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Abstract—In the last decade, Approximate Computing (AxC)
has been extensively employed to improve the energy efficiency
of computing systems, at different abstraction levels. The main
AxC goal is reducing the energy budget used to execute error-
tolerant applications, at the cost of a controlled and intrinsically-
tolerable quality degradation. An important amount of work has
been done in proposing approximate versions of basic operations,
using fewer resources. From a hardware standpoint, several
approximate arithmetic operations have been proposed. Although
effective, such approximate hardware operators are not tailored
to a specific final application. Thus, their effectiveness will depend
on the actual application using them. Taking into account the
target application and the related input data distribution, the
final energy efficiency can be pushed further. In this paper
we showcase the advantage of considering the data distribution
by designing an input-aware approximate multiplier specifically
intended for a high pass FIR filter, where the input distribution
pattern for one operand is not uniform. Experimental results
show that we can significantly reduce the power consumption
while keeping an error rate lower than state of the art approxi-
mate multipliers.

Index Terms—Approximate Computing, Energy Efficiency,
Embedded Systems, Arithmetic Circuits

I. INTRODUCTION

The well-known Moore’s law drove the wide world ex-
plosion of the integrated circuits market and the related
exponential growth of the Information and Communication
Technologies (ICT). Computers are now everywhere and man-
aging all aspects of our life: from health monitoring, work,
entertainment, home management, etc. Unfortunately, behind
all the advantages, the dark face of ICT performances stems
from the high energy consumption of digital circuits. Indeed,
ICT devices and services are responsible for a substantial
percentage of the total energy consumed in the world [1].
Even worse, the amount of required energy is expected to
grow to almost 21% by 2030 [1]. A direct consequence is the
huge research field dedicated to the design, development and
fabrication of energy efficient digital circuits. The quest for
emerging technologies and computing paradigms in the light
of energy efficiency graal provided meaningful solutions so
far [2], [3].

Among them, Approximate Computing (AxC) proved to be
a very promising one [4]. The idea behind AxC is that several
applications do not really need to be executed on a “precise”

and thus “energy-expensive” hardware. AxC aims at reducing
the precision of the hardware in order to save energy consump-
tion. Interestingly, the reduced precision leads to applications
providing less accurate, but still good enough results while
reducing by orders of magnitude the required energy [5], [6].
Such applications are characterized to be intrinsically resilient
to noise and errors affecting the computation (i.e., because
of the less precise hardware). Indeed, the inherent resiliency
property tightly depends on the application domain.

Well-known examples are algorithms dealing with noisy
real-world input data (e.g., image processing, sensor data
processing, speech recognition, etc.), or with outputs that
require human interpretation, such as digital signal processing
of images or audio; also data analytic, web search and wireless
communications exhibit an equivalent property [7]–[9]. Other
examples are iterative applications that process large amounts
of information, sample data, stop the convergence procedure
early, or apply heuristics [10]. Most of the proposed techniques
try to define new methods to generate alternative versions of
specific component (either hardware or software) with fewer
resources. For example, there are several proposals of ap-
proximate arithmetic operations [11]–[13]. Such variants differ
from speculative implementations because they do not focus
on generating alternatives, rather on restoring the possible
introduced error [14]–[16]. Other techniques generate variants
by considering a high-level description of the application
or its implementation at low-level [7]. Moreover, existing
approaches target only implementations at a specific level of
the computing stack, i.e. either software or hardware.

Even if the above existing techniques proven to be effec-
tive, they have been developed without considering the final
application. In other words, they are not customized w.r.t the
application and its workload (i.e., input data). We thus believe
that there is the room to introduce a novel and promising
approach to power efficiency based on the knowledge of
the input data distribution and the target application. Indeed,
there are several applications where the inputs do not follow
a uniform distribution pattern. For instance, an image or
signal processing application that is always working in similar
environments with a limited range of inputs.

Let us resort to an example to clarify this point. We used
the LeNet-5 [17] Convolution Neural Network (CNN) that is



composed of 3 convolutional layers (CONV) followed by 2
fully connected (FC) layers, with a total of 61,470 parameters.
To showcase the concept, we profiled the inference execution
of LeNet-5 when the 10,000 MNIST test images are applied
and we obtained the data distribution per bit and per layer
shown in Figure 1. On the X-axis, we show the 32 bits from
LSB (bit 0) up to the MSB (bit 31). On the Y-axis, we show
the probability that the bit i is equal to logic ‘1’. As a first
comment, it can be noted that the distribution is quite similar
for the layers. This means that it is possible to design an
approximate arithmetic circuit to be used in all layers (thus
simplifying the overall design). A second comment is about
the fact that from bit 0 to 6 the probability to have logic ‘1’
is quite low (smaller the 20%). Interestingly, also the MSBs
have low probability to be logic ‘1’, especially for layer 0 and
layer 4. These results confirm that it is possible to aggressively
approximate the arithmetic circuits not only by working on the
LSBs (as it is usually done) but also through the MSBs.

