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Abstract—Low-resolution infrared (IR) array sensors offer a
low-cost, low-power, and privacy-preserving alternative to optical
cameras and smartphones/wearables for social distance monitor-
ing in indoor spaces, permitting the recognition of basic shapes,
without revealing the personal details of individuals. In this work,
we demonstrate that an accurate detection of social distance
violations can be achieved processing the raw output of a 8x8
IR array sensor with a small-sized Convolutional Neural Network
(CNN). Furthermore, the CNN can be executed directly on a
Microcontroller (MCU)-based sensor node.

With results on a newly collected open dataset, we show that
our best CNN achieves 86.3% balanced accuracy, significantly
outperforming the 61% achieved by a state-of-the-art determin-
istic algorithm. Changing the architectural parameters of the
CNN, we obtain a rich Pareto set of models, spanning 70.5-86.3%
accuracy and 0.18-75k parameters. Deployed on a STM32L476RG
MCU, these models have a latency of 0.73-5.33ms, with an energy
consumption per inference of 9.38-68.57µJ.

Index Terms—Social Distance, COVID-19, Edge Computing,
Infrared Sensors, Convolutional Neural Networks

I. INTRODUCTION AND RELATED WORKS

In the current COVID-19 pandemic, social distancing [1]–
[3], together with extensive testing [4], [5] has been proven
the most effective way to prevent the spread of infections,
especially when effective treatments and vaccines were not yet
available. This virus spread prevention measure, particularly
critical for indoor environments such as offices, shops, factories
etc [1], [2], will therefore continue to have an important role
in this, and in possible future epidemics.

Several technical solutions have been proposed to monitor
compliance with social distancing rules. One category is based
on computing the distance among people using the Bluetooth
or Wi-Fi transcievers available in smartphones [6], [7] or
wearables [8], [9]. While effective, this approach requires the
voluntary participation of users, hence not providing 100%
safety guarantees. Another set of solutions monitors indoor
spaces with cameras [10]–[14]. The videos are then processed
with Machine Learning (ML) algorithms to locate people and
compute their relative distance. While not requiring actions

This work has received funding from the ECSEL Joint Undertaking (JU)
under grant agreement No 101007321. The JU receives support from the Eu-
ropean Union’s Horizon 2020 research and innovation programme and France,
Belgium, Czech Republic, Germany, Italy, Sweden, Switzerland, Turkey.

from users, this approach poses critical privacy issues. In fact,
workers may have concerns with the installation of a system
that can not only monitor the distance among them, but also
identify, record and track individuals, often in violation with
privacy protection laws [15].

In this scenario, low-resolution infrared (IR) array sensors
constitute an interesting alternative. Being capable of acquiring
small-sized thermal images (typically 8x8 or 16x16 pixels) at a
frame rate of ≈10 Frames Per Second (FPS) [16], these sensors
can recognize basic shapes, without revealing privacy-sensitive
details of an individual (facial features, clothes, hair style,
etc). Furthermore, their limited power consumption, low cost,
and low-resolution outputs has another positive implication
for privacy. That is, it enables the implementation of social
distance monitoring directly on the sensing devices, which
are typically battery operated and equipped with resource-
constrained Microcontrollers (MCUs) [17]–[21]. Executing the
monitoring on end-nodes, in turn, enables privacy-preserving
solutions in which social distance violations are signaled in real
time, warning the responsible staff without ever transmitting
and/or storing the collected data in the cloud.

The key question is then whether the data collected by low-
resolution IR sensors can be effectively used for this task.
In fact, while other authors have employed these sensors for
various applications [20]–[34], to the best of our knowledge
no previous work has considered them for social distancing.

