
12 June 2023

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Em-RIPE: Runtime Intrusion Prevention Evaluator for ARM Microcontroller Systems / Roascio, Gianluca; Serra,
Gabriele; Eftekhari Moghadam, Vahid. - ELETTRONICO. - (2022), pp. 1-6. (Intervento presentato al convegno
International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME) tenutosi
a Maldives nel 16-18 November 2022) [10.1109/ICECCME55909.2022.9988527].

Original

Em-RIPE: Runtime Intrusion Prevention Evaluator for ARM Microcontroller Systems

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ICECCME55909.2022.9988527

Terms of use:
openAccess

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2970895 since: 2023-01-10T13:57:33Z

Institute of Electrical and Electronics Engineers Inc.

Proc. of the International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)
16-18 November 2022, Maldives

Em-RIPE: Runtime Intrusion Prevention Evaluator
for ARM Microcontroller Systems

Gianluca ROASCIO
Dept. of Control and Computer Engineering

Politecnico di Torino
Turin, Italy

gianluca.roascio@polito.it

Gabriele SERRA
TECIP Department

Scuola Superiore Sant’Anna
Pisa, Italy

gabriele.serra@santannapisa.it

Vahid EFTEKHARI MOGHADAM
Dept. of Control and Computer Engineering

Politecnico di Torino
Turin, Italy

vahid.eftekhari@polito.it

Abstract—Although they have been known for some time, the
security implications of buffer overflows (BOF) continue to rouse
great attention among software experts in the academic and
commercial sectors. Recently, there has been particular interest in
discussing how to mitigate risks deriving from BOF on embedded
and IoT devices, which have lower computational capabilities
given their low-cost and low-power requirements. Although the
literature is rich of solutions for these devices as well, authors
often fail to quantitatively compare their techniques with related
work from a security perspective, and mostly rely on qualitative
analysis. Existing evaluator benchmarks (such as the famous
RIPE, introduced in 2011) are designed to be used only on
general-purpose systems, e.g., with a rich Linux OS and Intel
architecture.

This paper presents Em-RIPE, a prototype evaluation tool
written for assessing protections applied to real-time embedded
systems, such as microcontrollers equipped with ARM processors.
This first version of the tool supports 105 different possible attack
combinations, on which the resilience level of the platform under
test can be measured. As experimental data, the obtained pro-
tection coverage for major compiler-based firmware protections
is reported.

Index Terms—security, software security, memory safety,
control-flow integrity

I. INTRODUCTION

Today, the security of information systems has become
of paramount importance due to their increasing diffusion
at every level of organizations and, consequently, to the
explosion of cyber attack reports and news, which forcibly
bring the problem to everyone’s attention. Software security
is no longer just an issue inherent to servers or personal
computers, but touches most of the objects surrounding us,
as they now feature smart controllers on board, which drive
their functionality and produce data exchanged on what is
now called the Internet of Things (IoT). Such end-points, as
opposed to desktop and server systems, are characterized by
low resource availability, and the need to run software that is
(i) directly interfaced with the hardware, with no supervisor
or rich OS in between, and (ii) written through languages
that allow for hard optimization, such as C or C++. Despite
their advantages, the characterization of these languages as

memory-unsafe is well known, as well as their inclination to
lead to common programming errors, that result in memory
corruption vulnerabilities [1]. Among them, prominent is the
buffer overflow (BOF) class, which still in the latest Common
Weakness Enumeration (CWE) report by MITRE Corporation
about 2021, leads the rank of the top 25 most dangerous
software weaknesses, with a score of 65.93, almost 20 points
above the second [2].

Buffer overflow vulnerabilities are the entry point for a
multitude of binary attacks, including code injection [3] and
code reuse [4]. Since the Morris Worm chronicles in the late
1980s, literature and companies have offered a plethora of
solutions to reduce the risk of buffer overflows or mitigate
their malicious effects: stack canary [5], stack replicas [6],
memory tagging [7] and authentication [8], and control-flow
integrity [9] are some of the most famous examples.

