first optimum-oriented real-
time controllers were presented in the 2000s, specifically RBCs with rules based on 
the optimal control policies defined by GOs, such as DP ([78]) or genetic algorithm 
(GA) ([79]). Since an offline tuning of the main parameters is necessary for a proper 
selection of the control rules, a significant limitation in terms of optimization 
accuracy and adaptability highlights when the real driving conditions differ from 
the calibration ones. From that moment onwards, the potentials of several other 
methodologies have been exploited. Examples of the literature about ECMS-
oriented real-time controllers have been presented in ([80]-[83]). In [80], a merge 
between RBC and ECMS approaches has been performed to tackle the limitations 
of RBC and ECMS as stand-alone techniques; in [81] and [82], information 
obtained through offline simulations with DP have been used to calibrate the ECMS 
main parameters; in [83], a similar operation has been carried out considering GA 
instead of DP. Feeding real-time controllers with additional information about the 
driving environment has also proved to be a promising solution. Around 2010, the 
potentials of real-time control strategies based on model predictive control (MPC) 
have been presented ([84], [85]). In MPC, an optimizer can be employed to solve a 
simpler control problem over a future time horizon thanks to the prediction of a 
user-defined set of variables of the actual driving mission. Since the control policies 
of MPC-based EMSs strongly rely upon the accuracy of future driving conditions 
accuracy, the identification of the optimal solution to (P)HEVs real-time control is 
not guaranteed. 

Within the framework of (P)HEV optimal real-time control, the fit of learning-
based controllers has been exploited in the literature. Specifically, SL and RL 
techniques have been mostly investigated thanks to their dual capability of 
predicting driving conditions and controlling the vehicle, whereas UL approaches 
have not seen a spread ([86]). In fact, UL algorithms are typically trained at 
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understanding patterns within the input data when any specific target has to be 
directly forecasted. Therefore, UL-based control agents cannot directly fulfill the 
requirements of a complete EMS for an electrified vehicle. In Figure 4, a schematic 
overview of the main ML-based approaches for real-time control of electrified 
powertrains. 

Regarding SL for the control of electrified powertrains, Neural Networks (NNs) 
surely represent one of the most performing tools to be embedded in a SL-based 
EMS ([87]). Several examples can be found in the literature. In [88], NNs have been 
accounted to make predictions about road type and traffic congestion to be fed into 
a second-level controller. In this case, a conventional vehicle had been chosen for 
testing the technology even if the approach was intended also for hybrid 
powertrains. In [89], Murphey et al. expanded the usage of NNs to both long-term 
and short-term power control of a HEV through the prediction of the driving 
mission category (NN_RT&TC) and the typical driver response on the pedal 
(NN_DT), respectively. Afterwards, Murphey et al. completed a two-paper series 
by presenting an additional couple of NNs responsible of predicting the optimal 
power-split between ICE and battery based on the outputs of NN_RT&TC and 
NN_DT as well as on the offline control solutions defined by a DP-based optimizer 
([90]). In [91], the results produced by two distinct NNs with responsibility of 
controlling the power-split of a PHEV have been presented. Specifically, both the 
NNs were trained upon offline optimizations through DP, but one NN had been 
designed to control the vehicle in case of battery state of charge (SOC) lower than 
30% while the other NN in case of battery SOC higher than 30%, knowledge of the 
future driving mission and residual trip duration larger than the all-electric range 
(AER). Differently from the EMS structure of [89] and [90], the NNs of [91] have 
been trained to learn the optimal control policy in a single step. A similar approach 
has been presented in [92], in which the performance of an EMS based on three 
different NNs coupled with an MPC controller have been exploited for a multi-
mode PHEV. In this case, two NNs have been trained to predict the operating mode 
and the PMP co-state based on the optimal control trajectories defined by DP, 
whereas the third NN has been trained to predict the vehicle velocity. The outputs 
of the three NNs have hence been passed to a real-time capable MPC controller. 
Among the different types of NNs, recurrent NNs (RNNs) have proved to 
outperform other NNs, such as deep NNs (DNNs) or convolution NNs (CNNs), 
when the prediction of time histories is targeted ([93]). Regarding (P)HEV control, 
in [94] a RNN-based EMS has been trained to predict the optimal battery SOC 
trajectory of a PHEV relying upon a database of DP-based battery SOC profiles for 
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different driving conditions. The battery SOC prediction produced by the RNN 
were hence used for a controlling the vehicle through a hybrid PMP-PSO algorithm. 
A different utilization of a RNN is presented in [95], in which the ML-agent is 
directly trained to learn the optimal power-split between ICE and MG for a mild 
HEV. Despite simpler testing conditions linked to the prediction of a low-voltage 
HEV energy management, the RNN has proved the capability of completely 
replacing other control approaches (e.g. ECMS, PMP, etc.). Long-short term 
memory (LSTM) algorithms have also been exploited is the literature of (P)HEV 
real-time control as advanced implementation of RNNs, with the capability of 
mitigating vanishing gradients problems ([96]). Two examples can be found in [97] 
and [98], in which a LSTM has been integrated in the EMSs of two different HEVs 
as a vehicle velocity prediction tool, responsible of providing useful information to 
an MPC controller. Similarly, in [99] a LSTM network has been used to predict the 
vehicle velocity of a PHEV bus and pass the information to a hybrid GA-DP 
optimizer in the cloud. To the author’s knowledge, a direct implementation of 

LSTM for the prediction of the optimal power-split between the components of an 
electrified powertrain lacks in the literature. 

 

 

Figure 4. Learning-based control strategies for the real-time control of electrified 
vehicles. 

 

As a final recap, controlling an electrified vehicle by means of a SL-based EMS 
can be performed by means of two main approaches: using SL algorithms to predict 
future driving conditions to be inputted into an EMS controller ([100]-[104]) or 
feeding SL controllers with information about the entire driving environment 
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([105]-[108]). According to the second case, the real-world utilization of a complete 
SL-based controller should involve the knowledge of future driving conditions. For 
example, information about future velocity trajectory or road altitudes could 
directly be fed into the ML-agent (NNs, RNNs, LSTMs, etc.) by means of GPS or 
GIS, respectively. More generally, vehicle-to-everything (V2X) communication 
represents an essential tool. Nevertheless, bounding the EMS with information 
about the future can turn into a strong limitation for any electrified application in 
which future data cannot be gathered (e.g. the trip destination is unknown).  

In the very last years, a strong effort has also been paid by researchers to the 
analysis of RL algorithms performance when applied to the real-time control of 
electrified vehicles ([86], [109]). Differently from SL, the learning agents are not 
typically trained on a pre-constituted dataset whereas they are built to directly solve 
the optimization problem by means of a complex trial-and-error operation. Within 
this framework, vehicle state, controller actions and agent rewards have to be 
accurately designed to provide the RL agent with meaningful information about the 
powertrain behaviour. Thanks to a proper tuning of the agent, the limitation of 
embedding signals about future driving conditions into the EMS can theoretically 
be overcome. As far as the RL agents are concerned, several algorithmic structures 
can be taken into account, both excluding or including the usage of NNs. 
Concerning the RL-based EMSs excluding NNs, few research activities have 
focused on the development and application of RL control agents for (P)HEVs with 
the support of information about the future driving conditions. In [110], the 
information about the remaining travel distance is given to the controller. In [111] 
and [112], Liu et al. demonstrated the performance of a RL controller for HEVs 
assisted by a transition probability matrix (TPM) of the road power demand based 
on an a priori knowledge of the driving mission and on a vehicle velocity prediction, 
respectively. On the contrary, a larger share of research works has focused on real-
time control of electrified vehicle through RL without future trip information. In 
[113]-[115], the capability of a Q-learning controller to minimize the fuel 
consumption throughout the driving mission has been assessed for a power-split 
FHEV, a MHEV and a range-extender electric vehicle (REEV), respectively. In 
[116], a similar Q-learning agent has been tested for the online control of a parallel 
HEV when modifications are applied to learning experience selection, state and 
action spaces discretization, number of system states and some hyper-parameters 
values. Moving to different electrified powertrains, the real-time control 
optimization of a FCEV through Q-learning has been presented in [117], in which 
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the control trajectory considers the usage of a fuel cell instead of a thermal engine 
as non-electric propeller.  

One of the main drawbacks of RL techniques is represented by the difficulty of 
defining a unique setup of the agents when specific environment are faced. 
Unfortunately, only a small portion of the literature has focused on the analysis of 
the effects produced by changes in the configuration of the algorithms. This can be 
principally referred to the computational effort required in the training process of 
the agents. Specifically for the research field of electrified vehicles, more effort is 
hence needed to define approaches and methodologies aimed at assessing the real 
performances achieved by RL-based tools when tested on very different test cases, 
both in terms of driving conditions and algorithmic setups. 
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1.3 Research objective and main contributions  

In the present work, a dissertation about optimal design and real-time control of 
hybrid and electric powertrains based on AI approaches is presented. 
Demonstrating the potentials of ML-related techniques when applied to the field of 
vehicle electrification is to be considered as the main research objective. 
Specifically, attention has been paid on the capabilities of SL and RL algorithms 
when applied to different optimization tasks about electrified vehicles. The 
methodologies have been developed and tested specifically for hybrid powertrains. 
Two motivations can be identified beyond this choice: first, data related to (P)HEVs 
have been available for modeling the vehicle and, hence, assessing for the effects 
of AI agents; second, (P)HEVs’ optimal design and control problems can assume a 

significant complexity and, hence, they can represent an important proving ground 
for testing the potentials of ML approaches. Nevertheless, the proposed AI-based 
approaches are intended to be re-designed and possibly transferred to different 
testing cases, including different types of electrified vehicles.  

As a preliminary step, fast-running low-throughput models for (P)HEVs have 
first been developed so as that the performances of ML approaches could be 
exploited for different (P)HEV test cases. Within this phase, the performances of 
different electrified powertrains have been studied by means of a deterministic DP 
(DDP) global optimizer. Based on the necessity of handling such a tool in a proper 
way, a relevant research effort has been devoted to the development of 
methodologies for a smart usage of DDP for (P)HEVs. 

Thanks to a consolidated utilization of the DDP, the results obtained by the 
latter have been thoroughly analyzed with respect to the identification of optimal 
design and off-line optimal energy management of hybrid powertrains. The two 
operations have been conducted by introducing supervised ML algorithms with the 
aim of understanding the patterns behind the optimal decisions taken by the global 
optimizer. As an outcome, the development of supervised approaches for the 
identification of optimal design and real-time capable control policy has been 
performed based on direct results of DDP. 

Finally, with the aim of demonstrating the possibility of ML to overcome the 
DDP limitation of identifying optimal control policies under real-time conditions, 
RL approaches have been analyzed. Specifically, the performances of a Q-learning 
based EMS have been evaluated related to a HEV application. A detailed study has 
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been about carried out about the effects produced by introducing variations into the 
main parameters of a Q-learning based EMS for real-world driving. 

Considering the entire course of the research, the main contributions to the 
literature can be briefly introduced as follows: 

 A methodology for the identification of the optimal mesh refinement of a DDP 
algorithm when considering the battery SOC as a state variable. According to 
an optimized number of battery SOC levels, a drastic reduction of machine time 
can be obtained while ensuring the maximum accuracy of the DDP calculations. 

 The demonstration of the performances achieved by a pipeline of NNs when 
applied to the prediction of the results obtained by a DDP over a massive set of 
hybrid layouts. The accuracy of the predictions realized by the pipeline could 
allow for the identification of optimal design regions with a complete 
replacement of the DDP. Consistently, computationally heavy DDP 
optimizations could be neglected thanks to proper training operations of the 
pipeline. 

 The assessment of the capability of LSTMs to learn and predict the optimal 
control choices obtained by a DDP off-line optimizer for a HEV. Differently 
from other utilizations of LSTMs, the latter have not been adopted to forecast 
information about the driving environment whereas they have been trained to 
directly learn the optimal utilization of the powertrain in terms of both gear and 
power-flow. A completely supervised controller has hence realized that can be 
tested on various driving conditions. 

 A methodology to project and develop a Q-Learning agent for real-time control 
of HEVs, which could be useful to realize experiments aimed at defining the 
maximum performances achieved by RL-based EMSs. The results obtained 
during the research have proved the importance of accurately tuning the main 
parameters of Q-Learning to avoid drawing wrong conclusions about the RL 
agent behaviour. Specifically, attention has been paid in demonstrating the 
effects of changes in the discount factor, reward function, learning rate and 
exploration strategy. 
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1.4 Outline of the dissertation  

The outline of the dissertation follows a precise structure that postpones the 
discussion of the capabilities of AI-based methodologies for electrified vehicles 
after the presentation of benchmark models and algorithms. The development of 
the latter has, in fact, been considered as a fundamental milestone to be achieved 
before taking a step towards SL and RL techniques. 

In Chapter 2, a backward-facing modeling approach for HEVs is first 
introduced to the reader that will be used for modeling any other hybrid powertrain 
considered throughout the dissertation. Therefore, a DDP-based methodology for 
the identification of the optimal design of HEVs is presented and the results 
obtained for a hdv are discussed. 

Attention has been paid during the research to the optimization of the DDP 
algorithm used in Chapter 2. In Chapter 3, a methodology for the selection of the 
best discretization level of the DDP state space is thoroughly described in the case 
of battery SOC as one of the state variables. The results presented in Chapter 3 have 
oriented the setup of the DDP grids used in the following research activities. 

From Chapter 4 onwards, the capabilities of AI-based techniques are analyzed 
considering very different tasks. Specifically, the problem of optimal design of 
HEV fleets has been considered and the potentials of DNNs to predict the tank-to-
wheel CO2 emissions of different HEV parallel architectures have been discussed 
in Chapter 4. To this end, the algorithmic structure of the SL-based predictor has 
firstly been illustrated and then the main results obtained by its application have 
been presented to the reader.  

Moving to Chapter 5 and Chapter 6, the opportunity of adopting ML for the 
real-time control of HEVs is investigated by presenting the potentials of SL and RL 
approaches, respectively. In Chapter 5, the capability of a particular family of RNNs 
(LSTMs) to directly control a hybrid powertrain under real-world conditions is 
discussed. Specifically, a methodology for building an efficient learning of a LSTM 
is described based on the optimal control trajectories obtained by a DDP algorithm. 
On the other hand, the project and development of a Q-Learning agent for HEVs’ 

real-time control is presented in Chapter 6. In this case, a modular software 
framework is first described that embeds RL agent, environment of the experiment 
and simulator (HEV model). Therefore, a study of the effects produced by 
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variations in the most influencing parameters of the agent on the performances of 
the entire control system is conducted. 

 



 

Chapter 2 

Optimal design of hybrid powertrains 
through dynamic programming 

In this Chapter, the topic of (P)HEV design optimization is disserted. Nevertheless, 
an exhaustive presentation of the (P)HEV model employed for the analyses is 
carried out. Starting from scratch, a “model” of a vehicle can be considered as a 

virtual representation of a vehicle that allows for conducting experiments 
(simulations) that might prove something about that specific system ([118]). 
Among the different types of models, physics-based mathematical models have 
been used in the research activity ([119]) and hence they are discussed in the present 
dissertation. Before stepping into the specific (P)HEV driveline, two additional 
clarifications can be made about the methodology and the assumptions made in the 
considered vehicle models. A “backward-facing” (or kinematic) model features the 

capability of the vehicle model to fulfill the power request coming from the driving 
missions ([120]). 

 

Part of the present section has been extracted from: 

Maino, C. et al. (2021). Optimal mesh discretization of the dynamic programming for hybrid electric 
vehicles. Applied Energy. Elsevier Ltd, 292(March), p. 116920. Doi: 
10.1016/j.apenergy.2021.116920. 

Anselma, P. G. et al. (2019). Comparing parallel hybrid electric vehicle powertrains for real-world 
driving. 2019 AEIT International Conference of Electrical and Electronic Technologies for 
Automotive, AEIT AUTOMOTIVE 2019. AEIT, pp. 1–6. Doi: 10.23919/EETA.2019.8804609. 
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Such an approach is hence followed by evaluating the power required at the 
wheels level, then back propagating the torque and the speed request to the entire 
driveline (such as final drive, transmission, etc.) and finally achieving the propellers 
(ICE, MG). Thanks to this workflow, the adoption of backward-facing models 
prevails in the design optimization operations since the capability of the vehicle to 
run over a specific velocity trace can be immediately tested by modifying the sizing 
of the main powertrain components. On the contrary, a “forward-facing” (or 

dynamic) model embeds the adoption of dynamic models of the powertrain 
components as well as specific model of the driver ([120]). Thanks to the latter, a 
non-ideal (and more realistic) response of the vehicle to a reference 
acceleration/deceleration ramp can be simulated. Moreover, the utilization of 
dynamic model allows for a more accurate estimation of the effects produced by a 
given power request on a component. In this case, the performance of the propellers 
(e.g. ICE) is linked to the power request produced by the driver model. Finally, the 
power is propagated to the other powertrain components until the wheels are 
achieved and a given vehicle velocity output is produced. Differently from 
backward-facing models, a difference between the reference and the real vehicle 
velocity can be obtained. For this reason, forward-facing models are not typically 
considered for design optimization analyses while they are used when specific 
controllers have to be tested over a specific velocity trajectory ([67]). 

As a first research objective, an optimization of the main components of hybrid 
powertrains has been targeted. Therefore, a backward-facing vehicle modeling 
approach has been identified as a valid choice and employed for the development 
of parallel (P)HEV models. For the sake of clarity, a similar approach could be 
considered for modeling other hybrid architectures, such as series, power-split or 
multi-mode ([121]). The selection of parallel configurations has been bounded to 
two main reasons: data availability and possibility of exploring of the most 
interesting architectures for FHEVs and PHEVs. In fact, parallel (P)HEVs have 
proved to be capable of achieving significant improvements in terms of fuel 
efficiency and pollutant emissions reductions without introducing drastic 
modifications to the conventional powertrains ([122]).  

In the following sections, the vehicle model of a pre-transmission parallel 
(P)HEV architecture is presented. 
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Figure 5. Workflows of backward-facing vs. forward-facing models. 
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2.1 Vehicle model of a pre-transmission hybrid electric 
powertrain 

According to the backward-facing modeling approach, the velocity input of the road 
can be used to evaluate the power required at the wheels of the vehicle. The relative 
torque and speed demanded to the mechanical power sources (i.e. ICE and MG) can 
hence be calculated starting from the wheels and passing through any modeled 
component. Therefore, regardless the selection of a given (P)HEV architectures, the 
first step refers to the evaluation of the resistant forces of the vehicle.  

According to [123] and [124], the resistance forces seen by a vehicle when 
driven longitudinally over a specific driving mission mainly depend upon 
aerodynamic friction losses, rolling friction losses and gravity-related forces. The 
total force to be generated at the wheels level 𝐹𝑡 to win the resistant forces at a 
generic time instant 𝑡 can be calculated by ([124]):  

 𝐹𝑡(𝑡) = 𝐹𝑎(𝑡) + 𝐹𝑟(𝑡) + 𝐹𝑔(𝑡) + 𝐹𝑣(𝑡) + 𝑚𝑣

𝑑𝑣(𝑡)

𝑑𝑡
 (1) 

in which 𝐹𝑎, 𝐹𝑟, 𝐹𝑔 and 𝐹𝑣 represent the aerodynamic friction, the rolling 
friction, the force produced by the gravity on non-flat road paths and the additional 
force produced by various non specified effects, respectively, 𝑚𝑣 is the vehicle 
mass and 𝑑𝑣(𝑡) 𝑑𝑡⁄  is the acceleration of the vehicle. The contribution brought by 
aerodynamic friction losses (“drag resistance”) to the total resistance force is 

calculated through the following equation: 

 𝐹𝑎(𝑡) =
1

2
∙ 𝜌𝑎 ∙ 𝐴𝑓 ∙ 𝑐𝑑 ∙ 𝑣(𝑡)

2 (2) 

in which 𝜌𝑎 is the density of the ambient air, 𝐴𝑓 is the frontal section of the 
vehicle and 𝑐𝑑 is the drag coefficient specifically calculated for the considered 
vehicle ([125]). The effects of the rolling frictions (“rolling resistance”) on the total 

resistance force are calculated by: 

 𝐹𝑟(𝑡) = 𝑐𝑟(𝑣(𝑡), 𝑝, 𝑟) ∙ 𝑚𝑣 ∙ 𝑔 ∙ cos 𝛼(𝑡) (3) 
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in which 𝑐𝑟 is the rolling coefficient, 𝑔 is the acceleration due to gravity and 𝛼 
is angle between the actual road slope and a flat trajectory. The rolling coefficient 
𝑐𝑟 can depend upon multiple variables, such as the tire pressure 𝑝 and the road 
surface conditions 𝑟 ([126]). Therefore, it could be subject to variations within the 
same driving scenario. In this research, a constant rolling coefficient has been 
considered throughout the entire driving mission assuming negligible variations of 
the tire pressure as well as of the road surface. Considering non-flat roads, the 
effects of the force produced by the gravity (“grade resistance”) have to be taken 

into account: 

 𝐹𝑔(𝑡) = 𝑚𝑣 ∙ 𝑔 ∙ sin 𝛼(𝑡) (4) 

The contribution of the grade resistance would clearly be nullified if a flat road 
is driven (i.e. 𝛼 = 1, sin 𝛼 = 0); on the contrary, positive or negative grade 
resistances should be considered in case of uphill or downhill, respectively. 
Regarding 𝐹𝑣, the possibility of involving unexpected resistance forces has been 
neglected. 

The final equation used to calculate the resistance force in case of non-flat roads 
can hence be written as: 

 
𝐹𝑡(𝑡) =

1

2
∙ 𝜌𝑎 ∙ 𝐴𝑓 ∙ 𝑐𝑑 ∙ 𝑣(𝑡)

2 + 𝑐𝑟 ∙ 𝑚𝑣 ∙ 𝑔 ∙ cos 𝛼(𝑡) +  

+ 𝑚𝑣 ∙ 𝑔 ∙ sin 𝛼(𝑡) + 𝑚𝑣

𝑑𝑣(𝑡)

𝑑𝑡
 

(5) 

while for flat roads: 

 𝐹𝑡(𝑡) =
1

2
∙ 𝜌𝑎 ∙ 𝐴𝑓 ∙ 𝑐𝑑 ∙ 𝑣(𝑡)

2 + 𝑐𝑟 ∙ 𝑚𝑣 ∙ 𝑔 + 𝑚𝑣

𝑑𝑣(𝑡)

𝑑𝑡
 (6) 

In the present model, the time history is not considered as a continuous variable 
whereas it is discretized by a given number of time steps based on the length of the 
driving mission to be simulated. An adaptive width of the time steps could be 
considered; nevertheless, a default value of 1 second has been implemented 
according to the typical assumption of the main type-approval tests for on-road 
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vehicles (e.g. WLTP, FTP, etc.). Within a discretized environment, finite 
differences have been considered for approximating the derivatives, such as the 
derivative of the vehicle velocity in time (i.e. vehicle acceleration). Among the 
possible methods, backward differences have been considered for the 
approximation of the derivatives ([127]). Therefore, the following equation has 
been implemented for calculating the vehicle acceleration at a given time step 𝑎(𝑡): 

 𝑎(𝑡) =
𝑑𝑣(𝑡)

𝑑𝑡
=
𝑣(𝑡) − 𝑣(𝑡 − 1)

∆𝑡
 (7) 

in which ∆𝑡=1s. For the sake of simplicity, the same approach will have to be 
considered for calculation of any other derivative.  

As far as design optimization are concerned, GOs are typically employed for 
identifying the optimal solution to an off-line control problem in which the entire 
driving profile is known before of the optimization. The usage of central difference 
could hence be exploited as approximation method of the same derivative; 
nevertheless, the knowledge of future conditions about the driving mission has to 
be assumed. In the perspective of employing a backward-facing model for multiple 
tasks (such as optimization of the real-time capable controllers), assuming the 
complete knowledge of the driving missions cannot always be a valid hypothesis. 
Therefore, backward differences turn to be a more flexible methodology to be 
employed for any simulation setup either including or excluding the availability of 
future trip information. 

Consistent with the prerequisites of a backward-facing modeling approach, the 
vehicle velocity 𝑣(𝑡) is to be set as a reference velocity imposed by the road. 
Therefore, a generic driving mission has necessarily to be modeled at least by means 
of a temporal information of the desired velocity. Moreover, data about the road 
slope (i.e. the variation in the road altitude) could also be used to include non-null 
values of 𝐹𝑔 in the calculation of the total resistant force to the motion (see (4)). The 
velocity and road slope signals can hence be employed as inputs of the vehicle 
model so as to proceed with the calculation of the resistance forces according to (5) 
and (6). 

Once the total resistance force 𝐹𝑡 has been defined, the force to be outputted by 
the entire powertrain at the wheels level is known. The losses and the inertial terms 
of any rotating included in the driveline can hence be estimated starting from the 
value of 𝐹𝑡. Consequently, the load request of the propeller(s) can be calculated. 
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For the sake of simplicity, the following equations will refer to the vehicle 
longitudinal dynamics in case of flat road. The total power required to traction the 
vehicle 𝑃𝑡 can be calculated as: 

 𝑃𝑡(𝑡) = 𝐹𝑡(𝑡) ∙ 𝑣(𝑡) (8) 

from this stage, moving backwardly until the power energy sources, the model 
equations can differ depending upon the specific powertrain to be modeled. In the 
present section, the entire set of equations considered for a pre-transmission parallel 
(P)HEV is presented. For insights about the models considered for different parallel 
(P)HEV architectures, please refer to Appendix A. The hybrid powertrain reported 
in Figure 6 has been modeled in the MATLAB® software environment. 

 

 

Figure 6. Driveline of a pre-transmission parallel hybrid electric powertrain. 

 

According to a backward-facing model, the electric path (green) of a pre-
transmission (P)HEV is encountered after the transmission (TR). A final drive (FD) 
is modeled as a speed multiplier between the main shaft (grey) and TR. The latter 
has been modeled as a discrete multi-gears transmission. Each gear has been 
considered a speed multiplier with a given efficiency. Such an assumption has been 
forced by the availability of data about a manual gearbox for conventional vehicles. 
Nevertheless, increasing the number of gears rather than changing the type of 
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transmission (e.g. CVT) would not imply any change in the presented model. 
Moving backwardly from that stage, a torque-coupling device (TCD) is considered 
as an additional speed multiplier, which connects the electric power sources to the 
main shaft. Beyond the TCD level, two clutches (C1 and C2) are positioned for 
engaging/disengaging the engines from the wheels. Finally, the powertrain 
propellers (i.e. ICE and MG) are achieved.  

The set of equations used to calculate the power required at the propellers starts 
with the evaluation of the power at the wheels 𝑃𝑤ℎ: 

 
𝑃𝑤ℎ(𝑡) = (𝑃𝑡(𝑡) + 𝐼𝑤ℎ ∙ �̇�𝑤ℎ(𝑡) ∙ 𝜔𝑤ℎ(𝑡)) ∙ 𝜂𝑤ℎ

𝑘  

𝑃𝑤ℎ(𝑡) = (𝑃𝑡(𝑡) + 𝑃𝑖𝑛,𝑤ℎ(𝑡)) ∙ 𝜂𝑤ℎ
𝑘  

(9) 

where 𝑃𝑖𝑛,𝑤ℎ represents the inertial power of the wheels as a function of their 
inertia coefficient 𝐼𝑤ℎ, rotational acceleration �̇�𝑤ℎ and rotational speed 𝜔𝑤ℎ, 𝜂𝑤ℎ 
represents the efficiency of the wheels and 𝑘 is an index of traction/braking 
conditions. Specifically, 𝑘 is equal to -1 during traction and 1 during braking 
phases. In fact, losses have to be accounted additional terms to the power demanded 
to the propellers during traction phases; on the contrary, the kinetic energy available 
for regeneration is lowered by the same losses when the vehicle is braking ([34]). 
Regarding the sub-model of the vehicle tires, a detailed model of the real forces 
applied to the tires (such as those presented in [128]) has not been implemented due 
to a lack of data. Therefore, the wheels have been modeled as rigid bodies rotating 
at a given speed with a given inertia.  

Consistent with the driveline of Figure 6, the power right after the TCD level 
is equal to the power at the wheels 𝑃𝑤ℎ at net of the efficiencies of FD, TR and 
TCD. Therefore, if any loss is considered in the driveline until TCD: 

 𝑃𝑤ℎ(𝑡) = 𝑃𝑓𝑑(𝑡) = 𝑃𝑡𝑟(𝑡) = 𝑃𝑡𝑐𝑑(𝑡) (10) 

where 𝑃𝑓𝑑, 𝑃𝑡𝑟, 𝑃𝑡𝑐𝑑 represent the power at the FD, TR and TCD, respectively. 
On the contrary, if non-null losses are considered throughout the driveline, a set of 
equations is applied to compute the power at the TCD: 
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 𝑃𝑓𝑑(𝑡) = (𝑃𝑤ℎ(𝑡) + 𝑃𝑖𝑛,𝑓𝑑(𝑡)) ∙ 𝜂𝑓𝑑
𝑘  (11) 

 𝑃𝑡𝑟(𝑡) = (𝑃𝑓𝑑(𝑡) + 𝑃𝑖𝑛,𝑡𝑟(𝑡)) ∙ 𝜂𝑡𝑟,𝑖
𝑘  (12) 

 𝑃𝑡𝑐𝑑(𝑡) = (𝑃𝑡𝑟(𝑡) + 𝑃𝑖𝑛,𝑡𝑐𝑑(𝑡)) ∙ 𝜂𝑡𝑐𝑑
𝑘  (13) 

in which 𝑃𝑖𝑛,𝑓𝑑, 𝑃𝑖𝑛,𝑡𝑟(𝑡) and 𝑃𝑖𝑛,𝑡𝑐𝑑(𝑡) are the inertial powers of FD, TR and 
TCD, respectively, while 𝜂𝑓𝑑𝑘 , 𝜂𝑡𝑟,𝑖𝑘  and 𝜂𝑡𝑐𝑑𝑘  are the efficiencies of FD, TR and 
TCD, respectively. Similar to (9), the inertial powers of the three rotating 
components have been calculated based on their relative inertial coefficients. As far 
as TR is concerned, a given efficiency has been considered for each i-th activated 
gear. Once the power at the TCD is known, the power demanded to the propellers 
during traction phases can be calculated according to four different operating modes 
([56]): 

 Pure electric mode (pe): the MG is used as only propeller of the vehicle 
(C1 disengaged, C2 engaged);  

 Pure thermal mode (pt): the ICE is used as only propeller of the vehicle 
(C1 engaged, C2 disengaged); 

 Power-split mode (ps): the MG and the ICE are used simultaneously to 
propel the vehicle (C1 and C2 engaged); 

 Battery charging mode (bc): the MG is used as generator while the ICE 
provides enough power to both propel the vehicle and recharge the 
battery. 

About braking conditions, regenerative braking is considered as only operating 
mode (i.e. C1 disengaged, C2 engaged and MG working as generator to recharge 
the battery). Assuming 𝑃𝑟𝑒𝑞 to be the power at the TCD including the inertial terms 
of both the propellers (𝑃𝑟𝑒𝑞 = 𝑃𝑡𝑐𝑑 + 𝑃𝑖𝑛,𝐼𝐶𝐸 + 𝑃𝑖𝑛,𝑀𝐺), the powers of MG (𝑃𝑀𝐺) 
and ICE (𝑃𝐼𝐶𝐸) can be calculated as: 

𝑃𝑀𝐺(𝑡) = 𝛼𝑜𝑚 ∙  𝑃𝑟𝑒𝑞(𝑡) (14) 
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𝑃𝐼𝐶𝐸(𝑡) = (1 − 𝛼𝑜𝑚) ∙ (𝑃𝑟𝑒𝑞(𝑡) + 𝑃𝑎𝑢𝑥,𝐼𝐶𝐸) (15) 

in which 𝛼𝑜𝑚 (“power-split ratio”) is an index that allows for the determination 
of the power demands to the propellers according to the different operating modes 
of the (P)HEV architecture while 𝑃𝑎𝑢𝑥,𝐼𝐶𝐸 is a fixed power load related to the 
auxiliaries of the ICE. A similar power term about the auxiliaries of the electric 
components will be introduced in the evaluation of the battery power. Depending 
on the value assumed by the power-split ratio, the operating mode of the hybrid 
system can be indirectly identified: 

 𝛼𝑜𝑚 = 1  (pe)  →  𝑃𝐼𝐶𝐸 = 0, 𝑃𝑀𝐺 = 𝑃𝑟𝑒𝑞; 
 𝛼𝑜𝑚 = 0   (pt)   →  𝑃𝑀𝐺 = 0, 𝑃𝐼𝐶𝐸 = 𝑃𝑟𝑒𝑞; 
 0 < 𝛼𝑜𝑚 < 1  (ps)  →  0 < 𝑃𝑀𝐺 < 𝑃𝑟𝑒𝑞 , 0 < 𝑃𝐼𝐶𝐸 < 𝑃𝑟𝑒𝑞; 
 𝛼𝑜𝑚 < 0   (bc)  →  𝑃𝑀𝐺 < 0 , 𝑃𝐼𝐶𝐸 > 1 

In case of bc mode, the ICE propels the vehicle with a higher power with respect 
to the one required to traction the vehicle (𝑃𝐼𝐶𝐸 > 1) while the MG operates as 
generator to take advantage of the exceeding power (𝑃𝑀𝐺 < 0). For the sake of 
clarity, a positive sign is used to define a power outgoing from a component, 
whereas a negative sign is used to define a power entering a component. 

