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Abstract—This paper provides a novel strategy for the extrap-
olation and regularization of low frequency data of low-loss or
lossless structures, based on asymptotic modal trajectories. The
proposed data-driven strategy is intended as a fundamental pre-
processing step to obtain a full-bandwidth reliable macromodel
to be used in transient simulations, providing full control of the
low-frequency and DC behavior of the system.

I. INTRODUCTION

This paper presents a data conditioning strategy for en-
hancing the generation of rational macromodels of low-loss
electromagnetic structures characterized by sampled frequency
responses. The application we have in mind arises from the
characterization of nonlinearly loaded shielding enclosures [1],
which due to the presence of nonlinear elements requires
an aggressive accuracy in all modeling steps, in particular
including low-frequency and the zero-frequency (DC) point.
The procedure that we propose is however general and ap-
plicable to low-frequency extrapolation of data for a wide
range of applications, including Signal and Power Integrity,
where transient analysis of large electromagnetic systems with
nonlinear terminations is a common task.

This paper draws the main idea of Analytic Extension of
Eigenvalues [2], which performs a physics-based extrapolation
based on an asymptotic continuation of eigenvalue trajectories,
in a form that is compatible with a low-frequency lumped
circuit representation. We provide a number of generalizations,
motivated by our objective of generating reliable macromodels
over an extended frequency band, including the DC point. This
problem is highly relevant due to the following issues.
• Common frequency-domain field solvers based on

Method of Moments (MoM) or Finite Elements (FE)
cannot provide accurate responses below a critical fre-
quency fmin. Some kind of low-frequency extrapolation
is therefore required to provide training data samples
to the macromodeling engine. It is well known that
missing frequency samples especially at low frequency
usually lead to inaccurate and physically inconsistent
macromodels.

• Many low-frequency extrapolation schemes have been
presented to deal with this problem (see e.g. [3] and
references therein). These usually assume a regular DC
behavior, therefore most applications apply such schemes
to scattering responses, which are well-behaved and

bounded at DC. However, when the structure under inves-
tigation is low-loss or in the limit lossless (an assumption
that is often used by field solvers), the eigenvalues of
the scattering matrix become very close to one (equal to
one) in magnitude at DC. This implies that conversion to
impedance or admittance representations, or equivalently
simulating the model with a (transient) circuit solver
using low/high impedance or reactive terminations may
lead to extremely inaccurate results, due to the model
sensitivity [4] and error magnification [5].

• A DC regularization is often used to prevent such sensi-
tivity issues, either explicitly [6] or implicitly (e.g. several
SPICE solvers regularize the underlying Modified Nodal
system by adding a small conductance to every node,
in order to improve convergence during operating point
evaluation). Unfortunately, low-frequency DC extrapola-
tion of frequency data from a field solver combined with
an explicit regularization at DC (or even with DC data
from a dedicated static solver) may lead to data discon-
tinuities and abrupt transitions, which further challenges
the macromodel generation, leading to spurious poles and
dramatic passivity violations.

This paper describes an algorithm that performs a simulta-
neous regularization and extrapolation, and provides a low
frequency extrapolation that smoothly joins a physics-based
DC response to the field solver responses. The algorithm
is even applicable to those limit cases of lossless structures
that have a singular DC behavior (a DC pole) for both
impedance and admittance, which are particularly challenging
for macromodeling applications. The working test case that we
use to illustrate the proposed algorithm follows in this class
of problems.

II. MOTIVATION: A CASE STUDY

Figure 1 depicts a shielding enclosure with an aperture,
where a number of ports P = p2 are defined on a regular
p× p series/parallel grid. The enclosure is part of an energy-
selective shield, obtained by loading the ports with nonlin-
ear elements (back-to-back diode pairs). For an overview
of energy-selective shielding see [7], in particular [1], [8],
where the dependence of the shielding effectiveness on the
amplitude/energy of the impinging fields is documented. The
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Fig. 1. Left: A shielding box with P = 9 ports, arranged in p = 3
parallel branches, each including p vertically aligned (series) ports. Right: DC
equivalent circuit, where the return path through the enclosure is represented
by the short circuit on the right.

shield blocks high-amplitude potentially dangerous fields and
is almost transparent to low-amplitude fields.

Our final objective is transient simulation of the loaded
structure for time-domain shielding verification, using an
approach that constructs a reduced-order macromodel for the
unloaded structure starting from field solver data, realizes
the macromodel as a low complexity behavioral netlist, and
performs transient analysis after connecting nonlinear loads at
all ports. See [9] for a complete description of this flow.

As starting data to construct the macromodel of the un-
loaded shield, we consider port responses computed by a MoM
solver [10], available at K frequency points in the frequency
range [fmin, fmax], where due to intrinsic limitations in the
solver formulation fmin > 0. The material used to model the
box is a Perfect Electric Conductor (PEC), so that a physics-
based zero-frequency model is readily obtained as in Fig. 1.
Under these conditions, both the impedance and the admittance
matrices become ill-defined when the frequency vanishes,
since they both have one dominant DC pole. This behavior
is confirmed by the top panel of Fig. 2, which depicts the
frequency-dependent admittance matrix elements (magnitude)
for f ≥ fmin from the MoM solver. A similar behavior holds
for the impedance matrix elements.