From a scientific point of view, all of these solutions can be
easily evaluated and made comparable by the classical metrics
used for the performance of computing systems extensions,
e.g., the average additional time required to run benchmark
applications, or the overhead in terms of chip area, or the
additional power consumed. However, from the point of view
of their security evaluation, scientific consensus has yet to
be reached, and very often, proposals are evaluated in a
qualitative way, or anyway not justified on the basis of standard
experiments for security.

In 2003, Wilander and Kamkar reported that most of
the prevention techniques were missing about 50% of the
possible attack forms [10], and contextually they presented
a tool able to perform a comparative evaluation on runtime
buffer overflows. The tool was targeting 20 different attack
combinations. The idea was extended and improved in 2011,
when a benchmark called Runtime Intrusion Prevention Eval-
uator (RIPE) was published [11]. RIPE features 850 different
attacks forms, obtained by combining different target memory
sections, library functions, overflow techniques, and attack
codes.

Some relevant solutions against buffer overflows existing in
the literature have been evaluated using this testbed [12] [13]

978-1-6654-7095-7/22/$31.00 © 2022 IEEE

[14], which represents the real first attempt at standardization.
However, RIPE is severely limited by the fact that it only
supports the i386 architecture, and relies on the Linux
Application Binary Interface (ABI). At present, there is no
possibility of using RIPE for architectures other than Intel,
or for other operating systems or platforms. Most of all,
the benchmark is not usable in the application domain of
embedded devices and microcontrollers, which are particularly
at risk for the reasons mentioned above. The absence of an
objective benchmark to assess the coverage of a solution
against BOF for these systems is severe, and is the cause that
moved the present work.

This paper presents a first version of Em-RIPE, a tool that
adapts the original RIPE philosophy to microcontroller-based
real-time systems. Em-RIPE is currently architected as a proof-
of-concept for the ARM-based 32-bit microcontrollers, and
has a backend relying on FreeRTOS libraries. Em-RIPE now
supports coverage evaluation against attacks on 3 different
memory sections, 3 types of pointers, 5 injectable libc func-
tions, using 3 different attack codes, for a total of 105 possible
attack combinations. The evaluator is released under free-use
license, and is available for public download via GitHub1.

The rest of the paper is organized as follows. In Section
II, background elements on BOF and the resulting issues
are offered. Section III discusses the requirements needed
for a benchmark evaluator in the microcontroller domain. In
Section IV, the technicalities of the tool and the reasons for
the choices made in the design are given. Section V reports
results on the measured coverages for classical compiler-based
firmware protections, such as stack canary and data execution
prevention. Finally, Section VII concludes the paper and charts
the way forward for future work.

II. BACKGROUND

A. Buffer Overflow

In a program, a buffer overflow occurs when a portion of
memory allocated by the code to accommodate a given number
of bytes (e.g., from an input) turns out to be insufficiently large
to contain them all at runtime. The result is that the excess
bytes go on to overwrite adjacent portions of memory [15].
This occurs in applications written in weakly typed languages,
such as C and C++, which for example have input or array
copy functions that only consist in writing values starting from
a certain address, with no indication of their nature or quantity
(Figure 1). Overflowing a buffer means corrupting subsequent
memory locations, i.e., program variables, but also control
data. As is well known, computer architectures accommodate
on the stack all function data promiscuously, including its
return address. A buffer overflow can result in the corruption
of the address to return to, resulting in the hijacking of the
program control flow.

Fixing ideas on such a vulnerable stack situation, the
attacker may choose to hijack the program to the corrupted
memory region itself, where it has possibly injected bytes that

1https://github.com/RHESGroup/embedded-ripe

Fig. 1. Graphical representation of a buffer overflow in a C program.

correspond to valid machine code for that architecture. This is
the attack technique known as code injection. Alternatively, the
attacker may inject a sequence of return values subsequent to
the first, each pointing to an instruction already in memory, to
result in a completely arbitrary chain execution. These attacks
are referred to as code reuse, and examples include paradigms
like Return-into-Libc [16] and Return-Oriented Programming
[17].