In Section 2.2, the problem of defining an offline policy with the aim of 
optimizing the usage of the different power components is analyzed. Nevertheless, 
the sub-models of the main components included in the driveline are first presented, 
specifically ICE, MG and battery. 

2.1.1 Sub-models: Internal Combustion Engine 

The ICE has been modeled according to experimentally derived 2-D look-up tables 
in which the fuel consumption (FC) can be calculated based on the ICE torque and 
speed. Accordingly, engine efficiency and other indexes (e.g. brake specific fuel 
consumption) can be evaluated. Examples of the ICE operating maps featured by 
FC and efficiency are reported for a generic application in Figure 7 and Figure 8, 
respectively. The wide open throttle (wot) and the motoring (mot) curves have also 
been modeled ([129]). The wot has been employed to determine the maximum load 
achieved at the different engine rotational speed, whereas the mot has been 
considered to discriminate between ICE on/off operations with negative requested 
torques (non-traction conditions). Specifically, the ICE has been modeled to be 
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switched off in case of operating points falling below the mot. According to this 
approach, the clutch C1 (Figure 6) is disengaged and the powertrain is capable of 
maximizing the power entering the generator to recharge the battery. Without any 
further dynamics regarding ICE transient conditions, only an additional fixed FC 
has been considered during each time step with engine switching on. 

For the sake of clarity, the ICE operating maps have been associated to few but 
important ICE characteristics: displacement, peak power, mass and inertia 
coefficient. Based on the ICE characteristics, different ICE sizing can be simulated 
through a scaling operation over the operating maps. In Section 2.2, the scaling 
operation is thoroughly described. 

Consistent with the presented backward-facing model and the ICE-sub model, 
the actual FC can be estimated at each time step of a generic driving mission by 
means of an interpolation in the operating maps. Once the final step of the mission 
has been performed, the evaluation of the cumulative FC can be realized and the 
related tank-to-wheel CO2 emissions can be estimated.  

 

 

Figure 7. Example of a 2-D operating map of an internal combustion considering 
the engine fuel consumption. 
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Figure 8. Example of a 2-D operating map of an internal combustion engine 
considering the engine efficiency. 

 

A similar approach could be employed if other ICE-based effects should be 
assessed, such as NOx and PM emissions for Diesel engines ([130]) or CO and PN 
for gasoline engines ([131]). Within this dissertation, only the CO2 emissions have 
been accounted for any optimization procedure and hence no additional ICE maps 
have been considered in the studies. 

2.1.2 Sub-models: Motor-Generator 

In a pre-parallel (P)HEV architecture, the conventional engine is typically coupled 
with an electric machine with the capability of working as a generator (i.e. motor-
generator) ([34]). The electric power coming from an electric energy source can be 
converted into mechanical power to propel the vehicle when the MG is working as 
a motor, whereas the opposite condition can be realized during braking phases when 
the MG works as a generator ([132]). The possibility of minimizing the number of 
additional components to be integrated within the conventional powertrain and 
realize a parallel architecture can consistently be achieved. 

According to the available data, brushless permanent magnet MGs ([133]) have 
been considered for the entire set of analyses presented in the dissertation. As for 
the ICE, the operating conditions of MGs have been evaluated by means of 2-D 
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look-up tables in which the MG efficiency is defined as a function of torque and 
speed. In Figure 9, an example of a MG operating map representative of the iso-
efficiency curves is charted. In this case, the operating conditions of the MG 
working as a generator (negative torques) have been considered to be equal to those 
working as a motor (positive torques) due to a lack of data. On the contrary, two 
distinct areas could be identified in case of data availability.  

As for the ICE sub-model, the operating map of the MG has been associated to 
some characteristic variables: peak power in traction, peak power in regeneration, 
mass and inertia coefficient. Based upon these, a scaling operation which can be 
performed on a MG operating map is presented in Section 2.2. 

The relation between mechanical and electric powers outputted by the MG at a 
given time step of a generic driving mission is considered as: 

 𝑃𝑀𝐺,𝑒𝑙(𝑡) = 𝑃𝑀𝐺,𝑚𝑒𝑐ℎ(𝑡) ∙ 𝜂𝑀𝐺
𝑘 (𝑇𝑀𝐺,𝑚𝑒𝑐ℎ, 𝜔𝑀𝐺) (16) 

in which 𝑃𝑀𝐺,𝑚𝑒𝑐ℎ and 𝑃𝑀𝐺,𝑒𝑙 represent the MG mechanical and electric 
powers, respectively, while 𝜂𝑀𝐺𝑘  is the MG efficiency related to the specific working 
point as a function of MG mechanical torque 𝑇𝑀𝐺,𝑚𝑒𝑐ℎ and speed 𝜔𝑀𝐺. Consistent 
with the power conversion of a MG, 𝑃𝑀𝐺,𝑚𝑒𝑐ℎ < 𝑃𝑀𝐺,𝑒𝑙 during traction conditions 
(𝑘=-1) whereas 𝑃𝑀𝐺,𝑚𝑒𝑐ℎ > 𝑃𝑀𝐺,𝑒𝑙 during braking conditions (𝑘=1). No distinction 
between peak and continuous power is modeled for the MG, hence only the 
maximum effort achieved by the MG on a generic driving mission have been 
estimated. 
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Figure 9. Example of a 2-D operating map of a motor-generator considering the 
motor-generator efficiency. 

 

2.1.3 Sub-models: battery 

The calculation of the MG electric power allows for the determination of the electric 
power load demanded to a rechargeable energy storage system (REESS). An 
AC/DC converter has been considered between the MG and the REESS with the 
capability of converting the DC current outputted by the REESS into an AC current 
to be read by the MG, and vice versa ([134]).  

The AC/DC has been modeled by means of a fixed efficiency (𝜂𝐴𝐶/𝐷𝐶) which 
leads to the calculation of the REESS electric power demand 𝑃𝑅𝐸𝐸𝑆𝑆,𝑒𝑙 according 
to: 

 𝑃𝑅𝐸𝐸𝑆𝑆,𝑒𝑙(𝑡) = 𝑃𝑀𝐺,𝑒𝑙(𝑡) ∙ 𝜂𝐴𝐶/𝐷𝐶
𝑘  +  𝑃𝑎𝑢𝑥,𝑅𝐸𝐸𝑆𝑆 (17) 

in which 𝑃𝑎𝑢𝑥,𝑅𝐸𝐸𝑆𝑆 represents the load of electric auxiliaries to be constantly 
considered when the electric sources are operated. Among the different REESS 
technologies and models ([135]), a low-throughput simplified model of a Li-Ion 
battery has been developed and used to estimate the energy lost or recuperated 
during traction or braking phases, respectively. Specifically, the internal resistance 
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(Rint) equivalent model ([136]) selected for the entire research activity is presented 
in Figure 10. The open-circuit voltage (𝑉𝑜𝑐) and the internal resistance (𝑅𝑖) of the 
battery have been considered according to experimental data as a function of the 
battery SOC. Example trends of the two characteristics are charted for a single cell 
in Figure 11. 

According to the actual battery SOC and the relative 𝑉𝑜𝑐 and 𝑅𝑖, the possibility 
of the battery to provide the vehicle with a power contribution during traction 𝑃𝑏,𝑒𝑙𝑡𝑟  
can be evaluated through: 

 𝑃𝑏,𝑒𝑙
𝑡𝑟 (𝑡) = 𝑃𝑅𝐸𝐸𝐸𝑆,𝑒𝑙

𝑡𝑟 (𝑡) < min (𝑃𝑏,𝑚𝑎𝑥,1
𝑡𝑟 (𝑡), 𝑃𝑏,𝑚𝑎𝑥,2

𝑡𝑟 (𝑡)) (18) 

with: 

 𝑃𝑏,𝑚𝑎𝑥,1
𝑡𝑟 (𝑡) = 𝑉𝑜𝑐(𝑆𝑂𝐶(𝑡)) ∙ 𝐼𝑑𝑖𝑠,𝑚𝑎𝑥 − 𝑅𝑖(𝑆𝑂𝐶(𝑡)) ∙ 𝐼𝑑𝑖𝑠,𝑚𝑎𝑥

2  (19) 

 𝑃𝑏,𝑚𝑎𝑥,2
𝑡𝑟 (𝑡) =

𝑉𝑜𝑐
2 (𝑆𝑂𝐶(𝑡))

4 ∙ 𝑅𝑖(𝑆𝑂𝐶(𝑡))
 (20) 

in which 𝑃𝑏,𝑚𝑎𝑥,1𝑡𝑟  is the result of a power balance applied to the Rint model 
circuit, whereas 𝑃𝑏,𝑚𝑎𝑥,2𝑡𝑟  stems from the value of the maximum current admitted in 
the battery during discharge mode 𝐼𝑑𝑖𝑠,𝑚𝑎𝑥. The latter is evaluated by means of the 
availability of data about the battery capacity 𝐶𝑏 and the maximum C-rate during 
traction 𝐶𝑑𝑖𝑠,𝑚𝑎𝑥 ([137]). 



Chapter 2. Optimal design of hybrid powertrains through dynamic programming 

 

35 

 

Figure 10. Internal resistance equivalent model of a Li-Ion battery. 

 

 

Figure 11. Example of the internal resistance and open-circuit voltage trends as 
a function of battery SOC. 
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According to these values, the maximum current in traction can be calculated 
as: 

 𝐼𝑑𝑖𝑠,𝑚𝑎𝑥 =
𝐶𝑏
1ℎ
∙ 𝐶𝑑𝑖𝑠,𝑚𝑎𝑥 (21) 

As far as braking events (i.e. battery regeneration phases) are concerned, the 
power available for a battery recharge 𝑃𝑏,𝑒𝑙𝑏𝑟  can be calculated as: 

 𝑃𝑏,𝑒𝑙
𝑏𝑟 (𝑡) = 𝑃𝑅𝐸𝐸𝐸𝑆,𝑒𝑙

𝑏𝑟 (𝑡) > 𝑃𝑏,𝑚𝑎𝑥
𝑏𝑟 (𝑡) (22) 

with: 

 𝑃𝑏,𝑚𝑎𝑥
𝑏𝑟 (𝑡) = −𝑉𝑜𝑐(𝑆𝑂𝐶(𝑡)) ∙ 𝐼𝑐ℎ,𝑚𝑎𝑥 − 𝑅𝑖(𝑆𝑂𝐶(𝑡)) ∙ 𝐼𝑐ℎ,𝑚𝑎𝑥

2  (23) 

in which 𝑃𝑏,𝑚𝑎𝑥𝑏𝑟  is the maximum power to be inputted in the battery during 
charging conditions considering the maximum current admitted during regeneration 
𝐼𝑐ℎ,𝑚𝑎𝑥. Similar to (21), 𝐼𝑐ℎ,𝑚𝑎𝑥 has been calculated as: 

 𝐼𝑐ℎ,𝑚𝑎𝑥 =
𝐶𝑏
1ℎ
∙ 𝐶𝑐ℎ,𝑚𝑎𝑥 (24) 

where 𝐶𝑐ℎ,𝑚𝑎𝑥 is representative of the maximum C-rate during regeneration 
([137]). Consistent with the evaluation of the battery power in traction 𝑃𝑏,𝑒𝑙𝑡𝑟  or 
braking 𝑃𝑏,𝑒𝑙𝑏𝑟 , the current flowing into the battery 𝐼𝑏 can be obtained for each time 
instant and used to calculate the battery SOC variation according to a Coulomb 
Counting (CC) method ([138]): 

 𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1) − ∫
𝜂𝑐 ∙ 𝐼𝑏
𝐶𝑏

𝑡

𝑡−1

𝑑𝑡 (25) 

which turns into the following similar formulation for a time-discretized 
environment: 
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𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1) −
𝜂𝑐 ∙ 𝐼𝑏 ∙ 𝛥𝑡

𝐶𝑏
 (26) 

where 𝜂𝑐 represents the coulombic efficiency ([139]). The latter has been set to 
the unity for the entire research activity. A positive sign has been considered for 𝐼𝑏 
flowing out of the battery, whereas a negative sign has been defined for currents 
entering in the battery. According to (26), the evolution of the battery SOC 
trajectory can be computed during a generic driving mission. As far as electrified 
vehicles are concerned, the trend of the battery SOC plays a fundamental role in the 
identification of the vehicle state as well as in the definition of good or bad control 
policies. In the following section, an approach for the identification of the optimal 
control policy is presented for (P)HEV applications. 
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2.2 Identification of a benchmark control policy 

Once the backward-facing model of a (P)HEV has been completed, the objective 
of establishing a methodology for the optimization of a hybrid powertrain design 
has been targeted. To this end, the definition of an approach for the identification 
of a benchmark control policy is a key step to be carried out. In this Section, the 
approach used for analyzing the optimal performance of a pre-transmission (P)HEV 
architecture in a discretized environment is presented. Apparently, a customization 
operation has to be performed if the same approach is intended to be used on any 
other parallel hybrid architecture reported in Appendix A.  

A DDP GO has been selected as the most promising method for the 
identification of the optimal control policy of a (P)HEV when simulated on a 
generic driving mission according to [140]. A control policy is here defined as a 
combination of decisions taken at each time step throughout the entire driving 
mission. The DDP algorithm has proved the capability of solving complex control 
problems in time-discretized environments while ensuring the convergence to a 
global optimum. Thanks to the identification of the latter, the best performances 
achieved by (P)HEV on a specific driving mission can be evaluated. To this end, a 
“stage cost” (or “running cost”) has been identified as a function of the state of the 
system 𝑋 and the control decision 𝑈: 

𝑔(𝑋, 𝑈) = �̇�𝑓𝑐 (27) 

in which �̇�𝑓𝑐 is the actual FC evaluated at each time step of the driving mission 
between the initial (𝑡0) and final (𝑡𝑁) time instants. The optimization process 
consists of two phases, namely backward and forward phases. In the backward 
phase (from 𝑡𝑁 to 𝑡0), the optimal “cost-to-go” function 𝐽∗ is calculated for each 
stage of the driving mission, whereas the final control trajectory is recreated in the 
forward phase (from 𝑡0 to 𝑡𝑁). For the sake of simplicity, the stages of the driving 
mission have been considered to correspond to the time steps of the driving mission. 
During the backward phase, the cost-to-go function and the optimal control decision 
can be evaluated based on following mathematical formulation of the problem: 

𝐽𝑡
∗(𝑋𝑡) = 𝑔𝑁(𝑋𝑁) + 𝑚𝑖𝑛

𝑈𝑡
(𝑔𝑡(𝑋𝑡 , 𝑈𝑡) + 𝐽𝑡+1

∗ (𝑋𝑡+1))           𝑤𝑖𝑡ℎ 𝑡 = 1,…𝑁 − 1  (28) 
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𝑈𝑡
∗(𝑋𝑡) = 𝑔𝑁(𝑋𝑁) + 𝑎𝑟𝑔𝑚𝑖𝑛

𝑈𝑡

(𝑔𝑡(𝑋𝑡 , 𝑈𝑡) + 𝐽𝑡+1
∗ (𝑋𝑡+1))  𝑤𝑖𝑡ℎ 𝑡 = 1,…𝑁 − 1  

According to (28), the optimal control policy 𝑈 = [𝑈1
∗, … , 𝑈𝑁−1

∗ ] can hence be 
defined. The evolution of the system (i.e. the vehicle) in a time-discretized 
environment can be written as: 

𝑋𝑡+1 = 𝑓(𝑋𝑡, 𝑈𝑡,𝑊𝑡)   𝑤𝑖𝑡ℎ 𝑡 = 𝑡0, … , 𝑡𝑁 (29) 

where 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} represents the state of the vehicle with 𝑛 state 
variables, 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑚} is the set of control decisions defined by the single 
decisions made upon 𝑢𝑚 sub-control variables and 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑧} is the set 
of 𝑤𝑧 exogenous inputs ([141]). The DDP algorithm has hence been adopted to find 
the optimal set of decisions 𝑈 which leads to the minimization of 𝐽 while ensuring 
a feasible evolution of the state 𝑋 while complying with the exogenous inputs 𝑊 of 
the problem. The state space (i.e. the set of state variables), the control space (i.e. 
the set of sub-control variables) as well as the exogenous inputs can be different 
according to the specific optimization problem. Moreover, the GO could involve 
different boundary conditions about the vehicle state feasibility if different hybrid 
architectures are studied, such as HEVs or PHEVs. For instance, a DDP algorithm 
can be employed to optimize the control policy in case of a charge-sustaining (CS) 
condition for a HEV ([142]) or in case of a mixed charge-depleting/charge-
sustaining (CD/CS) strategy for a PHEV ([143]).  

Since the DDP configurations could significantly vary depending upon the 
specific application, a particular setup of the algorithm had to be chosen. In the 
following sections, the definition of the state and control variables as well as of the 
exogenous inputs and boundary conditions considered in the entire research activity 
involving DDP are detailed. 

2.2.1 DDP: state space 

The setup of the DDP state space considered in the present dissertation is hereafter 
presented. The battery SOC has been considered as a discrete variable with values 
comprised within the minimum and the maximum thresholds of a user-defined SCO 
window. Moreover, the ICE state has been included in the DDP state space as a 
Boolean variable referred to ICE on and off operations. The final set of state 
variables appears as: 
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𝑋 = {𝑥1, 𝑥2}   𝑤𝑖𝑡ℎ {
𝑥1 = [𝑆𝑂𝐶1, … , 𝑆𝑂𝐶𝐷]

𝑥2 = [0, 1]
 (30) 

in which 𝑥1 and 𝑥2 are the state variables featuring battery SOC and ICE on/off, 
respectively, while 𝑆𝑂𝐶1 and 𝑆𝑂𝐶𝐷 are the lowest and highest discrete values 
achieved by the battery SOC, respectively. 

2.2.2 DDP: control space 

Recalling the four macro operating modes of a pre-transmission hybrid powertrain 
(i.e. pe, pt, ps, bc) defined in Section 2.1, one of the DPP control variables employed 
in the literature typically refers to the torque-split between the ICE and the MG 
([144]). For the present research, the torque-split has been considered according to 
the configuration set in [35]: a sub-control variable α has been connected to user-
defined values of torque-split between ICE and MG. Based on (14) and (15), 
multiple values of α have been selected and passed to the DDP as first control 
variable. The indexes related to each α value will be referred as power-flow index 
(PFI). Moreover, an additional sub-control variable τ has been considered to 

account for any gear to be possibly inserted according to the modeled transmission 
presented in Section 2.1. The gear associated to each τ will be referred as gear 

number index (GNI). 

The final set of control variables can be written as: 

𝑈 = {𝑢1, 𝑢2}   𝑤𝑖𝑡ℎ {
𝑢1 = [𝛼1, … , 𝛼𝑀]
𝑢2 = [𝜏1, … , 𝜏𝑍]

 (31) 

in which M is the user-defined number of torque-split values (i.e. the amount 
of PFIs) and Z is the number of gears available in the modeled transmission. 

2.2.3 DDP: exogenous inputs and boundary conditions 

A couple of exogenous inputs has been considered in the study, featuring the 
vehicle velocity 𝑣 and the road grade 𝑔. The set of exogenous inputs can be defined 
as:  

𝑊 = {𝑤1, 𝑤2}   𝑤𝑖𝑡ℎ {
𝑤1 = [𝑣(1), … , 𝑣(𝑇)]

𝑤2 = [𝑔(1), … , 𝑔(𝑇)]
 (32) 
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where 𝑇 is the terminal time step of the driving mission. In case of flat roads, 
𝑤2 has been neglected since comprised only of null values. 

Finally, three boundary conditions have been considered in the research 
activity: 

𝑆𝑂𝐶(𝑇) = 𝑆𝑂𝐶∗ (33) 

𝑆𝑂𝐶𝑚𝑖𝑛 < 𝑆𝑂𝐶(𝑡) < 𝑆𝑂𝐶𝑚𝑎𝑥   𝑓𝑜𝑟 𝑡 = 1, … , 𝑇 (34) 

𝑣𝑟𝑒𝑞(𝑡) = 𝑣(𝑡)   𝑓𝑜𝑟 𝑡 = 1,… , 𝑇 (35) 

where 𝑆𝑂𝐶(𝑇) is representative of the battery SOC value at the final time step 
of the driving mission, 𝑆𝑂𝐶∗ is a user-defined battery SOC value to be a identified 
before the optimization process begins and 𝑣𝑟𝑒𝑞 is the vehicle velocity required by 
the road at each time step (exogenous input). Considering the first boundary 
condition expressed by (33), an optimal CS trajectory for a HEV could be exploited 
by setting 𝑆𝑂𝐶∗ = 𝑆𝑂𝐶(1) whereas a CD trajectory for a PHEV could be optimized 
imposing 𝑆𝑂𝐶∗ = 𝑆𝑂𝐶𝐶𝐷 < 𝑆𝑂𝐶(1). Then, the second condition forces the battery 
SOC to not exceed over or under the maximum and minimum battery SOC values, 
respectively. The feasible battery SOC range will be referred as “SOC window”. 

Finally, the last condition of (35) directly refers to the workflow of a backward-
facing vehicle model (Figure 5) in which the velocity profile is used as an external 
signal to be strictly followed at each time step of the driving mission. 

2.2.4 Feasibility and admissibility 

With the aim of simplifying the readability of the results reported in the next 
sections of the dissertation, a distinction between the terms “feasible/unfeasible” 

and “admissible/inadmissible” is hereafter clarified. A feasible control policy is 

obtained when the decisional chain produced by the controller (e.g. DDP) can 
contemporary satisfy the conditions imposed by (33), (34) and (35). Therefore, the 
terminal battery SOC is equal to the user-defined SOC value, the battery SOC is 
always comprised within the SOC window throughout the entire driving mission 
and at least one action can be selected at each time instant to propel the vehicle at 
the required velocity. Related to feasible control policies, feasible control variables 
are realized throughout the driving mission. On the, if at least of the three boundary 
conditions defined in Section 2.2.3 is not satisfied, the control policy is considered 
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as unfeasible. A feasible layout is hence intended as a layout which produced a 
feasible control policy, vice versa for an unfeasible layout. 

In the following sections, admissible or inadmissible hybrid layouts will also 
be cited. Specifically, an admissible (P)HEV layout is intended as a layout which 
proves the capability to satisfy minimum drivability requirements. The latter have 
been evaluated according to specific tests of maximum velocities, maximum 
accelerations, gradeability and pure electric mode driving. For a deeper insight 
about performance tests for (P)HEV, please refer to [35] and [145]. On the contrary, 
an inadmissible layout has been identified when at least of the drivability tests has 
not been completed. 

As far as the correlation between admissible layouts and DDP is concerned, an 
admissibility study has been performed on each (P)HEV layout before the 
beginning of a specific optimization with DDP. Thanks to this approach, only 
admissible layouts could be considered in the wider and more generic (P)HEV 
design optimization procedure presented in the following Section. 
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2.3 A procedure for the design optimization of hybrid 
electric vehicles considering scaling of the components 

As far as (P)HEVs are concerned, the identification of the optimal design is one of 
the most exploited topics in the literature ([146]). Examples can be shown, such as 
[147], in which the optimal design of a parallel hybrid is identified by comparing 
the results produced by four different control strategies on a given set of (P)HEV 
layouts. Similarly, the design of a parallel architecture has been optimized 
according to the results of a DP algorithm in [148] and a sizing rule for the definition 
of the optimal degree of hybridization. In [149], the optimal design is searched with 
DP and hence an ECMS is applied under real-world conditions considering the 
optimal sizing of the powertrain components. 

Regardless the specific application, defining the optimal sizing of the main 
powertrain components is necessary for the assessment of the best energetic 
performances achieved by different (P)HEV architectures and layouts. The vehicle 
model and the DDP configuration presented in Section 2.1 and Section 2.2, 
respectively, have been integrated within a complete design optimization procedure 
for (P)HEVs. The workflow of Figure 12 is representative of the different steps 
considered in the design procedure optimization procedure for the pre-transmission 
parallel (P)HEV (Section 2.1).  

 

 

Figure 12. Steps of a complete design optimization procedure for hybrid electric 
powertrains. 

 

The initial stage of the procedure consists of the definition of the “design 

variables”, i.e. the variables to be optimized that are representative of the (P)HEV 
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design. The set of design variables considered in this study is reported in Table 1, 
specifically the ICE displacement 𝑉𝐼𝐶𝐸, the MG peak power 𝑃𝑚𝑎𝑥,𝑀𝐺  (considering 
the same efficiency maps with MG working as motor and generator), a battery 
power-to-energy ratio 𝑃𝐸 representative of the fraction between 𝑃𝑚𝑎𝑥,𝑀𝐺 and the 
energy of the battery in kWh, the battery maximum C-rates during discharge 
𝐶𝑑𝑖𝑠,𝑚𝑎𝑥 and charge 𝐶𝑐ℎ,𝑚𝑎𝑥, the FD speed ratio 𝑠𝑟𝐹𝐷 and the TCD speed ratio 
𝑠𝑟𝑇𝐶𝐷. 

 

Table 1. Design variables considered for a pre-transmission parallel 
hybrid electric vehicle. 

Powertrain component Design Variable 

Internal Combustion Engine Displacement 

Motor-Generator Peak power 

Battery Power-to-energy ratio 

Battery Maximum C-rate in discharge 

Battery Maximum C-rate in charge 

Final drive Speed ratio 

Torque-coupling device Speed ratio 

 

For the sake of clarity, a modification of the powertrain architecture could lead 
to a modification to the set of design variables. For a deeper insight about the design 
variables considered for other parallel architectures, please refer to Appendix B. 
This said, a single set of performance indexes has to be defined so as that a fair 
comparison between the different (P)HEV layouts could be carried out. Several 
indexes could be used depending on the specific application, such as the tank-to-
wheel CO2 (𝐶𝑂2,𝑇𝑇𝑊) for HEVs ([35]), the total cost of ownership ([145]) or the 
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temperature of the ICE ([150]). Similarly, the driving conditions have to be 
identified so to guide a specific design optimization. Considering a backward-
facing model of the vehicle (Section 2.1), the velocity (and road grade) trajectories 
could be extracted from type-approval tests rather than real-world driving missions. 
Once the first three steps of the procedure have been completed, a set of (P)HEV 
layouts have to be generated for the real optimization to begin. Therefore, the values 
to be assigned at each design variable of the layout have to be defined. Considering 
the design variables of Table 1, two scenarios might occur: 

1. The values of each design variable are known for multiple layouts 
according to experimental data or other sources; 

2. The values of at least one design variable are unknown for multiple 
layouts. 

In the case of complete knowledge about the (P)HEV designs to be compared, 
the step of generating the population of (P)HEV layouts can immediately be solved. 
On the contrary, the problem has to be faced when the values of at least one design 
variable are not available. Several techniques could be used to generate a population 
of layouts ([151]); nevertheless, an analysis of the relative pros and drawbacks is 
beyond the scope of this dissertation. Within this research, a space-filling design of 
experiment (DoE) approach ([151]) has been employed to generate the values of 
the design variables for a relevant number of (P)HEV layouts. Considering the 
seven design variables reported in Table 1, a 7-D population of points has been 
generated by means of a Sobol sequence algorithm ([152]). Consistently, a set of 
layouts featured by design variables with DoE-based quasi-random values can 
hence be obtained without a manual operation. Now, an additional consideration is 
to be made. If the design of the vehicle is completely unknown (i.e. no results have 
ever been obtained about the performance of a specific (P)HEV architecture on a 
given driving mission) and a design optimization has to be carried out, the widest 
possible design domain should be analyzed. Therefore, the DoE approach could be 
useful in the generation of points in a large but rough space. On the contrary, smaller 
and finer grids could be generated in case of reduced problems with a particular 
focus on unknown design regions, such as those featured by a partial knowledge 
about the vehicle. Once the values of the design variables are generated, the sub-
models of the (P)HEV components have to be adapted. To this end, a linear scaling 
approach has been considered for the sub-models of ICE and MG, whereas a 
complete resizing procedure has been developed for the battery. About the other 
design variables (i.e. final drive and torque-coupling device speed ratios), a change 
in their value did not produce a change in the model. The last stages of the design 
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optimization procedure can finally be achieved, in which a GO is first used to 
identify the optimal control policy and then the performance indexes are computed 
and stored for each tested layout, respectively. A final comparison can hence be 
carried out between the feasible layouts and one optimal design region (or more 
sub-optimal) could be identified.  

In the following sections, the three approaches used to re-size the main 
powertrain components are first described and then the results of a complete design 
optimization operation for a heavy-duty HEV are reported. 

2.3.1 Linear scaling of the Internal Combustion Engine 

A scaling operation is intended to be employed when data are possessed only about 
a reference component and the necessity of generating new data about the same 
component with a different sizing arises. Such a consideration might be extended 
to any component of a generic driveline; nevertheless, experimental data are needed 
to prove the reliability of applying such a methodology.  

Specifically for the ICE and considering the ICE sub-model presented in 
Section 2.1.1, a linear scaling operation has been applied to the FC map of a 
reference ICE based upon the ICE-related design variable shown in Table 1 (i.e. 
ICE displacement). A scaling factor for the ICE 𝑠𝐼𝐶𝐸 is calculated according to: 

𝑠𝐼𝐶𝐸 =
𝑉𝐼𝐶𝐸
𝑉𝐼𝐶𝐸
∗  (36) 

in which 𝑉𝐼𝐶𝐸∗  is the displacement of a reference ICE. Assuming the wide-open 
throttle power curve to scale consistent with 𝑠𝐼𝐶𝐸:  

𝑃𝐼𝐶𝐸
𝑃𝐼𝐶𝐸
∗ = 𝑠𝐼𝐶𝐸 =

𝑉𝐼𝐶𝐸
𝑉𝐼𝐶𝐸
∗  (37) 

Now, the reference ICE power 𝑃𝐼𝐶𝐸∗  can be calculated in any point of the ICE 
operating map as: 

𝑃𝐼𝐶𝐸
∗ = 𝑇𝐼𝐶𝐸

∗ ∙ 𝜔𝐼𝐶𝐸
∗ = �̇�𝑓𝑐

∗ ∙ 𝐻𝑖 ∙ 𝜂𝑔
∗  (38) 



Chapter 2. Optimal design of hybrid powertrains through dynamic programming 

 

47 

in which �̇�𝑓𝑐
∗  is the actual FC based on the reference ICE map, 𝐻𝑖 is the lower-

heating value related to the fuel type (e.g. gasoline) and 𝜂𝑔 is the ICE overall 
efficiency ([129]). If data are available about a realistic variation of the ICE speed 
range and overall efficiency, the inverse formulation of (38) could be employed to 
calculate the new FC of a downsized (or upsized) engine. On the contrary, the speed 
range and the ICE efficiency curves can be considered to be unchanged from 
different maps according to [153] when not enough data are available. Such an 
assumption is considered to be reliable only in case of restrained re-sizing 
operations. In fact, a linear scaling operation over extremely different sizing could 
introduce unrealistic approximations into the final ICE maps. 

The new FC map turns into a compressed (or expanded) version of the reference 
map considering: 

�̇�𝑓𝑐 = �̇�𝑓𝑐
∗ ∙ 𝑠𝐼𝐶𝐸 (39) 

The new ICE mass 𝑚𝐼𝐶𝐸 and the inertia coefficient 𝐼𝐼𝐶𝐸 can also be calculated 
considering the scaling factor: 

𝑚𝐼𝐶𝐸 = 𝑚𝐼𝐶𝐸
∗ ∙ 𝑠𝐼𝐶𝐸 (40) 

𝐼𝐼𝐶𝐸 = 𝐼𝐼𝐶𝐸
∗ ∙ 𝑠𝐼𝐶𝐸 (41) 

An example of the ICE wot curve scaling for a downsized ICE in case of 
𝑠𝐼𝐶𝐸=0.58 is reported in Figure 13. 
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Figure 13. Example of a scaling operation over the wide-open throttle curve of an 
internal combustion engine. 

 

Similar to the linear scaling operated over the ICE operating map, the MG speed 
range has been considered to be unchanged between new and reference MG maps 
due to a lack of data. Furthermore, an unchanged shape of the MG efficiency curves 
has been assumed. Even for the MG, the application of a linear scaling approach 
has not been intended for extreme MG re-sizing so as that the generation of 
unrealistic data could be avoided. The new MG masses and inertia coefficients can 
be computed through: 

𝑚𝑀𝐺 = 𝑚𝑀𝐺
∗ ∙ 𝑠𝑀𝐺  (43) 

𝐼𝑀𝐺 = 𝐼𝑀𝐺
∗ ∙ 𝑠𝑀𝐺  (44) 

The result of the MG maximum and minimum torque curves obtained when a 
downscaling operation is performed with 𝑠𝑀𝐺=0.85 are shown in Figure 14. 
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Figure 14. Example of a scaling operation over the torque limit curves of motor-
generator. 