The main goal of this paper is to show that it is possible to
take advantage of the data distribution to obtain a fine-tuned
approximation and thus achieve better results (i.e., higher
energy efficiency) with a lower impact on the application
accuracy. In particular, by characterizing the input pattern
distribution, we can design an approximate version of a given
circuit exploiting the fact that some inputs with similar charac-
teristics are elaborated more frequently than others. Therefore,
in this work we present an input-aware approximate multiplier
specifically designed for a case study design (high pass FIR
filter), where the input distribution pattern for one operand is
not uniform. The proposed design allows us to significantly
reduce the power consumption while keeping an error rate
lower than state of the art approximate multipliers.

The rest of the paper is organized as follows. Section II
describes the state of the art of approximate multipliers.
Section III details the application case study while Section IV
presents the proposed Input-Aware Approximate multiplier
tailored for the case study. Section V depicts the results and
presents a comparison with state of the art multipliers. Finally,
Section VI concludes the paper.

II. RELATED WORK

Generally, a conventional multiplication operates in three
steps. In the first step, the partial products (PP) are generated
by multiplying the multiplicand and the multiplier. In the
second step, the PP tree is reduced by accumulation until only
two rows remain. In the final step, the remaining two rows are
summed by employing a carry propagation adder [18]. The
approximation can be applied to each of these steps. Authors
in [19] proposed an approximate 2x2 multiplier which is used
to compose larger multipliers as shown in Figure 2. In this 2x2
multiplier accuracy reduction happens when both the inputs
are “11” so instead of “1001” the output is “111”. This way,
the output is reduced to three bits and the circuit is simplified.
Another approximation method is applied in the PP tree. For
example [20] introduces an array multiplier where the least
significant carry-save adders are removed from the circuit, both

horizontally and vertically. Another simpler method has been
applied in [21] where the LSBs from the inputs are truncated.
In the PP perforation-based multiplier several consecutive rows
of PPs are removed that are not necessarily from the LSBs.
In [22] an approximate Wallace tree multiplier is presented
which utilizes a carry-in prediction and a bit-width-aware
approximate multiplication. In this design, the n-bit multiplier
is implemented by four n/2 bit submultipliers, and the most
significant submultiplier (AHBH ) is divided again into four
n/4 bit ones. The n/4 bit multipliers can have different
accuracies and the three remaining less significant multipliers
(AHBL, ALBH , and ALBL) are approximate.

A different approach relies on inaccurate counters and
compressors in the PP reduction stage. An approximate 4x4
multiplier is presented in [23] that uses an inaccurate 4:2
counter for PP reduction as shown in Figure 3. This counter
only results in a wrong answer when all the inputs are ‘1’. So
instead of “100”, the result is “10”. If the input distribution is
uniform the error rate for this 4x4 multiplier is 1/256. Larger
multipliers can be built using this 4x4 approximate multiplier.
In [24] a novel approximate adder is used to accumulate the
PP tree by generating a sum and an error bit out of two
adjacent inputs. Then an error recovery scheme is applied to
accumulate the error bits in the final result either using only
OR gates or approximate adders as well. Also, a truncated
version of the same multiplier is presented in [25], [26] where
the lower half of the PP is carved out of the circuit. In [27], the
authors proposed a hybrid partial product-based approximate
4x4 multiplier that uses the methods of approximating in
both the PP tree accumulation and removing insignificant
PP bits.This 4x4 multiplier is used to build larger blocks of
multipliers. They have altered the PP tree by turning the PP
elements using propagate and generate function and removed
the PPs with less probability of being logic ‘1’. They have
also presented a novel half adder and full adder to accumulate
the PP tree.

Next section describes the application used as case study
and its characterization to obtain the input pattern distribution
information.

III. CASE STUDY:FIR FILTER

The case study is an finite impulse response (FIR) filter
described by Eq. 1.

y[n] =

N∑
i=0

bi · x[n− i] (1)

where:
• x[n] is the input signal:
• y[n] is the output signal;
• N is the filter order. In our case study N = 52;
• bi is the value of ith coefficient of the filter.
The FIR used as case study came from an audio applica-

tion, an in particular the coefficients have been designed to
implement a high pas filter (i.e., 500MHz). Coefficients as
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Fig. 1: Data distribution at bit per layer.