B. RIPE

As already introduced, RIPE is a testbed published in 2011
[11] that performs a wide range of attacks exploiting buffer
overflows for measuring the resilience of the platform on
which it runs. It has a back-end written in C and a front-
end in Python. The back-end is architected as an application
that allocates a set of buffers and then exploits them with
code injection or code reuse techniques, using the vulnerable
functions of the C standard library as entry points. Through
the Python front-end, RIPE allows the selection of 4 dif-
ferent memory sections, 16 target code pointers, 2 overflow
techniques, and 10 vulnerable functions, for a total of 850
possible attack combinations. These include 3 different types
of shellcode injection, Return-into-Libc, and Return-Oriented
Programming. Since it needs to assume the existence of a
shell in order to inject it, and since it hosts static binary code
for injection or for custom ROP chains, RIPE can only be
compiled and executed on Linux x86 platforms. In the paper,
the authors provide the results of RIPE runs on different
extensions for Linux distributions, including non-executable
stack, stack canary protector, LibSafe2 and StackShield3. Since
its publication, RIPE has been used on many occasions in the
literature to test the effectiveness of protections against BOF
implemented at different levels in compatible systems: binary
instrumentation [18] [19] [20], custom hardware modifications
[21] [22] or employ of legacy hardware features [23] [24]
[25].

III. REQUIREMENTS

The main limitation of the RIPE evaluator is its inabil-
ity to be compiled and run for systems without a Linux
kernel. Although low-power systems can nowadays support
light versions of Linux, this does not apply for most of
the microcontroller systems (think of monitoring systems in
industry, infrastructures, and even home automation). Here,

2https://man.cx/libsafe(8)
3https://www.angelfire.com/sk/stackshield/

https://github.com/RHESGroup/embedded-ripe
https://man.cx/libsafe(8)
https://www.angelfire.com/sk/stackshield/

the control software is written directly to run on the bare-
metal SoC, in many cases relying on libraries referred to as
Real-Time Operating System (RTOS), that are not comparable
to a classical operating system, with a consistency on its own.
Here, the main aim is just to provide support for deterministic
scheduling of different tasks, other than offering libraries for
common functionalities. FreeRTOS4, born from a partnership
between market-leading companies in the microcontroller in-
dustry, is a fully accessible example. In conclusion, an evalu-
ator for such systems must assume no underlying standalone
OS, and must offer test cases that can be run directly on the
hardware once compiled.

Similar to what happens with Linux, RIPE is limited by
offering support only for machines compatible with an Intel
x86-32 architecture. This is rarely used in the embedded
domain, where instead the market is dominated by the ARM
family. Therefore, the evaluator must make internal use of
specific attack codes (e.g., for shellcodes or ROP chains) that
are written directly in ARM machine code.

The dual front-end/back-end structure of the original version
of RIPE can be instead maintained for its usability and
modularity, although the two parts need to be split. The front-
end needs to run on an external host system, e.g., a workstation
connected to the chip via UART. Through this, it can trigger
the execution of the back-end, i.e., the actual body of the
evaluator running as the chip software, and evaluate the results.
In this way, the Python front-end does not impact the under
test system at all. On its own, this latter is not required to have
support for Python and multitasking, and can run the evaluator
code only.

IV. FEATURES

In light of the above, our Em-RIPE testbed has a front-end
written in Python, and a back-end written in C. The front-end
runs on a PC host, and consists of a script that iterates over
all the different types of supported test attacks. The back-end,
on the other hand, executes on the board and consists of an
attack generator that builds the attack payload and performs
the attack on itself.