Most works combining low-resolution IR sensors with ML
focus on human activity recognition [23]–[32]. Some of them
apply classical algorithms [23]–[26] while others propose Deep
Learning (DL) approaches, based either on Convolutional Neu-
ral Networks (CNNs), Long-Short Term Memory (LSTMs),
Gated Recurrent Units (GRUs), or a combination of the above
(e.g., CNN-LSTM) [27]–[32]. Besides the selected algorithm,
activity recognition solutions also differ in terms of: i) the
number and position of the employed IR sensors, ii) the pre-
processing applied to thermal images before feeding them to
ML models, and iii) the type of recognized activities, which
range from daily tasks such as walking, sitting, standing,
etc [23], [25], [27], [29]–[31], to elderly people falls [24], [26],
epilepsy-induced convulsions [32], and even yoga postures [28].

Another set of works based on IR thermal arrays focuses on
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human presence detection [33], [34] and people counting [20]–
[22]. Also in this case, both classical [22], [33] and DL
solutions exist [20], [21], [34], and the latter are again based
on CNNs, LSTMs and GRUs. In proper conditions, people
counting can be transformed into social distance monitoring:
if the IR sensor is positioned so that having more than a
given number of people in the field of view corresponds to
a violation of social distancing rules, then the monitoring
algorithm can simply compute the people count and compare
it with a threshold to trigger an alarm. However, existing
IR array-based people counting implementations use relatively
high resolution sensors (e.g., 24x32 [21] and 80x60 [20]),
which do not guarantee the same level of privacy, and also
induce more power consumption than low-resolution ones, both
in the sensors themselves and in the computation part of the
system. To our knowledge, the only people counting solution
for low-resolution IR sensors (8x8 pixels) is the one proposed
in [22], which is not based on ML. However, as shown in
Section III, this approach obtains poor results when adapted to
social distance monitoring.

In this work, we introduce the first dedicated implementation
of a privacy-preserving social distance monitoring system on
extremely low-resolution IR arrays. We use the same 8x8
sensor of [22], but we follow an end-to-end deep learning
approach based on a CNN classifier. We explore different
CNN architectures, which are then quantized and deployed
on a commercial MCU for inference (the STM32L476RG by
STMicroelectronics). With experiments on a new dataset, we
show that we can obtain a rich set of Pareto-optimal solutions in
the accuracy versus computation cost space. Specifically, all our
CNNs meet real-time performance constraints, while reaching
70.5-86.3% balanced accuracy on the test set, occupying 64-
139 kB of Flash memory (including code size) and consuming
just 9.38-68.57µJ per inference, depending on the architecture.
The balanced accuracy of our best CNN is 25% higher than
the one obtained by the baseline method of [22].

II. PROPOSED METHOD

A. Dataset Collection

While there exist a few public datasets containing IR array
sensor images, none of them fits the needs of our target
application. In fact, most of them are relative to high resolution
sensors (from 160x120 pixels to 640x480), for applications in
robotics, autonomous driving, etc [35]–[38]. To the best of our
knowledge, the only public dataset of low-resolution IR images
is [39]. However, the latter is built for more complex human
activity recognition tasks. Accordingly, samples are obtained
combining the data from 3 different IR sensors, wall-mounted
in different positions. In contrast, our goal is to build a social
distance monitoring system based on a single IR array.

Therefore, we collected a brand new labelled dataset, specif-
ically tailored for person counting and social distance moni-
toring, which is now available open source1. We decided to
use ceiling-mounted sensors, since in indoor environments,
the height of the ceiling is less variable than the size of the

1https://www.kaggle.com/francescodaghero/linaige

TABLE I
DATASET INFORMATION. ABBREVIATIONS: VIOL = VIOLATIONS.

Session N. Viol. N. Sensor Room
Frames [%] People Height [m]

1 18124 34.3 0-5 2.4 A
2 1581 54.5 0-2 2.7 B
3 1519 6.4 0-3 2.4 A
4 196 5.6 0-2 2.4 A
5 2202 22.7 0-3 2.4 A
6 1850 32.3 0-3 2.7 C

Tot. 25472 32.5 - - -
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Fig. 1. Example of optical and thermal frames (a) and Panasonic Grid-EYE
detecton area calculation (b).

room. Consequently, the shape of a person seen from above in
the thermal image does not change significantly for different
environments. As in [39], IR frames are acquired using a
Panasonic Grid-EYE (AMG8833), which outputs a 8x8 array,
and has a view angle of 60° [16].