Our objective is to provide a smooth extrapolation to
DC in order to build a physically-consistent model at low
frequencies, and at the same time regularize the data hence
the model in order to avoid the DC pole. The latter would
make any transient simulation using the model unreliable due
to lack of asymptotic stability.

III. REGULARIZATION AND EXTRAPOLATION

A. Regularization

Since both impedance Z(s) and admittance Y(s) matri-
ces of the structure are singular (do not exist) at DC, we
perturb the topology by adding regularization resistors, so
that both representations become nonsingular. In particular,
we regularize Z(s) by adding a large shunt resistance R to
each port, and then we regularize Y(s) by adding a small
series resistance r to each port. The resulting regularized

Fig. 2. Admittance responses of the shielding enclosure of Fig. 1. Top: data
from the MoM solver; bottom: projection onto DC asymptotic modes.

DC equivalent circuit is non-singular for any immittance
representation and is described by the DC admittance matrix

Y(s = 0) = Y0 = Ip ⊗Yp, Yp =
(p r Ip +RuuT)

p r(R+ r)
(1)

where uT = [1, · · · , 1], u ∈ Rp, Ip is the size-p identity
matrix, and ⊗ is the Kronecker product. A compatible regular-
ization of the data from the field solver can be easily applied,
in order to make the solver responses compatible with the
DC response (1). This is achieved by converting the solver
responses to admittance, adding R−1 to the main diagonal,
converting to impedance, and finally adding r again to the
main diagonal. This operation is well defined at any frequency
f ∈ [fmin, fmax] since the DC point is missing from the solver
data.

B. Low frequency extraction

An extrapolation of the frequency responses below the first
available frequency point from the solver is not trivial. Since
the raw (before regularization) impedance and admittance
matrices Y(jω)→∞ and Z(jω)→∞ for ω = 2πf → 0, we
know that each of these two matrices has a set of eigenvalues
that tends to zero and a set of eigenvalues that approaches
∞ at low frequency. The vanishing admittance eigenvalues
correspond to the exploding impedance eigenvalues, and vice
versa. This implies that both small and large eigenvalues must
be accurately modeled. This is impossible when operating
in the physical domain, since small eigenvalues are shaded
by large eigenvalues. Conversion to the modal domain is
inevitable in order to separate small from large eigenvalues.
Note that, with reference to the impedance representation,
small (large) eigenvalues correspond to inductive (capacitive)
modes at low frequency.



Differently from [2], which adopts a data-based eigende-
composition, we define the modes based on the regularized
DC circuit. This choice is motivated by two facts: first, the
numerical approximations from the solver lead to an error term
in the computed frequency responses, so that the eigenvectors
computed at any finite frequency may be imprecise and do
not generally correspond to the eigenvectors at DC. Second,
such eigenvectors are generally complex-valued, and in order
to preserve the causality of the extrapolated responses we
need purely real modal transformations, a fact that has been
extensively discussed in [11].

We start with the eigenvalue decomposition of the regular-
ized DC admittance matrix Y0 in (1) as

Y0 = QΛ0Q
T, Λ0 = QTY0Q =

[
1
R′ Ic 0
0 1

r I`

]
(2)

where R′ = R + r, showing that the eigenvalue 1/R′

has multiplicity c = p(p − 1) and the eigenvalue 1/r has
multiplicity ` = p. Since Y0 is symmetric, the modal ma-
trix Q =

[
Qp Qs

]
is orthogonal, so that QT

sQs = I`,
QT
pQp = Ic, and QT

pQs = 0. We can thus write

Y0 =
1

R′
QpQ

T
p +

1

r
QsQ

T
s . (3)

Note that ` and c indicate the number of inductive and
capacitive modes, respectively.

The matrix Q storing as columns the DC asymptotic modes
is then used to project onto the corresponding modal domain
the data from the field solver. Since Q is constant and or-
thogonal, the following similarity (congruence) transformation
explicitly preserves the causality and the passivity of the data
upon modal conversion. We compute for all frequency samples

Ym(jωk) = QTY(jωk)Q , k = 1, · · · ,K. (4)

The results of this transformation are depicted in the bottom
panel of Fig. 2, confirming that the various modal impedance
and admittance elements are either directly or inversely pro-
portional to frequency. Collecting coefficients associated to
powers of frequency in the low frequency (LF) range we have

Ym(jω) ≈ 1

jω
Γm + jωCm =

[
jωC̃ jωX

jωXT 1
jω Γ̃

]
(5)

where Γm and Cm are constant matrices having the property
that for each element i, j such that (Γm)ij 6= 0 the corre-
sponding element (Cm)ij = 0, and vice versa. The block
structure of the dominant terms is also detailed in (5). The
nonvanishing elements of the constant matrices Γm and Cm

are determined though an element-wise regression using few
frequency samples from the modal data in a suitable band
(fmin, f0) where modal responses behave asymptotically, as
in the bottom panel of Fig. 2. Availability of such frequency
interval is a prerequisite for proposed method. The expres-
sion (5) is used to extrapolate the data for f ∈ (0, fmin), and
the result is regularized in the modal domain, following the
procedure discussed next.