Exactly as in the original RIPE, the front-end explores all
combinations that can be formed within the attack space, and
then triggers the software on the board accordingly with the
right parameters. The interaction is possible via a connection
on the UART port, through which the front-end forwards the
execution trigger signal, and in turn receives from the back-end
the outcomes of all attack combinations, one after the other.

The dimensions of the attack space are: (i) the overflow lo-
cation, (ii) the target code pointer, (iii) the vulnerable function,
and (iv) the attack code. For each test performed, the result log
is marked with one possible outcome: DONE when the attack
was executed successfully, NOPE when the attack encounters
an error before running to completion, or NOT POSSIBLE,
when the attack is not practically possible (e.g., an attack on
a return address targeting the BSS section).

4https://www.freertos.org/index.html

A. Overflow location

The overflow location describes the memory section in
which the target buffer is located. We support attacks on the
stack, data, and BSS sections. Em-RIPE does not support
the heap section, in order to be as general as possible to-
ward the reference domain: not all microcontroller systems
support dynamic memory management, since it requires a
non-negligible overhead in terms of speed, consumption and
additional components, which is not worth affording for the
purposes of the most of control firmwares.

B. Target code pointer

The target code pointer represents the address exploited
by the specific attack. It transfers the control flow to the
appropriate offset to trigger the payload. Em-RIPE supports
attacks to:

• Function return addresses: the pushed return addresses on
top of the stack, used to jump back to the caller function
when the callee terminates;

• Function pointers: variables that contains the address of
a function, which can be called dynamically;

• Structures with function pointers: function pointers which
are part of a C structure (struct) and lay adjacent to a
buffer.

Clearly, function return addresses are stack-specific: this
means that they can be used as a target code pointer only
when the attack location is the stack. All other targets instead
can be allocated in any location.

C. Vulnerable target function

Em-RIPE uses 5 vulnerable functions as attack entry points:
strcpy, strncpy, memcpy, memmove, and homebrew, a
loop-based equivalent version of memcpy that was originally
implemented in the previous version of RIPE.

Such string functions from libc allow to copy part of a
string from a source buffer to a destination buffer without
any boundary check. Then, we use them to overflow the
destination buffer. The n-versions of the C string functions,
such as strncpy, instead require the destination buffer size.
However, it is up to the developer to provide the destination
buffer size. Most of the time, the size is computed dynamically.
Therefore, an error in the size computation can frustrate the
limit check offered by those functions.

D. Attack code

The attack code represents the payload that an intruder may
want to get running through a buffer overflow exploit. The
goal here is to trigger a code that merely provides a clear
signal that the exploit has taken place with success. Unlike the
original version of RIPE, since it cannot leverage the system
capabilities offered by a rich OS (such as the int 0x80
instruction for Linux x86-32), Em-RIPE uses an attack payload
that simply relies on a supervisor call (svc), which is featured
as a machine instruction directly in the ARM ISA. When
successfully executed, the svc invokes the associated handler,
which is responsible for writing to the UART port the identifier

https://www.freertos.org/index.html

that allows the front-end to register the successful outcome
of the attack (DONE). If the attack instead fails, the Em-RIPE
code does not continue in the direction of the injected code, but
through its normal flow, writing a negative identifier (NOPE)
to the UART port.

Em-RIPE actually supports 3 variants of SVC-based attack
code:

• Injected SVC: it is a code injection attack in which the
payload consists of a single svc instruction;

• Injected SVC with NOP sled: in the payload, the svc
is preceded by a number of nop (No-Operation) in-
structions. This second version is actually the one more
often used by attackers, as it increases their chances of
redirecting the program flow within the injected code.
Similarly, this second attack code can be useful in testing
countermeasures based on the recognition of common
attack patterns [26], such as nop sleds are;

• Reused SVC: in this last attack, there is no code injection,
but the target code pointer is overwritten with that of
an existing gadget in memory, which contains the svc
instruction of interest. Such a gadget is artificially in-
serted inside the back-end code, and cannot be reached
in any other way. This attack code is useful for testing
the specific resilience of a protection against code reuse
attacks, such as Return-into-Libc and Return-Oriented
Programming.