To gather the data, we setup a system based on a Raspberry
Pi 3 equipped with the Grid-Eye and a standard USB camera,
pointing in the same direction. We collected synchronized
frames from the camera and sensor at 10 FPS, in different
indoor environments including offices, research laboratories and
corridors, in 6 different sessions, asking up to 5 volunteers to
stand, walk, etc, in the area under the sensor. Table I reports the
detailed information of each session, whereas Figure 1a shows
an example of optical and IR frames.

We used a semi-automatic approach to speed-up the labeling
of IR data. Namely, we applied a pre-trained Mask R-CNN [40]
to the optical images, detecting and counting the number of
people in each frame, and associating the same people count
to the corresponding IR frame. Human labellers were then
provided with the two images (optical and thermal) and asked to
confirm or correct the people count suggested by Mask R-CNN.
Besides coping with Mask R-CNN misclassifications, human
checking was also needed because of the difficulty of exactly
matching the alignment and viewing angles of the camera and
IR array. Due to such imperfect matching, some IR frames
showed the heat profile of person (close to a corner) which did
not appear on the corresponding optical frame. Human labellers
were given the possibility of annotating such “hard-to-label”
frames, which were then excluded from the training and testing
of the proposed model and of the state-of-the-art comparison.

B. Social Distance Monitoring Solution

Given the view angle of the IR sensor, the width w of
the (square) field of view can be calculated with simple
trigonometry. As explained in [16] and shown in Figure 1b,
w ≈ 1.2h where h is the distance between the sensor and the
detected object. For the range of sensor heights present in our

https://www.kaggle.com/francescodaghero/linaige


dataset (see Table I), and assuming that people heads (the main
sources of heat detected by the sensor) are at least 1.5m above
the floor level, w spans the range [1.08 : 1.44] m. Consequently,
the field of view diagonal, i.e., the maximum distance between
two in-frame objects is in the range [1.53 : 2.04] m.

Given that the typical recommendation for social distancing
is to maintain at least 2m from the closest person [2], we
can conclude that any frame containing more than 1 person
corresponds to a violation. Accordingly, we model our task as
a binary classification, where the goal is to predict whether
a frame contains 2 or more people. This approach can be ex-
tended to larger spaces by combining multiple IR arrays placed
in different positions on the roof [16]. Note that, while this
formulation simplifies the problem with respect to predicting
the exact people count, it is still significantly more complex
than simple presence detection [33], [34], i.e. distinguishing
between no person and 1 or more people. For instance, Figure 2
shows that two nearby people can produce a single hot area in
the frame, which can be easily misclassified as a single person.

Fig. 2. Examples of IR array frames corresponding to 1 person (left), 2 people,
close to each other (center), two people, far from each other (right).

Convolutional Neural Networks (CNNs) [41] are known to
be amongst the most effective DL models to analyze visual
imagery. Therefore, we design a set of simple CNN classifiers
to implement the proposed IR array-based social distance
monitoring. The common template of the models is inspired by
classic CNNs such as LeNet-5 [41], and is shown in Figure 3.
It includes two Convolutional (Conv) layers with Rectified
Linear Unit (ReLU) activation, one Max Pooling layer, and two
Fully Connected (FC) layers. The first FC layer uses a ReLU
activation and has a hidden size of 64, while the second one
has a sigmoid activation and a single output neuron, producing
the probability of a distancing rule violation.

Starting from this template, we perform an extensive archi-
tectural exploration. Different networks are obtained eliminat-
ing some of the layers enclosed in dashed boxes in Figure 3.
Specifically, we consider architectures with : i) one or two
Conv layers, ii) one or two FC layers, iii) with or without Max
Pooling. We also vary the number of channels in each of the
two convolutional layers considering values {8, 16, 32, 64}.