 

2.3.3 Battery sizing 

The battery sizing procedure presented in this Section refers to the Li-Ion battery 
architecture presented in [154]. In Figure 15, a representation of the considered 
battery architecture in reported. Starting from the lowest level, a set of cells in series 
𝑁𝑐 is comprised within a “unit”; then, a set of units is placed in parallel 𝑁𝑝𝑢 within 
a “module”; finally, a set of modules in series 𝑁𝑠𝑚 constitutes the battery. Few but 
necessary characteristics about a reference battery have to be available at the 
beginning of the sizing operation, specifically the number of cells in a unit, the cell 
capacity, the cell 𝑉𝑜𝑐 and the nominal voltage of the battery.  

The battery sizing tool presented in [154] is hereafter detailed. The total number 
of cells of a generic battery 𝑁𝑡𝑜𝑡 can be calculated as: 

𝑁𝑡𝑜𝑡 =
𝑃𝑚𝑎𝑥,𝑀𝐺

𝑃𝐸 ∙ 𝑉𝑐∗ ∙ 𝐶𝑐∗
 (45) 

in which 𝑉𝑐∗ and 𝐶𝑐∗ represent the 𝑉𝑜𝑐 and the capacity of a reference battery cell. 
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Figure 15. Architecture of the considered Li-Ion battery. 

 

For the sake of clarity, the same type of battery cells has to be assumed for both 
the reference and the resized batteries. The total number of cells 𝑁𝑡𝑜𝑡 can hence be 
used to calculated the number of parallel units 𝑁𝑝𝑢 and series modules 𝑁𝑠𝑚 as: 

𝑁𝑝𝑢 =
𝑁𝑡𝑜𝑡 ∙ 𝑉𝑐

∗

𝑉𝑛𝑜𝑚
∗  (46) 

𝑁𝑠𝑚 =
𝑁𝑡𝑜𝑡

𝑁𝑝𝑢 ∙ 𝑁𝑐
∗ (47) 

in which 𝑉𝑛𝑜𝑚∗ is the nominal voltage of the reference battery. The new battery 
capacity 𝐶𝑏 can be computed as: 

𝐶𝑏 = 𝑁𝑝𝑢 ∙ 𝐶𝑐
∗ (48) 
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Moreover, a linear scaling operation over the battery mass can be conducted if 
the total number of cells (𝑁𝑡𝑜𝑡∗) and the mass (𝑚𝑏

∗) of the reference battery are 
available. In this case, the new battery mass 𝑚𝑏 can be computed considering the 
updated number of total cells 𝑁𝑡𝑜𝑡: 

𝑚𝑏 = 𝑚𝑏
∗ ∙
𝑁𝑡𝑜𝑡
𝑁𝑡𝑜𝑡

∗ = 𝑚𝑏
∗ ∙

𝑁𝑝𝑢 ∙ 𝑁𝑠𝑚

𝑁𝑝𝑢
∗ ∙ 𝑁𝑠𝑚

∗ (49) 

Finally, the variation of the open-circuit voltage and the internal resistance of 
the new battery can be calculated as: 

𝑉𝑜𝑐(𝑆𝑂𝐶) = 𝑁𝑠𝑚 ∙ 𝑁𝑐
∗ ∙ 𝑉𝑐

∗(𝑆𝑂𝐶) (50) 

𝑅𝑖(𝑆𝑂𝐶) =
𝑁𝑠𝑚 ∙ 𝑁𝑐

∗

𝑁𝑝𝑢
∙ 𝑅𝑐

∗(𝑆𝑂𝐶) (51) 

in which 𝑅𝑐∗ is the internal resistance of the reference battery cell as a function 
of battery SOC. 

2.3.4 Results of a design optimization procedure 

The setup of a complete optimization procedure over a hybrid truck are presented 
in this Section along with some of the most interesting results . The approach shown 
in Section 2.1 has been considered to model a pre-transmission parallel hybrid 
powertrain for a truck. The World Harmonized Vehicle Cycle (WHVC) has been 
identified as a proper driving mission for a design optimization in case of a heavy-
duty application ([155]). The parameters of Table 1 have been employed to design 
the hybrid powertrain and their relative values have been modified within the 
optimization procedure. The variables reported in Table 2 refer to the conventional 
powertrain version of the electrified truck considered in this study. Considering a 
downsizing operation over the ICE (and its related limit power curve reduction) and 
the introduction of any other design parameter for a HEV version, a variation list 
(VL) of 5120 HEV layouts has been generated through a DoE-based Sobol 
sequence approach. The ranges of variation of the seven design variables are 
reported in Table 3. Qualitative 2-D views of a portion of the points generated for 
each combination of design parameters have been charted in Figure 16 (only 256 
elements). 
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Table 2. Reference values considered for a conventional powertrain of a 
truck. 

Variable Value 

ICE Displacement 5.4 l 

ICE maximum Power 142 kW 

Final Drive speed ratio 3.6  

 

Table 3. Range of variation of the design variables considered for the 
design optimization procedure of a hybrid truck. 

Design Variable Range of variation 

ICE Displacement [2.4 – 4.5] l 

Motor-Generator peak power [90 - 300] kW 

Battery power-to-energy ratio [2 – 20] kW/kWh 

Battery maximum C-rate in discharge [2 – 12] A/Ah 

Battery maximum C-rate in charge [2 – 12] A/Ah 

Final drive speed ratio [2 – 5] 

Torque-coupling device Speed ratio [2 – 5.5] 
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Figure 16. 2-D views of a 256-elements portion of the variation list considered for 
the design optimization of a hybrid truck. 

 

As far as the optimization target is concerned, the cumulative FC at the end of 
the driving mission has been considered as objective functional of the problem (see 
(27)) and the DDP has been adopted to solve the optimization in case of a charge-
sustaining trajectory. The DDP setup (i.e. number and values of the state and sub-
control variables) is reported in Table 4. Specifically, 10 bc and 5 ps levels have 
been considered for the control variable 𝑢1 along with a pt and pe operating modes, 
whereas six gears have been considered in the transmission of the vehicle as 
secondary control variable 𝑢2.  

As far as the state space is concerned, the battery SOC has been accounted as 
𝑥1 considering a SOC window in [0.4-0.8] for CS and a minimum SOC variation 
of 2e-4 (i.e. a SOC grid discretized in 2001 levels, 𝑁𝑆𝑂𝐶). Such a value has been 
selected after several DDP simulations considering a set of different SOC levels. 
Specifically, both the accuracy of the CO2 final value and the computational time 
required for the optimization have been studied for a fixed HEV layout. The final 
choice has been made by empirically considering the number of SOC value which 
could produce realistic CO2 emissions while limiting the computational time. 
Section 3 is completely devoted to a detailed dissertation about the topic of DDP 
grid optimization for HEVs. Finally, the ICE on-off condition has been considered 
as secondary state variable 𝑥2 by means of a boolean value. 
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Table 4. Setup of the Dynamic Programming for the design optimization 
of a hybrid truck.  

Control variables 

Power-flow (𝑢1) 

𝛼𝑜𝑚,𝑏𝑐= [-2.5, -2, -1.75, -1.5, -1.25, -1, -0.75, -0.5, -0.25, -0.1] 

𝛼𝑜𝑚,𝑝𝑡= 0 

𝛼𝑜𝑚,𝑝𝑠= [0.1, 0.25, 0.5, 0.75, 0.9] 

𝛼𝑜𝑚,𝑝𝑒 = 1 

Gear number (𝑢2) 𝜏1,…,𝑍= [1, 2, …, 6] 

State variables 

Battery SOC (𝑥1) 

𝑆𝑂𝐶𝑚𝑖𝑛= 0.4 

𝑆𝑂𝐶𝑚𝑎𝑥= 0.8 

min 𝑆𝑂𝐶̇ = 2e-4 

ICE state (𝑥2) 𝐼𝐶𝐸𝑜𝑛/𝑜𝑓𝑓= [0, 1] 

 

A reduction of the FC has been clearly expected as result of the feasible HEV 
layouts based upon the theoretical opportunity of exploiting CO2-free regions under 
pe operating mode. Consistent with the linear correlation between FC and tank-to-
wheel CO2 ([156]), the latter has been considered as a meaningful metric to compare 
the tested HEV layouts. In Table 5, a bunch of the best and the worst feasible HEV 
layouts detected in the design optimization are ranked with respect to the CO2 
emissions (in g/km) attained with a DDP-based optimal control policy. Specifically, 
the values of the design variables (DVs, Table 5, Ref, first row) are reported for the 
reference conventional architecture (Ref, Table 5, second row) and for the top and 
worst five HEV layouts (Table 5, from third row to the last). For the sake of clarity, 
2598 layouts have produced feasible control policies with respect to a design space 
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of 5120 layouts and hence the worst case of Table 5 refers to the 2598th layout. As 
far as the 𝐶𝑂2,𝑇𝑇𝑊 is concerned, the window of emissions reduction falls in the 
range 16.7-2.7%. A view of the CO2 results is reported in Figure 17 considering 
both the ICE displacement (upper plot) and the MG peak power (lower plot). The 
colors are representative of the identification number of the HEV tested layouts of 
Table 4; hence, they rely upon the ranking produced by the DDP. A denser design 
region highlights for the lower emissions while the number of points reduces as the 
CO2 emissions grow. Such a trend will be important in the discussion of the results 
presented in the Chapter 4. 

Once the optimal design regions (i.e. the values of the DVs that lead to the 
minimization of the optimization target) have been defined, the optimization 
procedure can be iteratively operated considering smaller and smaller variation 
ranges of the DVs (Table 3). Thanks to such a progressive modification in the 
design space, an accurate identification of the optimal HEV layout(s) can be 
performed for the studied application. Evidently, the same approach could be 
extended to PHEVs or to any other electrified application in which the optimal 
design of the vehicle can be defined through DVs and a global optimization 
algorithm can be implemented. 

 

 

Figure 17. Minimum CO2 emissions obtained by Dynamic Programming when 
applied to the hybrid layouts considered in the Variation List of the design 
optimization. 
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Table 5. Ranking of the best and worst feasible for an example design 
optimization of hybrid layouts based on the tank-to-wheel CO2 emissions 

computed by Dynamic Programming. 

DV 𝑽𝑰𝑪𝑬 𝑷𝒎𝒂𝒙,𝑴𝑮 𝑷𝑬 𝑪𝒅𝒊𝒔,𝒎𝒂𝒙 𝑪𝒄𝒉,𝒎𝒂𝒙 𝒔𝒓𝑭𝑫 𝒔𝒓𝑻𝑪𝑫 𝑪𝑶𝟐,𝑻𝑻𝑾 

Ref. 5.4 - - - - 3.6 - 445.9 

1 3.7 297.0 18.0 7.8 9.6 3.2 4.4 371.2 

2 4.3 287.5 18.7 6.6 10.2 3.1 4.9 371.6 

3 4.4 299.2 17.8 8.5 6.3 3.0 5.1 371.9 

4 3.7 260.5 17.0 8.3 8.7 3.3 4.7 372.4 

5 3.6 293.9 19.8 9.4 9.2 3.1 3.7 372.5 

… … … … … … … … … 

2594 3.5 299.9 2.5 9.0 8.2 4.6 5.4 428.0 

2595 3.6 240.6 2.0 11.0 2.8 4.8 2.2 429.8 

2596 4.2 210.3 2.1 11.7 5.3 4.9 3.8 430.9 

2597 4.3 269.5 2.3 8.7 10.7 4.8 3.5 433.6 

2598 4.0 297.2 2.1 7.1 4.0 4.6 4.5 433.7 
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2.4 Conclusions 

The analyses and the results presented so far have been a solid base for any 
other topic covered in the following sections. Specifically, some research questions 
have arouse:  

 A fixed number of DDP state levels has been considered for each HEV 
layout involved in the design optimization based upon an empirical 
choice aimed at minimizing the simulation time. Can this approach be 
ameliorated? Are there any possibilities to include an automatic 
definition of the optimal number of DDP state levels which guarantees 
the accuracy of the results while drastically reducing the machine time? 
This topic has been covered in Chapter 3.  

 A massive testing of thousands (P)HEV layouts could be necessary in 
case of design optimizations without information about the optimal set 
of DVs. Nevertheless, such an operation could become 
computationally too expensive when few (or even a single) 
modifications to the simulation setup are introduced. For instance, a 
comparison between the (P)HEV optimal design could be realized with 
respect to different hybrid architectures, driving missions, optimization 
targets, etc. Could an approach be developed with the capability of 
learning the patterns between the values of the DVs and the DDP-based 
CO2 results of the feasible (P)HEV layouts? Such a question has lead 
to the development of a learning-based algorithm which is presented in 
Chapter 4. 

 The optimal control policies of a DP algorithm cannot be defined 
during under real-time conditions due to a clear limit of the DP 
theoretical background. Nevertheless, an optimal solution to a control 
problem could be identified in offline conditions and hence be applied 
under real-world driving scenarios if an intelligent algorithm could be 
trained at reproducing the decisional process of the DP. The 
development of two different AI agents and the results of their 
applications to (P)HEVs is discussed in Chapter 5 and Chapter 6. 
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Chapter 3 

Mesh optimization of a Deterministic 
Dynamic Programming algorithm for 
hybrid powertrains 

In the present Chapter, the topic of defining a method for the identification of the 
proper discretization of a DDP computational grid with the capability of minimizing 
the simulation time is discussed. Specifically, the approach is intended to be used 
when a DDP algorithm is applied to the control problem of (P)HEVs considering 
the battery SOC as a state variable and the curse of dimensionality effect has to be 
limited ([154]). Evidently, excluding the possibility of using unmanageable DDP 
configurations could provide the user with a certainty about the identification of the 
optimal solution to a control problem. 

Several approaches have been presented in the literature about the optimization 
of the computation grid of DDP algorithms, all aimed at strongly reducing the 
simulation times. In [157], the optimization of the computational grid has been 
obtained by adopting two different methods. 

 

Part of the present section has been extracted from: 

Maino, C. et al. (2021). Optimal mesh discretization of the dynamic programming for hybrid electric 
vehicles. Applied Energy. Elsevier Ltd, 292(March), p. 116920. Doi: 
10.1016/j.apenergy.2021.116920. 
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The first focuses on the elimination of the nodes corresponding to redundant 
controls whereas the second is oriented to reduce the amount of interpolations 
required for the calculation of the cost function on the redundant nodes and on the 
nodes where the system turns out to be unfeasible. The problem of control 
redundancy has already been assessed for in [158]. Although the approach has been 
proved to be valid for dynamic programming formulations which have to manage 
redundant controls, the effectiveness of the method has not been demonstrated for 
other DP formulations in which non-redundant controls are involved. Instead, [159] 
proposes an iterative approach for the DDP grid refinement where the SOC range 
is reduced at each iteration by adopting a manually tuned calibration factor. Despite 
the encouraging outcomes obtained on a single HEV architecture, the consistency 
of the results has to be proved when different architectures are taken into account. 
Enhancements to the approach could hence be achieved by developing an automatic 
methodology for the selection of appropriate contraction factors for different HEV 
architectures. 

To solve the limitations imposed by the abovementioned approaches, a 
statistical approach has been developed with the capability of determining the 
optimal discretization of the state space when the battery SOC is selected as one of 
the DDP state variables and in the condition that no redundant controls are admitted. 
Before the presentation of the methodology as well as of the main results obtained 
on various testing conditions, the vehicular application is presented along with the 
DDP configuration. 
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3.1 Vehicle model and problem formulation 

Two different pre-transmission HEVs have been investigated in the present study, 
specifically a pc and an hdv. For each vehicle, a reference version (i.e. a 
conventional vehicle equipped with ICE only) has also been considered and the 
main specifications are summarized in Table 6. About the reference vehicles, 
experimentally derived ICE maps reporting FC as a function of ICE torque and 
speed, a fixed final drive speed ratio and a multi-gear manual transmission have 
been considered for both pc and hdv.  

As far as the HEV powertrains are concerned, the backward-facing vehicle 
modeling approach presented in Chapter 2 has been employed for generating the 
models of the two hybrid powertrains. 

 

Table 6. Reference vehicles main specs. 

Parameter Passenger car Heavy-duty vehicle 

ICE: type / displacement / 
maximum power Diesel / 1.3 l / 70 kW Diesel / 5 l / 132 kW 

Total mass 1250 kg 7360 kg 

Frontal area 2.19 m2 6.5 m2 

Drag coefficient 0.270 0.703 

Tire radius 0.3007 m 0.3658 m 

 

In Table 7, the values assumed by the DVs considered in this study are reported 
for the two pre-transmission HEVs. Starting from the nominal values of Table 6, 
the linear downscaling presented in Section 2.3.1 has been applied to the FC map 
of the ICE. For each operating point, the ICE brake power of the reference map has 
been multiplied by the ratio between the ICE displacements of the considered HEV 
layout and of the conventional vehicle. ICE efficiencies and speeds have been 
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assumed to be remain unchanged ([153]). It is anyhow worth noticing that a 
variation into the scaling operation of the ICE would only turn into a possible 
variation of the optimal control trajectories determined by the DDP, whereas no 
difference in the outcomes of the methodology presented in this Chapter would be 
appreciated. The MG considered for the analyses belongs to the brushless 
permanent magnet electric motor/generator family and the relative data have been 
extracted from catalogues for web ([160]). When necessary, the linear MG 
efficiency map scaling presented in Section 2.3.2 has been carried out. Finally, the 
models of a Li-Ion battery presented in Section 2.1.3 and Section 2.3.3 have been 
considered both for the calculation of battery SOC variation and for battery design, 
respectively. Nevertheless, a difference in the calculation of the maximum current 
admitted in the battery highlights. The current flowing into a single cell 𝐼𝑐 has been 
evaluated as:  

𝐼𝑐 =
𝐼𝑏
𝑁𝑝𝑢

 (52) 

and the possibility of generating such a current has been verified at each time 
step thanks to data about the maximum admissible cell current 𝐼𝑐,𝑚𝑎𝑥. Evidently, 
feasible control decisions have been considered only in case of 𝐼𝑐 < 𝐼𝑐,𝑚𝑎𝑥. 
Consistent with this check, 𝐶𝑑𝑖𝑠,𝑚𝑎𝑥 and 𝐶𝑐ℎ,𝑚𝑎𝑥 could be removed from the set of 
considered DVs (Table 1). In fact, the adoption of 𝐼𝑐,𝑚𝑎𝑥 allows for an immediate 
calculation of the output/input power limit of the battery. The maximum C-rates 
admitted could hence be removed from the set of DVs.  

 

Table 7. Values of the design variables considered for the hybrid 
powertrains of both pc and hdv. 

Vehicle 
𝑽𝑰𝑪𝑬 𝑷𝒎𝒂𝒙,𝑴𝑮 𝑷𝑬 𝒔𝒓𝑻𝑪𝑫 𝒔𝒓𝑭𝑫 

l kW kW/kWh - - 

pc 0.75 44 10 3.5 3 

hdv 3 79.2 10 3.5 3.58 
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Regarding the formulation of the offline control problem, a DDP algorithm has 
been employed to optimize the control strategy of the HEVs under offline 
conditions. Specifically, the problem formulation presented in Section 2.2 has been 
examined, i.e. the identification of the control policy with the capability of 
minimizing the cumulative fuel FC while obtaining a perfect CS trajectory and 
satisfying the road power requests. The state and control variables considered in 
this study are those presented in sections 2.2.1 and 2.2.2, respectively. About the 
control space, the actual values assumed by each sub-control variable are reported 
in Table 8. A lower number of sub-control variables 𝛼𝑜𝑚 has been considered with 
respect to Table 4. Such a choice has been taken relying upon the necessity of 
performing a large set of simulations with non-negligible machine times. 
Nevertheless, the methodology presented in this Chapter is intended to define the 
optimal mesh discretization of a DDP algorithm even when larger control spaces 
are defined. 

As far as the state space is concerned, critic issues about the possibility of 
employing DDP can arise when the state space is expanded without a real control 
of the discretization levels. In the following sections, the problem is thoroughly 
motivated and the method for solving such a problem is discussed. 

 

Table 8. Values of the sub-control variables considered by the 
Deterministic Dynamic Programming. 

PFI pt pe ps bc 

𝛼𝑜𝑚 0 1 0.25; 0.5; 0.75 -0.5;-1 

GNI 1 2 3 4 5 6 

𝜏𝑝𝑐 4.17 2.13 1.32 0.95 0.75 0.62 

𝜏ℎ𝑑𝑣 6.02 3.32 2.07 1.4 1 0.79 
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3.2 State space: discretization of the battery state of charge 

The DDP algorithm solves the optimization problem by calculating the optimal 
cost-to-go function, starting from the last mission time step 𝑇 and going backwards 
until the first stage is reached (backward phase). Considering a generic time stage 
of the mission 𝑘, the algorithm calculates the cost-to-go functions for all the 
possible combinations (𝑁𝑥) of state and control variables at 𝑡𝑘 which can be 
computed as: 

𝑁𝑥 = 𝑁𝛼𝑜𝑚 × 𝑁𝜏 ×𝑁𝑆𝑂𝐶 × 𝑁𝐼𝐶𝐸𝑜𝑛/𝑜𝑓𝑓 (53) 

where 𝑁𝛼𝑜𝑚  and 𝑁𝜏 represent the number of operating modes (𝛼𝑜𝑚) and gears 
(𝜏) reported in Table 8, respectively, whereas 𝑁𝑆𝑂𝐶 is the number of battery SOC 
discrete levels and 𝑁𝐼𝐶𝐸𝑜𝑛/𝑜𝑓𝑓 is the number of engine states (i.e. on/off). In other 
words, 𝑁𝑥 represents the product between the number of discrete values assumed 
by cv and sv to be performed at each time step of the driving mission. The overall 
number of computations is hence equal to: 

𝑁𝑥,𝑡𝑜𝑡 = 𝑁𝑥 × 𝑇 (54) 

This said, the values of 𝑁𝛼𝑜𝑚 , 𝑁𝜏 and 𝑁𝐼𝐶𝐸𝑜𝑛/𝑜𝑓𝑓 are fixed to the specific setup 
of 𝛼𝑜𝑚, 𝜏 and 𝐼𝐶𝐸𝑜𝑛/𝑜𝑓𝑓 considered for the final application. As an example, the 
number of gears cannot be different from six if a 6-gears transmission is included 
in the study. From a more general perspective, a modification of the values 
considered in the control space could allow the DDP for the identification of a 
different control policy without affecting the accuracy of the calculations. On the 
contrary, the selection of an inappropriate value of 𝑁𝑆𝑂𝐶 could lead to unrealistic 
calculations. The motivation lies in the classic workflow of the DDP. 

Considering the set of sv, the engine state (ES) is a Boolean number connected 
to the value of 𝛼𝑜𝑚 (e.g. ES would be null for 𝛼𝑜𝑚=1 whereas it would be equal to 
1 if 𝛼𝑜𝑚=0), whereas the battery SOC values are estimated by the battery model 
based upon the battery power request. Hence, the battery SOC estimates for 𝑡𝑘+1 
are not necessarily equal to the SOC values represented on the DDP grid and an 
approximation to the closest node has to be made. A coarser battery SOC grid 
induces larger approximations, and, consequently, larger numerical errors on the 



Chapter 3. Mesh optimization of a Deterministic Dynamic Programming algorithm for hybrid powertrains 

 

65 

simulation results. On the other hand, if a very fine battery SOC grid is considered, 
𝑁𝑥 could dramatically explode ([53], [73] and [161]) leading to unrealizable 
simulation times. A trade-off between the battery SOC variations (∆𝑆𝑂𝐶) 
calculated at each time step and the simulation times has hence to be defined. 

At this stage, it is worthwhile recalling that ∆𝑆𝑂𝐶 computed between two 
generic time steps is directly linked to the battery energy variation (∆𝐸𝑏𝑎𝑡) in the 
same time-interval as follows: 

∆𝐸𝑏𝑎𝑡 = ∆𝑆𝑂𝐶 ∙ 𝑉𝑐
∗ ∙ 𝐶𝑐

∗ ∙ 𝑁𝑡𝑜𝑡 = ∆𝑆𝑂𝐶 ∙
𝑃𝑚𝑎𝑥,𝑀𝐺
𝑃𝐸

 (55) 

Therefore, the proper number of battery SOC levels to be set for the DPP 
backward phase depends upon the ∆𝑆𝑂𝐶 (or ∆𝐸𝑏𝑎𝑡) variations realized through the 
mission, which in turns depend upon time step size, driving mission characteristics, 
control state, vehicle layout and architecture. A robust and accurate methodology 
to select the proper SOC “grid” for DDP estimation is of fundamental importance 
to obtain an unbiased comparison of performance for different HEVs along 
different driving missions.  

The proposed methodology for determining the battery SOC discretization 
level of the DDP grid which guarantees the optimal trade-off between the accuracy 
of the DDP calculations and the computational effort relies on a three-step 
procedure: 

 Estimation of the battery energy variation for each mission time step; 
 Application of a statistical analysis on the estimated battery energy 

variations; 
 Definition of the SOC grid optimal size. 
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3.3 Battery energy variations 

The first step of the procedure for the determination of the proper number of battery 
SOC levels for a DDP algorithm consists in the estimation of the expected battery 
energy throughout the considered mission for a given layout, architecture and set 
of control variables. Since the optimal control strategy is not known at this stage of 
the process, the battery electric power can be evaluated thanks to the results of the 
simulations already indexed and stored in the Configuration Matrix described in 
[56] and [57]. Starting from the vehicle velocity and applying the equations of the 
vehicle dynamics, the power required by any powertrain component for each time 
step and combination of cv can be obtained. Therefore, once the unrealizable 
powers demands are discarded (i.e. a specific combination of PFI and GNI that 
leads to a cell current higher than admissible values, see (52)), the battery energy 
variations are estimated by numerically integrating the battery power occurring for 
any feasible condition. 

 

  



Chapter 3. Mesh optimization of a Deterministic Dynamic Programming algorithm for hybrid powertrains 

 

67 

3.4 Mesh optimal size 

Once the mapping of the battery energy variations has been completed, the 
frequency distribution of the estimated values can be worked out. Figure 18 reports 
the frequency distribution of the energy variations and shows a definitely non-
Gaussian distribution. Clearly, any inference method ([162]) can be taken into 
account at this stage. By the way, a statistical manipulation of the data through 
distribution transformations can lead to the generation of a new Gaussian 
distribution. Once the transformed is performed, the results of any parametric 
approach can be processed and hence sent back to the original domain through the 
inverse transformation. To do so, an iterative multi-step algorithm is hereafter 
proposed.  

Assuming the “skewness” 𝑠 to be the index of a distribution asymmetry ([163]), 
a Gaussian shape (perfectly symmetric) would produce a null skewness value 
according to: 

𝑠 =  
𝑚3

𝑚2√𝑚2

  𝑤𝑖𝑡ℎ 

{
 

 𝑚3 =
∑(𝑥𝑖 − �̅�)

3

𝑛

𝑚2 =
∑(𝑥𝑖 − �̅�)

2

𝑛

 (56) 

in which �̅� is the mean value of the distribution, 𝑥𝑖 is the actual value of the i-
th sample and 𝑛 is the number of values of the distribution. Indeed, negative 
skewness indices are representative of a negative asymmetry whereas positive ones 
stem when a positive asymmetry occurs ([164]). A slightly asymmetric distribution 
(𝑠 ≈ 0) can be studied as a Gaussian one only if the following criterion is satisfied 
([164]):  

||
𝑠

√6 𝑛⁄

|| <  𝑍𝑎   (57) 

where 𝑍𝑎 represents a Gaussian distribution standardized variable referred to 
the tolerance level 𝑎 ([165]). In this study, the results obtained when 𝑎 is set to 95% 
(𝑍𝑎 = 1.96), 90% (𝑍𝑎 = 1.65) and 68% (𝑍𝑎 = 1) are presented. 
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Figure 18. Distribution of the battery energy variations obtained on the World 
harmonized Light-duty Test Cycle with pc. 

 

The logic of the proposed procedure is hereafter outlined: 

1. Once the mapping of the battery energy variations is available (see 
Section 3.3) and the related frequency distribution is generated, the 
skewness index is computed through (56) and the condition of (57) is 
checked upon. 

2. If the condition of (57) is verified, the procedure jumps to points 6, 
otherwise it continues through point 3. 

3. According to the skewness value, a negative or positive asymmetry is 
found and a transformation to the distribution is performed as follows: 

 {
𝑥𝑡𝑟𝑎𝑠 = 𝑥𝑚    𝑤𝑖𝑡ℎ 𝑚 > 1 𝑎𝑛𝑑 𝑠 < 0

𝑥𝑡𝑟𝑎𝑠 = 𝑥
1
𝑚    𝑤𝑖𝑡ℎ 𝑚 > 1 𝑎𝑛𝑑 𝑠 > 1

 (58) 

in which 𝑚 is a coefficient to be tuned during the iterations progress. In 
this study, the initial value has been set to 1.1 and it has been gradually 
increased along the iterations. 
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4. The skewness index of the transformed distribution is computed and the 
condition of (57) is once more checked. 

5. If the condition of (57) is verified, the procedure continues to Point 6, 
otherwise 𝑚 is changed and the Point 3 is repeated. In this study, 𝑚 has 
been incremented by 0.1 iteration after iteration. 

6. The mean value 𝜇 and the standard deviation σ of the obtained 

transformed distribution (almost symmetric, see example in Figure 19, 
where the transformed shape of the distribution depicted in Figure 18 is 
shown) are computed and the tolerance level 𝑎 is selected together with 
its relative 𝑍𝛼. The confidence interval 𝑐 of the transformed distribution 
is estimated through the following parametric approach: 

𝑐 = [𝜇 − 𝑍𝛼𝜎 , 𝜇 + 𝑍𝛼𝜎 ] (59) 

7. The lower extreme of the transformed confidence interval is chosen as 
a statistically consistent minimum energy variation within the possessed 
batch of data and is identified in the original domain thanks to the 
inverse transformation of the distribution.  

 

 

Figure 19. Transformed distribution of the battery energy variations obtained on 
the World harmonized Light-duty Test Cycle with pc. 
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From a more practical point of view, the usage of 𝑎 = 95% means that the 5% 
of the distribution tails (2.5% per tail) of the energy variation transformed 
distribution are discarded. Therefore, the minimum energy step ∆ℎ identified on the 
transformed shape will be the one immediately after the after the 2.5% left-handed 
threshold. The same consideration can be made for 𝑎 equal to 90% and 68%. The 
output of the procedure is hence exploited to set the value of the energy step ∆ℎ that 
is used to define the SOC discretization grid. It is worth observing that the method 
is devoted to describe the refinement of the battery SOC grid considering a fraction 
of the battery SOC window typically exploited during HEV operations. The 
selection and optimization of the SOC ranges are beyond the scope of the present 
research and their actual values have not to be considered as a potential issue for 
the proposed methodology. 

The number of battery SOC discretization levels (𝑁𝑆𝑂𝐶) to be set in the DDP 
configuration is finally computed through:  

𝑁𝑆𝑂𝐶 = 𝑖𝑛𝑡 (
∆𝐸𝑆𝑂𝐶,𝑤𝑖𝑛

∆ℎ
) = 𝑖𝑛𝑡 [(𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑚𝑖𝑛)

𝑃𝑚𝑎𝑥,𝑀𝐺
∆ℎ ∙ 𝑃𝐸

] (60) 

in which ∆𝐸𝑆𝑂𝐶,𝑤𝑖𝑛 is the portion of battery energy associated to the employable 
battery SOC range (from 𝑆𝑂𝐶𝑚𝑖𝑛 to 𝑆𝑂𝐶𝑚𝑎𝑥). In the following sections, interesting 
results are provided with respect to the application of the proposed statistical 
procedure when extremely different test cases are taken into account. 
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3.5 Results 

Three indices are used to evaluate the performances of the vehicles on a given 
driving mission: 𝐶𝑂2,𝑇𝑇𝑊, total cost of ownership (TCO) and simulation time (or 
machine time). The tank-to-wheel CO2 emissions are directly connected to the fuel 
consumption at the end of the driving mission considered the SOC-constrained 
min(FC)-based control policy identified by the DDP. Indeed, the TCO is obtained 
by summing the operating and fixed costs ([35]) of the vehicle for a 10-years’ time 

span and is used to obtain an indication about the long-term economic advantages 
brought by a hybridization solution. As additional metric, the simulation time has 
been selected to assess for the computational effort required by the optimization 
tool.  

