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A Simple Method to Calculate Random-Coding
Union Bounds for Ultra-Reliable Low-Latency
Communications

Giorgio Taricco Fellow, IEEE

Abstract—Ultra-Reliable Low-Latency Communications are
based on very short codes whose performances cannot be evalu-
ated correctly by using the Shannon capacity formula holding
for asymptotically large code lengths. The use of Random-
Coding Union Bounds (RCUB’s) has been suggested in the
literature as an alternative for this application. Unfortunately,
their calculation is difficult and the Gaussian approximation may
lead to erroneous results. The saddlepoint approximation has
been proposed as an alternative to overcome the limitations of
the Gaussian approximation. Though this technique is valid in
many cases, situations exist where the exact calculation provides
different results. A simple numerical technique is proposed in
this letter to calculate numerically the exact value of the RCUB.
Its accuracy is compared to that of the Gaussian and saddlepoint
approximations in some cases of interest.

Index Terms—Ultra-Reliable Low-Latency Communications.
Random-Coding Union Bounds. Gaussian approximation. Sad-
dlepoint approximation. Gauss-Chebyshev Quadrature Rules.

I. INTRODUCTION

One of the requirements of Ultra-Reliable Low-Latency
Communications (URLLC) is to limit the system outage
probability below 107> (or, equivalently, to achieve a reli-
ability of 99.999%) with a latency of 1 ms in order to be
applicable in mission-critical use cases such as smart grids,
intelligent transport systems, and remote surgery [1], [2].
As noticed in the recent work [3], the latency requirements
prevent resorting to time and/or frequency diversity so that
spatial diversity remains the only option. Massive Multiple-
Input Multiple-Output (MIMO) communication systems [4]
offer this diversity level but several results representing the
foundations for these systems are based on the assumption that
the transmitted codewords have infinite length, which becomes
questionable for URLLC scenarios [5].

Recently, Ostman et al. [3] proposed to resort to the
evaluation of an upper bound to the finite block length error
probability deriving from random coding union bounds with
a parameter s (RCUBs) introduced in [6], adapted for the
massive MIMO setup. This work improved the quality of
the calculation of the RCUBs by resorting to the saddlepoint
approximation instead than to the Gaussian approximation,
earlier suggested in [7]. The resulting error probability bounds
are applied in [3] to characterize several massive MIMO sce-
narios with pilot contamination and different linear receivers.

Since these works from the literature have evidenced the
importance of a precise evaluation of the RCUBs, we present
a method to calculate them exactly, which provides better

accuracy than both the Gaussian and the saddlepoint ap-
proximations. This exact method can also be applied to find
the RCUB of some coded modulation systems, where the
generalized information density and the Moment Generating
Function (MGF) can be derived.

The letter is organized as follows. Random-Coding Upper
Bounds are reviews in the first part of Section II. The sad-
dlepoint approximation is introduced in Section II-A resorting
to results from [3], [6]. Then, the Gaussian approximation is
derived in Section II-B and some basic notation is established.
Next, a preliminary Moment-Generating Function is character-
ized analytically along with its convergence region in Section
II-C. The analytic derivation is summarized in Section II-D
along with the numerical computation reported in Appendix A.
Section III provides numerical results showing the differences
between the approximations and the actual values in selected
cases. Finally, the complexities of the approximations and of
the exact calculations are discussed in Section III-A.

II. CALCULATION OF RANDOM-CODING UPPER BOUNDS

We consider a communication channel characterized by

Y = g Xk + Zi, k=1,...,n. (D)

Here, X, is the k-th transmitted symbol and Z;, ~ CN(0,1) is
the k-th additive noise sample. The channel gain g is assumed
to be constant through the transmission of n consecutive
symbols, which corresponds to the quasi-static fading channel
assumption [8]. The receiver has an estimate ¢ of the channel
gain, which is uses to estimate the transmitted codeword « =
(X1,...,Xp) by the received signal vector y = (Y1,...,Y})
by using the approximate Maximum-Likelihood (ML) metric

& = argmin ||y — gz|, )
xeC

where C is the channel code used for the transmission. We
consider a Gaussian random ensemble for C and assume
that the codeword symbols are distributed as CA/(0, p). The
Random Coding Upper bound with parameter s (RCUBs)
to the error probability can be obtained as the following
expression:

n

. cl—1
ercuB(S) ZP{ZZS(Xk,Yk) < 1HIU} 3)
k=1
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where U is an independent random variable uniformly dis-
tributed over (0,1) and, for k =1,...,n,
s|Yi|®
1+ sp|g|?
+1In(1 + splg|?) 4

15( X, Yi) = —s|Yi — 4X5|* +

is the generalized information density defined in [6]. Now, we
consider different types of approximations we can resort to in
order to evaluate (3).