Fig. 2: building NxN multiplier using N/2xN/2 submultiplier

well as input data (i.e., x[n]) are encoded as signed 32 bit
fixed point with one bit (i.e., the MSB) for the integer part
and the remaining 15 bits for the fractional part. Fig. 4 shows
the architecture of the filter. On this architecture we intend
to approximate the multipliers (i.e., bi · x[n − i]). First, we
profiled the coefficients since they are the constant inputs for
the multiplier and we reported the data distribution in Table I.
The next section will detail the table and how that is used to
design the approximate multiplier.

IV. INPUT AWARE APPROXIMATE MULTIPLIER

As already mentioned, the proposed multiplier intends to
exploit the peculiar input distribution for the FIR high pass
filter. In particular, for one of the multiplication operands,
five bits are set to logic ‘1’ 100% of the time (B10 to B14);
moreover, the MSB has a 98% probability to be ‘1’. The
complete input distribution pattern is reported in Table I.

The inputs in this filter are fixed-point 16-bit binary numbers
with one bit for the integer part and 15 bits for the fraction.

Fig. 3: Structure inexact 4:2 counter and the 4x4 multi-
plier [23]

The multiplication for the fixed point numbers is the same as
the unsigned multiplier. However, since there are 5 bits always
set to ‘1’ (B10 to B14), there is no need to calculate the relative
PPs. Instead, we can directly use the other operand’s bit values.
The resulting partial product tree for this multiplier is sketched
in Figure 5.

If we consider input A as the one with a non-uniform
distribution pattern, the squares are representing the AND
gates generating the PP aibj . The circles represent the related
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TABLE I: Input distribution of the Hamming high pass filter
expressed as probability to be ’1’ for each bit Bi.

B15 B14 B13 B12 B11 B10 B9 B8

0.98 1.00 1.00 1.00 1.00 1.00 0.67 0.76
B7 B6 B5 B4 B3 B2 B1 B0

0.59 0.57 0.41 0.49 0.39 0.45 0.55 0.63

input bits of b because inputs a[14 : 10] are always ‘1’ in
this application. In this way, the number of the AND gates
needed to generate the PP tree is reduced by 80% without any
accuracy loss.

To approximate the multiplier, we have adopted the 4x4
multiplier design proposed in [23], introduced in Section II and
shown in Figure 3. We used them to build the 8x8 multiplier
illustrated in Figure 6. In particular, the least significant sub-
multiplier (ALBL) is removed and an accurate 4x4 Wallace
multiplier is used for the most significant part (AHBH ) to
maintain acceptable accuracy.

The outputs of the 4x4 sub-multipliers are accumulated
using accurate adders. Then, to implement the 16x16 mul-
tiplier, we used the approximate 8x8 multiplier for the two
least significant parts of the multiplier (ALBL and ALBH ).
However, for the two more significant parts (AHBH and
AHBL) we have adopted an input-aware accurate Wallace
multiplier with the related AND gates removed. In this design,
the related b input bits are directly used as the PP since
a[14 : 10] are always at ’1’. The design is sketched in
Figure 7a. The final accumulation step is done with exact

Fig. 5: partial product tree for the Input aware multiplier with
five columns of AND gates removed

Fig. 6: Structure of the 8x8 multiplier and the accumulation
step.

adders as shown in Figure 7b.
Since the probability of being ‘1’ for the MSB in the input

for this high pass filter is 98%, the final column of the PP
tree is also a good candidate for removing the related AND
gates. Although it is very unlikely that the mentioned bit to be
‘0’, when this happens the Error Distance (ED) can be very
high for this approximate method. We have also included this
design in our comparison and the results are presented in the
next section.

V. EXPERIMENTAL RESULTS

For the circuit evaluation, we compared our 16-bit input-
aware approximate multipliers with some of the multipliers
from the EvoApproxLib [28] library. Besides the presented
IAA multiplier, we have also simulated an accurate version
for this multiplier where the PP tree (IAM 16) is missing
the respective AND gates. Since the probability of being
‘1’ for the MSB in the input a is 98%, another version
of the multiplier is also implemented and the last column
of the AND gates is removed as well (IAM 16 V2). Three
Wallace multipliers are also implemented and included in the
comparison: (i) the conventional Wallace tree, (ii) an input
aware Wallace tree with 5 columns on AND gates removed,
and (iii) the one with the MSB column removed as well.
We have calculated the Power consumption, delay, and area
of these 16-bit multipliers by synthesizing them using the
Synopsys Design Compiler (DC) at 45nm. The designs were
done in Verilog at the gate level. These results are presented
in Table II.
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Fig. 7: Structure of the 16x16 multiplier and the accumulation
step.