A distinct set of driving missions has been employed for each vehicle segment 
addressed in this study. The driving mission set for pc is made up of Worldwide 
harmonized Light vehicles Test Cycle (WLTC), Artemis Urban Driving Cycle 
(AUDC), Artemis Rural Driving Cycle (ARDC) and Artemis Motorway Driving 
Cycle (AMDC). World Harmonized Vehicle Cycle (WHVC), City Suburban Cycle 
(CSC), Heavy Heavy-Duty Diesel Truck Transient mode (HHDDTT) and European 
Transient Cycle (ETC) have been selected for hdv. In Table 9, the main 
characteristics of the different missions are summarized in terms of average and 
maximum vehicle velocity, vehicle acceleration and power required for the traction. 
Moving from the third column (Table 9, left-hand side), 𝑇 is the mission duration, 
𝐷 is the distance covered, �̅� is the vehicle mean velocity, 𝑣𝑚𝑎𝑥  is the vehicle 
maximum velocity, 𝑎𝑚𝑎𝑥,𝑡𝑟𝑎𝑐 is the maximum acceleration required during traction 
phases while 𝑃𝑚𝑎𝑥,𝑡𝑟𝑎𝑐 and �̅�𝑡𝑟𝑎𝑐 are the maximum and average power required to 
the vehicle during traction phases, respectively. For the sake of clarity, the 
parameters of Table 9 going from third to sixth column (i.e. mission duration to 
vehicle maximum velocity) have been extracted from [166], whereas the remaining 
ones have been estimated for the two HEVs based on their vehicle specifications. 

The effect of SOC discretization on the values of 𝐶𝑂2,𝑇𝑇𝑊 and TCO achieved 
with DDP optimal control policy has been investigated. To this end, sweeps of the 
number of battery SOC levels have been carried out considering a range from 102 
to 105 for both the simulated vehicles. The lowest threshold of the range (102) has 
been identified based on the minimum number of battery SOC levels allowing for 
a feasible simulation (i.e. the minimum number of SOC levels for which the DDP 
can still identify an optimal control policy). 
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Table 9. Main characteristics of the driving cycles used for testing pc and 
hdv. 

Vehicle Cycle 
𝑻 𝑫 �̅� 𝒗𝒎𝒂𝒙 𝒂𝒎𝒂𝒙,𝒕𝒓𝒂𝒄 𝑷𝒎𝒂𝒙,𝒕𝒓𝒂𝒄 �̅�𝒕𝒓𝒂𝒄 

s km km/h km/h m/s2 kW kW 

pc 

WLTC 1800 23.26 46.49 131.3 1.75 36.23 9.19 

AUDC 993 4.87 17.63 57.7 2.86 26.65 6.51 

ARDC 1082 17.27 57.41 111.5 2.36 41.88 9.69 

AMDC 1068 29.54 99.49 150.4 1.91 59.51 19.85 

hdv 

WHVC 1800 20.07 40.12 87.8 1.59 116.2 34.66 

ETC 1800 29.47 58.94 91.1 3.83 120.55 39.11 

CSC 1700 10.74 22.73 70.49 1.14 89.99 24.86 

HHDDTT 667 4.58 24.72 76.42 1.29 116 21.69 

 

On the other hand, the highest value (105) is representative of a battery energy 
variation that can be realistically realized in the batteries of the two vehicles during 
a single time-step. As an example, for a calculation time-step of one second, 105 
SOC levels lead to ~0.015 Wh and ~0.03 Wh for pc and hdv, respectively. Therefore, 
the energy steps associated to 105 can be considered sufficiently small considering 
the typical energetic consumptions of a vehicle in a second. Furthermore, a 
maximum admissible machine time had to be identified. Such a value has been set 
to 2 hours for a single simulation. Consistently, maximum simulation times in the 
order of 90 minutes for pc and 60 minutes for hdv will be shown in the next charts. 

In Figure 20, 𝐶𝑂2,𝑇𝑇𝑊 (top chart), TCO (middle chart) and computational time 
(bottom chart) are charted as a function of the number of battery SOC levels for the 
investigated pc. A logarithmic scale has been employed for the battery SOC axis. 
The 𝐶𝑂2,𝑇𝑇𝑊 and TCO increase as SOC level number increases until a knee is 
reached at about 103 SOC levels. From that stage onwards, their values remain 
almost constant even if the number of SOC level increases. On the other hand, the 
computational time exhibits a significant increase once the knee is overcome. 
Remarkably, the trend of the TCO is aligned with that of the 𝐶𝑂2,𝑇𝑇𝑊. As a matter 
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of fact, the vehicle operating costs vary as the carbon dioxide emissions change 
whereas the fixed costs remain unchanged. Still, comparing the final emissions and 
TCO over the different missions, the AMDC shows worse performances if 
compared to the AUDC and ARDC. The type-approval WLTC cycle holds 
intermediate values for both 𝐶𝑂2,𝑇𝑇𝑊 and TCO. From an optimization perspective, 
a realistic estimation of the 𝐶𝑂2,𝑇𝑇𝑊 has to be realized, especially when regulatory 
driving missions are taken into account. This said, Figure 20 proves that an 
ineffective mesh refinement could lead to non-negligible errors (tens of grams per 
kilometre) in the estimation of the 𝐶𝑂2,𝑇𝑇𝑊 for the WLTC. Unrealistic or optimistic 
results have to be clearly avoided as the compliancy to the regulation targets has to 
be assessed for ([24], [27]).  

 

 

Figure 20. Results of the sweep operation over the number of battery SOC levels 
for pc. 

 

As far as hdv is concerned, similar results to those obtained for pc are shown in 
Figure 21: 𝐶𝑂2,𝑇𝑇𝑊 and TCO reach a constant value after the knee is reached (in 
this case at a number of SOC levels equal to about 2x103). 
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Figure 21. Results of the sweep operation over the number of battery SOC levels 
for hdv. 

 

3.5.1 Outcomes for 𝑵𝑺𝑶𝑪,𝟗𝟓 

The results obtained when the statistical procedure presented in Section 3.4 with 
the tolerance level 𝑎 equal to 95% is applied to the two test cases are hereafter 
shown. First, the energy variations and their frequency distributions are pre-
processed for each driving scenario. Then, the statistical procedure is fully exploited 
and the minimum energy steps are found to identify the number of SOC levels to 
be used in the simulation. In Figure 22 and Figure 23, the results obtained when 𝑍𝛼 
equal to 1.96 is used to define the confidence interval 𝑐 (Section 3.4) are presented. 
In the charts, a circular marker represents the number of battery SOC levels 
evaluated at the end of the procedure for each driving mission. The performance 
indices obtained by the DDP fall on the stable portion of the sweep curve regardless 
the driving mission. Still, 𝑁𝑆𝑂𝐶 never matches with the amount of battery SOC 
levels corresponding to the lowest energy step admissible (final abscissa of the 
curves): the assumption of 𝑎=95% is to be reliably considered as the most 
conservative configuration for the entire set of test cases. In Table 10, the 
performance indices are presented when the highest admissible number of battery 
SOC levels (𝑟, fourth column) and 𝑁𝑆𝑂𝐶 (fifth column) are accounted into the DDP 
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configuration; in the last column, the percentage difference between the two 
conditions 𝑒𝑟𝑒𝑙,95 (%) exhibits for each observed variable and it is evaluated 
according to: 

𝑒𝑟𝑒𝑙,95 = 
𝑥𝑖,𝑁𝑆𝑂𝐶 − 𝑥𝑖,𝑟

𝑥𝑖,𝑟
⋅ 100  𝑤𝑖𝑡ℎ 𝑖 = 1, 2, 3 (61) 

in which 𝑥𝑖,𝑁𝑆𝑂𝐶  represents i-th variable estimated for the DDP optimal control 
policy when the number of SOC levels outputted by the statistical approach is used 
while 𝑥𝑖,𝑟 represents the i-th variable obtained when the DDP is characterized by 
the maximum admissible SOC levels. Therefore, as far as the 𝐶𝑂2,𝑡𝑡𝑤 (𝑖=1) and the 
TCO (𝑖=2) are concerned, 𝑒𝑟𝑒𝑙,95 is to be considered as an approximation error 
whereas it should be accounted as a benefit for the simulation time (𝑖=3). Promising 
results arise for both vehicles: a very slight approximation is introduced into the 
𝐶𝑂2,𝑡𝑡𝑤 and the TCO (lower than 1% in absolute value) whereas important 
reductions of simulation time are achieved. Referring to pc (Figure 22), the lower 
amount of SOC levels is identified on the AMDC (machine time 𝑒𝑟𝑒𝑙,95~93% 
whereas the higher is related to the AUDC (𝑒𝑟𝑒𝑙,95~43%). As far as hdv is concerned 
(Figure 23), the rougher refinement can be exploited for the ETC (𝑒𝑟𝑒𝑙,95~81%) 
whereas the finer is on CSC (𝑒𝑟𝑒𝑙,95~9%). 

The application of the statistical approach definitely allowed for achieving very 
accurate results in terms of emissions and costs while saving a relevant amount of 
simulation time for both pc and hdv. 
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Figure 22. Positioning of the results obtained by the DDP on the sweep curves 
when 𝑵𝑺𝑶𝑪,𝟗𝟓 is used for pc. 

 

 

Figure 23. Positioning of the results obtained by the DDP on the sweep curves 
when 𝑵𝑺𝑶𝑪,𝟗𝟓 is used for hdv. 
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Table 10. Results obtained by the DDP for each driving mission when the 
highest admissible SOC levels 𝒓 and 𝑵𝒔𝒐𝒄,𝟗𝟓 are used for pc and hdv. 

Vehicle Index Cycle 𝒓 𝑵𝑺𝑶𝑪,𝟗𝟓 𝒆𝒓𝒆𝒍,𝟗𝟓 [%] 

pc 

𝐶𝑂2,𝑡𝑡𝑤 
g/km 

WLTC 74.5 74.5 -0.01 
AUDC 76.9 77.0 +0.13 
ARDC 68.6 68.6 +0.06 
AMDC 105.9 106.4 +0.49 

TCO 
k€ 

WLTC 41.8 41.9 +0.17 
AUDC 42.3 42.4 +0.17 
ARDC 40.7 40.7 +0.07 
AMDC 48.1 48.2 +0.19 

Machine time 
min 

WLTC 100.0 21.5 -78.53 
AUDC 66.7 38.3 -42.57 
ARDC 71.7 14.0 -80.41 
AMDC 76.7 5.1 -93.37 

hdv 

𝐶𝑂2,𝑡𝑡𝑤 
g/km 

WHVC 324.8 325.6 +0.27 
HHDDTT 286.3 287.0 +0.24 

CSC 286.6 286.8 +0.07 
ETC 362.5 362.4 -0.05 

TCO 
k€ 

WHVC 349.5 349.9 +0.11 
HHDDTT 332.2 332.6 +0.09 

CSC 332.4 332.5 +0.02 
ETC 366.5 366.4 -0.02 

Machine time 
min 

WHVC 67.3 23.8 -64.60 
HHDDTT 25.6 17.8 -30.44 

CSC 62.6 57.1 -8.92 
ETC 65.0 12.6 -80.60 

 

3.5.2 Definition of the optimal mesh refinement 

The promising results highlighted in the previous Section have pushed the research 
to the identification of different settings for the statistical approach with the 
potential of shifting the discretization levels down to the first portion of the sweep 
curves in terms of trade-off between accuracy and simulation time saving. To this 
end, three different tolerance levels have been imposed as hyper-parameters of the 
statistical approach (Section 3.4). The amount of SOC levels 𝑁𝑆𝑂𝐶,95, 𝑁𝑆𝑂𝐶,90 and 
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𝑁𝑆𝑂𝐶,68 (𝑎 equal to 95%, 90% and 68%, respectively) are represented in the 
following charts by circular, rhombic and squared markers, respectively. In Figure 
24, a comparison of the results obtained for pc are charted. The amount of battery 
SOC levels identified by the statistical procedure is gradually reduced as the 
tolerance interval percentage reduces. Specifically, the squared markers for 𝑎=68% 
are positioned in an optimal location given their proximity to the end of the sweep 
curves knee: such a location could lead to a very large reduction of the simulation 
times with the introduction of a slight approximation into the DDP results. As from 
Table 11, an acceptance of a 𝐶𝑂2,𝑇𝑇𝑊 approximation error ranging between ~2% 
and ~5% could provide simulation time reductions in the order of 97-99%. If such 
an accuracy is not satisfactory, 𝑁𝑆𝑂𝐶,90 can be taken into account given that an 
accuracy loss around 1% is introduced as simulation time reductions ranging 
between ~89% and ~97% are guaranteed. Consistent with the trend of 𝐶𝑂2,𝑇𝑇𝑊, the 
approximation error over the TCO increases as 𝑁𝑆𝑂𝐶 decreases.  

A very similar behaviour is shown for the hdv test case (Figure 25). If 𝑎 is 
lowered, 𝑁𝑆𝑂𝐶 is reduced without introducing relevant accuracy errors (it never falls 
on the sweep curves knee). Moreover, as for the pc, 𝑎=68% allows for achieving 
an optimal trade-off between DDP accuracy and simulation times abatement. 
Promising results are shown when 𝑒𝑟𝑒𝑙.68 is taken into account (Table 11). The 
worst case occurs for the ETC driving mission in which an accuracy loss around 
2% is introduced into the 𝐶𝑂2,𝑇𝑇𝑊 estimation, whereas the best case is found for 
the HHDDTT as the approximation error is limited to ~0.5%. On the other hand, 
the machine times are once again cut in a range between ~95% and ~98%. No 
strange behaviours stem for the TCO estimation as very restrained approximation 
errors lower than 1% arise for each testing mission.  
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Figure 24. Comparison of the different positioning of the results obtained by the 
DDP on the sweep curves when 𝑵𝑺𝑶𝑪,𝟗𝟓, 𝑵𝑺𝑶𝑪,𝟗𝟎 and 𝑵𝑺𝑶𝑪,𝟔𝟖 are used for pc. 

 

 

Figure 25. Comparison of the different positioning of the results obtained by the 
DDP on the sweep curves when 𝑵𝑺𝑶𝑪,𝟗𝟓, 𝑵𝑺𝑶𝑪,𝟗𝟎 and 𝑵𝑺𝑶𝑪,𝟔𝟖 are used for hdv. 
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Table 11. Results obtained by the DDP for each driving mission when 
𝑵𝐒𝐎𝐂,𝟗𝟓, 𝑵𝐒𝐎𝐂,𝟗𝟎 and 𝑵𝐒𝐎𝐂,𝟔𝟖 are used for pc and hdv. 

Vehicle Index Cycle 𝑵𝑺𝑶𝑪,𝟗𝟓 𝑵𝑺𝑶𝑪,𝟗𝟎 𝑵𝑺𝑶𝑪,𝟔𝟖 𝒆𝒓𝒆𝒍,𝟗𝟓  
[%] 

𝒆𝒓𝒆𝒍,𝟗𝟎 
[%] 

𝒆𝒓𝒆𝒍,𝟔𝟖 
[%] 

pc 

𝐶𝑂2,𝑡𝑡𝑤 
g/km 

WLTC 74.5 75.2 72.8 -0.01 +0.97 -2.34 

AUDC 77.0 76.8 72. 9 +0.13 -0.16 -5.20 

ARDC 68.6 68.9 67.4 +0.06 +0.50 -1.75 

AMDC 106.4 104.9 103.4 +0.49 -0.90 -2.31 

TCO 
k€ 

WLTC 41.9 42.0 41.5 +0.17 +0.53 -0.65 

AUDC 42.4 42.3 41.6 +0.17 +0.05 -1.75 

ARDC 40.7 40.8 40.5 +0.07 +0.22 -0.54 

AMDC 48.2 47.9 47.6 +0.19 -0.42 -1.04 

Machine 
time 
min 

WLTC 21.5 10.5 2.8 -78.53 -89.49 -97.16 

AUDC 38.3 8.2 1.9 -42.57 -87.76 -97.12 

ARDC 14.0 6.4 1.7 -80.41 -91.07 -97.67 

AMDC 5.1 1.9 0.5 -93.37 -97.46 -99.37 

hdv 

𝐶𝑂2,𝑡𝑡𝑤 
g/km 

WHVC 325.6 322.9 321.1 +0.27 -0.55 -1.11 

HHDDTT 287.0 286.8 284.6 +0.24 +0.21 -0.59 

CSC 286.8 284.2 283.2 +0.07 -0.82 -1.21 

ETC 362.4 360.8 356.3 -0.05 -0.47 -1.72 

TCO 
k€ 

WHVC 349.9 348.7 347.9 +0.11 -0.23 -0.46 

HHDDTT 332.6 332.5 331.5 +0.09 +0.08 -0.23 

CSC 332.5 331.3 330.8 +0.02 -0.32 -0.47 

ETC 366.4 365.7 363.7 -0.02 -0.20 -0.76 

Machine 
time 
min 

WHVC 23.8 7.3 1.5 -64.60 -89.22 -97.71 

HHDDTT 17.8 6.5 1.2 -30.44 -74.76 -95.15 

CSC 57.1 9.5 1.5 -8.92 -84.79 -97.54 

ETC 12.6 4.4 1.1 -80.60 -93.17 -98.34 
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3.5.3 Effect of the number of sub-control variables 

The robustness of the method was also assessed for by varying the number of sub-
control variables used by the DDP to search for the optimal control policy. For the 
sake of simplicity, pc has been selected as only test case of the analysis. Regarding 
the GN, the number of τ values is fixed to the number of gears of the considered 
transmission. On the other hand, a change into the number of PFs could be managed 
through the modification of the values of 𝛼𝑜𝑚. Specifically, the number of ps and 
bc levels might be increased or reduced based on the necessity of simulating larger 
or lower sets of admitted actions. The values assigned to 𝛼𝑜𝑚 are listed in Table 12 
considering three different cases, namely 𝑠1, 𝑠2 and 𝑠3. The battery energy 
variations produced in the three different cases can be different, as demonstrated by 
the maps of Figure 26. As it can be noted, the change of the number of 𝛼𝑜𝑚 levels 
leads to a reshape of the distribution of the power demanded to the battery. 
Consistent with an increased number of ps and bc levels, finer and finer battery 
energy variations can hence be observed as the number of PFIs is enlarged. 

The setup of a different set of sub-control variable could reasonably lead to a 
modification of the optimal control policy obtained with DDP. The different battery 
SOC profiles related to the optimal control policies identified by the DDP in case 
of 𝑠1, 𝑠2 and 𝑠3 have hence been studied. In Figure 27, the battery SOC trajectories 
are charted considering the highest amount of battery SOC levels admitted in the 
study (𝑟). Different battery SOC trajectories are clearly produced by the DDP. The 
orange trajectory (𝑠3, 16 PFIs) exploits a smaller amount of the SOC window, 
whereas a larger amount of charge is used as the values of 𝛼𝑜𝑚 are reduced to 7 and 
4. The trends of Figure 27 proves that a change into the number of sub-control 
variables could introduce non-negligible variations into the results of the DDP. 
Therefore, the reliability of the statistical approach performances when a different 
set of control actions is used has to be ensured as a final analysis. In other words, 
the number of battery SOC levels identified at the end of the procedure does not 
have to introduce any issue into the results accuracy. 

In Figure 28, the sweep curves realized with 𝑠1, 𝑠2 and 𝑠3, are plotted for each 
performance index when pc is tested on the WLTC. Coherent to the comparison 
presented in Section 3.5.2, the results related to 𝑁𝑆𝑂𝐶,95 𝑁𝑆𝑂𝐶,90 and 𝑁𝑆𝑂𝐶,68 are 
reported through circular, rhombic and squared markers. Despite the different sets 
of sub-control variables, the 𝐶𝑂2,𝑇𝑇𝑊 and TCO estimates converge roughly on the 
same values while the calculation times significantly increase as the number of 
control variables is augmented (Figure 28). 
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Table 12. Three different sets of values for the discretization of the sub-
control variable of the power-flow. 

PFI Set pt pe ps bc 

𝛼𝑜𝑚 

𝑠1 0 1 0.5 -0.5 

𝑠2 0 1 [0.25, 0.5, 0.75] [-0.5, -1] 

𝑠3 0 1 [0.1:0.1:0.9] [-0.5:-0.5:-2.5] 

 

 

Figure 26. Battery energy variations throughout the driving mission as a function 
of the number of sub-control variables admitted in 𝒔𝟏, 𝒔𝟐 and 𝒔𝟑 when pc is tested on 
the WLTC. 

 

Nevertheless, the 𝐶𝑂2,𝑇𝑇𝑊 and TCO exhibit different increasing trends on the 
left-handed side of the sweep curves (smaller amount of battery SOC levels), 
whereas the simulation times overlap. A change into the sweep curves could have 
represented an obstacle for the application of an automatic approach for the 
selection of the DDP mesh setup. Considering the location of the markers on the 
sweep curves of Figure 28, the outputs of the statistical approach show to be robust 
even to a modification into the control space. In fact, the number of battery SOC 
calculated for each considered value of 𝑎 fall into the stable portion of the sweep 
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curves. Once again, 𝑁𝑆𝑂𝐶,68 (squared markers) proves to be the optimal choice 
between the three different configurations. 

 

Figure 27. Battery state of charge trajectories obtained by the DDP when the 
number of sub-control variables admitted in 𝒔𝟏, 𝒔𝟐 and 𝒔𝟑 are used for pc on the 
WLTC with the maximum number of battery state of charge levels (𝒓). 

 

Figure 28. Comparison of the different positioning of the results obtained by the 
DDP on the sweep curves with 𝑵𝑺𝑶𝑪,𝟗𝟓, 𝑵𝑺𝑶𝑪,𝟗𝟎 and 𝑵𝑺𝑶𝑪,𝟔𝟖 when the number of sub-
control variables admitted in 𝒔𝟏, 𝒔𝟐 and 𝒔𝟑 are used for pc on the WLTC. 
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3.6 Conclusions 

In this Chapter, a methodology for the identification of a battery SOC-based DDP 
mesh that guarantees the optimal trade-off between calculation accuracy and 
computational effort has been presented. The main contributions of the research can 
be summarized in: 

 A method for pre-processing the distribution of the battery energy 
variations along a given driving mission based only on the road velocity 
trajectory; 

 The development of a statistical approach with the capability of 
identifying the proper amount of SOC discretization levels of a DDP 
that guarantees an optimal trade-off between the accuracy of the DDP 
calculations and the computational effort required; 

 The test of the approach on very different conditions, including different 
vehicles, HEV layouts and driving missions.  

The entire methodology presented in this Chapter can actually be considered as 
a reliable tool for the identification of an optimal DDP setup in case of battery SOC 
as sv. In fact, the robustness of the method has been proved through a massive 
testing under very different configurations of the simulation scenario. Relying upon 
the results of the research, the curse of dimensionality phenomenon of the DDP can 
evidently be limited when the offline optimal control policy of a (P)HEV has to be 
identified. It is worth underlying that the presented methodology has been used for 
each topic presented in the following chapters. 

At the present stage of the research, first a procedure for (P)HEV design 
optimizations and then a method for ensuring a proper configuration of the DDP 
algorithm have been presented. From this point onward, innovative methodologies 
with the capability of learning from DDP and reproducing its performance both in 
case of (P)HEV design and control problems are discussed. 

 



 

Chapter 4 

A predictive model for the CO2 
emissions of hybrid powertrains based 
on Deep Neural Networks 

The (P)HEV design optimization based on DDP presented in Chapter 2 allows for 
the identification of the hybrid layouts with the best energetic performances in a 
specific testing condition (i.e. type of vehicle, hybrid architecture, driving mission, 
etc.). An optimal trade-off between the accuracy of the DDP calculations and the 
simulation time could also be obtained thanks to the approach presented in Chapter 
3. Nevertheless, a non-negligible issue could arise when the design optimization 
has to focus on a very large design domain including multiple (P)HEV architectures 
and layouts as well as different simulation setups. In these cases, the machine time 
reductions permitted by the statistical approach might not be enough. Beyond the 
problem about the machine time, the computational effort required by a complete 
design optimization with multiple iterations in the design space could be too 
expensive. The latter could hence be forecasted when new and unknown inputs are 
fed into the same tool. 

 

Part of the present section has been extracted from: 
Maino, C. et al. (2021). A deep neural network based model for the prediction of hybrid electric 
vehicles carbon dioxide emissions. Energy and AI. Elsevier Ltd, 5, p. 100073. Doi: 
10.1016/j.egyai.2021.100073. 
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Evidently, the forecasting operation on new data should be much faster with 
respect to the new simulations through DDP.  

Machine Learning represent a promising family of techniques with the 
capability of learning from a dataset. Beyond the classification in SL, UL and RL, 
a typical macro-discrimination is made between classification and regression-aimed 
ML algorithms ([167]). Briefly, classification algorithms are employed to predict a 
class the processed inputs belong to, whereas regression algorithms are used to 
predict numerical values. Recalling the difference between SL and UL, “labelled 

data” (i.e. data for which the class/value to be predicted is a priori known) have to 
be fed into a SL algorithm, whereas “unlabelled data” can be comprised in the 
dataset of an UL algorithm with the aim of intercepting macro-trends in the input 
data. Considering the topic of CO2 prediction for (P)HEVs, a global optimization 
through DDP (or any other global optimizer) would guarantee the calculation of 
optimal outputs for each of the tested layouts. Labelled data would be available and 
a SL problem would be generated. Specifically, a SL problem in which the values 
of the DVs of a specific (P)HEV architecture and the 𝐶𝑂2,𝑇𝑇𝑊 represent the inputs 
and the prediction target, respectively. 

Since the numerical correlations between the layouts’ specifications (i.e. the 

inputs) and the global optimizer’s results (i.e. the outputs) are expected to be highly 

non-linear ([168]), Neural Networks (NNs) have been selected as the most 
promising solution for the considered prediction task. NNs represent one the ML-
related tools with the capability of solving complex prediction problems ([169]). 
Common features are the layered structure, a variable number of nodes for each 
computational layer and a recursive approach that is of paramount importance in 
the learning process ([170]). In case of multiple hidden layers (i.e. the layers 
comprised between the first and the last layers of the NN), Deep-NNs (DNNs) are 
generated, which have shown a greater learning potential due to their deep layered 
structure ([171], [172], [173]). In other words, a DNN is a multilayer perceptron 
(MLP), shallow if only one hidden layer is used or deep if more than one hidden 
layer are used. 

An innovative utilization of DNN for (P)HEVs is presented in this Chapter 
which differs from the AI-based solutions typically presented in the literature. In 
fact, NNs for (P)HEVs are basically focused on monitoring the real-time vehicle 
performances as well as on dictating a proper control strategy. On the contrary, the 
methodology hereafter discussed is intended to be integrated within design 
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operations for (P)HEV fleets and could represent a fast and reliable tool to identify 
the optimal design regions related to specific driving conditions.  

4.1 Vehicle models, database definition and problem 
formulation 

Three different HEV parallel architectures featured by a single MG have been 
analyzed for the present study, namely P2 (pre-transmission), P3 (post-
transmission) and P4 (through-the-road). The HEV pre-transmission driveline is 
reported in Figure 6, whereas post-transmission and through-the-road are illustrated 
in Figure 29 and Figure 30, respectively. In a post-transmission HEV, the MG is 
connected to the traction axle through a TCD before the TR (wheels-side), allowing 
for the MG speed to the independent from the ICE shaft speed (i.e. the transmission 
ratio does not affect the actual speed seen by the MG). On the other hand, the MG 
is connected to the non-traction axle and a complete decouple of the two propellers 
is realized.  

A baseline HEV model has first been generated for the three HEV parallel 
architectures according to the modeling approach presented in Chapter 2. Please 
refer to Appendix A for insights about the power and speed calculations for P3 and 
P4 drivelines. The main specs about the baseline vehicle are reported in Table 13. 
Therefore, a DoE-based VL (Section 2.3) has been produced for each architecture 
and the related HEV layouts have been set up relying upon the map scaling 
operations presented in Section 2.3.1 and Section 2.3.2. The P2 and P3 architectures 
have been characterized by the same DVs (Table 1), whereas the P4 architecture 
has not included the TCD since the position of the MG on the rear-axle requires the 
exploitation of a rear final drive (FDR) instead of TCD ([174]). Finally, a database 
of HEV layouts has been generated based upon the values assumed the entire set of 
DVs, including the P2, P3 and P4 datasets. Overall, 1500 samples (i.e. different 
HEV layouts) have been considered for each HEV architecture (i.e. 4500 overall 
elements). 

Considering the DDP algorithm proposed in Chapter 2 ([174]) featured by a 
number of battery SOC levels optimized through the statistical presented in Chapter 
3 ([154]), the 𝐶𝑂2,𝑇𝑇𝑊 emissions of the HEV layouts have been obtained for the 
WHVC. The database could hence be integrated with the CO2 emissions estimated 
by the DDP. An extract of the database of the separate axle HEV architecture is 
reported in Table 14. It is constituted by 1500 entries (number of rows) and 8 
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features (number of columns), the latter comprising seven features related to the 
DVs (columns 2nd to 8th) and one feature for the DP-based 𝐶𝑂2,𝑇𝑇𝑊 emissions (9th 
column). 

 

Figure 29. Driveline of a post-transmission parallel hybrid electric powertrain. 

 

 

Figure 30. Driveline of a through-the-road parallel hybrid electric powertrain. 
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It is worth observing that the same structure would apply for the databases of 
the P2 and P3 architectures except for the sixth column which will be representative 
of the TCD speed ratio (𝑠𝑟𝑇𝐶𝐷) instead of the FDR speed ratio (𝑠𝑟𝐹𝐷𝑅).  

 

Table 13. Main specs of the baseline vehicle and its propellers. 

Vehicle 

Vehicle class Heavy-duty 

Vehicle total mass 7500 

Number of wheels 6 

Internal Combustion Engine 

Type Diesel 

Displacement 4.5 l 

Maximum power 150 kW 

Motor-generator 

Rated Power 125 kW 

Maximum Torque in traction  300 Nm 

Maximum Torque in braking  -300 Nm 

 

Given the possibility of DDP to detect both feasible and unfeasible layouts, a 
numerical distinction between the CO2 emissions produced in the two cases had to 
set up. To this end, a very large value equal to 10000 g/km has been connected to 
the CO2 emissions of unfeasible layouts. This approach could have been replaced 
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by other similar approaches, such as including a Boolean variable (0 for unfeasible 
and 1 for feasible layouts). Nevertheless, a modification should have been applied 
to the original structure of the database and an additional choice about the 𝐶𝑂2,𝑇𝑇𝑊 
value of unfeasible layouts had to be taken. Given the CO2 results of feasible layouts 
appear to be far below 10000 g/km, the choice of connecting unfeasible layouts to 
a very large and unrealistic CO2 emissions value has guaranteed the possibility of 
numerically avoid problems in the training process of the NNs. 

 

Table 14. An extract of the database related to the P4 architecture. 

Sample 
𝑽𝑰𝑪𝑬 𝑷𝒎𝒂𝒙,𝑴𝑮 𝑷𝑬 𝒔𝒓𝑭𝑫𝑭 𝒔𝒓𝑭𝑫𝑹 𝑪𝒅𝒊𝒔,𝒎𝒂𝒙 𝑪𝒄𝒉,𝒎𝒂𝒙 𝑪𝑶𝟐,𝑻𝑻𝑾 

l kW kW/kWh     g/km 

1 2.6 106 5.1 4.1 14.8 8.8 9.3 377.1 
2 3.9 113 5.1 4.6 10.5 8.0 8.0 389.4 
… … … … … … … … … 

1500 3.9 52 29.3 4.7 10.4 6.3 11.5 10000.0 
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4.2 Deep Neural Networks for the prediction of CO2 
emissions of hybrid electric vehicles 

Two different DNNs have been developed aimed at solving two different tasks: 
first, a classification task related to the distinction between feasible and unfeasible 
layouts, then a regression task about the prediction of the actual 𝐶𝑂2,𝑇𝑇𝑊 emissions 
produced by feasible layouts. The classification and regression DNNs will be 
referred as cDNN and rDNN, respectively. A pipeline made of the two DNNs has 
hence been integrated within a larger model, namely DNNs-PM, along with other 
minor tools. The DNNs-PM is capable of producing a realistic prediction of the DP-
based CO2 of HEVs by means of a two-steps procedure: 

1. Assessment of the HEV layout feasibility: a cDNN predicts the 
capability of a specific HEV layout of concluding a driving mission 
while satisfying the boundary conditions of (33)-(35); 

2. Prediction of the CO2 emissions: an rDNN predicts the CO2 emitted by 
the feasible layouts. 

A general formulation of the inputs/outputs of the DNNs can be written as: 

{
𝐹 = 𝑓(𝐷𝑒𝑠𝑃𝑎𝑟𝑠, 𝜃𝑐)

𝐶𝑂2,𝑇𝑇𝑊 = 𝑓(𝐷𝑒𝑠𝑃𝑎𝑟𝑠(𝐹), 𝜃𝑟)
 (62) 

where 𝐹 represents the set of feasible HEV layouts predicted by cDNN, 
𝐷𝑒𝑠𝑃𝑎𝑟𝑠 represents the set of design parameters considered for the HEV layouts, 
𝐶𝑂2,𝑇𝑇𝑊 represents the tank-to-wheel CO2 emissions predicted by rDNN, while 𝜃𝑐 
and 𝜃𝑟  represent the set of parameters for the cDNN and rDNN, respectively. 