A. Saddlepoint approximation

In this section we summarize the results from [3, Th. 2]
with our notation. First, we define the cumulant generating
function (CGF) of the generalized information density as

ks () = InElexp(—Cus(Xg, Yi))]
=—1InD,(¢) — ¢In(1 + sp|g|?), (5)

for k=1,...,n, where D,(¢) is derived in Section II-C and
defined in eq. (23). We also define the code rate as

In|C|
n symbol’

RL nats

(6)
Then, we solve the equation

s s 2 sls 32
il (¢) = Pt +DCP((<0)¢’Y |8s°)
=R, )

+1In(1 + splg|?)

where oy, 85, s are defined in (14), and define C~s its solution.
According to [3, Th. 2], we have three possible cases:

1y Es < 0: In this case,
ercup(s) = 1 — enlra(C)+C:R)

X [\Ijn’éé(fgs) - \Ijn,fs(]‘ — 55) + 0(7171/2)]
®)

W, - () & e F QM [nnl(G)). ©)

2) 0< 55 < 1: In this case,

with

(S) — en["'@s (ZS )+55 R]

X0, 6 (G) + W, e (1= G) +o(n™1/2)].
(10)

ERCUB

3) 55 > 1: In this case,

ercup(s) = el (VHHl

X (W (1,1) + T, (0, —1) + O(n~ /%) (1)
with
X nal[—n;(l)—R-&-H’S/(l)/Q]

\I/n(al, a2) £ e
I
M;W)

X Q<a1\/7mg’(1) — (D)

12)

B. Gaussian approximation

A direct approach for the approximation of the RCUBs (3),
originally proposed in [7], consists of approximating the sum
of the mutual information densities (X}, Y%) by a Gaussian
random variable and using the ) function to calculate it. We
define the random variables

Yi|?
Aui 2 —slVe — gXu | + SR
* [¥ie = 4. 1+ sp|g|?
= | Xy + 2R(B: Xu Z1) + 151 Ze> (13)
for k=1,...,n, where
A o, slgl?
s =—Slg—9|"+———75
lg — gl R
B 2-s(g— )+t (14)
) L, LHselal?
b 2Pl
’ 1+ sp|g|?
We can see that!
Efes(Xp, Yi)] = asp +7s +In(L+splgl*) (15
Vs (Xk, Ya)] = aZp® + 72 + 20| 65 (16)
for k =1,...,n. Defining
A zn:zs(Xk,Yk)Jrln v , (17)
— IC] —1
we can easily check that the RCUBs becomes
ERCUB(S) = P{Ag S O} (18)

Then, using the facts that E[InU] = —1, V[InU] = 1, we get

E[As] = nfosp +7s +1In(1 + 5p|g[*)]
—In(IC]—-1) -1 (19)
VIA] =mnlaZp® + 7+ 201" + 1
Finally, we obtain the Gaussian approximation:>
E[A,] )
5 s) ~ — . 20
rRcuB(S) Q( VA (20)

C. Moment generating function of As,k

The Moment Generating Function® (MGF) of the random
variable A, for k= 1,...,n, is given by*

®5_(¢) = Elexp(—CA,]
:/ L ot Dlelt 2R (B2 )~ DI g,
cz TP

1
— 21
(At Cpon) (17 Cva) — Al D

'V[X] denotes the variance of the random variable X.
2 According to [14], the Q-function can be approximated by

1 z? 1 272
Qo) ~ 5 oxp (‘ 3) +ze"p<‘ 7)

This approximation can be used to reduce the complexity of the calculation
of the @ function, if required, and yield a moderate accuracy degradation in
the resulting RCUB.
3This is also the Laplace transform of the probability density function.
“Here we can apply the integral [, exp(—z" A~ 12)dz = det(m A) for
an n X n positive definite Hermitian matrix A.




Hereafter, AS denotes a random variable distributed as any
Ag g (for k = 1,...,n). Therefore, Pz (¢) = @a,,(() for
alk=1,...,n.