In order to assess the quality of the approximation, the
evaluation employed the following error metrics:

• The error distance (ED): is the arithmetic difference
between the accurate result and the result from the
multiplier for a given input.

• The mean error distance (MED): is the mean of all
possible EDs.

• The error rate (ER): is the probability of producing an
incorrect result.

• The normalized mean error distance (NMED): is the
normalization of MED by the maximum output of the
accurate design.

• the mean relative error distance (MRED), which is the
average value of all possible REDs.

For the error analysis, we have simulated the multipliers
using the dataset from the hamming high pass filter as one
of the operands and uniform random input for the other.
As mentioned before, the inputs for the multiplier of this
application are fixed-point binary numbers where MSB is the
only bit on the left side of the point and the remaining 15
bits are in the fractional part. The multiplication process for
the fixed point binary numbers is the same as the unsigned
multiplication. This means that we can ignore the binary point
of a and b, perform the multiplication, and put the binary
point to the left of the 30th bit of the output to obtain the
correct multiplication result. In Table III the error rate for the

TABLE II: Power, Area and Delay for the synthesised multi-
pliers

Power (mW) Area(µM2) Delay
IAAxC 2.9126 4731.95 3.07

IAM 3.3442 4968.95 3.31
IAM V2 3.2061 4704.26 3.31
wallace 3.6962 5365.98 3.23

IA Wallace 3.5187 4962.85 3.2
IA Wallace V2 3.3989 4753.54 3.27

mul16u 5FA [28] 3.3331 5663.51 2.74
mul16u AQ1 [28] 3.5449 6019.24 2.82
mul16u BMC [28] 3.4873 5963.40 2.86
mul16u CK3 [28] 1.9708 3927.57 2.99
mul16u DAE [28] 2.9774 5250.06 2.61
mul16u F6B [28] 2.6541 4749.79 2.69

simulated multipliers is reported.

TABLE III: Accuracy comparison

ER% ED MRED NMED
IAAxC 92.16% 1.292E-05 1.113E-05 3.009E-15
IAM 0.00% 0 0 0

IAM V2 1.96% 0.03519 0.00990 8.193E-12
wallace 0.00% 0 0 0

IA Wallace 0.00% 0 0 0
IA Wallace V2 1.96% 0.03519 0.0099 8.19378E-12

mul16u 5FA [28] 100.00% 2.472E-08 2.901E-08 5.75708E-18
mul16u AQ1 [28] 0.00% 1.059E-09 1.489E-09 2.466E-19
mul16u BMC [28] 0.00% 0 0 0
mul16u CK3 [28] 100.00% 3.208E-05 3.314E-05 7.47E-15
mul16u DAE [28] 100.00% 1.843E-07 1.967E-07 4.291E-17
mul16u F6B [28] 100.00% 2.356E-06 2.387E-06 5.486E-16

Our Input Aware approximate multiplier (IAAxC) has very
low power consumption compared to the other multipliers
and showed better accuracy if compared to the ones with
less power consumption. If we only compare the area for
the different versions of the Wallace multiplier we can see
it is reduced by 7.5% since we have removed the AND
gates respective to the non-uniform input distribution pattern.
Meanwhile, there is no accuracy loss in Input aware versions
of the Wallace and segmented multiplier (IA Wallace and
IAM). In the second version of these multipliers (IAM V2
and IA Wallace V2), where the final column of AND gates
in the PP tree is removed as well, the probability of the MSB
in a to be ‘0’ is very low (1.98%), it results in a big error
distance. However, in many applications, a low Error Rate is
more important than low error distances.

VI. CONCLUSIONS

In this work, we have proposed the concept of Input Aware
approximation which is a promising approach for having more
efficient computers. Given the chance of knowing the data set
the system is dealing with, we can design and approximate it
knowing the fact that the input is following a specific behavior.
The example we have adopted in this work is only one of the
many applications with such a working environment where
the input distribution is not uniform. For future works, we
are planning to use the IAA approach for a larger number
of applications with more possibility of approximating. There



are some works in progress for automating the approximation
where the computer will decide which part of a design
and with which method should it be approximated. Input
distribution patterns also can be included in this process of
decision-making.
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