In Figure 31, the workflow of the DNNs-PM is reported. Once the database has 
been successfully generated, a set of pre-processing operations is carried out 
(targets definition and database normalization) and the cDNN training is performed. 
During the learning process, an Automatic Search Tool (AST) is employed to select 
the most effective combination of network’s parameters. A validation of the model 

is performed so as that the real performances of the DNN could be evaluated on 
new and unknown data. Once the feasible layouts are identified and the unfeasible 
ones are discarded (i.e. filtering procedure), the updated database can be passed to 
the second DNN. The rDNN learning process can finally take place with the support 
of the AST and the CO2 regression can be realized. 
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In the following sections, the steps taken for the development of the DNNs-PM 
are thoroughly discussed. Then, the results of the model are presented for a specific 
HEV application. For the sake of clarity, the typical formulation and operating 
principle of a NN are hereafter not remarked as they are taken for granted. Please 
refer to [175] if a deeper dissertation about NNs is needed. The DNNs have been 
developed using Python programming language ([176]).  

 

 

Figure 31. Workflow of the model based on Deep Neural Networks for the 
prediction of the CO2 emissions of hybrid electric vehicles. 
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4.2.1 Data management 

A single database has been passed to the DNNs-PM (Table 14), indeed it has been 
handled differently based on the specific type of DNN to be employed (i.e. 
classification or regression purposes). The rDNN is asked to predict the exact CO2 
estimates and hence any action has to be performed on the values of the CO2 
produced by DP and stored in the last column of Table 14. On the contrary, the 
cDNN aims at performing a classification and hence categorical targets are required 
instead of numerical targets. To this end, the CO2 estimates (𝐶𝑂2,𝑇𝑇𝑊) of Table 14 
have been replaced by: 

𝐹 = {  
1               𝑖𝑓 𝐶𝑂2,𝑇𝑇𝑊 ≠ 10000

0                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (63) 

Another operation has been performed on the values assumed by the design 
parameters. Different order of magnitudes are highlighted in Table 14 for the seven 
input variables. That is consistent with the physical quantities represented by the 
design parameters. From a numerical perspective, such a condition can lead to an 
inefficient network training as the network predictions could be learnt based only 
on the features characterized by larger values ([177], [178]). An effective and fast 
solution is the normalization of the whole dataset. This procedure is typically 
realized by substituting each entry of the dataset with an equivalent value using a 
relation which is able to enforce the same range of variation for the entire set of 
features while preserving their informative potential ([179], [180]). In the present 
activity, a database standardization has been chosen to avoid an unbalanced 
distribution after the normalization data. The updated values of the input features 
have been calculated through: 

�̃�𝑖 = 
𝑥𝑖 − �̅�

𝑠𝑡𝑑(𝑥)
 𝑓𝑜𝑟 𝑖 = 1, 2, … ,𝑁 (64) 

where �̃�𝑖 is the i-th layout’s feature after standardization, 𝑥𝑖 is the i-th layout’s 

feature before standardization, �̅� is the average of the considered features, 𝑠𝑡𝑑(𝑥) 
is the standard deviation of the considered feature and 𝑁 is the number of design 
parameters. Based on the standardization operation of (64), the values assumed by 
the descriptive features have become numerically comparable. 

A final operation has been performed over the database aimed at generating 
three different sub-datasets to be used as training, validation and test sets. The 
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number of entries of each sub-dataset have been defined based on two different 
indexes, namely train-to-test split (t/t split) and train-to-validation (t/v split). The t/t 
split is representative of the fraction between the number of entries in training and 
validation sets and to the total number of entries in the database. The t/v split is 
representative of the fraction between the number of entries in the training set and 
the entries in validation set. Since the depth of the training set can strongly affect 
the model performance ([172]), the larger share of data has been selected as training 
set. The latter has been characterized by labelled data and has been employed to 
train the DNNs to learn the correlations between the inputs features and the output 
targets. On the other hand, smaller validation and test sets have been generated: the 
validation set has been employed to assess for the DNN performances during 
validation procedures aimed at identifying the best networks’ parameters; the test 
set has been considered when the validated DNN had to be tested on new unlabelled 
data. As final consideration, the entries of each sub-dataset been selected by means 
of a stochastic operation aimed at excluding the DNN behaviour to be biased by 
specific data splits.  

4.2.2 Definition and tuning of the model parameters 

Three different types of networks’ parameters have been considered in the present 
activity: networks’ weights, fixed-parameters and hyper-parameters. The networks’ 

weights represent the parameters involved in the computation of the activation 
functions, which are autonomously tuned in the back-propagation phase of the 
training process ([43]). The fixed-parameters have been considered as the user-
defined parameters to be identified before the training process of the networks 
begins. In the present work, the values of the fixed parameters have been chosen 
after several experiments aimed at exploiting the optimal trade-off between training 
time and networks’ accuracy. The list of fixed-parameters is presented in Table 15. 
Evidently, fixed-parameters have been kept unchanged for the entire set of analyses 
(the description and investigation of these parameters is beyond the scope of this 
study and the related investigations are hereafter not presented). Finally, any other 
parameter related to the DNNs with the necessity of a tuning (and optimization) 
operation integrated in the training process has been identified as hyper-parameter. 
Given the different nature of the networks involved in the DNNs-PM pipeline, 
different sets of hyper-parameters have been considered.  

In Table 16, the lists of hyper-parameters are reported both for cDNN and 
rDNN. As far as cDNN is concerned, the learning rate and the L2 regularization 
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parameter are characterized by logarithmic variations with base 10, whereas the 
batch size assumes a logarithmic variation with base 2. Indeed, the number of 
hidden layers and the number of neurons in the first hidden layers are featured by a 
variation in the whole numbers domain. About rDNN, the same considerations can 
be made for each hyper-parameter except for the L2 regularizer, which has been 
neglected and replaced by the weighs initialization technique. 

Additional hyper-parameters related to the number of neurons in each hidden 
layer should have been included in the list of both cDNN and rDNN. Nevertheless, 
unbounding the number of neurons per layer could have introduced two relevant 
issues. First, the real number of hyper-parameters to be tuned would have been 
linked to the value assumed by a single hyper-parameter. In fact, a variation into 
the number of hidden layers would have led to a modification of the length of the 
hyper-parameters list. A kind of inconvenient loop of hyper-parameters would have 
generated. Second, the number of possible combinations to be analyzed could have 
exploded in case of networks with many hidden layers. Therefore, the following 
equation has been employed to calculated the number of neurons of each hidden 
layer while bounding the hyper-parameters’ space: 

𝐿𝑗 =
𝐿1

2(𝑗−1)
 (65) 

in which 𝐿𝑗 is the number of neurons of the j-th hidden layer while 𝐿1 is the 
number of neurons of the first hidden layer. A 5-dimensional hyper-parameters’ 

space can hence be studied both for cDNN and rDNN. Since the range of the values 
assumed by each hyper-parameter could vary in a very wide domain, an automatic 
procedure for the selection of meaningful hyper-parameters’ combination is 

necessary. Consistent with the model workflow of Figure 31, a tool (AST) for an 
automatic on-training tuning of the networks’ hyper-parameters has been 
developed. Through AST, several combinations of the values assumed by the DNN 
hyper-parameters (“trials”) are randomly selected through a Random-Search (RS) 
operation ([181]). Therefore, the network performances are assessed for using a k-
fold Cross-Validation (k-CV) operation ([182]). For each trial, an average task-
specific performance index based on the k validation splits is computed. Evidently, 
considering an average value represents a more robust approach to assess for the 
real performances of a given trial for a specific DNN (e.g. compared to the 
evaluation of the maximum values). 
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Table 15. Fixed-parameters considered for the Deep Neural Networks. 

Fixed-parameter cDNN rDNN 

Number of epochs 250 100 

Activation function 
(internal layers) ReLU ReLU 

Activation function 
(output layer) 

Sigmoid Linear 

Optimizationr Adam Adam 

Normalization Batch normalization Batch normalization 
& Dropout 

 

Table 16. Hyper-parameters considered for the Deep Neural Networks 

cDNN rDNN 

Learning rate Learning rate 

Number of hidden layers Number of hidden layers 

Number of neurons in the first 
hidden layer 

Number of neurons in the first 
hidden layer 

L2 regularization parameter Weights initialization 

Batch size Batch size 

 



Chapter 4. A predictive model for the CO2 emissions of hybrid powertrains based on Deep Neural Networks 

 

97 

Finally, the performances obtained through different trails are compared using 
a task-specific algorithm and the most promising set of hyper-parameters is 
selected. 

In the following sections, the performance indexes used for cDNN and rDNN 
are first presented and then the entire AST procedure is illustrated for both cDNN 
and rDNN. 

4.2.3 Performance index for the Classification Deep Neural 
Network 

As far as the classification task of the cDNN is concerned, a binary classification 
had to be performed based on (63). In the present work, the Matthews Correlation 
Coefficient (MCC) has represented the performance index used to assess for the 
cDNN performance. The MCC is considered as one of the best “single-number” 

performance indexes, deriving directly from the Confusion Matrix (CM) calculated 
for a specific trial ([183]). The MCC can be computed as: 

𝑀𝐶𝐶 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (66) 

where 𝑇𝑃 are the true positive predictions, 𝑇𝑁 are the true negative predictions, 
𝐹𝑃 are the false positive predictions and 𝐹𝑁 are the false negative predictions. The 
MCC ranges from -1 (the model is in a complete opposition with respect to the 
observations) to 1 (perfect classification); in the case of null MCC, the model is 
considered to produce random predictions. Along with the MCC, the associated CM 
has also been considered for an even more exhaustive evaluation of the networks’ 

performances. 

4.2.4 Performance index for the Regression Deep Neural Network 

Given the target of the rDNN to replicate the numerical result, the widely used 
Coefficient of Determination (CoD) 𝑅2 has been selected as one promising index 
to track the fitting effectiveness of the DNNs-PM predictions with respect to DP-
based targets ([184]). The CoD can be calculated through: 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2
𝑖

∑ (𝑦𝑖 − �̅�)2𝑖
 𝑤𝑖𝑡ℎ 𝑖 = 1, 2, … ,𝑀 (67) 
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in which 𝑦𝑖 is the true value of the i-th sample, �̂�𝑖 is the predicted value of the 
i-th sample, �̅� is the average of the target values and 𝑀 is the number of samples. 
The CoD ranges from an infinitely negative number to 1: a baseline model 
predicting the average value of the distribution exhibits a null 𝑅2; a perfect fit of 
the model leads to 𝑅2=1, whereas negative values typically account for models 
worse than the baseline one ([185]). 

Additionally to CoD, the Root Mean Squared Error (RMSE) has also been 
monitored throughout the experiments as loss-function of the rDNN ([186]). The 
RMSE can be calculated through: 

𝑅𝑀𝑆𝐸 =  √
∑ (�̂�𝑖 − 𝑦𝑖)2
𝑀
𝑖

𝑀

2

 𝑤𝑖𝑡ℎ 𝑖 = 1, 2, … ,𝑀 (68) 

The values assumed by the RMSE range from 0 (perfect predictions) to 
infinitely large values (predictions infinitely distant from target values). 

4.2.5 Automatic Search Tool 

The steps performed by the AST have been adapted according to the set of 
networks’ hyper-parameters. In case of cDNN, a user-defined range of variation 
(“space”) for each hyper-parameter has been first selected and divided into 3 equal 
sectors (“sub-spaces”). Then, a 4-steps multi-level procedure has been employed to 
assess for the best combination of hyper-parameters: 

1. A RS is performed in the whole hyper-parameters’ space with a user-
defined number of trials. For each RS output, the related sub-space is 
monitored (beginning of higher-level tuning procedure); 

2. An 8-fold k-CV is performed for each trial. Considering the outputs of 
each CV fold, the hyper-parameters’ combinations leading to the three 

best MCC results are selected for each trial. Therefore, the three sub-
spaces related to the best results are identified (end of higher-level 
tuning procedure); 

3. A RS is performed in each sub-space with the same number of trials of 
Step 1 (beginning of lower-level tuning procedure); 

4. An 8-fold k-CV is performed for each trial. Considering the outputs of 
each CV fold, the hyper-parameters’ combination leading to the best 
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MCC is identified and chosen for the final training and testing of the 
cDNN (end of lower-level tuning procedure). 

Considering the differences between the performance indexes of cDNN and 
rDNN, the procedure of the AST have been modified in case of rDNN. Specifically, 
three operations have been conducted: 

1. A RS is performed in the whole hyper-parameters’ space with a user-
defined number of trials; 

2. An 8-fold k-CV is performed for each trial. Considering the outputs of 
each CV fold, the hyper-parameters’ combinations leading to average 

CoD higher than 0.75 are stored;  
3. If at least one trail with average CoD higher than 0.75 is identified, the 

the hyper-parameters’ combination leading to the highest CoD and 

chosen for the final training and testing of the rDNN. If no trials with 
CoD higher than 0.75 are identified, the procedure is repeated starting 
from Step 1. 
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4.3 Results 

The DNNs-PM has been applied to the prediction of both feasibility (𝑓𝑒𝑎𝑠, 
classification task) and tank-to-wheel CO2 emissions (𝐶𝑂2,𝑇𝑇𝑊, regression task) 
identified by the DDP for several HEV parallel layouts of an hdv. The performance 
of the DNNs-PM has been evaluated following two steps: first, the evaluation of 
the model capability to effectively learn from a single dataset (“intensive training”) 

and, then, the comparison of the results produced by the model when tested on 
multiple different datasets (“stress test”). This approach has first been applied to the 
cDNN as stand-alone DNN and, hence, it has been extended to the entire pipeline. 
The study of the results produced of the intensive training is thought to be useful 
for a deep comprehension of the DNN behaviour, whereas a comparison on 
different datasets is mandatory to highlight the real generalization capability of the 
model when tested under various conditions. In the following sections, the 
outcomes of 46 independent experiments (28 for the cDNN, 18 for the entire 
pipeline) are presented which aim at assessing for the realistic potentials of 
embedding the DNNs-PM into a (P)HEV design optimization operation. For the 
sake of completeness, the results presented in the following sections refer to 
experiments performed with a 2.4GHz CPU-12GB RAM personal computer. 

4.3.1 cDNN: results of the intensive training 

As first step, the consistency of the learning process of cDNN has been assessed for 
by analyzing the learning curves obtained during the training phase of a single 
experiment to ensure the absence of underfitting, overfitting or biasing phenomena. 
The dataset of the P4 HEV architecture has been considered for the present analysis. 
Recalling Section 4.2.1, a random selection of the training, validation and test sets 
is performed so as that any bias is introduced in the network operation due to a fixed 
split in the data. Twenty hyper-parameters’ combinations have included in the 
tuning process carried by the AST. A limited number of 250 epochs has been 
considered for the training phase and the t/t split has been set to 80-20 (i.e. the 
fraction of training and validation samples with respect to the overall number of 
sample in the dataset is equal to 80%). Notice that the t/v split has been set to 7-1 
since an 8-fold k-CV has been involved in the AST procedure. The complete 
configuration for the intensive training analysis over cDNN is resumed in Table 17. 
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Table 17. Configuration of cDNN for the intensive training analysis. 

Hyper-parameter Range of variation 

Learning rate 0.0002 – 0.02  

Number of hidden layers 1 – 4 

Number of neurons in the first hidden layer 130 – 230 

L2 regularizer 0.003 – 0.3 

Batch size 16 – 128 

Sub-dataset Number of samples 

Training 1050 

Validation 150 

Testing 300 

 

Consistent with Section 4.2.3, two performance indexes have been taken into 
account for monitoring the cDNN performances, namely MCC and CM. In Figure 
32 and Figure 33, the results are reported in terms of MCC and CM, respectively. 
The MCC (Figure 32) has been monitored throughout the training phase (red curve) 
and for each split considered in the k-CV procedure. Then, the average MCC trend 
has been calculated and monitored for the k-CV splits (green curve) and compared 
with the MCC trend of the best performing split (blue curve). The latter is 
represented by the data split leading to the highest MCC at the last training epoch. 
Promising results highlight as the MCC trajectory increases along with the training 
epochs. First, an increasing trend can be detected in both training and validation 
curves. Evidently, the average MCC values calculated considering the entire set of 
k-CV data splits are affected by ineffective hyper-parameters’ combination. 

Second, considering red and blue curves, the distance between the MCC traces 
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during training and validation shrinks along with the progress in the epochs. Third, 
the final values of both training and testing are consistently above 0.8, which can 
be considered as a very good result in a classification task. It can hence be stated 
that cDNN is not undergoing a healthy learning process without underfitting, 
overfitting phenomena ([187]). Furthermore, no warnings are shown by the curves 
noise, which can be linked to the intrinsic stochastic approach of DNNs. 
Consequently, a lower number of samples in the data split can be connected to a 
lower possibility of incurring in smoothed responses of the DNN predictions. From 
this perspective, the MCC proves to be spikier in case of best validation split (150 
samples) with respect to the training sub-dataset (1050 samples). 

 

 

Figure 32. Trend of the MCC obtained by cDNN during training and validation 
phases of the intensive training analysis. 

 

In addition, the complete CM obtained by cDNN when tested on the P4 dataset 
is shown in Figure 33, which reports the exact number of 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁. As 
it can be noted, the results of the main diagonal prove a strong capability of the 
DNN to predict the correct class. The number of effective prediction peaks at 86.9% 
while the MCC calculated through (66) results in 82.9%. Such a value is aligned 
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with the final value of the average MCC trend (Figure 32, green curve) proving the 
robustness of the outcomes at the end of the k-CV operations. 

 

 

Figure 33. Configuration Matrix obtained by cDNN during testing phase of the 
intensive training analysis. 

 

At this stage, the cDNN capability to produce stable performances has been 
evaluated based on the results obtained by 24 experiments in which changes into 
the input datasets are introduced. Such an analysis has aimed at excluding biasing 
phenomena related to the selection of a specific training, validation and testing sub-
datasets. Specifically, six tests have been conducted for four different t/t splits (60-
40, 70-30, 80-20 and 90-10). Consistently, a diversification of the sub-datasets is 
ensured and the assessment of an unbiased behaviour is promoted. In Table 18, a 
description of the new sub-datasets is reported for each t/t split. Any other parameter 
related to the setup of the experiments (e.g. number of epochs, hyper-parameters’ 

space, etc.) has been kept unchanged with respect to the first intensive training 
analysis. Therefore, the t/v split has remained equal to 7-1. 
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Table 18. Updated setup of the sub-datasets considered for the intensive 
training analysis. 

t/t split Trials 
Number of samples 

Training Validation Test 

60/40 6 788 112 600 

70/30 6 919 131 450 

80/20 6 1050 150 300 

90/10 6 1181 169 150 

 

The results obtained by cDNN on the updated testing sub-datasets are presented 
in Table 19 in terms of actual MCC for each trial (𝐼, 𝐼𝐼, …, 𝑉𝐼), average MCC (avg) 
and standard deviation of the results (std). A direct correlation arises between 
classification accuracy and training set size as the average MCC appears to increase 
along with the number of training samples. Such a result can be considered as the 
most coherent outcome of a robust learning process. Moreover, the experiments 
with 80/20 and 90/10 t/t splits are featured by both higher avg and std. As far as the 
avg is concerned, an amelioration of the DNN average performance could be 
expected coherently with the broaden number of training samples. On the other 
hand, reducing the number of testing samples can lead to an increase of the 
influence produced by the outcome of a single prediction with respect to the overall 
prediction. This leads to higher std values. 
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Table 19. Results obtained by cDNN considering the updated sub-
datasets of the intensive training analysis  

t/t split 
𝑰 𝑰𝑰 𝑰𝑰𝑰 𝑰𝑽 𝑽 𝑽𝑰 avg std 

% % % % % % % % 

60/40 81.9 82.1 76.5 82.2 79.7 76.4 79.8 2.33 

70/30 82.1 86.3 81.6 76.8 81.6 81.6 81.7 2.55 

80/20 82.9 82.2 87.2 85.1 84.4 75.0 82.8 3.55 

90/10 85.8 78.8 80.4 84.5 88.8 85.8 84.0 3.16 

 

4.3.2 cDNN: results of the stress test 

Once the evaluation of the model robustness has been completed considering the 
dataset of a single HEV architecture (P4), a comparison of the results produced by 
the model when applied to three different datasets (P2, P3 and P4 alternatively) has 
been carried out under slightly different conditions. For the present stress test, the 
hyper-parameters’ space has been enlarged and the number of trials in the AST 
procedure has been increased. In fact, no a priori assumptions can be made about 
the effectiveness of the optimal hyper-parameters’ combination found for the P4 

dataset when applied to different architectures. Therefore, the extension of the 
hyper-parameters’ space can increase the probability of spotting an optimal (or near 
optimal) hyper-parameters’ combination for each architecture. For the just 

mentioned reasons, an increase in the overall performance has also been expected 
for the P4 dataset.  

For the present analysis, the t/t split has been set to 90/10 since it has proved to 
be beneficial to the cDNN performance (Table 19). The complete setup updated for 
the stress test of the cDNN is reported in Table 20. Given the share of training 
samples with respect to the overall number of samples in the datasets, a single trial 
has been conducted and the related results have been considered for the comparison 
of the cDNN performances. 

The results obtained at the end of the stress test are reported in Table 21 
considering the MCC over the testing sub-datasets of each HEV dataset. The 
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expected increase in the cDNN classification accuracy is evidently confirmed. 
Particularly for the P4 dataset, the MCC reaches 91.5% that represents an increase 
of more than 2.7% with respect to the maximum MCC registered in Table 19 for 
the same t/t split. Nevertheless, the cDNN performances on the classification of 
feasible P2 and P3 layouts are found to outperform the best performances found for 
the P4 dataset. In fact, the MCC obtained for the P2 and P3 datasets peaks roughly 
97% and 92%, respectively. Such an outcome can evidently be linked to the 
correlations underlying between the DVs of pre/post-transmission HEV 
architectures and the DP-based tank-to-wheel CO2 emissions. Nevertheless, such a 
hypothesis has not been further explored in the present study and its represents 
ground for future research. 

 

Table 20. Configuration of cDNN for the stress test. 

Hyper-parameter Range of variation 

Learning rate 0.00001 – 0.1 

Hidden Layers 1 – 15 

Number of neurons in the first hidden layer 20 – 300 

L2 regularizer 0.0001 – 0.09 

Batch size 16 – 516 

Sub-dataset Number of samples 

Training 1181 

Validation 169 

Testing 150 
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Table 21. Results obtained by cDNN on the testing sub-datasets of each 
architecture considered in the stress test. 

Dataset MCC % 

P2 96.9 

P3 92.4 

P4 91.5 

 

4.3.3 rDNN: results of the intensive training 

The rDNN is responsible of predicting the CO2 emissions of the HEV layouts 
classified as feasible by the cDNN. The assessment of the performances achieved 
by the DNNs pipeline has been carried out through 18 experiments. Specifically, 
six experiments have been performed over the datasets of each considered 
architecture (P2, P3 and P4). Similar to cDNN, six experiments have first been 
performed with t/t split fixed at 90/10 over the P4-dataset; the hyper-parameters’ 

configuration used for the rDNN is reported in Table 22. Given that the number of 
samples used by the rDNN depends upon the number of feasible layouts detected 
by the cDNN, the split between training, validation and testing sub-datasets is not 
reported in Table 22. For the sake of clarity, the small variations in the MCC 
produced by the cDNN (Table 19) have led to the identification of a very similar 
number of feasible layouts.  

The performance indexes presented in Section 4.2.4 have been taken into 
account for monitoring the performances of the rDNN. The learning curves (i.e. the 
trends of the rDNN performance indexes) obtained with a generic experiment of 
the intensive training of the rDNN over the P4 dataset are reported in Figure 34. An 
increasing trend of the R2 highlights both for training (red curve) and for validation 
(green curve) sub-datasets; contrarily, a decreasing trend of the loss function (i.e. 
RMSE) shows both for training (blue curve) and for validation (orange curve). 
These two outcomes can be considered as a promising sign of an effective 
overfitting-free learning process ([187]). 
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Table 22. Configuration of rDNN for the intensive training analysis. 

Hyper-parameter Range of variation 

Learning rate 0.002 – 0.1  

Hidden Layers 1 – 6 

Neurons first hidden layer 30 – 80 

Batch size 8 – 64 

Dropout 0 – 0.5 

Weights initialization Xavier, random, truncated normal 

 

 

Figure 34. Trend of the performance indexes obtained by rDNN during training 
and validation phases of the intensive training analysis. 
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The comparison between the DP-generated CO2 emissions (i.e. labels) and the 
values predicted (i.e. predictions) by the rDNN are reported in Figure 35 for the test 
sub-datasets considered for each experiment of the intensive training analysis.  

 

 

Figure 35. Comparison between the labelled CO2 emissions and the CO2 
emissions predicted by the rDNN for the intensive training analysis. 
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The numerical results achieved at the end of each experiment have also been 
tracked so to quantify the rDNN capability of producing reliable predictions. In 
Table 23, the regression average errors (Ê), maximum errors (Max E) and minimum 
errors (min E) are reported along with the values of CoD (R2) and loss function 
(RMSE) obtained on the test sub-dataset. For the entire set of metrics, avg and std 
have been reported. Moreover, absolute (Abs) and relative (Rel) value have been 
accounted for quantifying the regression errors. Notice that relative errors of “<1” 

are referring to relative errors below 0.5%. Confirming the positive trend of Figure 
35, very promising performances are shown by the pipeline as an overall Ê under 
0.5% has been produced at the end of the intensive training analysis. Interestingly, 
even the worst rDNN performance (4th experiment) leads to a very small average 
error (Ê=1%). 

 

Table 23. Results obtained by the rDNN over the test samples of the P4 
dataset considered for the intensive training analysis. 

Experiment 
Ê Max E min E R2 

- 

RMSE 

g/km Abs 
g/km 

Rel 
% 

Abs 
g/km 

Rel 
% 

Abs 
g/km 

Rel 
% 

I 2.11 1 9.39 2 0.03 <1 0.923 2.50 

II 0.92 <1 4.67 1 0.01 <1 0.988 1.25 

III 1.49 <1 7.43 2 0.03 <1 0.972 1.77 

IV 4.12 1 11.48 3 0.15 <1 0.672 4.61 

V 1.28 <1 7.88 2 0.00 <1 0.963 1.93 

VI 0.78 <1 3.13 1 0.01 <1 0.989 1.06 

avg 1.78 <1 7.33 2 0.04 <1 0.918 2.19 

std 1.13 <1 2.78 1 0.05 <1 0.112 1.18 

 

As a final check, the dispersion of the relative errors of the CO2 predictions is 
reported in Figure 36 for each test case. Very small errors highlight as a symptom 
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of the rDNN robustness to several tests. Particularly, the maximum error peaks at 
3% in the 4th experiment, which can be considered as a very important result. 

 

 

Figure 36. Dispersion of the relative errors obtained by the rDNN over the test 
samples of the P4 dataset considered for the intensive training analysis. 
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4.3.4 rDNN: results of the stress test 

As final operation, a test has been conducted by applying the entire pipeline (i.e. 
cDNN and rDNN) to the P2 and P3 datasets considering the same t/t split (i.e. 
90/10). Specifically, 12 experiments (six for each dataset) have been performed and 
the performance indexes of the rDNN have been tracked. The outcomes of each 
experiment are reported in Table 24 considering also the average, the maximum 
and the minimum errors (absolute – relative). Evidently, the results related to the 
P4 dataset are the same results presented in Table 23. The relative errors falling 
very close to zero are reported as “<1”.  

Robust performances can be observed for each of the tested HEV architecture. 
As far as average error (Ê) is concerned, very contained errors can be appreciated 
regardless of the HEV architecture. The maximum relative discrepancy is detected 
at 1%. Furthermore, the maximum relative discrepancy (Max E) does not exceed 
4% for P2 and P3 datasets even though a higher std is obtained. At the same time, 
the minimum relative errors (min E) also are very close to zero. In these cases, quasi-
perfect predictions have been attained. 

As far as the regression performance indexes are concerned, the RMSE is 
typically considered as the most reliable index to assess for the real discrepancies 
between the predictions and target values ([188]). Therefore, the performances of 
the rDNN over the three datasets have been compared based on the RMSE results. 
As an outcome, an improved response of the pipeline can be appreciated when 
applied to the P2 and P3 architectures leading to lower avg and std.  
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Table 24. Results obtained by the rDNN on the testing sub-datasets of 
each architecture considered in the stress test. 

Dataset 
R2 - 

I II III IV V VI avg std 

P2 0.911 0.536 0.788 0.806 0.879 0.716 0.773 0.114 

P3 0.937 0.947 0.719 0.955 0.879 0.953 0.899 0.078 

P4 0.923 0.988 0.972 0.672 0.963 0.989 0.918 0.112 

 
RMSE g/km 

I II III IV V VI avg std 

P2 0.81 1.36 1.17 1.00 1.14 1.45 1.16 0.21 

P3 0.84 0.93 1.33 0.75 1.11 0.77 0.95 0.21 

P4 2.50 1.25 1.77 4.61 1.93 1.06 2.19 1.18 

 
Ê g/km - % 

I II III IV V VI avg std 

P2 0.55 - <1 1.05 - <1 0.77 - <1 0.68 - <1 0.72 - <1 1.13 - <1 0.82 - <1 0.19 - <1 

P3 0.59 - <1 0.64 - <1 0.99 - <1 0.56 - <1 0.92 - <1 0.54 - <1 0.71 - <1 0.17 - <1 

P4 2.11 - 1 0.92 - <1 1.49 - <1 4.12 – 1 1.28 - <1 0.78 - <1 1.78 - <1 1.05 - <1 

 
Max E g/km - % 

I II III IV V VI avg std 

P2 4.36 - 1 15.14 - 4 12.60 - 4 5.47 - 2 5.55 - 2 7.31 - 2 8.41 - 3 3.73 - 1 

P3 2.83 - 1 4.72 - 1 13.79 - 4 2.83 - 1 2.38 - 1 3.20 - 1 4.96 - 2 3.72 - 1 

P4 9.39 - 2 4.67 - 1 7.43 - 2 11.48 - 3 7.88 - 2 3.13 - 1 7.33 - 2 2.58 - 1 

 
min E g/km - % 

I II III IV V VI avg std 

P2 0.00 - <1 0.01 - <1 0.00 - <1 0.01 - <1 0.01 - <1 0.00 - <1 0.01 - <1 0.01 - <1 

P3 0.01 - <1 0.03 - <1 0.01 - <1 0.00 - <1 0.06 - <1 0.00 - <1 0.02 - <1 0.02 - <1 

P4 0.03 - <1 0.01 - <1 0.03 - <1 0.15 - <1 0.00 - <1 0.01 - <1 0.04 - <1 0.05 - <1 
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4.3.5 Analysis on false positives 

The perfect response of a DNN could be referred to the ideal scenario in which 
labeled data are perfectly predicted. Nevertheless, a small error is typically assumed 
even when very performing DNNs are tested in practice. In fact, the maximum 
accuracy achieved by a DNN operating in real-world conditions is considered when 
the prediction error is “small enough”. The definition of the perfect response of a 

DNN can hence be rephrased as the response to the real scenario in which labeled 
data are predicted with an error tending towards zero. A fundamental step to be 
performed in the validation of a DNN behaviour stands in the quantification of the 
prediction error. In other words, is the prediction error small enough for avoiding 
critic malfunctioning of the DNN when tested in real-world conditions?  

Specifically for classification tasks, a prediction error can turn into the generation 
of false positives (i.e. unfeasible layouts that are incorrectly classified as feasible) 
or false negatives (i.e. feasible layouts that are incorrectly classified as unfeasible). 
For the problem of HEV optimal design, false negatives would only lead to the 
avoidance of CO2 predictions for few layouts. Such a scenario would not be 
dramatic from a design perspective since no misleading results could be produced 
and post-processed. Contrarily, the identification of false positives could strongly 
affect the operation of results post-processing. In fact, since an unfeasible layout is 
characterized by inexistent CO2 labels (represented by 10000 g/km in Table 14), the 
generation of any CO2 prediction would be completely unrealistic. 

Therefore, a final analysis has been carried out in order to evaluate the rDNN 
behavior in case of a cDNN misclassification which leads to a given amount of false 
positive layouts. The cDNN false positive classifications resulting from the 18 
experiments of Section 4.3.4 have been extracted and fed to the rDNN. The 𝐶𝑂2,𝑡𝑡𝑤 
emissions predicted by the rDNN for false positive layouts are reported in Table 25 
(ascending order). In the table, the minimum predicted 𝐶𝑂2,𝑇𝑇𝑊 values related to 
the true positive layouts are also reported for convenience (𝐶𝑂2,𝑇𝑇𝑊,𝑚𝑖𝑛). Given 
that the layouts leading to the minimum emissions are typically considered as a 
guidance for a design optimization procedure, monitoring the 𝐶𝑂2,𝑇𝑇𝑊 predicted 
for false positive layouts to not fall below the minimum of the true positive ones is 
a fundamental. 