In the first two cases, the payload has such a format:

(NOP sled +)
attack code +

padding bytes +
address to payload start

where the last element must coincide with the location of the
pointer to the code to be corrupted. In the last case, instead,
what is injected is just the gadget address, plus a padding
necessary to align it with the target pointer.

E. The use of FreeRTOS

The Em-RIPE back-end is not offered as standalone
firmware, compiled or provided with the entire source, but
is actually configured as a FreeRTOS application. This es-
sentially grants abstraction from numerous target-specific low-
level details, which could cause the evaluator to lose generality.
FreeRTOS is architected in such a way as to support Hard-
ware Abstraction Layer (HAL) services from major ARM-
based microcontroller families, including STMicroelectronics,
NXP, and FreeScale. Through the public GitHub repository
of FreeRTOS5, it is possible to download demo applications
for each of the supported devices, and to integrate Em-RIPE
sources into the files for the selected target. The user has
to pay for the effort of customizing configuration-specific
elements, such as the startup procedure and the linker script
for compilation, but in exchange, she gets the benefit of a
considerable modularity and portability. Moreover, FreeRTOS

5https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS/Demo

can be rather defined as a system of libraries surrounding the
custom software to be run on the board, than a full-fledged
OS with a life of its own. Hence, the requirement discussed
in Section III is preserved, whereby the evaluator must not
assume any kind of pre-configured underlying system software
that imposes usability constraints.

V. EVALUATION

For prototyping, we tested the functionality of Em-RIPE by
compiling it with a restricted combination of security options
provided by ARM GCC version 9 [27], namely stack protector
and data execution prevention. The evaluator was run on
the Netduino-Plus 2 platform, featuring an STM32F405RG
microcontroller, which uses an ARM Cortex-M4 core. The
board was virtualized using QEMU version 6.

The setups tested are incremental and range from the version
with no protections (i.e., with executable data and no stack
guard), to one with both guards employed. The data obtained
are offered in this Section, preceded by a brief survey of the
technicalities of the considered protections.

A. Stack Protector

Using the --protect_stack compile option, a guard
variable is placed onto the stack between a function’s vul-
nerable local buffers and its stacked return address. Buffers
are considered vulnerable in a coarse manner, i.e., when
they have automatic storage duration, or are of type char.
The compiler keeps a global reference copy of the guard
value, so it can check whether the value on the stack has
remained the same before returning to the caller. If the
values are different, the procedure void, a buffer overflow
attempt is assumed and the routine __stack_chk_fail()
is called. The routine content is chosen by the programmer.
The value of the guard is contained in a global variable void*
__stack_chk_guard, which should be provided with a
suitable value, such as a strong random number.

B. Data Execution Prevention

Since version 6, ARM introduced the XN (eXecute-Never)
bit feature, which prevents execution of bytes from specific
memory ranges directly by hardware. Such protection removes
the attacker’s ability to inject arbitrary code e.g., into the
data memory of the application, and then redirect the flow
to execute this payload. For our evaluation, we directly set
XN options with appropriate flags on the linker script (.ld
file) provided to the compiler, marking regions that contain
data as not executable. In fact, the compiler already supports
data execution prevention by default. Therefore, it has been
necessary to specify the opposite, i.e., execution from data
sections has been specifically allowed when we needed to
evaluate a vulnerable setup.

C. Results

Table I shows the results measured on four different combi-
nations of the setups described above, from the most vulnera-
ble to the most protected one. Results are shown in relation to

https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS/Demo

TABLE I
SUMMARY OF EVALUATION RESULTS USING EM-RIPE’S 105 ATTACK FORMS.