We further build two variants of each CNN architecture,
differing in the processed input. The first network is fed with
a a single thermal frame Xt, and learns to predict whether
the corresponding people count yt is greater than 1 (social
distance violation). The second variant is fed with a sliding
window of W consecutive frames (Xt, ..., Xt+W−1), and is
trained to detect social distance violations in the last frame
of the window (i.e., yt+W−1 > 1). The corresponding input
tensor shapes are (8,8,1) and (8,8,W) respectively, i.e., the W
frames are passed to the CNN as different input channels.
The two types of input are depicted in the left of Figure 3

as A and B respectively. For clarity, a single input sample
of each type is enclosed by a purple box. The second CNN
variant has the advantage of having access to past frames,
which can be used, for instance, to detect that a single heat
source corresponds to two nearby people (see Figure 2), based
on their movement. On the other hand, this variant has a higher
computational complexity, which is particularly critical for in-
sensor inference. In our experiments, we use W = 8 for a fair
comparison with the algorithm of [16], which uses a window
of 8 frames for background subtraction.

As a further optimization step, to reduce the memory occupa-
tion and inference latency/energy of our CNNs, all parameters
and intermediate activations are quantized to 8-bit integers [42].

C. Training Protocol

We trained our CNNs on Session 1 data (see Table I)
and tested them on all other sessions. This per-session split
ensures that test samples are taken either in a different room
with respect to training data, or in the same room but at
a different day/time. In contrast, a purely random split in
which consecutive frames from the same session can end up
in different data subsets would lead to an overly simplified
and unrealistic version of the problem. Considering all com-
binations of CNN architectures and input shapes, we trained
a total of 96 networks. Each model has been trained 5 times
with different random seeds, for a maximum of 500 epochs,
with early stopping after 10 non-improving epochs. We used
a binary cross-entropy loss function and the Adam optimizer,
with an initial Learning Rate (LR) of 1·10−3. The LR is reduced
by a factor 0.3 on plateau, with a patience of 5 epochs. Once
the floating point model reaches convergence, we quantize it
and then apply quantization-aware training [42] with the same
protocol, except for the initial LR, which is set to 5e−4. To deal
with the class imbalance of the target dataset (see Table I), we
apply sample weights to the loss function, equal to the inverse
of the class probabilities. After training all CNNs, we select
those that are in the Pareto front as detailed in Section III.

III. RESULTS

We trained and quantized our CNNs with Keras/TensorFlow
2.0 [43], and we used the X-CUBE-AI v6.0 toolchain [44] to
convert trained models into optimized C code for inference.
Given the class imbalance of the target dataset, we mainly
evaluate the performance of our models in terms of balanced
accuracy (Bal. Acc.), i.e. the arithmetic mean of sensitivity
and specificity. However, we also report the Area under the
ROC (ROC-AUC), the F1-Score (F1), and the standard micro-
average accuracy (Acc.) [45]. For all metrics, we report mean
± standard deviation on the 5 training runs.

The hardware-independent computational cost of the CNNs,
used to extract Pareto curves, is measured in terms of model
size (number of parameters) and number of Multiply-and-
Accumulate (MAC) operations. Models deployed on the MCU
are then further evaluated in terms of inference latency, energy
consumption, and memory occupation.

We mainly compare against the algorithm of [22], which
is, to our knowledge, the only person counting solution on
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TABLE II
DETAILED EVALUATION AND DEPLOYMENT RESULTS OF THREE SELECTED ARCHITECTURES ON STM32L4 @ 80MHZ (12.8 MW AVERAGE POWER).

ABBREVIATIONS: 1/8F = 1-FRAME/8-FRAME INPUT, CN = CONVOLUTION WITH N CHANNELS, P = MAX POOLING, FC = FULLY-CONNECTED.