The results of the analysis on false positives show that only two layouts have 
shown a predicted CO2 value under the minimum predicted one. In Table 25, the 
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two cases are highlighted in grey. Overall, the false positive layouts for which 
𝐶𝑂2,𝑇𝑇𝑊 values are lower than the minimum true positive-related CO2 value 
represent the 0.07% of the total layouts analyzed (roughly the 0.22% of the total 
unfeasible layouts). Since the identification of the minimum emissions region is 
typically selected referring to the minimum emission values, the behaviour of the 
rDNN in case of false positive layouts can be considered as a promising outcome 
for the present application. 

 

Table 25. Results of the analysis on false positives. 

P2 
 I II III IV V VI 

𝑪𝑶𝟐,𝑻𝑻𝑾,𝒎𝒊𝒏 

g/km 
331.62 331.53 331.97 332.19 331.52 330.13 

𝑪𝑶𝟐,𝑻𝑻𝑾 

g/km 

338.93 - 338.28 346.66 345.11 342.37 
365.86 - - 362.53 349.64 343.44 

- - - 441.07 377.57 349.68 
- - - - 400.52 351.10 
- - - - - 357.13 
- - - - - 369.83 
- - - - - 396.27 

P3 

 I II III IV V VI 
𝑪𝑶𝟐,𝑻𝑻𝑾,𝒎𝒊𝒏 

g/km 
333.81 334.09 332.89 333.38 334.91 333.57 

𝑪𝑶𝟐,𝑻𝑻𝑾 

g/km 

340.30 338.83 341.00 347.10 336.12 347.86 
343.99 355.30 344.03 347.47 338.42 - 
358.06 362.79 - 352.92 339.19 - 
387.31 - - - 342.44 - 

P4 

 I II III IV V VI 
𝑪𝑶𝟐,𝑻𝑻𝑾,𝒎𝒊𝒏 

g/km 
364.07 365.14 362.41 366.93 366.32 364.30 
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𝑪𝑶𝟐,𝑻𝑻𝑾 

g/km 

363.15 369.63 367.24 367.26 363.03 368.32 
367.19 382.43 373.92 367.37 367.97 369.95 
368.06 389.17 379.15 372.64 368.08 372.43 
372.25 - 382.74 377.32 368.20 374.76 
375.38 - 383.56 379.55 368.36 376.72 
377.73 - 385.94 379.98 369.30 379.11 
379.25 - 388.03 380.59 370.53 380.38 
380.48 - - 382.85 372.37 380.98 
381.08 - - 391.06 383.40 382.41 
381.30 - - 393.05 - 388.21 
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4.4 A pipeline of Deep Neural Networks for design 
optimization of hybrid electric fleets 

As last step, the opportunity of integrating the DNNs-PM within a design 
optimization operation for HEV fleets has been analyzed and it is hereafter 
discussed. Specifically, the tool capability of spotting realistic low-CO2 regions has 
been assessed for by comparing the pipeline predictions with respect to the results 
achieved by the DDP (i.e. labels). A reliable response of the DNNs-PM would turn 
into the confirmation of the model to be positively involved in a real-world energy-
oriented design optimization for HEVs. 

For the sake of conciseness, the outcomes produced by the DNNs-PM when 
applied to the P3 architecture have been taken into account. The CO2 emissions 
related to the testing samples identified in Table 20 (t/t split 90/10) are reported in 
Figure 37. Specifically, Figure 37-a(1) and Figure 37-a(2) refer to the response 
surfaces obtained by DDP and DNNs-PM considering the CO2 emissions with 
respect to 𝑉𝐼𝐶𝐸  and 𝑃𝑚𝑎𝑥,𝑀𝐺 , respectively. In Figure 37-b(1) and Figure 37-b(2), the 
CO2 response surfaces are charted for DDP and DNNs-PM considering 𝑉𝐼𝐶𝐸 and 
𝑃𝐸, respectively. It is worth highlighting that the choice of representing the CO2 
emissions with respect to 𝑉𝐼𝐶𝐸, 𝑃𝑚𝑎𝑥,𝑀𝐺 and 𝑃𝐸 is arbitrary and is only meant to 
exemplify the results. Two main considerations can be made looking at the results 
of Figure 37. First, the DNNs-PM effectively shows the capability of reproducing 
the shape of the CO2 surfaces independently from the considered DVs. Second, the 
minimum CO2 emissions region defined by the DNNs-PM correspond to the same 
region obtained by DP. Consistent with the physics behind the prediction task of 
HEVs-related emissions, the DNNs-PM generates response surfaces that privilege 
the influence of downsized ICEs and powerful MGs. According to both conditions, 
a HEV DP-based controller could contain the ICE utilization in favor of pure 
electric and power-split modes so to comply with the FC minimization target. 

Finally yet importantly, the entire set of DNNs-PM predictions over the test 
sub-datasets occur instantaneously. In fact, only training and validation phases of 
the cDNN and rDNN require a relevant amount of time. Therefore, it could be 
deduced that a proper training of the DNNs-PM could be employed to realize 
multiple instantaneous tests over different datasets. 
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Figure 37. 3-D response surfaces obtained through DNNs-PM; a: CO2 vs 𝑽𝑰𝑪𝑬 and 
𝑷𝒎𝒂𝒙,𝑴𝑮; b: CO2 vs 𝑽𝑰𝑪𝑬 and 𝑷𝑬; (1): DP-based CO2 labels; (2): DNNs-PM 
predictions. 
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4.5 Conclusions 

In this Chapter, the capability of a pipeline made up of two DNNs has been proved 
by means of specific experiments aimed at assessing for the performances of both 
classification and a regression DNN, namely cDNN and rDNN, respectively. The 
main contributions of the study can be summarized as follows: 

 The DNNs with the capability of catching the strongly non-linear 
correlations between the DVs of different HEV architectures and both 
the feasibility of the HEV layouts (classification task) and their related 
tank-to-wheel CO2 emissions (regression task). 

 Performance of the cDNN increasing with the number of layouts 
employed in the training procedure. The best results have been proved 
for the P2 dataset. 

 The rDNN showing CO2 predictions comparable to the target values 
(labelled data) with average errors lower than 0.5% for any feasible 
layout outputted by the cDNN. 

 The capability of the model to limit the effect of false positive layouts. 
Only the 0.07% of the total layouts have been misclassified as false 
positive layouts by the cDNN. According to this very small percentage, 
the results obtained with the rDNN have not been affected. 

 The demonstration of the opportunity to integrate the DNNs-PM within 
a design optimization operation for HEV fleets. In fact, it has shown the 
capability of instantaneously identifying low CO2 emissions regions 
comparable with those obtained by a global optimization algorithm 
(such as DP). 

The entire model (DNNs-PM) can hence be considered as an innovative 
solution for predicting both (P)HEV feasibility and emissions while drastically 
reducing the computational time required to complete an exhaustive design 
optimization procedure of (P)HEV fleets. Further research steps will involve the 
prediction of indicators about vehicle drivability and total cost of ownership. 
Furthermore, new hybrid architectures will be tested in order to enlarge the 
prediction possibility over a wider design domain and different driving missions 
will be integrated so that cycle-depending indexes could be analyzed. 
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Chapter 5 

Learning from the decisions of 
dynamic programming through Long-
Short Term Memory 

In Chapter 4, the possibility of an AI-based approach to be embedded into the 
design optimization of (P)HEVs has been demonstrated with impressive results. 
From the present stage of the dissertation onwards, the performances of two 
different AI techniques for the real-time control of (P)HEVs are discussed. 

Recalling the general formulation of the optimization problem proposed in 
Chapter 2 for (P)HEVs (see (27)-(29)), a robust EMS should be capable of 
minimizing the fuel consumed at the end of a given driving mission while 
guaranteeing a specific battery SOC trajectory. If the optimization is targeted under 
real-time condition, a real-time capable EMS turns into a necessary element (i.e. an 
EMS with the capability of being implemented on-board). To this end, AI-based 
controllers (see Figure 4) have proved to be promising solutions for in-vehicle 
implementation. In fact, immediate decisions could be performed online once a 
computationally expensive offline training process has been completed. The latter 
assumes a fundamental role in the design of an AI-based controller regardless of 
the specific type of algorithm (SL, UL, RL) but is not to be considered as a 
limitation for the application to real-world driving. 

A clear choice can be made at this stage considering AI techniques for the real-
time control of (P)HEVs. On one side, SL techniques could be taken into account 
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either for predicting the driving patterns ([88], [89]) or for learning and reproducing 
the decisions taken by another offline EMS in case of trip information ([91], [92], 
[94]-[99]). On the other, RL agents could be employed to directly learn the optimal 
control policy even without trip information through an intelligent trail-and-error 
approach ([109]-[117]). 

In this Chapter, the potentials of a LSTM-based controller for HEVs to learn 
the optimal policy detected by a DDP algorithm and to reproduce it in a different 
testing environment are discussed. Indeed, a RL agent is examined later in Chapter 
6. 
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5.1 From Neural Network to Long-Short Term Memory 
for hybrid electric vehicles real-time control 

The design of a SL-based controller for hybrid powertrains generally involves the 
development and calibration of NNs ([87]). In fact, the effectiveness proved by NNs 
to perform accurate predictions in case of complex problems can be considered as 
an important opportunity to be explored even for (P)HEVs. Either as stressed in the 
introduction of the present Chapter, NNs have been exploited in the literature for 
the prediction of future trip conditions or actual control decisions only information 
about the driving mission. In fact, the a priori knowledge of the mission allows the 
NNs to be trained upon labeled data. 

The most generic NNs exclude feedback connections in which the “model 

outputs are fed back into itself” ([44]). In the case of experimenting NNs for HEVs, 
any connection would hence be considered between the outputs of the prediction 
occurring at different stages (or time steps) of the mission. Therefore, classic NNs 
are typically trained to forecast future information about the trip based on a given 
set of variables representative of the driving conditions. When a direct connection 
is searched between the driving conditions and the optimal control decisions to be 
taken, additional considerations have to be made about the NNs. In fact, controlling 
a HEV can be clearly referred as a problem in which the output of a single decision 
might be influenced by a temporal sequence of inputs. Neglecting the actual control 
action not to be dependent from the past trajectory of the problem features is not 
coherent with real-world driving experience. For such a motivation, a RNN could 
be considered as a more consistent tool to face the real-time control problem since 
it has been designed properly for solving sequential data ([189]).  

According to [190], a RNN is characterized by the capability of mapping a 
history of previous inputs to each output. A “memory” is created by means of a loop 
mechanism that allows the information (“hidden state”) of a given time step to be 

passed to the following time step(s). For additional details about the workflow of 
RNNs, please refer to [190]. Nevertheless, RNNs are affected by the “vanishing 

gradient” phenomenon, for which temporally distant events appear to not be useful 

for the model training ([191]). Since the duration of real-world trips could 
significantly vary and long driving missions could be experimented, considering 
the RNN does not appear as the most promising solution for an HEV AI-based 
EMS. 
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Fortunately, variants of RNNs have been proposed in the literature to overcome 
the vanishing gradient problem, namely LSTMs ([192]) and Gated Recurrent Units 
(GRUs) ([193]). The latter can be considered as a specialized variant of LSTMs. 
The main contribution brought by both LSTMs and GRUs is represented by the 
possibility of obtaining information even from temporally distant stages of an 
episode thanks to specific mechanisms called “gates”. For the sake of clarity, even 
if LSTMs and GRUs represent two similar approaches, only LSTMs are discussed 
in this Chapter since they have been applied to the test case of HEV real-time 
control. 

In a LSTM, two different memories could be distinguished, namely “long-term 
memory” and “working memory”. The long-term memory and the working memory 
are typically referred to the “cell state” and the “hidden state”, respectively. 

Compared to RNNs, an internal self-loop is introduced in the LSTM cells by means 
of a smart update of the cell states. Then, the classic outer loop from one cell to the 
following is realized considering both the cell and hidden states ([44]). The 
structure of a LSTM cell is illustrated in Figure 38. Three different gates are 
introduced in a LSTM cell, namely “forget gate”, “input gate” and “output gate”, 
which are featured by neuron with a given activation function. First, the forget gate 
(also called “remember vector”) is responsible of telling the cell state which 

information from the previous cell state (𝑐𝑡−1, ℎ𝑡−1) as well as from the actual input 
features 𝑋𝑡 should be considered or forgotten. Then, the input gate defines which 
information from the actual input should be considered or forgotten. The outputs of 
forget gates 𝑓𝑡 and input gates 𝑖𝑡 are then combined to update the cell state output 
𝑐𝑡 to be passed to the next LSTM. Finally, the output gate sets the information ℎ𝑡 
to be passed to the next LSTM hidden state by operating on 𝑐𝑡 and 𝑜𝑡. For deeper 
insights about the calculations specifically performed in the cells, please refer to 
[44]. 

In the following sections, the most relevant elements considered for the 
application of an LSTM to the energy management of a HEV are first presented. 
Then, the main results obtained for a hdv are reported considering two different test 
cases. 
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Figure 38. Internal structure of a LSTM cell. 

 

5.1.1 Definition of the test cases 

Two different studies are presented in the following sections, which highlight the 
performances of LSTM-based controllers when aimed at learning the decisions of 
benchmark optimizers. First, the GNI selection of a generic vehicle has been 
considered as a stand-alone control problem. In this case, the AI-based controller 
has been trained contemplating an optimized GNI schedule of a conventional 
powertrain. Such a reduced problem has been handled as a preliminary test to check 
the potentials of an LSTM-based EMS for application to vehicles. Then, the more 
complex control problem involving the combination of GNI and PFI for a HEV has 
been targeted. In this case, two LSTM-based controllers have been developed in 
series, the first responsible of predicting GNI while the second responsible of 
predicting PFI. Still, the modeling approach presented in Chapter 2 has been 
employed to generate the HEV model to be simulated and the DDP with an 
optimized mesh of Chapter 3 has been considered for the identification of the 
benchmark control policy. 

For the sake of simplicity, the cases of GNI stand-alone control and combined 
GNI-PFI control will be referred to as “GN-Net” and “DP-Net”, respectively. 
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5.1.2 Feature extraction 

The input features of the LSTM-based controllers have to be defined according to 
the information that could be acquired on-board under real-time conditions. 
Considering a backward-facing modeling approach, temporal and spatial 
coordinates could be used to gain information about the road requests (e.g. velocity, 
acceleration, etc.). Furthermore, in-vehicle available data (e.g. battery SOC, GNI, 
etc.) could be exploited for ensuring a wider knowledge to the EMS about the 
system to be controlled. In the present dissertation, the operation of obtaining 
information from the environment is referred as “feature extraction”. 

For the sake of clarity, a massive testing campaign has been performed 
considering different sets of features aimed at assessing for the best performances 
achieved by the LSTM-based controllers. Considering the two different test cases 
presented in Section 5.1.1, two distinct feature extractions have been designed. As 
far as GN-Net is concerned, the set of features has been identifying based on a wide 
set of variables presented in [194]. In the latter, the most influent signals for the 
identification of the driving pattern have been discussed. On the other hand, in-
vehicle information have also been included for DP-Net. 

The final sets of features considered for GN-Net and DP-Net are reported in 
Table 26. As it can be noted, the feature extraction of DP-Net stems from the same 
dataset of GN-Net while adding five other signals. The latter comprise the gear 
predicted by the first LSTM, information about the battery SOC and the percentage 
of time left to conclude the driving mission. It is worth observing that the same set 
of features used to train the AI-based EMS have to be considered in the testing 
phase. Therefore, the possibility of adopting the presented LSTM controller for 
(P)HEVs under real-time conditions embeds the necessity of having a sort of 
knowledge about the upcoming trip. In other words, a GPS should be involved in a 
real-world utilization of the tool. 
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Table 26. Feature extraction for GN-Net and DP-Net. 

GN-Net DP-Net 

Actual velocity, km/h Actual velocity, km/h 

Actual velocity variation, km/h Actual velocity variation, km/h 

Traction/braking, bool Traction/braking, bool 

Share of idle time, % Share of idle time, % 

- Predicted GNI, - 

- Actual battery SOC, - 

- Battery SOC variation from previous 
time step, - 

- Difference between actual battery SOC 
and 𝑆𝑂𝐶∗, - 

- Share of mission time left, % 

 

5.1.3 Training and testing environments 

The classic operation of every AI algorithm comprises two main phases, namely 
training and testing. In addition, a validation phase can be considered when an 
optimization of the main hyper-parameters has to be performed (see Chapter 4). In 
the research activity presented in this Chapter, a strong assumption has been made 
about the composition of the training and testing datasets seen by the AI controller. 
Given the more general operation of a HEV could involve the possibility of dealing 
with different environments, the test of a LSTM-based EMS on the same training 
data has been considered as a non-innovative study. Therefore, training and testing 
conditions have been clearly diversified so as that the real generalization capability 
of the controller could be assessed on new and unknown data. Such an operation 
relies upon the same considerations presented in Chapter 4 regarding the dataset 
split in training, validation and testing sub-datasets for a DNN. 

In the results, the specific training and testing datasets used for GN-Net and 
DP-Net are clarified. 
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5.1.4 Architecture of the LSTM controllers 

The architectures of GN-Net and DP-Net are reported in Figure 39 and Figure 40, 
respectively. Consistent with the test cases presented in Section 5.1.1, DP-Net 
embeds GN-Net for the prediction of GNI, which is hence used as an additional 
input of the network. Specifically, four inputs 𝑑1−4 and six outputs 𝐺𝑁𝐼1−6 are 
considered for GN-Net (Figure 39), whereas four additional inputs 𝑑5−8 and seven 
outputs 𝑃𝐹𝐼1−7 are considered for DP-Net (Figure 40). The set of inputs refers to 
the features listed in Table 26 while the outputs refer to GNI and PFI of Table 8 
(Chapter 3).  

Between the input and output layers, three hidden layers have been built. In 
both cases, a hierarchical structure ([195]) has been developed with a dense layer 
(i.e. the most typical layer of a NN made of classic neurons) following two LSTM 
layers. The dense layer has been introduced due to the necessity of coupling the 
dimensionality of the last hidden and the output layers. In fact, the dimensionality 
of the second hidden LSTM layer is not equal to the number of outputs, namely six 
and seven for GN-Net and DP-Net, respectively. Therefore, an additional dense 
layer with “softmax” activation functions ([196]) has been involved in the 
architecture. 

Consistent with the networks’ architectures, the configurations used for the two 
controllers are reported in Table 27. The hierarchical structure has been realized by 
means of a decreasing pyramidal number of elements in the hidden layers (128-64-
32). The cross entropy has been considered as the most appropriate loss function of 
the multi-classification task ([197]). Adam and Dropout (0.2) have been considered 
as optimization and regularization methods, respectively. Finally, a different 
number of epochs has been set given the greater complexity of the problem to be 
solved by DP-Net. As noted in Chapter 4, please consult [175] for additional details 
about characteristics and specifications about NNs. 

In the following Section, the results obtained by the application of both GN-
Net and DP-Net to a specific vehicular application are presented. 
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Figure 39. GN-Net architecture. 
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Figure 40. DP-Net architecture. 

 

Table 27. Configurations of GN-Net and DP-Net. 

Item GN-Net DP-Net 

Number of cells in the first LSTM layer 128 128 

Number of cells in the second LSTM layer 64 64 

Number of neurons in the dense layer 32 32 

Optimization Adam Adam 

Regularization Dropout 0.2 Dropout 0.2 

Loss function Cross entropy Cross entropy 

Number of epochs 100 300 
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5.2 Results 

The LSTM-based controllers for (P)HEVs have been tested relying upon the 
considerations made in the previous sections and the main results are hereafter 
reported for a hdv application. Specifically, a post-transmission parallel heavy-duty 
HEV architecture has been modeled (Chapter 4, Figure 29) according to the the 
vehicle specs of the baseline vehicle reported in Table 13 and to the backward-
facing modeling approach presented in Chapter 2. Specifically, the DVs presented 
in Table 1 have been considered for the HEV layout, including the ICE 
displacement 𝑉𝐼𝐶𝐸, the MG peak power 𝑃𝑚𝑎𝑥,𝑀𝐺 , the battery power-to-energy ratio 
𝑃𝐸, the torque-coupling device and final drive speed ratio (𝑠𝑟𝑇𝐶𝐷 , 𝑠𝑟𝐹𝐷) and the 
maximum C-rate during battery discharging and charging operations (𝐶𝑑𝑖𝑠,𝑚𝑎𝑥, 
𝐶𝑐ℎ,𝑚𝑎𝑥).  

For the sake of clarity, the hdv layout is not representative of a real vehicle 
already placed on the market. In fact, a generic high-performance design has been 
accounted for testing the AI-based EMS that could minimize the insurgence of 
unfeasibilities related to a specific downsizing of the powertrain main components. 
In fact, a qualitative assessment of the performances achieved by LSTMs when 
applied to a HEV control problem has been targeted instead of an optimization of 
the controller for a given application. 

 

Table 28. Design of the post-transmission parallel hybrid powertrain 
considered for a heavy-duty application. 

𝑽𝑰𝑪𝑬 𝑷𝒎𝒂𝒙,𝑴𝑮 𝑷𝑬 𝒔𝒓𝑻𝑪𝑫 𝒔𝒓𝑭𝑫 𝑪𝒅𝒊𝒔,𝒎𝒂𝒙 𝑪𝒄𝒉,𝒎𝒂𝒙 

l kW kW/kWh - - A/Ah A/Ah 

5 125 10 5 3.6 7.5 7.5 

 

Distinct driving missions have been considered to build the training and testing 
datasets of the LSTM-based controllers (see Section 5.1.3). Particularly, type-
approval and chassis dynamometer procedures have been used to build the training 
datasets whereas real-world driving missions have been considered to test 
controllers. The WHVC has been considered as stand-alone driving cycle to train 
GN-Net, whereas a miscellaneous training dataset has been considered for DP-Net, 
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which consists of WHVC, ETC and capped variants of ARDC and AUDC. In 
Figure 41 and Figure 42, the velocity trajectories of the capped ARDC and AMDC 
are reported, respectively. The saturation of the velocity profiles has been realized 
by checking the maximum velocity and acceleration achieved by the HEV hdv with 
the layout of Table 28. As far as the testing datasets are concerned, the velocity 
trajectories of the two experimentally derived real-world driving missions used to 
test the LSTM controllers, namely CLUSTa and CLUSTb, are charted in Figure 43 
and Figure 44, respectively. Two very different driving missions highlight from the 
charts that are representative of mixed urban and extra-urban driving conditions 
with very different driving length and duration. Consistently, the diversity between 
the two driving mission has been considered as a reliable assumption to test the 
controllers under variable conditions. 

 

 

Figure 41. Comparison between reference and capped velocity profiles of the 
ARDC. 
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Figure 42. Comparison between reference and capped velocity profiles of the 
AMDC. 

 

 

Figure 43. Velocity trajectories of CLUSTa and CLUSTb with respect to the 
driving mission time. 
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Figure 44. Velocity trajectories of CLUSTa and CLUSTb with respect to the trip 
distance. 

 

5.2.1 GN-Net for conventional vehicles 

As far as GN-Net is concerned, the performances of the controller have been 
assessed for by means of a specific set of experiments on a conventional version of 
the hdv presented in Section 5.2. Specifically, the powertrain has been designed 
considering the values of 𝑉𝐼𝐶𝐸 and 𝑠𝑟𝐹𝐷 reported in Table 28. Recalling Section 
5.1.1, the benchmark control trajectory has been identified as optimized gear-
shifting schedule obtained by an offline optimizer for conventional vehicle aimed 
at minimizing the cumulative fuel consumption at the end of the driving mission 
(WHVC). Once the optimal control chain has been identified, the training dataset 
for the LSTM controller has been generated combining the input features identified 
in Table 26 and the GNI outputs.  

In Figure 45 and Figure 46, the GNI sequences obtained by the benchmark 
strategy (black circles) and by GN-Net (red crosses) on CLUSTa and CLUSTb are 
charted, respectively. Consistent with the testing process of AI algorithms, the 
outputs of GN-Net on the testing missions have been obtained without providing 
the network with any knowledge about the optimal GNIs selected by the benchmark 
strategy. The similarity between the GNI trajectories of the optimal gear-shifting 
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schedule and GN-Net (𝛥𝐺𝑁𝐼) are reported in Table 29 for both CLUSTa and 
CLUSTb considering four different cases: optimal choices (𝛥𝐺𝑁𝐼 = 0), near-to-
optimal choices (𝑎𝑏𝑠(𝛥𝐺𝑁𝐼) = 1), far-from-optimal choices (𝑎𝑏𝑠(𝛥𝐺𝑁𝐼) = 2) 
and completely failed choices (𝑎𝑏𝑠(𝛥𝐺𝑁𝐼) > 2). Optimal choices have been 
identified for the majority of the missions (68.4% and 72.2% over CLUSTa and 
CLUSTb, respectively), followed by near-to-optimal choices (26.1% and 26.4% 
over CLUSTa and CLUSTb, respectively). Promisingly, far-from-optimal and 
completely failed choices sum up only for 5.5% and 4.4% on CLUSTa and 
CLUSTb, respectively. To complete the comparison, the cumulative FCs related to 
the control decisions of optimal gear-shifting schedule and GN-Net on CLUSTa 
achieve 1.85 kg and 2.04 kg (+10.3%), respectively. On CLUSTb, the same 
controllers lead to 0.72 kg and 0.76 kg (+9.4%). Considering the conversion factor 
of  The fuel consumed at the end of the missions based on the decisions of GN-Net 
is hence not extremely different from the fuel consumed with the benchmark 
strategy even if “only” an average 70% of optimal choices has been identified. Such 

an even can be referred to the large share of near-to-optimal choices with respect to 
the shares of far-from-optimal and completely failed choices. In fact, selecting a 
near-to-optimal gear might not lead to significant differences in the working 
operation of the propeller. 

Given that a very small training dataset has been passed to GN-Net (only a 
single driving mission), the results obtained on the two testing environments can be 
considered as promising outcomes about the potentials of employing LSTMs for a 
real-time capable vehicular controller. In the following Section, the results obtained 
with DP-Net are discussed for the hybrid version of the hdv considered so far. 
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Figure 45. Comparison between the gears selected by the optimized gear-shifting 
schedule and by GN-Net on CLUSTa.  

 

 

Figure 46. Comparison between the gears selected by the optimized gear-shifting 
schedule and by GN-Net on CLUSTb. 
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Table 29. Differences between the GNI outputs obtained by the optimized 
gear-shifting schedule and by GN-Net on the testing missions. 

Case 
Relative share – CLUSTa Relative share – CLUSTb 

% % 

𝛥𝐺𝑁𝐼 = 0 68.4 72.2 

𝑎𝑏𝑠(𝛥𝐺𝑁𝐼) = 1 26.1 22.4 

𝑎𝑏𝑠(𝛥𝐺𝑁𝐼) = 2 4.8 2.8 

𝑎𝑏𝑠(𝛥𝐺𝑁𝐼) > 2 0.7 2.6 

 

5.2.2 DP-Net for hybrid powertrains 

Consistent with the results presented for GN-Net, similar experiments have been 
carried out considering DP-Net for a HEV application. Nevertheless, a different set 
of input features (Table 26) and training driving missions (including WHVC, ETC, 
capped ARDC and capped AMDC) has been taken into account. Two motivations 
can be referred to this choice. First, a more complex problem is faced (combination 
of GNI-PFI). Second, the results obtained with GNI suggest that LSTM-based 
controller could take advantage from a wider training configuration. Recalling 
Section 5.1.1, the DDP formulated in Chapter 2 has been identified as benchmark 
strategy to train the network and compare the control trajectories over the testing 
missions. 

In Figure 47 and Figure 48, the GNI and PFI trajectories obtained by DDP 
(black circles) and DP-Net (red crosses) over CLUSTa are charted, respectively. 
Moreover, the battery SOC obtained with the two controllers are presented in Figure 
49. As it can be noted, very similar battery SOC trends highlight for both DDP 
(black curve) and DP-Net (red curve) based on the relative control chains. 
Consistent with the purpose of AI-based techniques to learn and reproduce the 
behavior of benchmark data, DP-Net is capable of sustaining the battery SOC even 
without an explicit formulation of the problem. In Table 30, the similarities between 
the choices performed by the benchmark and by DP-Net are reported in terms of 
GNI (𝛥𝐺𝑁𝐼) and PFI (𝛥𝑃𝐹𝐼). An immediate consideration can be made comparing 
the GNI results obtained by GN-Net and DP-Net: the latter proves to be relevantly 
more accurate in classifying the optimal GNI with respect to GN-Net. Given that 
the same input features have been involved in the training phase of the first LSTM 
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network of DP-Net, the results amelioration can be referred to the enlargement of 
the training dataset. In other words, increasing the number of driving missions in 
the training dataset allows for a more solid training of the AI algorithm. 

An additional check has been carried out considering the multiple operating 
modes realized by a parallel HEV architecture. In fact, given the possibility of 
adopting multiple ps and bc levels (Table 8), the absolute difference between the 
PFIs selected by the algorithms could theoretically be misleading for the assessment 
of the real learning progress. Therefore, the relative share of utilization and the 
related energy consumption has been reported in Table 31 for both DDP and DP-
Net on CLUSTa. Promising performances highlight for DP-Net as comparable 
share of utilization and energy consumption are achieved for any operating mode. 
In fact, the largest differences peak at 1.2% and 0.2 kWh for the relative share and 
the energy consumed, respectively. For the sake of clarity, the same values are 
obtained by DDP and DP-Net for pe during braking since no influence of the EMS 
is realized during the regenerative braking phases of the mission. 

Regarding the cumulative FC realized through the control policies of the 
controllers, an additional FC should be considered for a fair comparison that 
account for the difference between the two final battery SOC values. Nevertheless, 
given the quasi-perfect CS trajectory attained with DP-Net in Figure 49 (final 
battery SOC equal to 0.598), a negligible fuel consumption should have been added. 
For the sake of simplicity, no adjustment has been considered for the final FC value. 
Particularly, 0.99 kg of fuel has been obtained at the end of CLUSTa with DP-Net 
while the DDP optimizer has realized 0.97 kg. Therefore, DP-Net has been capable 
of closing the FC gap from the benchmark strategy to roughly +2%. Considering 
the results of GN-Net for CLUSTa presented in the previous Section (+10.3%), a 
very interesting step ahead has been realized by DP-Net in learning the optimal 
control policy. 
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Figure 47. Comparison between the gears (GNI) selected by DDP and DP-Net on 
CLUSTa. 

 

 

Figure 48. Comparison between the operating modes (PFI) selected by DDP and 
DP-Net on CLUSTa. 
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Figure 49. Comparison between the battery SOC trajectories related to the 
control decisions of DDP and DP-Net on CLUSTa. 

 

Table 30. Differences between the GNI and PFI outputs obtained by DDP 
and DP-Net on CLUSTa. 

GNI PFI 

Case 
Relative share 

Case 
Relative share 

% % 

𝛥𝐺𝑁𝐼 = 0 92.7 𝛥𝑃𝐹𝐼 = 0 93.3 

𝑎𝑏𝑠(𝛥𝐺𝑁𝐼) = 1 3.8 𝑎𝑏𝑠(𝛥𝑃𝐹𝐼) = 1 2.4 

𝑎𝑏𝑠(𝛥𝐺𝑁𝐼) = 2 2.6 𝑎𝑏𝑠(𝛥𝑃𝐹𝐼) = 2 1.5 

𝑎𝑏𝑠(𝛥𝐺𝑁𝐼) > 2 0.9 𝑎𝑏𝑠(𝛥𝑃𝐹𝐼) > 2 2.8 
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Table 31. Share of utilization and energy consumption related to each 
operating mode realized by DDP and DP-Net on CLUSTa. 