Setup Overall Effectiveness Successful Attacks Failed Attacks
Baseline (no protection) 0,00% 105 (100,00%) 0 (0,00%)
Stack guard only 14,28% 90 (85,71%) 15 (14,28%)
XN enabled only 67,67% 35 (33,33%) 70 (66,67%)
XN enabled + stack guard 80,95% 20 (19,05%) 85 (80,95%)

the 105 successful attack combinations: in fact, while having
in principle 3 × 3 × 5 × 3 = 135 possible combinations, the
run returns NOT POSSIBLE in 30 cases, i.e., when the return
address is considered as the target pointer in BSS and data
sections, which is known not to be possible. Therefore, while
the stack can have all 3× 5× 3 combinations, BSS and data
can have only 2× 5× 3, for a total of 105 possible attacks.

As can be appreciated, the least protection is offered by the
application of the stack protector only, which leads to failure
in only 14% of the considered attacks. However, significantly
higher is the rate of failed attempts as a result of XN bit
application only (67%), since code injection attacks are more
numerous in the considered attack set. Finally, the application
of both measures together leads to 81% of coverage against
BOF attacks: the remaining 19% successful attacks represent
code-reuse exploits with targets other than the stack, for which
more advanced fine-grained CFI mitigations are needed.

The results are in line with what might be expected, and
therefore demonstrate the reliability of the work to first outline
such an evaluation tool.

VI. RELATED WORK

As already introduced, the security evaluation of solutions
against the malicious effects of buffer overflow vulnerabilities
does not have a homogeneous path in the literature, and for the
most part, qualitative analyses have been presented alongside
techniques in order to assess them.

The absence of a quantitative metric in this regard is
well denounced in [28]. Here is presented a framework that
takes into account the general requirements that a solution
against buffer overflow should have, such as scalability and
adaptability to legacy systems. The paper produces a report
that summarizes the gaps that are identified in 24 selected
protection mechanisms.

From an international standard perspective, there is SARD
[29], a database maintained by NIST that collects about
170.000 case test programs, containing 150 different buffer
overflow vulnerabilities. The test cases are in the form of
source code in major languages (C, C++, Java), but also exe-
cutable files, and include production, synthetic and academic
examples. Users can interact with the database through an
interface that allows indexed searches by categories, such as
vulnerability type, keywords, and size. Being a database, test
cases cannot be modified or removed, but entries can be tagged
as deprecated and replaced by an updated version.

With regard to the IoT and embedded domain, to the best
knowledge of the authors there is no (or no public) ensemble
framework that can allow comparable evaluation between

solutions against buffer overflows. A recent work by Zhou
and Chen [30] presents a version of RIPE adapted for ARM
systems, tested for Raspbian OS, the operating system in use
on the Raspberry Pi platform6. The paper offers data on the
system’s response once common OS solutions are applied,
comparing it to the same as Ubuntu 16.04. However, the work
offers no support for platforms that do not have a rich OS and
the ability to interface with the Linux ABI and system calls.
In addition, the paper does not provide any public resource
from which to detect further details about the tool.

Also relevant is the very recent paper by Calatayud et al.
[31], which offers a comparative analysis of solutions against
buffer overflows on high-end IoT devices, tested on different
lightweight operating systems such as Xubuntu, Raspbian and
Chromium. The analysis is accomplished through a rewrite of
RIPE for the 32-bit ARM architecture. However, the outcome
is a tool of limited generality, highly customized on the
specific analysis accomplished in the study.

VII. CONCLUSIONS AND FUTURE WORK

The paper has presented Em-RIPE, a tool for automatically
assessing the resilience of an ARM microcontroller platform to
buffer overflow attacks. The tool follows the same philosophy
as the original RIPE, combining together different attack
payloads, memory sections, target pointers, and vulnerable
functions, so to reach a set of 105 possible attack forms to
measure the coverage of a security solution. The evaluator has
no specific dependencies on a software preset, such as a rich
OS, and can be built and run from scratch on the platform
to be evaluated. All code is released free of charge, and is
available for the community on GitHub.