Model Bal. Acc. [%] ROC-AUC Acc. [%] F1 Size[B] Mem.[B] MACs Energy[µJ] Latency[ms] Architecture
MinSize 70.5±3.6 0.83±0.04 75.6±0.9 0.56±0.05 0.18k 63.2k 2.6k 9.38 0.728 1F-C8-P-FC

MaxAcc-1% 85.3±2.0 0.93±0.04 86.4±1.9 0.77±0.03 4.9k 68.2k 7.3k 12.93 1.005 1F-C8-P-FC-FC
MaxAcc 86.3±2.2 0.99±0.01 87.6±1.8 0.78±0.03 74.7k 138.8k 157k 68.57 5.328 8F-C32-FC-FC

[22] 61 - 73 0.41 - 33.5k - 53.09 4.125 -

low-resolution IR sensors. We execute the algorithm of [22] as
is, and simply convert the person count into a social distance
violation whenever 2 or more people are detected in a frame.

A. Architectural Exploration

Fig. 4 shows the Pareto curves generated by different CNN
architectures in terms of balanced accuracy versus number of
parameters and MAC operations respectively. The two curves
refer to the single-frame and windowed input variants respec-
tively (A and B in Figure 3), and each point represents a
different architectural configuration (type and number of layers,
number of channels, etc). Dots correspond to the mean accuracy
over 5 trainings, while colored bands identify the ± standard
deviation range. The horizontal dashed line shows the accuracy
obtained by the baseline method of [22]. Note that the model
size and MAC curves contain in general different CNNs.

The results clearly show that all proposed CNNs significantly
outperform the baseline comparison in terms of accuracy. In
particular, the single-frame networks achieve very high accu-
racy (> 80%) even with just around 1k parameters and less than
10k MACs. Windowed networks are significantly more costly,
especially in terms of number of operations, yet they are able
to obtain the overall best accuracy (86.3%), in a configuration
with 75k parameters, and requiring 157k MACs.

In general, we found that both types of models achieve better
performance using a small number of channel in convolutional
layers (architectures with 64 channels are not in the Pareto
front). This is probably due to the relatively small and simple
dataset, for which large number of features lead to over-fitting.

B. Deployment

We selected 3 architectures from the parameters Pareto curve
(indicated by red dots in Figure 4) and deployed them on the
target MCU. The detailed results are shown in Table II. The
selected CNNs are: i) the most accurate one, ii) the smallest
model that achieves a < 1% balanced accuracy drop with
respect to the best, and iii) the smallest overall. We also
compiled and profiled the code of [22] on the same MCU for
comparison. For our CNNs, the table reports both the quantized
model size in Bytes (Size column), as well as the total occupied
Flash memory, also including code size (Mem). As shown, our
CNNs outperform [22] in all considered accuracy metrics. Note
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Fig. 4. Pareto Curves of balanced accuracy vs. parameters and n. of operations.

that the ROC-AUC is not reported for [22] since this method
outputs a deterministic 0/1 value, and not a probability score. In
terms of bal. acc., we outperform [22] by 9.5-25.2%, depending
on the selected CNN. Moreover, MinSize and MaxAcc-1% are
respectively 5.6x and 4.1x faster and more energy efficient
than [22]. Although the total memory occupation of our models
is larger, this is mostly due to the large code size of X-CUBE-
AI (≈60kB). Moreover, all three CNNs easily fit in the 1MB
Flash of the target MCU. Finally, note that, mainly because we
rely on a very low-resolution 8x8 sensor, our MinSize/MaxAcc
CNNs are 60.6x/8.3x faster than the networks proposed in [21],
and strikingly 235000x/32000x more energy efficient than the
method of [20], i.e., the only other two works proposing MCU
deployments of IR array-based ML tasks. However, it must be
underlined that, besides using different inputs, [20], [21] also
solve a slightly different task (person counting), making a fair
comparison with our work impossible.

IV. CONCLUSIONS

We have proposed a new method to implement privacy-
preserving social distance monitoring in indoor spaces, using a
low-resolution IR array sensor and an end-to-end deep learning
approach. Our results show that, with compact and energy-
efficient CNNs, an accurate social distance monitoring can
be implemented directly on MCU-based sensor nodes. Future



works will include the application of sub-byte quantization to
further reduce models sizes and complexity.
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