C. Regularization in the modal domain

The structure of the admittance matrix in the asymptotic
modal domain (5) is now exploited to perform a regulariza-
tion process similar to Section III-A, directly in the modal
domain. The main advantage of this approach is that only the
individual modes that are responsible for the singularity of
a given (modal) matrix block representation are regularized,
leaving the other modes (blocks) unperturbed. The result is a
numerically robust procedure that can be used to regularize
and extrapolate our dataset smoothly to DC.

Noting from (5) that the capacitive block jωC̃ is the
responsible for the singularity of Ym(jω) for ω → 0, we
first regularize only this block

Ŷm(jω) = Ym(jω) +

[
1
R′ Ic 0
0 0

]
(6)

The resulting matrix is nonsingular at any finite frequency and
can be inverted. The result is then regularized in its inductive
block as

Z̆m(jω) = Ŷm(jω)−1 +

[
0 0
0 rI`

]
=

[
R′ Ic + ?1 ?2

?2 r I` + ?1

]
where the symbol ?ν denotes a frequency-dependent matrix
with leading order (jω)ν for ω → 0. We see that the
regularized modal impedance matrix Z̆m(jω) is compatible
with the inverse of the DC modal admittance matrix derived
in (3), thus providing a smooth interpolation to DC. Returning
to the physical domain through inverse modal transformation
leads to the final regularized response

Z̆(jω) = Q Z̆m(jω) QT, (7)

which is nonsingular and bounded at any frequency, including
DC, and which is used to extrapolate the regularized solver
data in the LF range.

IV. RESULTS

The effectiveness of the proposed data preprocessing is now
illustrated on a test case. We consider a shielding enclosure
similar to Fig. 1, with P = 25 ports regularly spread over
a 5 × 5 grid throughout a square aperture. The adopted
MoM solver was used to generate scattering responses, which
are sufficiently accurate starting from fmin = 10 MHz.
The proposed extrapolation and regularization procedure was
applied to fill the gap from 100 Hz to fmin, using the interval
(fmin, f0) with f0 = 20 MHz to compute the extrapolation
coefficients of (5) via regression, while providing a reliable DC
point for the subsequent macromodeling process. The resis-
tance values used for regularization (r = 0.1 Ω, R = 100 MΩ)
are such that the perturbation of the high-frequency MoM data
is negligible, see Fig. 3a.

Two macromodels are constructed. The first is built by
fitting the original MoM data with the added DC point only,
without any low-frequency extrapolation. The second uses
instead the regularized and extrapolated frequency samples.
Both models are constructed using responses in the scattering
representation. However, model-data comparison is illustrated



Fig. 3. Modeling a 25-port shielding enclosure: (a) admittance parameters
from MoM solver and computed regularized extrapolation (inset: detail on
high-frequency); (b) validation of standard and proposed macromodel re-
sponses in scattering representation; (c) and (d) same as (b), but in admittance
and impedance representation.

for the three main input-output representations: scattering
(Fig. 3b), admittance (Fig. 3c) and impedance (Fig. 3d),
where the latter two are obtained by basic conversion as
postprocessing. Impedance and admittance responses indicate
the model behavior with its ports loaded by high-impedance
(open) and low-impedance (shorted) terminations, respectively.

The results confirm that all models are accurate in the
high-frequency region where MoM data are available, for all
three representations. However, the model behavior at low

frequency is highly sensitive for both impedance and admit-
tance representations. The model constructed on unprocessed
raw data appears to be physically inconsistent in the LF
range. Conversely, the model constructed using regularized and
extrapolated data provides a consistent behavior even in the LF
range, by smoothly converging to the expected DC responses,
and by retaining excellent accuracy in all three representations
over the full band. These results imply that the model will
behave consistently, independently on the terminations used to
load the structure, and in particular in presence of nonlinear
terminations as assumed by the energy-selective shielding
application at hand.

V. CONCLUSION

A simple data conditioning algorithm was presented, which
is able to smoothly extend frequency responses from a field
solver at low frequencies down to the DC point. This pro-
cedure is able to significantly improve the low frequency
behavior of behavioral macromodels, which exhibit a major
accuracy improvement and a drastically reduced sensitivity
to terminations. The procedure was illustrated on a test case
related to energy-selective shielding, but the main algorithm
is general and can be applied in principle to any signal/power
interconnect structure.
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