The discussed release represents a proof of concept, in-
tended to make its own scientific contribution in a domain
that still lacks a stable standard for evaluating coverage
from BOF attacks. Exactly as the original RIPE, only one
payload is provided for each target combination, when when
these are in fact theoretically infinite. Therefore, the value of
coverage should be meant as an upper bound on the preventive
effectiveness for the attack forms considered. Similarly, the use
of such a tool per se cannot guarantee an objective figure on
coverage, since countermeasures could be adopted specifically
to counter the attack forms present in this or a later version of
the tool. In this regard, we believe in the fairness of researchers
who should make use of it.

In addition to a natural extension of the considered attack
cases, Em-RIPE needs to be extended and tested on other

6https://www.raspberrypi.com/

https://www.raspberrypi.com/

embedded platforms of the ARM family, which may not have
the specificities for which the attack vectors presented apply.
Also, the use of facilities for evaluation on multiple builds,
to be integrated into the front-end, would be appreciable, for
example, for the assessment of protections based on address
randomization.

ACKNOWLEDGEMENTS

The work described in this paper is partially supported
by (i) the European Union’s Horizon 2020 research and
innovation programme, under grant agreement No. 830892,
project SPARTA, (ii) the Ph.D. research program of TIM S.p.A
(Italy).

REFERENCES

[1] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal War in
Memory,” in 2013 IEEE Symposium on Security and Privacy, pp. 48–
62, 2013.

[2] C. W. Enumeration, “2021 CWE Top 25 Most Dangerous Soft-
ware Weaknesses.” https://cwe.mitre.org/top25/archive/2021/2021 cwe
top25.html, 2021. [Online; Accessed May 20th, 2022].

[3] A. One, “Smashing the stack for fun and profit,” Phrack magazine,
vol. 7, no. 49, pp. 14–16, 1996.

[4] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th
ACM conference on Computer and communications security, pp. 552–
561, 2007.

[5] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton, “Stackguard: automatic adaptive
detection and prevention of buffer-overflow attacks,” in USENIX security
symposium, vol. 98, pp. 63–78, San Antonio, TX, 1998.

[6] N. Burow, X. Zhang, and M. Payer, “SoK: Shining Light on Shadow
Stacks,” in 2019 IEEE Symposium on Security and Privacy (SP),
pp. 985–999, 2019.

[7] N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis, “Hardware
Enforcement of Application Security Policies Using Tagged Memory,”
in OSDI, vol. 8, pp. 225–240, 2008.

[8] R. Elbaz, D. Champagne, C. Gebotys, R. B. Lee, N. Potlapally, and
L. Torres, “Hardware mechanisms for memory authentication: A survey
of existing techniques and engines,” Transactions on Computational
Science IV, pp. 1–22, 2009.

[9] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Transac-
tions on Information and System Security (TISSEC), vol. 13, no. 1, pp. 1–
40, 2009.

[10] J. Wilander and M. Kamkar, “A comparison of publicly available
tools for dynamic buffer overflow prevention,” in The 10th Network
& Distributed System Security Symposium 2003 (NDSS), San Diego,
California, USA, p. 149, Internet Society, 2003.

[11] J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar, and W. Joosen,
“RIPE: Runtime Intrusion Prevention Evaluator,” in In Proceedings of
the 27th Annual Computer Security Applications Conference, ACSAC,
ACM, 2011.

[12] M. Khandaker, A. Naser, W. Liu, Z. Wang, Y. Zhou, and Y. Cheng,
“Adaptive Call-Site Sensitive Control Flow Integrity,” in 2019 IEEE
European Symposium on Security and Privacy (EuroS P), 2019.

[13] R. K. Shrivastava, K. J. Concessao, and C. Hota, “Code Tamper-Proofing
using Dynamic Canaries,” in 2019 25th Asia-Pacific Conference on
Communications (APCC), pp. 238–243, 2019.