Operating 
mode 

DDP DP-Net 
Relative 

share  
Energy 

consumption 
Relative 

share  
Energy 

consumption 
% kWh % kWh 

pe (traction) 9.4 0.5 8.2 0.3 

pe (braking) 60.6 -3.0 60.6 -3.0 

pt 9.2 1.5 9.4 1.5 

ps 19.5 3.1 20.6 3.3 

bc 1.2 0.1 1.2 0.1 

 

As far as CLUSTb is concerned, the same experiments have been carried out 
aimed at comparing the control sequences obtained by DDP and DP-Net as well as 
the relative battery SOC trends and cumulative FCs. The trajectories of GNI and 
PFI obtained on CLUSTb are charted in Figure 50 and Figure 51, respectively, 
while the battery SOC curves are compared in Figure 52. The numerical comparison 
between the decisions of the controllers are reported in Table 32 and Table 33 
considering the GNI-PFI combination and the distinction between different 
operating modes, respectively. Two considerations can be made looking at charts 
and tables. First, the battery SOC curves appear to be more distanced one from the 
other with respect to the same curves obtained on CLUSTa (Figure 49). 
Nevertheless, a very interesting final battery SOC value is realized by DP-Net at 
the end of the driving mission (0.595). Second, a robust learning process is 
highlighted both by the actual differences between the GNI and PFI outputs (Table 
32) and by the comparison of the share of utilizations and the energy consumptions 
related to the different operating modes (Table 33). In fact, the largest share of GNI 
and PFI is perfectly predicted by DP-Net (95.8% and 94.1%, respectively). 
Moreover, interesting performances are detected in the analysis of the operating 
modes as the same energy consumptions are obtained for each PFI with restrained 
errors in the relative share of utilization (peak at 1.6% for pe during traction). 
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As final comparison, the cumulative FC realized by the controllers has been 
analyzed without adding the negligible amount of fuel related to the quasi-perfect 
CS trajectory of DP-Net. For CLUSTb, 0.33 kg and 0.32 kg have been realized by 
DP-Net and DDP, respectively, resulting in an increase of +3.1% in case of DP-
Net. 

 

 

Figure 50. Comparison between the gears (GNI) selected by DDP and DP-Net on 
CLUSTb. 
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Figure 51. Comparison between the operating modes (PFI) selected by DDP and 
DP-Net on CLUSTb. 

 

 

Figure 52. Comparison between the battery SOC trajectories related to the 
control decisions of DDP and DP-Net on CLUSTb. 
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Table 32. Differences between the GNI and PFI outputs obtained by DDP 
and DP-Net on CLUSTb. 

GNI PFI 

Case 
Relative share 

Case 
Relative share 

% % 

𝛥𝐺𝑁𝐼 = 0 95.8 𝛥𝑃𝐹𝐼 = 0 94.1 

𝑎𝑏𝑠(𝛥𝐺𝑁𝐼) = 1 2.0 𝑎𝑏𝑠(𝛥𝑃𝐹𝐼) = 1 2.0 

𝑎𝑏𝑠(𝛥𝐺𝑁𝐼) = 2 0.4 𝑎𝑏𝑠(𝛥𝑃𝐹𝐼) = 2 1.8 

𝑎𝑏𝑠(𝛥𝐺𝑁𝐼) > 2 1.8 𝑎𝑏𝑠(𝛥𝑃𝐹𝐼) > 2 2.0 

 

Table 33. Share of utilization and energy consumption related to each 
operating mode realized by DDP and DP-Net on CLUSTb. 

Operating 
mode 

DDP DP-Net 
Relative 

share  
Energy 

consumption 
Relative 

share  
Energy 

consumption 
% kWh % kWh 

pe (traction) 23.2 0.3 21.6 0.3 

pe (braking) 50.8 -1.1 50.8 -1.1 

pt 14.5 0.9 14.7 0.9 

ps 8.5 0.4 9.9 0.4 

bc 3.0 0.1 3 0.1 
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5.3 Conclusions 

In this Chapter, the potentials of interpreting the real-time control problem of a hdv 
HEV by means of a SL problem involving a particular family of RNN, namely 
LSTM, have been thoroughly discussed. Preliminarily, a real-time capable gear-
shifting controller based on a LSTM-based network, namely GN-Net, has been 
developed and trained upon a small dataset involving an optimized gear-shifting 
schedule of a conventional powertrain on the WHVC cycle. Four input features 
have been extracted from on-road available signals related to the road velocity and 
acceleration requests. Therefore, a real-time capable EMS for HEVs has been 
developed, namely DP-Net, assembling two different LSTM networks in series, the 
first predicting the optimal gear number (GN-Net) and the latter predicting the 
optimal operating mode. In this case, the training dataset has been enlarged to 
consider multiple driving missions, specifically WHVC, ETC and two capped 
variants of ARDC and AMDC. Moreover, four additional input features have been 
added to the training process of the LSTM network for the classification of the 
operating mode, including the gear predicted by GN-Net and on-board available 
information about the battery SOC.  

The results of the application of both GN-Net and DP-Net have been realized 
considering two experimentally derived real-world driving missions as testing 
datasets, namely CLUSTa and CLUSTb. The main outcomes of the testing phase 
can be summarized as follows: 

 The potentials of replicating a benchmark gear-shifting sequence of a 
conventional powertrain has been assessed by GN-Net. The latter has 
proved to be capable of realizing roughly 70% of 24% of optimal and 
near-to-optimal choices, respectively, averaged between CLUSTa and 
CLUSTb.  

 The gear-shifting sequences of GN-Net have led to an average FC 
increase of roughly 9.8% with respect to the FC realized by the 
benchmark strategy. Given the very small dataset involved in the 
training process of GN-Net, the results have been considered as 
sufficiently promising. 

 The capability of DP-Net to reproduce the behaviour of a DDP 
algorithm has been assessed considering a broader training 
configuration. The LSTM-based controller has proved to be capable of 
reproducing the optimal gears and operating modes identified by DDP 
with impressive results. In fact, optimal gear numbers and optimal 
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operating modes have been classified more than roughly 94% averaged 
between CLUSTa and CLUSTb. Moreover, DP-Net has proved to be 
capable of also accurately replicating share of utilization and energy 
consumption of each operating mode of a parallel HEV (pure electric, 
pure thermal, power-split and battery charging). In this case, the worse 
classification errors for the share of utilization and the energy 
consumption among the entire set of experiments has peaked at 1.6% 
and 0.2 kWh, respectively. 

 The gear-shifting and operating mode sequences of DP-Net have led to 
an average FC of 2.55% with respect the optimal FC realized by the 
DDP. Considering the impossibility of employing the DDP under real-
time conditions, the opportunity of DP-Net to replicate the optimal 
choices of a global optimizer introducing such a small FC penalty can 
be considered as a very interesting outcome of the research. 

Open points have arisen as the application of LSTMs to the control problem of 
hybrid powertrains has been investigated. Consistently, the analysis and application 
of transformers ([198]) could be exploited as innovative AI-based approach with 
the capability of promisingly outperforming RNNs and LSTMs. 

 



 

Chapter 6 

Towards optimal real-time control of 
hybrid powertrains through 
Reinforcement Learning 

The potentials of the application of a particular family of RNNs to the problem of 
optimal real-time control of hybrid powertrains have been discussed in Chapter 5. 
Indeed, some assumptions have been made to guarantee the possibility of using an 
LSTM-based EMS for HEVs: 

1. The availability of labeled data, namely a set of pre-processed DP-based 
control trajectories; 

2. The inclusion of temporal and/or spatial information about future 
driving conditions. 

Unfortunately, no chance exists about the possibility of employing SL 
techniques for sequential control problems (such as RNNs and LSTMs) without 
considering a relevant a priori knowledge of the driving environment ([86]). In fact, 
larger input datasets for the training phase are typically associated to more accurate 
control sequences when the SL networks are operated in testing conditions. 

 

Part of the present section has been extracted from: 

Maino, C. et al. (2022). Project and Development of a Reinforcement Learning Based Control 
Algorithm for Hybrid Electric Vehicles. Applied Sciences, 12, p. 812. Doi: 10.3390/app12020812. 
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A typical utilization of unsupervised techniques refers to multi-level EMSs, in 
which the classification of driving patterns is performed through clustering 
algorithms in a higher level while an optimized low-level controller is used for the 
instantaneous management of the powertrain ([199]). In cases such as [200], a 
tentative of using UL has been made which complies with the possibility of 
generating an intelligent 3-D RBC map. To the author’s knowledge, UL has still 

not proved the capability of being used as stand-alone algorithm in the EMS logic 
of (P)HEVs. On the contrary, a vast literature has been written focused on the 
potentials of applying RL techniques to the problem of (P)HEV real-time control 
([201]). Several algorithms have been tested for different hybrid architectures, 
starting from well-established tabular algorithms (e.g. SARSA, Temporal 
Differences, Q-learning, etc.) and arriving to the latest findings in the integration of 
DNNs into the workflow of RL (Deep Q-network, Double Deep Q-network, Deep 
Deterministic Policy Gradient, etc.). Thanks to any of the above-mentioned RL 
approaches, the requirements of SL can be overcome thanks to an iterative 
interaction between an agent and an environment. 

As far as Q-learning for (P)HEVs is concerned, a considerable number of 
articles has been presented in literature. Two of the leading implementations for 
real-time control of a HEV have been presented in [111] and [112], in which a 
transition probability matrix (TPM) has been used to provide the agent with some 
statistics about the driving mission to be experienced with a series and a parallel 
HEV, respectively. In [113], a Q-learning algorithm is applied to the real-time 
control problem of a range-extender HEV (REHEV) without any a priori 
information about the DM. Its capability of learning a control policy that reduces 
the cumulative FC has been demonstrated. Similar considerations about Q-learning 
are made in [114] about the performance of the control agent when applied to a 
power-split HEV architecture. In this case, a comparison between the best 
performances achieved at the end of the learning process and those produced by a 
benchmark DP is carried out. In [116], a wider set of experiments has been carried 
out testing a Q-learning for a parallel HEV with ICE and MG mounted on two 
different axles. Specifically, a change in the states and actions is performed about 
the number and the type of considered variables; moreover, the learning experience 
of the agent is discussed; finally, a sensitivity analysis over a constant-through-
episodes value of the agent exploration rate. Regardless of the different applications 
and tests conducted over the Q-learning, any of the cited papers involves a detailed 
testing plan of the controller aimed at stressing its performances when applied to 
the optimal control of a hybrid powertrain on real-world driving environments. In 
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fact, a reliable utilization of ML-based techniques has to be achieved by means of 
detailed analyses focused on the assessment of the agent response when 
modifications are introduced into its most influencing parameters. Unexpected 
rather than counter-intuitive behaviors could be theoretically realized, and the 
results obtained over different driving environments could be overturned. 

In this Chapter, a complete design of a Q-learning based EMS for hybrid 
powertrains is presented along with the main results obtained for a HEV pc 
application. 
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6.1 Reinforcement Learning for hybrid electric vehicles 

Optimizing the energy management of a (P)HEV under real-time driving conditions 
is considered as one of the highest barriers to be overcome if consistent reductions 
in the overall emissions are targeted. In fact, the driving environment can change 
continuously throughout a given mission according to changes in the traffic, road 
conditions, weather conditions, driving behavior, etc. Moreover, FHEV and PHEV 
architectures are typically subject to different control policies due to the substantial 
differences in the powertrain. Therefore, the definition of an optimal control 
strategy in such a variable scenario can become a very complicated problem to deal 
with and several assumptions have to frequently be included in the analysis. 

The general formulation of the problem accounts for the same objective 
functional 𝐽 formulated in (27) (see Chapter 2), which is considered to be optimized 
under a control policy 𝜋∗ and a set of boundary conditions. The general formulation 
of the problem can be hence defined through (28), whereas the boundary conditions 
can be referred to (33)-(35). Thanks to the knowledge of the entire velocity 
trajectory throughout a given mission (with or without the road altitude), the DDP 
has proved the capability to identify the optimal control policy in a completely 
discretized environment. Nevertheless, two main drawbacks are typically addressed 
by this approach when real-world conditions are considered ([174]): 

 The entire trajectory of the vehicle velocity is not a priori known under 
real-time conditions; 

 The DDP mesh discretization level could be too fine for the on-board 
electronics to solve practically a control problem under real-world 
unpredictable driving scenarios (i.e. the DDP cannot be implemented in 
the electronic control unit (ECU) under real-time conditions). 

Evolving from DP to RL could potentially represent a solution to these two 
problems. Before presenting the main outcomes of the transition to RL-based 
approach, an insightful discussion about the possibilities of RL is presented the 
following sections. 

6.1.1 From dynamic programming to Reinforcement Learning 

Among the decision-making techniques based on ML, the family of algorithms 
featured by an agent interacting with an environment to reach a desired goal is 
typically addressed as RL ([47]). A feedback signal named “reward” is passed to 
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the agent at each time step of a training episode as an index of the effectiveness of 
the action taken. The agent-environment interaction can be formalized through a 
Markov decision process (MDP). A classic formulation of an MDP is completely 
described by a tuple <�̌�, �̌�, r, 𝑃, 𝛾>, in which �̌� is the state space (i.e., set of states), 
�̌� is the action space (i.e., set of control actions available to the agent), r: �̌� × �̌�→ℝ 
is the reward function, 𝑃: �̌� × �̌� × �̌� →[0,1] is the state-action transition probability 
function and 𝛾 is the discount factor, a scalar value which expresses the agent’s 

preference of gaining a future reward with respect to an immediate reward. 
Moreover, consistent with the experiments presented in the following sections, a 
further assumption of �̌� and �̌� being finite (and discrete) can be made. 

The workflow of a generic RL approach can be easily explained starting from 
the MDP tuple. At each time step 𝑡, the agent receives a set of information about 
the current state of the environment, denoted as 𝑠𝑡. According to its control policy 
𝜋, the agent chooses an action 𝑎𝑡. In response to the selected action 𝑎𝑡, the 
environment evolves its state from 𝑠𝑡 into 𝑠𝑡+1 based on the transition probability 
P. The reward feedback signal 𝑟𝑡 is hence released. An iteration of the learning 
procedure is then summarized by the tuple <𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1>. Once the procedure 
for a time step is completed, the system moves to the following time step 𝑡 + 1 and 
the operations are repeated iteratively until a terminal state is reached: 

𝑒𝑇 = (𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1, … , 𝑠𝑇−1, 𝑎𝑇−1, 𝑟𝑇−1, 𝑠𝑇) (69) 

where 𝑒 represents the trajectory of the agent-environment interactions within 
a generic episode while 𝑇 represents the terminal time step. The training process 
can hence be satisfied by completing multiple episodes. The MDP formalism 
requires the states to satisfy the Markovian property: the transition from 𝑠𝑡 to 𝑠𝑡+1 
depends only on 𝑠𝑡 and 𝑎𝑡 and not on the complete trajectory from 𝑠0 to 𝑠𝑡 ([47]). 
Therefore, the transition probability function 𝑃 depends only on (𝑠𝑡, 𝑎, 𝑠𝑡+1): 

𝑃[𝑆𝑡+1 = 𝑠𝑡+1 | 𝑆𝑡 = 𝑠𝑡 , 𝐴𝑡 = 𝑎𝑡] = 𝑃[𝑆𝑡+1 = 𝑠′ | 𝑆𝑡 = 𝑠𝑡 , . . . , 𝑆0 = 𝑠0, 𝐴𝑡 = 𝑎𝑡] (70) 

Stepping back to the comparison between DP and RL, both the approaches refer 
to iterative solutions of the Bellman optimality equation ([47]). Nevertheless, a 
difference between the two optimizations lies in the opportunity of assuming the 
knowledge of the transition probability function 𝑃. In fact, 𝑃 is known in the DP 
algorithm and hence a direct solution of the optimal policy can be obtained under 
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offline conditions without interacting with the environment. On the contrary, no a 
priori knowledge about the environment is assumed in RL. Therefore, the state-
action transition probability function is neglected from the optimization. 

As a final consideration, a generic RL agent cannot always observe the entire 
state of the system under real-time conditions since a significant number of signals 
might not be available from the on-board system. Specifically for the problem of 
HEVs real-time control, the on-board instrumentation is typically not capable of 
providing an RL agent with the entire set of signals needed to produce a complete 
view of the environment (i.e., vehicle conditions, actual and future traffic, driver 
behavior, weather, etc.). In these cases, the agent-environment interactions cannot 
be modeled considering the formulation of (69) and a distinction between state and 
“observation” needs to be introduced. The state 𝑠𝑡 that satisfies the Markovian 
property defined with (69) collects the entire set of signals representative of the 
environment, whereas the observation 𝑜𝑡 is a subset of 𝑠𝑡 constituted only by the 
set of signals which can be passed to the agent ([47]). In other words, the 
observation should be designed to best approximate the Markovian property about 
the system state. Even though theory about Partially Observable MDP has been 
developed in literature which accounts for the violation of the Markov property for 
𝑜𝑡, the latter has been assumed to satisfy the Markovian property ([202]). 

6.1.2 Discounted return and discount factor 

For a generic RL agent, the objective functional 𝐽 of DP can be stated in terms of 
“discounted return” 𝐺𝑡 at each time step ([47]): 

𝐺𝑡 = 𝑅𝑡 + 𝛾𝑅𝑡+1 + 𝛾
2𝑅𝑡+2 +⋯ =∑𝛾𝑘𝑅𝑡+𝑘

∞

𝑘=0

 (71) 

in which 𝛾∈[0, 1] is the discount factor. If 𝛾=0 leads the agent to a single-step 
optimization, 𝛾=1 permits the optimization to consider all the steps included in an 
episode. In other words, lower 𝛾 push the agent to simplify the problem by 
preferring the immediate reward, whereas higher 𝛾 would significantly increase the 
complexity of the problem faced by the agent by considering a look-ahead horizon. 
Evidently, the choice of the discount factor determines such an optimization 
horizon. A thorough discussion of the performance of an RL-based EMS for HEVs 
considering different discount factors is not typically made in the literature. As 
examples, no details about the value of the discount factor are provided to the reader 
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in [111] or [116], whereas 𝛾=0.6 is selected in [113] apparently without a precise 
motivation. So to close this gap in the literature, the response of the RL agent to 
different discount factors is discussed in the following sections by means of a 
specific test plan. 

6.1.3 Exploration vs exploitation 

The RL agent possesses no a priori knowledge about the environment. Therefore, a 
policy should be determined that governs the actions selected by the agent. A 
critical challenge can be referred to the trade-off between exploration and 
exploitation (“exploration-exploitation dilemma”) ([47]). Exploitation refers to the 
agent’s decision of selecting the most effective action in a specific time step. On 
the other hand, exploration is the condition of the agent for which a random action 
among the set of feasible actions is chosen.  

In the initial phases of the training process, the agent is typically asked to 
explore the environment and make experience ([47]). When the agent has acquired 
some knowledge about the environment, a trade-off between exploration and 
exploitation is imposed. In fact, the agent has to be pushed to define new ways to 
avoid feasible control strategies possibly conducting to local optima (i.e. sub-
optimal control strategies). One common solution refers to the usage of a “ε-
greedy” method ([47]). Consistent with this method, the agent mainly acts with a 
greed policy (i.e., exploitation is way preferred to exploration) but maintains a small 
probability ε to select a random action. 

The choice of the exploration strategy could be crucial for the decisional 
process of a HEV RL-based EMS. Therefore, three different exploration laws have 
been developed and applied to the present research. The trends are charted in Figure 
53 with respect to the training episodes. The speed of the exploration rate ε falling 

from a high initial value (0.8) to a very low final value (0.05) has been considered 
to properly label the exploration strategy. Specifically, the agent is allowed to 
explore the environment with a progressively decaying probability of selecting a 
random action in the first 5% and 75% of the training episodes in “boost” and 

“slow”. On the contrary, a fixed exploration rate until 75% of the training process 

followed by an increasing percentage of exploitation is considered in the “inverse 

slow” strategy. 

The share of exploration in a generic episode could practically lead to an unfair 
evaluation of the actual performance of an RL agent. This is due to the stochasticity 
of the exploration which causes the agent to modify the action to be applied. 
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Therefore, the proposed methodology for an exhaustive project of an RL agent for 
HEVs distinguishes between training and testing episodes. During training 
episodes, the agent is allowed to use the exploration strategy to collect the transition 
useful to gain more information about the environment. On the contrary, the 
exploration is not permitted during testing episodes and the agent is asked to choose 
greedy actions throughout the entire episode. This said, two final considerations can 
be made about testing episodes. First, at the end of the training process, a testing 
episode has to be performed to check on the real performances of the trained RL 
agent. Second, despite the difference in the exploration strategy, the agent could be 
tested with a user-defined frequency so as to track the learning progress of the agent. 
In the following sections, the usage of testing episodes will be presented both for 
in-training and out-of-training phases. 

6.1.4 Reward function 

The immediate effectiveness of a generic action taken by the agent can be expressed 
by means of the reward feedback. The identification of a proper definition for the 
reward function has to be made based upon the specific case study. In this research, 
the problem of minimizing the FC of a HEV under real-time conditions is targeted 
considering two boundary conditions, namely battery CS and compliance with the 
driving mission velocity profile. Three different reward functions have been 
identified. The number and typology of variables included in the reward functions 
have been defined considering the HEV control problem and the necessity of 
producing different reward orientations. The reward functions have been expressed 
as: 

𝑅 = {

𝑅1 = 𝑘1 + 𝑘2 ∙ (𝑆𝑜𝐶 − 𝑆𝑜𝐶
∗)2 + 𝑘3 ∙ 𝐹𝐶

𝑅2  = 𝑘1 + 𝑘3 ∙ 𝐹𝐶 + 𝑘4 ∙ 𝐹𝐶𝑒𝑞
𝑇

𝑅3 = 𝑘1 + 𝑘3 ∙ 𝐹𝐶 + 𝑘5 ∙ 𝐹𝐶𝑒𝑞

 (72) 

in which 𝑘1−5 are numerical coefficients to be tuned, 𝑆𝑜𝐶∗ is a reference battery 
SOC value, 𝑆𝑜𝐶 is the actual battery SOC value and 𝐹𝐶𝑒𝑞 is the equivalent FC 
calculated as: 

𝐹𝐶𝑒𝑞 = −
(𝑆𝑜𝐶 − 𝑆𝑜𝐶∗) ∙ 𝐸𝑏,𝑤

𝐻𝑖 ∙ 𝜂𝐼𝐶𝐸
 (73) 
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Figure 53. Exploration strategies considered for the Reinforcement Learning 
agent. 

 

where 𝐸𝑏,𝑤 is the battery energy content related to the admitted battery SOC 
window, 𝐻𝑖 is the lower heating value of the fuel considered for the specific ICE 
application and 𝜂

𝐼𝐶𝐸
 is a fixed average ICE efficiency value. Consistent with the 

WLTP, the equivalent FC has been calculated only in case of 𝑆𝑜𝐶 < 𝑆𝑜𝐶∗. In (73), 
the difference between 𝐹𝐶𝑒𝑞𝑇  and 𝐹𝐶𝑒𝑞 is that 𝐹𝐶𝑒𝑞𝑇  is calculated only at the final 
time step 𝑇, whereas 𝐹𝐶𝑒𝑞 is calculated at each time step (in case of 𝑆𝑜𝐶 < 𝑆𝑜𝐶∗). 
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As far as the rewards of (72) are concerned, R1 has been considered as a battery 
SOC-oriented reward function, whereas R2 and R3 have been progressively 
adapted to be more FC oriented. For this purpose, the coefficients 𝑘1−5 have been 
properly tuned for conditioning the reward orientation. For the sake of clarity, 
additional parameters as well as a procedure for the fine-tuning of the numerical 
coefficients could be considered for the optimization of the reward functions. 
Nevertheless, the research of the optimal performances obtained for a specific HEV 
application is beyond the scope of the present research. Therefore, the selection of 
the different reward functions presented in (72) has been considered as a reliable 
step for the assessment of the response generated by the RL-based EMS under very 
different conditions even without research of the optimal results. Considering R1, 
R2 and R3, a specific reward shaping analysis for HEVs is presented in the 
following sections. 

6.1.5 The Q-learning algorithm 

The core part of the RL agent is constituted by the algorithmic structure as well as 
by the transition function (“step function”) used to stimulate the learning process. 
The Q-learning algorithm is one of the first and most studied RL algorithms 
proposed in the literature ([203]). It is based on the idea of the maximization of a 
q-value 𝑞𝜋(𝑠|𝑎). The estimates of the optimal q-value (𝑞∗) are iteratively obtained 
by means of the Temporal Difference (TD) principle, which provides the updates 
at each time step of an episode using the received reward ([47]). In a TD approach, 
the term 𝑅𝑡+1 +  𝛾𝑄(𝑠𝑡+1, 𝑠𝑡+1) is introduced as a better approximation of the q-
value for each of the state-action pairs. Such a relation is typically referred as TD-
Target ([47]). The mathematical formulation for the TD-update can be written as: 

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) +  𝛼(𝑅𝑡+1 +  𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) −  𝑄(𝑠𝑡, 𝑎𝑡)) (74) 

in which 𝛼 is the learning rate, which quantifies the importance of the q-value 
update on the original value. The term that multiplies the learning rate is typically 
referred as TD-Error ([47]). 

Based on the TD update expressed in (74), a Q-learning agent modifies the 
estimate of the TD-Error by including the maximum q-value which could be 
achieved in the next state for each action available at that stage. In other words, the 
q-value estimates for Q-learning involve the effect of a greedy action performed in 
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the next state. The mathematical formulation of the Q-learning step function 
becomes: 

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼(𝑅𝑡+1 +  𝛾 𝑚𝑎𝑥
𝑎∈𝐴(𝑠𝑡+1)

𝑄(𝑠𝑡+1, 𝑎)  −  𝑄(𝑠𝑡, 𝑎𝑡)) (75) 

For each update of the q-value, the new estimates are stored for each state-
action pair in a matrix named Q-table. In the latter, the evolution of the estimates 
of realizable state-action pairs can be tracked. For the sake of clarity, the real driving 
conditions of a HEV have been taken into account at this stage. Specifically, the 
entire set of actions is not always available to the agent for each time step of a 
driving mission due to the conditions (33)-(35). Evidently, the sub-sets of feasible 
and unfeasible actions are known for a generic state. Therefore, the unfeasible 
actions have been excluded both for the update of the q-value and for the policy 𝜋. 
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6.2 An Integrated Modular Software Framework for 
hybrid electric vehicles 

Testing a RL-based EMS for a specific HEV application requires the development 
of a proper software platform. Therefore, the Integrated Modular Software 
Framework (IMSF) illustrated in Figure 54 has been realized. In the software, three 
main elements, namely Simulator, Environment and Agent, have been developed 
and integrated. In the Simulator, a HEV model has been included that is used to 
define the physical variation of the system when a generic action is selected by the 
RL agent and applied. The Environment Interface is responsible of establishing the 
links between the world (i.e. the vehicle) and the RL-based control logic. The latter 
has been realized in the Agent module. Thanks to the IMSF, an extensive and 
reproducible set of experiments has been performed.  

In the following sections, the three core modules of the IMSF are described. 
For additional details, please refer to [204]. 

 

 

Figure 54. Integrated Modular Software Framework. 

 

6.2.1 Simulator 

In the Simulator (Figure 54, green box), the vehicle model of a pre-transmission 
parallel HEV pc has been generated. Specifically, the driveline presented in Figure 
6 has been considered based on the modeling approach presented in Chapter 2. The 
main characteristics of both vehicle and main components are reported in Table 34. 
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The powertrain of a conventional pc with an 88 kW gasoline ICE has been integrated 
with a 70 kW MG and a 74 kW-6.1 kWh battery. The peak power of the MG has 
been considered for both traction and regenerative braking phases since a 
symmetrical operating map has been involved in the analyses. About the energy 
storage system, a sizing operation has been performed so that the peak power 
achieved by the battery could fulfill the power requirements of the MG, both during 
traction and regenerative braking conditions. For the sake of clarity, the HEV model 
has been developed using MATLAB®. 

 

Table 34. Vehicle specs and characteristics of the main powertrain 
components. 

Vehicle specs 

Vehicle class Passenger car 
Kerb weight 750 kg 

Vehicle mass (including pwt 
components) 1200 kg 

Transmission 6-gears 

Internal Combustion Engine 

Fuel type Gasoline 
Maximum power 88 kW (@ 5500 rpm) 

Maximum torque 180 kW (@ 1750-4000 rpm) 
Rotational speed range 0-6250 rpm 

Motor-generator 

Maximum power 70 kW (@ 6000 rpm) 

Maximum torque 154 kW (@ 0-4000 rpm) 
Rotational speed range 0-13500 rpm 

Battery 

Peak power 74 kW 

Energy content 6.1 kWh 
AC/DC converter efficiency 0.95 
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As far as the workflow of the IMSF is concerned, the Simulator is responsible 
of generating the transition from a state 𝑠𝑡 in a generic time step to the next state 
𝑠𝑡+1 in the following time step. The state variation can be computed based on the 
physical action 𝑎�̃� received by the Environment Interface (please refer to next 
section for the definition of physical action). During this process, the Simulator 
outputs also the action feasibility mask 𝑚𝑡+1, which represents the set of feasible 
actions at the following time step (which can be defined thanks to the calculation 
of 𝑠𝑡+1). Assuming a discrete action space, the feasibility mask can be represented 
as a Boolean vector that excludes the unfeasible actions from the feasible ones. The 
feasible actions have been represented by 1 whereas unfeasible actions have been 
represented by 0.  

6.2.2 Environment Interface 

As stated in the introduction of Section 6.2, the Environment Interface (Figure 54, 
grey box) works as bridge between the Agent and the Simulator. It comprises three 
sub-modules: the Action Space (AS), the State Space (SS) and the Rewarder 
(REW). 

The AS sub-module represents the module responsible for handling and 
translating the logical action proposed by the Agent into a physical action for the 
Simulator. A physical action (𝑎�̃�) is the actual action applied to the HEV powertrain 
according to the control policy in a single time step. In the present research, the 
HEV operating mode (i.e., pure thermal, pure electric, power-split or battery 
charging) as well as the gear inserted in the transmission have been considered. 
Specifically, the cv reported for pc in Table 8 have been assumed as the set of 
physical actions. On the other hand, the logical action (𝑎𝑡) is merely a logical 
representation of the physical action for the Agent. In the Environment Interface, 
the AS submodule is hence devoted to both map 𝑎�̃� into 𝑎𝑡 and send the feasibility 
mask 𝑚𝑡+1 from the Simulator to the Agent. For the sake of clarity, the AS could 
be capable of handling both discrete and continuous actions. 

As far as the SS is concerned, the Agent does not receive information about the 
entire state of the system (“true state”) but an observation that contains only partial 
information. The SS is hence responsible for the conversion of a state 𝑠𝑡 produced 
by the Simulator into an observation 𝑜𝑡+1 to be read by the Agent. The process that 
leads to the generation of the observation is divided into two main steps. An 
Observer is first asked to filter the state to maintain only the realistically available 
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information in a real-life context. Then, the Agent can receive the observation in a 
discrete or continuous space. If in the discrete space, the filtered state is further 
processed by means of a discretization; otherwise, if in continuous space, the 
filtered state is standardized to a [0, 1] range. 

Finally, the REW is the sub-module responsible for computing the reward 𝑟𝑡 
based on a given state-action pair. The calculated reward is hence sent to the Agent 
as feedback for the taken action 𝑎𝑡. 

The entire Environment Interface module has been written using the Python 
3.8.5 programming language ([205]) considering the OpenAI gym standard.  

6.2.3 Agent 

In the Agent module (Figure 54, red module), the algorithmic structure needed to 
train a RL-based control logic with the capability of learning from the experience 
gained during the driving mission has been developed. Considering a very large 
number of training episodes, the optimal control policy could be achieved thanks to 
an accurate design of the Agent. In other words, the latter should be capable of 
choosing the logical action 𝑎𝑡 at each time step for every received observation 𝑜𝑡 
based on the specific exploration–exploitation trade-off explained in Section 2.3. 
As for the Environment, three submodules are included in the Agent: Policy, 
Exploration Strategy and the Training. 

The Policy sub-module is devoted to calculate the selection priority of each 
logical action available at a given time step. The result is hence sent to the 
Exploration Strategy sub-module that is asked to output the exploration rate given 
a specific exploration strategy. Based on the priority values as well as on the action 
feasibility mask 𝑚𝑡, the Exploration Strategy sub-module chooses an action 
between the feasible ones. Particularly for greedy strategies, the chosen action 
would result in the action with the maximum priority. Finally, the Training sub-
module collects the transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) and updates the internal decision 
model of the agent according to the rules of Q-learning. 

As for the Environment Interface module, the Agent module has been written 
using the Python 3.8.5 programming language ([205]) considering the OpenAI gym 
standard. 
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6.3 Results 

In this Section, the results obtained through the application of a Q-learning based 
RL agent to the problem of the real-time energy management of a pc over real 
driving missions are presented. 

According to the main hyper-parameters discussed in Section 6.1, the results 
are mainly focused on: 

 Effect of the discount factor; 
 Reward shaping; 
 Sensitivity to the learning rate; 
 Variation of the exploration strategy. 

Other parameters have not been included in the test plan since an easier tuning 
operation could be identified, such as the maximum number of episodes in the 
experiment. As an example, if any limitation would have existed about 
computational time, a very large number of episodes could have been set so as to 
be confident about the possibility of the agent to converge to its best performance. 
The performances of the different algorithm configurations have assessed by means 
of the battery SOC trajectories realized during and at the end of the training and 
testing processes, the cumulative fuel consumption, the real fuel consumption and 
the shape of the discounted return. 