[14] M. Castro, M. Costa, and T. Harris, “Securing Software by Enforcing
Data-Flow Integrity,” in Proceedings of the 7th Symposium on Operating
Systems Design and Implementation, OSDI ’06, (USA), p. 147–160,
USENIX Association, 2006.

[15] “CWE-119: Improper Restriction of Operations within the Bounds of a
Memory Buffer.” https://cwe.mitre.org/data/definitions/119.html, 2022.
[Accessed May 22th, 2022].

[16] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning, “On
the expressiveness of return-into-libc attacks,” in International Workshop
on Recent Advances in Intrusion Detection, pp. 121–141, Springer, 2011.

[17] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Transactions
on Information and System Security (TISSEC), vol. 15, no. 1, pp. 1–34,
2012.

[18] M. Zhang and R. Sekar, “Control flow integrity for {COTS} binaries,” in
22nd USENIX Security Symposium (USENIX Security 13), pp. 337–352,
2013.

[19] V. Kuznetzov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity,” in The Continuing Arms Race: Code-Reuse
Attacks and Defenses, pp. 81–116, 2018.

[20] J. Li, X. Tong, F. Zhang, and J. Ma, “Fine-cfi: fine-grained control-
flow integrity for operating system kernels,” IEEE Transactions on
Information Forensics and Security, vol. 13, no. 6, pp. 1535–1550, 2018.

[21] X. Ge, W. Cui, and T. Jaeger, “Griffin: Guarding control flows using intel
processor trace,” ACM SIGPLAN Notices, vol. 52, no. 4, pp. 585–598,
2017.

[22] J. Zhang, R. Hou, W. Song, Z. Zhan, B. Zhao, M. Chen, and D. Meng,
“Stateful Forward-Edge CFI Enforcement with Intel MPX,” in Confer-
ence on Advanced Computer Architecture, pp. 79–94, Springer, 2018.

[23] S. Das, W. Zhang, and Y. Liu, “A fine-grained control flow integrity
approach against runtime memory attacks for embedded systems,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24,
no. 11, pp. 3193–3207, 2016.

[24] W. He, S. Das, W. Zhang, and Y. Liu, “No-jump-into-basic-block:
Enforce basic block CFI on the fly for real-world binaries,” in 2017
54th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6,
IEEE, 2017.

[25] J. Zhang, B. Qi, Z. Qin, and G. Qu, “HCIC: Hardware-assisted control-
flow integrity checking,” IEEE Internet of Things Journal, vol. 6, no. 1,
pp. 458–471, 2018.

[26] D. J. Day, Z. Zhao, and M. Ma, “Detecting Return-to-libc Buffer
Overflow Attacks Using Network Intrusion Detection Systems,” in 2010
Fourth International Conference on Digital Society, pp. 172–177, 2010.

[27] A. Developer, “ARM Compiler for Embedded User Guide Version 6.18.”
https://developer.arm.com/documentation/100748/0618/, 2022. [Online;
Accessed June 10th, 2022].

[28] N. R. Kisore, “A qualitative framework for evaluating buffer overflow
protection mechanisms,” International Journal of Information and Com-
puter Security, vol. 8, no. 3, pp. 272–307, 2016.

[29] P. E. Black et al., “Sard: A software assurance reference dataset,” in
Anonymous Cybersecurity Innovation Forum.(), 2017.

[30] S. Zhou and J. Chen, “Experimental Evaluation of the Defense Capabil-
ity of ARM-based Systems against Buffer Overflow Attacks in Wireless
Networks,” in 2020 IEEE 10th International Conference on Electronics
Information and Emergency Communication (ICEIEC), pp. 375–378,
2020.

[31] B. M. Calatayud and L. Meany, “A comparative analysis of Buffer
Overflow vulnerabilities in High-End IoT devices,” in 2022 IEEE
12th Annual Computing and Communication Workshop and Conference
(CCWC), pp. 0694–0701, 2022.

https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/data/definitions/119.html
https://developer.arm.com/documentation/100748/0618/