The HEV performances have been evaluated on four different experimentally 
derived DMs ([206]), identified as CLUST1, CLUST2, CLUST3 and CLUST4. 
From Figure 55 to Figure 58, some of the main characteristics of each driving 
mission are compared, specifically the vehicle velocity as a function of time, the 
vehicle as a function of distance traveled, maximum vehicle acceleration and 
velocity and average vehicle acceleration and velocity. The selection of the driving 
missions has been based upon the necessity of testing the RL control agent for 
HEVs in a driving environment characterized by a miscellaneous set of driving 
conditions. As far as the vehicle velocity profiles are concerned, the longest driving 
mission among the four is CLUST1, whereas CLUST2, CLUST3 and CLUST4 are 
progressively shorter. Moreover, CLUST1 is featured by the highest maximum and 
average velocities. On the contrary, the shortest driving mission (CLUST4) 
involves the most demanding average acceleration during traction, as it can be seen 
from the very spiky velocity trajectory charted in Figure 56. The maximum 
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acceleration during traction is achieved on CLUST3, whereas the less demanding 
operations are required on CLUST2. 

In order to provide a fair comparison between the performances of the different 
tested Q-learning configurations, benchmark results have been produced through 
the DDP algorithm presented in Chapter 2. Consistent with the three reward 
functions of Section 6.1.4, the cost function of the DDP has been formulated 
considering the FC minimization in case of complete CS of the battery SOC at 60%. 
Moreover, the state and control variables of the DDP have been selected according 
to the set of observations and actions considered for the Q-learning agent (i.e. 
battery SOC as observation, power flow and gear number as actions). As far as the 
state of the system is concerned, the approach presented in Chapter 3 to identify the 
optimal battery SOC mesh discretization has been applied to both the DDP 
computational grid and the Q-table ([154]). Specifically for the present case of 
study, 501 levels have been considered in a battery SOC window comprised 
between 55% and 65%. Regarding the control space, the same control decisions 
have been allowed to both the Q-learning and the DDP. Specifically, 42 possible 
actions have been permitted considering six GNs and seven PFIs. 

A final consideration has to be made before stepping into the following 
sections. The target of the present research refers to the identification of the analyses 
to be performed when a robust design of a RL control algorithm for (P)HEVs is 
needed. Since any optimization of the Q-learning agent has been performed, the 
results of this activity should not be read as representative of the best performances 
that could be obtained by an optimized Q-learning version have been reported. 
Future works will relate to development and fine-tuning of optimized RL-based 
control agents. 
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Figure 55. Vehicle velocity trajectories of the experimentally real-world driving 
missions with respect to the mission time. 

 

 

Figure 56. Vehicle velocity trajectories of the experimentally real-world driving 
missions with respect to the trip distance. 
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Figure 57. Comparison of the maximum acceleration obtained during traction 
and braking of the real-world driving missions with respect to the maximum vehicle 
velocity. 

 

 

Figure 58. Comparison of the average acceleration obtained during traction and 
braking of the real-world driving missions with respect to the average vehicle velocity. 
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6.3.1 Effect of the discount factor 

As first analysis, the performance of a Q-learning control agent for a parallel HEV 
on CLUST1 has been assessed for by studying the influence of the value considered 
for the discount factor (see (74) and (75)). Recalling Section 6.1.2, reducing the 
value of the discount factor encourages the agent to pick actions based on an 
immediate reward, whereas future rewards can be accounted only by increasing the 
value of the discount factor. Nevertheless, the real-time control of HEVs could 
require a trade-off between the CS of the battery SOC and the FC minimization. 
Therefore, an agent preferring actions based on immediate rewards might not 
necessarily lead to interesting control solutions. As an extreme experiment, a null 
value of the discount factor could demonstrate an expected inefficient setup of the 
agent. On the contrary, the value of the discount factor could be increased toward 
the unity to assess for better agent performances. In the following charts and tables, 
the results produced by a sensitivity of the Q-learning performances to a change in 
the value of the discount factor are presented. 

As far as the whole agent configuration is concerned, reward function R1, α=0.9 

and boost exploration strategy have been considered for this set of analyses over 
the effect of γ. Moreover, a plausible CS strategy has been considered only when a 
final battery SOC equal to 60±2.5% has been achieved at the end of the driving 
mission. Consistently, the final fuel consumed at the end of the driving mission has 
been considered only for the experiments featured by battery plausible CS 
trajectories. In fact, since the final fuel consumption is calculated relying on the 
equivalent fuel consumption calculated through (73), the accuracy of the estimation 
of the equivalent fuel consumption could play a significant role in the results. 
Therefore, a minimization of the impact of inaccurate estimations of the equivalent 
fuel consumption has been pursued. This phenomenon could evidently be obtained 
in case of a complete CS trajectory. On the contrary, if a CS trajectory is not 
obtained, introducing a threshold in the maximum and minimum battery SOCs 
could allow for excluding unrealistic calculations of the final fuel consumption. 

The discounted return evaluated at the first time step of the CLUST1 is reported 
in Figure 59 considering a null discount factor. Neglecting the role of γ in (74) and 
(75) leads to the generation of a constant discounted return. The agent is pushed to 
learn a control policy only based on the actual reward, without accounting for the 
implication of the chosen action in the future. In Figure 60, the trends of the battery 
SOC are charted both for training (top chart) and for testing (bottom chart) episodes 
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between the first and the last episodes. As it can be clearly noted, the agent is not 
capable of sustaining the battery SOC during the training process, which turns into 
an unsatisfying result for the testing process. According to such a bad utilization of 
the electric path, the cumulative fuel consumption does not represent an interesting 
result and it is hence not considered. The results obtained by applying the same Q-
learning configuration for CLUST2, CLUST3 and CLUST4 have shown the same 
behavior and, therefore, they are not reported for briefness. 

Differently from the case of γ=0, increasing the value of the discount factor 

enhances the influence of the outcome of future time steps on the agent’s decisional 

process (Section 6.1.2). The change in the performance of a Q-learning controller 
for HEVs has hence been assessed for higher discount factors. Specifically, the 
discount factor has been set to 0.9, 0.99 and 0.999. In Table 35, the results obtained 
when a variation of γ is introduced in the agent configuration are reported for each 
driving mission. The final battery SOC (𝑆𝑜𝐶𝑓) always falls within the CS window 
except for the case of γ=0.999 over CLUST3. The latter represents a hard 
environment to be solved by the algorithm as it is characterized by a short but spiky 
velocity profile with strong accelerations and decelerations. Consistently, not the 
entire set of actions is feasible during several time steps of the driving mission. Such 
conditions can significantly reduce the number of feasible control trajectories to be 
explored during the training process, affecting the capability of the agent to 
complete a robust learning phase. For the sake of clarity, an optimization of the Q-
learning configuration should have been carried out to provide the control agent 
with the optimal settings to properly solve the control problem over CLUST3. 
Nevertheless, discovering unsolved problems is a coherent result with respect to the 
target of the present activity. 
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Figure 59. Discounted return for each episode evaluated at the beginning of the 
episode for CLUST1 in case of null discount factor. 

 

 

Figure 60. Trends of the battery SOC obtained during throughout the training 
(top chart) and testing (bottom chart) episodes.  
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Significant differences arise in the absolute values of both FC and real fuel 
consumption (rFC) achieved with the different γ values. The difference between FC 
and rFC consists of the additional equivalent fuel consumption (see (73)) included 
at the end of the experiment when the final battery SOC is lower than the reference 
one (0.6). Given the different durations and lengths of the four driving missions, 
distinct cumulative FCs could be expected at the end of the experiments. 
Specifically, CLUST1 and CLUST2 are longer driving missions and highlight 
larger fuel utilization; vice versa for CLUST3 and CLUST4. 

A lower γ value (0.9) appears to outperform higher values for each driving 
environment in terms of rFC. On the contrary, a clear trend is not introduced by 
increasing γ to 0.99 or 0.999, whereas different behaviors can be obtained for the 
different driving missions. The intermediate value (0.99) outperforms higher values 
only on CLUST2 and CLUST3, whereas the highest tested value leads to a better 
result on CLUST1 and CLUST4. According to this non-trivial response of the Q-
learning, testing the RL agent with multiple values of the discount factor appears to 
be a fundamental step when the identification of a specific reward function has been 
made. 

The most interesting trends related to the best experiment over CLUST1 
(γ=0.9) are reported in the next charts. The training discounted return evaluated at 
initial time step, 1/3 and 2/3 of the CLUST1 duration are reported in the charts from 
Figure 61 to Figure 63 considering the entire experiment. Differently from the result 
obtained with a null discount factor, different values can be noted throughout the 
episodes. Specifically, the discounted return appears to converge right after the first 
episodes (90.675) when calculated in the first time step of the driving mission, 
whereas a larger number of episodes is necessary for the discounted return to reach 
a stabilization farther in the driving mission. In fact, the discounted return of Figure 
62 starts from a very low value (roughly 27), and it requires almost 500 episodes to 
achieve a sort of stabilization; furthermore, a negative discounted return occurs at 
the beginning of the experiment and almost 500 episodes are needed to converge at 
2/3 of the driving mission duration (Figure 63). As an outcome of this study, the 
agent appears to be capable of learning the optimal decisions to be taken throughout 
the entire driving mission. Such a set of results based on the discounted return is 
fundamental if realistic information about the learning progress of the agent is to be 
gained. In fact, evaluating the discounted return in a single step of the driving 
mission does not provide the user with an exhaustive outcome about the capability 
of the RL agent to select the best actions during the entire mission. 
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Table 35. Results of the Q-learning agent over each driving mission 
considering different discount factors. 

DM 

𝑺𝒐𝑪𝒇 
- 

FC 
g 

DDP Ql 
γ=0.9 

Ql 
γ=0.99 

Ql 
γ=0.999 DDP Ql 

γ=0.9 
Ql 

γ=0.99 
Ql 

γ=0.999 

CLUST1 0.6000 0.5838 0.5939 0.5904 246.6 229.91 263.20 244.47 
CLUST2 0.6000 0.5826 0.5962 0.6000 197.2 227.19 255.38 263.46 

CLUST3 0.6000 0.5817 0.5754 - 152.6 173.02 169.26 - 
CLUST4 0.6000 0.5819 0.6019 0.5974 53.9 52.07 106.56 93.81 

 rFC 
g 

∆𝑭𝑪 
% 

CLUST1 246.6 253.21 272.02 258.27 - 2.68 10.31 4.73 

CLUST2 197.2 252.28 260.9 263.46 - 27.93 32.30 33.60 
CLUST3 152.6 199.33 204.7 - - 30.62 34.14 - 

CLUST4 53.9 78.21 106.56 97.59 - 45.10 97.70 81.06 

 



Chapter 6. Towards optimal real-time control of hybrid powertrains through Reinforcement Learning 

 

171 

 

Figure 61. Discounted return for each episode evaluated at the beginning of the 
episode for CLUST1 in case of γ=0.9. 

 

 

Figure 62. Discounted return for each episode evaluated from 1/3 of the episode 
for CLUST1 in case of γ=0.9. 
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Figure 63. Discounted return for each episode evaluated from 2/3 of the episode 
for CLUST1 in case of γ=0.9. 

 

Additional meaningful trajectories for the problem of HEVs real-time control 
are represented by the battery SOC and the cumulative FC realized with a RL-based 
control logic. In Figure 64 and Figure 65, the trends of the battery SOC evaluated 
in one of the first and the last episodes over CLUST1 are charted both for training 
and testing conditions, respectively. The agent proves the capability of realizing a 
CS battery SOC trajectory at the end of the experiment, whereas a very poor control 
policy is highlighted at the beginning of the experiment. An interesting outcome is 
also represented by the difference between training and testing episodes. In fact, the 
final battery SOC of the last testing episode (0.5838) is closer to the reference value 
(0.6) with respect to the one obtained in the last training episode (0.5760). As far as 
the cumulative FC is concerned, Figure 66 and Figure 67 highlight the agent 
capability of maintaining roughly the same FC during training and testing, 
respectively. This can be considered a consistent result of the training process since 
the achievement of improved CS trajectories is not affecting the final FC. 
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Figure 64. Battery SOC obtained at the end of the first and the last training 
episodes for CLUST1 in case of γ=0.9. 

 

 

Figure 65. Battery SOC obtained at the end of the first and the last testing 
episodes for CLUST1 in case of γ=0.9. 
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Figure 66. Cumulative FC obtained during training for CLUST1 in case of γ=0.9. 

 

 

Figure 67. Cumulative FC obtained during testing for CLUST1 in case of γ=0.9. 
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6.3.2 Reward shaping 

Within this section, the results produced by a reward shaping analysis over the Q-
learning agent are reported considering the three values of the discount factor 
considered in Table 35. The best performing combination of reward function and 
discount factor has been identified (and highlighted in grey) for each driving 
mission. 

In Table 36, the results obtained on each driving mission are reported for γ=0.9 
considering 𝑆𝑜𝐶𝑓, FC, rFC and ∆𝐹𝐶. As for the analysis about the effect of the 
discount factor on the agent performances, reward function R1, α=0.9 and boost 
exploration strategy have been considered for the present analysis. The adoption of 
the lowest non-null value of γ shows very interesting results when matched with the 
reward function R1. The agent is capable of completing the experiments on each 
driving mission with final battery SOC values within the admitted CS window 
(𝑆𝑜𝐶𝑓>0.58) and promising final fuel consumption with respect to DDP for 
CLUST1. On the contrary, matching γ=0.9 with R2 does not lead to a good response 
of the control agent. Regardless a change in the formulation of R2 (i.e., R2a, R2b 
and R2c), the agent is never capable of exploiting a complete CS, hence invalidating 
the entire set of experiment. Finally, the results produced by the adoption of the 
reward function R3 fall in between those obtained by R1 and R2. A CS trajectory 
is achieved for three out of four driving missions, with final battery SOC nearer to 
the reference value and real fuel consumptions comparable with those obtained by 
R1. 

In Table 37 and Table 38, the same experiments have been carried out 
considering a discount factor equal to 0.99 and 0.999, respectively. As it can be 
seen, the response of the agent when considering R2 is always negative. Indeed, 
matching R1 and R3 with higher γ values leads to different and interesting results 
with respect to γ=0.9. First, the final battery SOCs are closer to the reference value 
for CLUST1, CLUST2 and CLUST4, which is a positive index about the agent 
capability of learning CS strategies. Second, no significant differences arise about 
the real fuel consumptions produced on CLUST1, CLUST2 and CLUST3 with 
respect to those obtained with γ=0.9. Such a result can be read as the demonstration 
that consistent Q-learning behaviors can be obtained by using different couples of 
discount factor and reward function. Particularly, R1 proves to be more effective 
on CLUST1 and CLUST3 in case of γ=0.99, whereas R3 is better for CLUST2 and 
CLUST4. For γ=0.999, R3 can outperform R1 on CLUST3 while producing very 
similar results for CLUST2 and CLUST4. 
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Recalling Section 6.1.4, the reward function R1 is a more SOC-oriented while 
R2 and R3 can be considered as more FC-oriented. Such a consideration is 
fundamental to justify the difficulty of the agent to solve the problem in case of R2 
and R3. In fact, a more complex problem has to be faced when R2 and R3 are 
considered since a lower priority is given to the battery SOC trajectory. Therefore, 
unfeasibility conditions related to the battery SOC exceeding the limits imposed by 
the battery SOC window are more likely to be experienced. Therefore, higher 
discount factors (i.e. larger time horizons for the discounted return) could be 
considered as they have proved to allow for stronger agents in cases of very 
complex problems. 

Consistent with the results of the reward shaping analysis, a strong interaction 
between discounted return and reward function has been demonstrated. A non-
trivial agent response can be obtained when reward functions with different levels 
of complexity are coupled with the discount factors and tested on different driving 
conditions. 

 

Table 36. Results of the reward shaping analysis considering γ=0.9. 

γ DM 
𝑺𝒐𝑪𝒇 

- 
FC 
g 

DDP R1 R2a R2b R2c R3 DDP R1 R2a R2b R2c R3 

0.9 

CLUST1 0.6000 0.5838 - - - 0.5977 246.6 229.91 - - - 259.89 

CLUST2 0.6000 0.5826 - - - 0.6000 197.2 227.19 - - - 282.63 

CLUST3 0.6000 0.5817 - - - - 152.6 173.02 - - - - 

CLUST4 0.6000 0.5819 - - - 0.5884 53.9 52.07 - - - 66.52 

 rFC 
g 

∆𝑭𝑪 
% 

CLUST1 246.6 253.21 - - - 263.13 - 2.68 - - - 6.70 

CLUST2 197.2 252.28 - - - 282.63 - 27.93 - - - 43.32 

CLUST3 152.6 199.33 - - - - - 30.62 - - - - 

CLUST4 53.9 78.21 - - - 83.29 - 45.10 - - - 54.53 
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Table 37. Results of the reward shaping analysis considering γ=0.99. 

γ DM 
𝑺𝒐𝑪𝒇 

- 
FC 
g 

DDP R1 R2a R2b R2c R3 DDP R1 R2a R2b R2c R3 

0.99 

CLUST1 0.6000 0.5939 - - - 0.6018 246.6 263.20 - - - 280.80 

CLUST2 0.6000 0.5962 - - - 0.6031 197.2 255.38 - - - 254.28 

CLUST3 0.6000 0.5754 - - - - 152.6 169.26 - - - - 

CLUST4 0.6000 0.6019 - - - 0.5984 53.9 106.56 - - - 88.48 

 rFC 
g 

∆𝑭𝑪 
% 

CLUST1 246.6 272.02 - - - 280.83 - 10.31 - - - 13.88 

CLUST2 197.2 260.9 - - - 254.28 - 32.30 - - - 28.95 

CLUST3 152.6 204.7 - - - - - 34.14 - - - - 

CLUST4 53.9 106.56 - - - 90.86 - 97.70 - - - 68.57 

 

Table 38. Results of the reward shaping analysis considering γ=0.999. 

γ DM 
𝑺𝒐𝑪𝒇 

- 
FC 
g 

DDP R1 R2a R2b R2c R3 DDP R1 R2a R2b R2c R3 

0.999 

CLUST1 0.6000 0.5904 - - - 0.6011 246.6 244.47 - - - 293.15 

CLUST2 0.6000 0.6000 - - - 0.6049 197.2 263.46 - - - 266.82 

CLUST3 0.6000 - - - - 0.5795 152.6 - - - - 185.51 

CLUST4 0.6000 0.5974 - - - 0.5982 53.9 93.81 - - - 95.23 

 rFC 
g 

∆𝑭𝑪 
% 

CLUST1 246.6 258.27 - - - 293.15 - 4.73 - - - 18.88 

CLUST2 197.2 263.46 - - - 266.82 - 33.60 - - - 35.30 

CLUST3 152.6 - - - - 214.99 - - - - - 40.88 

CLUST4 53.9 97.59 - - - 97.86 - 81.06 - - - 81.56 
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6.3.3 Sensitivity to the learning rate 

Another important factor for the assessment of the performance of a Q-learning 
algorithm is represented by the learning rate (α). As for the discount factor, a sweep 
over three different values has been performed, specifically 0.1, 0.5 and 0.9. For the 
present analysis, the best combination between reward function and discount factor 
achieved in Section 6.3.2 has been selected: R1 with γ=0.9. The boost exploration 
strategy has also been maintained. 

In Table 39, the results obtained by the Q-learning control agent are reported 
for each driving mission. As for the experiments shown in the previous sections, 
CLUST3 appears to be the hardest driving environment to be solved when moving 
from the original combination of R1, γ=0.9 and α=0.9. Moreover, unexpected 
results can be obtained on different driving missions in case of a drastic change to 
the agent configuration. As an example, a very low learning factor can be capable 
of outperforming even the most common values (e.g. 0.9) on specific driving 
missions. Particularly, the lowest rFC is exploited with α=0.1 on CLUST2 while a 
comparable rFC with respect to α=0.9 is obtained on CLUST1. As far as α=0.5 is 
concerned, such a configuration appears not to be optimal in minimizing the FC 
whereas it is capable of achieving the best CS results for CLUST1, CLUST2 and 
CLUST4. 

Since the learning rate generally determines the speed of the Q-table update, a 
non-trivial response of the agent has been proved for throughout the present test 
cases. In fact, substantial variation can be obtained in the behavior of the agent 
when a reduction in the α value is introduced in the Q-learning setup. Nevertheless, 
as a general outcome of several research works in the literature, a higher value leads 
to more robust RL controllers for HEVs. 
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Table 39. Results of the sensitivity analysis over the learning rate. 

DM 

𝑺𝒐𝑪𝒇 
- 

FC 
g 

DDP Ql 
α=0.1 

Ql 
α=0.5 

Ql 
α=0.9 DDP Ql 

α=0.1 
Ql 

α=0.5 
Ql 

α=0.9 

CLUST1 0.6000 0.5778 0.6014 0.5838 246.6 226.51 298.62 229.91 

CLUST2 0.6000 0.5832 0.6021 0.5826 197.2 207.42 280.22 227.19 
CLUST3 0.6000 - - 0.5817 152.6 - - 173.02 
CLUST4 0.6000 - 0.6003 0.5819 53.9 - 101.89 52.07 

 rFC 
g 

∆𝑭𝑪 
% 

CLUST1 246.6 258.65 298.62 253.21 - 4.89 21.09 2.68 
CLUST2 197.2 231.65 280.22 252.28 - 17.47 42.10 27.93 
CLUST3 152.6 - - 199.33 - - - 30.62 

CLUST4 53.9 - 101.89 78.21 - - 89.04 45.10 

 

6.3.4 Variation of the exploration strategy 

As a final step, the exploration strategy of the agent has been varied according to 
the strategies shown in Section 6.1.3. The considered exploration strategies are 
featured by a linear decay of the exploration rate followed or preceded by a constant 
trace. Specifically, “boost” and “slow” are characterized by two decays with 
different slopes followed by a horizontal phase with ε=0.05. On the contrary, a 
horizontal phase with ε=0.8 is maintained for the majority of the experiment and 
then followed by the linear decrease in “inverse slow”. The three exploration 
strategies will be hereafter referred to as L1, L2 and L3, respectively. Once again, 
the best combination of reward function, discount factor and learning rate identified 
in Section 6.3.3. has been considered for the present analysis (i.e. R1, γ=0.9 and 
α=0.9). 

Different from the results shown in the previous sections, a clear trend is 
highlighted by the results reported in Table 40 considering the entire set of driving 
missions. In fact, L1 appears to be the best performing exploration strategy as it 
allows the agent to solve each driving environment (i.e. complete the missions) 



Hybrid and Electric Vehicles Optimal Design and Real-time Control based on Artificial Intelligence 

 

180 

while minimizing the FC. On the other hand, L2 and L3 are capable of producing 
more accurate CS trajectories as the final battery SOCs are comparable with those 
obtained with DDP. Nevertheless, the rFC values are worsened with respect to those 
achieved with L1. Moreover, the velocity trajectory of CLUST3 cannot be fulfilled 
as both L2 and L3 are not capable of completing the driving missions without falling 
outside of the battery SOC window (0.55-0.65). 

 

Table 40. Effects of the exploration strategy on the performances of the 
Q-Learning agent. 

DM 
𝑺𝒐𝑪𝒇 

- 
FC 
g 

DP L1 L2 L3 DP L1 L2 L3 

CLUST1 0.6000 0.5838 0.6020 0.6017 246.6 229.91 309.01 269.35 
CLUST2 0.6000 0.5826 0.6020 0.6022 197.2 227.19 299.63 255.55 

CLUST3 0.6000 0.5817 - - 152.6 173.02 - - 
CLUST4 0.6000 0.5819 0.6010 0.6010 53.9 52.07 88.09 90.33 

 rFC 
g 

∆𝑭𝑪 
% 

CLUST1 246.6 253.21 309.01 269.35 - 2.68 25.31 9.23 

CLUST2 197.2 252.28 299.63 255.55 - 27.93 51.94 29.59 
CLUST3 152.6 199.33 - - - 30.62 - - 
CLUST4 53.9 78.21 88.09 90.33 - 45.10 63.43 67.59 

 

Since L1 is characterized by a very short exploration boost with respect to L2 
(and even more with respect to L3), an additional analysis has been performed by 
assessing for the learning process of the agent during the very first episodes of the 
experiment. For this purpose, L1 and L3 have been applied, considering very short 
experiments with “only” 250 episodes on CLUST1, namely L1s and L3s. 

Comparisons of the discounted returns evaluated at the first time step, 33% and 
66% of the CLUST1 duration are reported in the charts from Figure 68 to Figure 
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70. Looking at trends of the discounted return at the beginning of the driving 
mission, no real difference arises when the exploration strategy is changed since an 
almost constant value is achieved throughout the entire episode. On the contrary, a 
significant difference occurs both at 33% and at 66% of the driving mission duration 
when L3s replaces L1s. The enlargement of the share of episodes with ε>0.05 
creates a lag in the number of episodes needed by the discounted return to reach the 
convergence. Indeed, the stabilization is achieved faster when a shorter exploration 
boost is defined and a longer exploitation period is allowed to the agent. 

As a confirmation of the trends highlighted by the discounted returns along the 
driving mission, the effectiveness of a specific RL agent for HEVs has to be 
confirmed through the results of 𝑆𝑜𝐶𝑓 and rFC. The latter are reported in Table 
41for both L1s and L3s. The results highlight that the agent is capable of reducing 
the rFC under L1s (with respect to L3s) even when a much shorter exploration boost 
is considered. The speed of convergence associated to the discounted return allows 
the agent for more robust performances. Nevertheless, considering the results of 
boost with larger experiments (Table 40), enlarging the constant ε region leads the 
agent toward a progressive adaptation of the final battery SOC in favor of a better 
rFC. 

 

Table 41. Results of L1s and L3s on CLUST1. 

DM 
𝑺𝒐𝑪𝒇 

- 
FC 
g 

rFC 
g 

L1s L3s L1s L3s L1s L3s 

CLUST1 0.6014 0.6010 267.74 286.08 267.74 286.08 
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Figure 68. Comparison of the discounted return evaluated at the initial time step 
of the testing episodes for L1s and L3s. 
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Figure 69. Comparison of the discounted return evaluated at 1/3 of the duration 
of the testing episodes for L1s and L3s. 
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Figure 70. Comparison of the discounted return evaluated at 2/3 of the duration 
of the testing episodes for L1s and L3s. 
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6.4 Conclusions 

In this Chapter, a comprehensive view of a thorough experimental test for a Q-
learning algorithm to be implemented as HEV real-time capable EMS has been 
presented. The experiments conducted in the research activity are hence aimed at 
providing the reader with a complete procedure for a reliable assessment of the 
performance obtained by a RL algorithm for HEVs. 

Two elements have been introduced to evaluate the agent performances. First, 
the distinction between training and testing episodes. Training episodes are featured 
by law about the agent exploration rate. On the contrary, the agent exploration 
strategy is turned off and the greedy action is always selected in testing episodes. 
Second, the identification of the discounted return during training and testing 
episodes as the most meaningful signal about the learning process of the RL agent. 
Contrarily, the sum of the rewards obtained by the agent in the episodes is typically 
used in the literature. Thanks to the present research, the trend of the discounted 
return computed in different time steps of training or testing episodes has proved to 
be a consistent index for the assessment of the RL agent performances. 

In addition, the evaluation of the response of a Q-learning agent has been 
discussed considering a massive testing of the algorithm on different real-world 
driving conditions. Specifically, four different analyses have been conducted and 
thoroughly presented which are commonly neglected in the literature. First, the 
effect of the discount factor on the decisional process of the agent has been analyzed 
considering very different discount factors. Starting from the case of a null discount 
factor, an improved performance of the Q-learning has been appreciated in most of 
the cases when the discount factor has been set to values toward the unity. Such an 
outcome has been proved by means of the discounted return trajectory evaluated at 
three different stages of the episode. Second, a reward shaping analysis has been 
carried out considering an optimization of the cumulative fuel consumed at the end 
of the driving mission in presence of a boundary condition about the battery SOC 
charge sustaining. Such an analysis has been conducted considering different 
discount factors so as to highlight the non-trivial response of the agent when the 
training parameters are mixed and tested over different environments. As an 
outcome, the FC-oriented reward function has proved to be more efficient when 
higher discount factors are considered with respect to a reward focusing more on 
the battery SOC CS. This can be addressed to the nature of the HEV control 
problem. A FC-oriented control strategy can, in fact, fall into unfeasible policies 
with a high frequency due to the difficulty of maintaining the battery SOC under 
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the admitted SOC window when any information (or information with small 
relevance) is provided to the agent about the influence of the battery SOC variations 
on the system. Third, the influence of the learning rate on the performance of the 
Q-learning agent. Recalling the learning rate to be responsible of the Q-table rate 
of update, the algorithm has proved to be very sensitive to the variation of its 
internal learning parameter. In fact, a worsened response of the agent can be 
obtained when a reduction in the learning rate value is applied. On the contrary, 
higher values can push the Q-learning algorithm to better performances as already 
proved in the literature about RL for HEVs. Finally, the role of the exploration 
strategy has been discussed as the last analysis. Three different exploration 
strategies have been considered, featured by three different exploration rate decays. 
The fastest decay followed by a large number of episodes with a very high 
exploitation rate have proved to outperform other strategies featured by longer 
exploration rate decays. Such an outcome has been discussed both for extended 
experiments (with thousands of episodes) and short experiments (with few 
hundreds of episodes). Despite the change in the experiment duration, the Q-
learning agent has achieved a faster convergence of the discounted return evaluated 
at different stages of the driving mission when a small exploration boost has been 
considered. 

The results presented in the Chapter can hence be considered as a demonstration 
of the broadness and the depth of the tests needed to achieve a real assessment of 
the performances of a Q-learning agent for the energy management of hybrid 
powertrains. Next steps will surely involve modifications into the ISMF 
configuration. Specifically, an analysis of advanced RL agents, such as DQN and 
DDQN, will be carried out introducing a change in the Agent module. Likewise, 
different vehicle models will be considered in the Simulator module that will allow 
the assessment of the RL agents on different electrified powertrains, such as PHEVs 
or BEVs. 

 



 

Appendix A 

The power equations used to model a post-transmission and a through-the-road 
parallel hybrid powertrains are hereafter reported. 

 

Post-transmission parallel hybrid electric powertrain: 

𝑃𝑀𝐺(𝑡) = 𝛼𝑜𝑚 ∙  𝑃𝑓𝑑(𝑡)    (A1) 

𝑃𝑀𝐺,𝑒𝑙(𝑡) = 𝑃𝑀𝐺,𝑚𝑒𝑐ℎ(𝑡) ∙ 𝜂𝑀𝐺
𝑘 (𝑇𝑀𝐺,𝑚𝑒𝑐ℎ, 𝜔𝑀𝐺) (A2) 

𝑃𝑅𝐸𝐸𝑆𝑆,𝑒𝑙(𝑡) = 𝑃𝑀𝐺,𝑒𝑙(𝑡) ∙ 𝜂𝐴𝐶/𝐷𝐶
𝑘  + 𝑃𝑎𝑢𝑥,𝑅𝐸𝐸𝑆𝑆 (A3) 

𝑃𝐼𝐶𝐸(𝑡) = (1 − 𝛼𝑜𝑚) ∙ (𝑃𝑟𝑒𝑞(𝑡) + 𝑃𝑎𝑢𝑥,𝐼𝐶𝐸)  (A4) 

 

Through-the-road parallel hybrid electric powertrain: 

𝑃𝑀𝐺(𝑡) = 𝑃𝑀𝐺,𝑚𝑒𝑐ℎ(𝑡) = 𝜙𝑜𝑚 ∙  𝑃𝑓𝑑𝑠(𝑡)  (A5) 

𝑃𝑀𝐺,𝑒𝑙(𝑡) = 𝑃𝑀𝐺,𝑚𝑒𝑐ℎ(𝑡) ∙ 𝜂𝑀𝐺
𝑘 (𝑇𝑀𝐺,𝑚𝑒𝑐ℎ, 𝜔𝑀𝐺) (A6) 

𝑃𝑅𝐸𝐸𝑆𝑆,𝑒𝑙(𝑡) = 𝑃𝑀𝐺,𝑒𝑙(𝑡) ∙ 𝜂𝐴𝐶/𝐷𝐶
𝑘  + 𝑃𝑎𝑢𝑥,𝑅𝐸𝐸𝑆𝑆 (A7) 

𝑃𝐼𝐶𝐸(𝑡) = (1 − 𝜙𝑜𝑚) ∙ (𝑃𝑟𝑒𝑞(𝑡) + 𝑃𝑎𝑢𝑥,𝐼𝐶𝐸)  (A8) 

 

For through-the-road powertrains, 𝜙𝑜𝑚 represents a power-split ratio between the 
primary (ICE) and the secondary (MG) axles. 
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Appendix B 

The design variables considered for a post-transmission hybrid powertrain are the 
same considered for a pre-transmission hybrid powertrain. The design variables 
considered for a through-the-road parallel hybrid are hereafter reported.  
 

Powertrain component Design Variable 

Internal Combustion Engine Displacement 

Motor-Generator Peak power 

Battery Power-to-energy ratio 

Battery Maximum C-rate in discharge 

Battery Maximum C-rate in charge 

Final drive of the primary axle Speed ratio 

Final drive of the secondary axle Speed ratio 
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