The expression in (21) holds if and only if the quadratic
form in the argument of the exponential inside the integral
is negative definite. Hence, the following inequalities must be
satisfied:

14+ ¢pas >0
1
¢< el (22)
(1+ Cpars) (1 +¢s) > (B>,
Now, let us define the denominator of (21) as
Dy(Q) = 1+ (pas +7:)¢ + plasys — B¢ (23)
We can see that the second-degree coefficient satisfies
2 1502
2 5°p|g|
Qg — s =5 < 0. 24
plasys — [Bs]°) T spldF (24)
Thus, D4(¢) has two real roots of opposite signs:
ij: Sy pas +7s £ \/(POés + 78)2 + 4p(|ﬁs|2 - as’Ys). (25)

2p(|ﬁs|2 - as'ys)
The condition D(¢) > 0 implies that ¢ € (S, (). Since

1 2
D(_) _ e,
n | 5”|S2 (26)
D(— ) =-—— <0,
Pl plg

the convergence conditions (22) are satisfied when ( belongs
to the following MGF convergence region:

Ra£{C: ¢ <R <G 27)

D. Chernoff bound and exact derivation

The main contribution of this section is the derivation of
a simple numerical algorithm based on Chebyshev quadrature
rules for the calculation of the RCUBs. In addition to that,
we derive the simple Chernoff upper bound to the same
quantity. Let us recall that the RCUBs ercyg(s) is given by
equation (18), where A, is defined in (17). Since

P(Ag <0) = E[u(—Ay)] < E[exp(—CAs)],  (28)

for any ¢ > 0, we have obtained the simple upper Chernoff
bound to the RCUBs:

ercua(s) <min®a,(¢). (29)

¢=0

To proceed with the exact derivation of the RCUBs, we
define the MGF of the random variable A defined in (17).

1 cl—1 \¢

22,02 50, (0" ()
1—¢ % (1+splgl?)"

The convergence region of (30) is the intersection of the region

{¢ : R(¢) < 1} (because of the factor E[U~¢] = 1%() with
the convergence region (27), i.e.,

Ra, £{C: ¢ <R(Q) < min(1, )}

(30)

€1V

5This two extremes are labeled as ¢ and ¢, respectively, in [3].

To calculate ercys(s), we exploit the method summarized
in Appendix A, based on the Chebyshev quadrature rules.
The result follows by applying eq. (38) after choosing the
constant ¢ in the convergence region of @A%(g)’ which is the
intersection of the convergence region (31) and the positive
real part of the complex plane. So, for example, we can take
c= %min(l,(j), where (I is defined in (25). To increase
the numerical stability of (38) we can take c as the real value

in Ra minimizing ®a_(c).

III. NUMERICAL RESULTS

We consider some numerical examples characterizing the
differences between the approximations and the exact calcu-
lation proposed in this work: i) The Gaussian approximation.
i1) The Saddlepoint approximation. iii) The exact analytic
method supported by the numerical calculation through the
Chebyshev quadrature rules. iv) The Chernoff bound. To this
purpose, we shall consider four scenarios characterized by
the channel gain g = 1, the estimated gain g, the SNR p,
expressed in dB, the codeword length n, the code rate R,
which is assumed to be proportional to the achievable rate by
a factor ¢, i.e.,

R = alogy(1+ p). (32)

The quality of the approximation depends very much on the
parameters considered and we are going to focus on the cases
when either the Gaussian or the Saddlepoint approximations
do not provide numerically accurate results. In such cases, the
exact analytic method represents a basic resource to obtain
valid results in any framework of interest.

The Chernoff bound is always well above the RCUBs so
that it is not a useful approximation in this framework.

In the following we shall refer by the name RCUB to the
minimum over the parameter s of the RCUBs, i.e.,

ercuB = rsn>1161 ercuB(S)- (33)
Fig. 1 shows several plots of the RCUB versus SNR in the
cases described by the following parameters:

g=9¢=1,n=30,50,& =0.1.

We can see that the exact curve is close to the Gaussian
approximation for lower SNR and to the saddlepoint ap-
proximation for higher SNR. For intermediate SNR’s neither
the Gaussian nor the saddlepoint approximation are very
accurate. Comparing the curves corresponding to the two code
lengths considered (n = 30 and 50), we notice that the gap
between the exact RCUB and its approximations (Gaussian
and saddlepoint) widens as the code length gets shorter. Fig. 2
extends the results of Fig. 1 to the case & = 0.2. The results
can be interpreted similarly but the gap between exact values
and approximation is narrower in this case. Fig. 3 considers
a sample case of mismatched detection with ¢ = 1.3 and
& = 0.1. In this case, we notice a wider gap between exact
values and approximations. Finally, the dependency of the
RCUB on the rate logarithmic factor ¢ is illustrated in Fig. 4.
As expected, increasing & increases the RCUB for a given
SNR.
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Fig. 1. Plot of the RCUB versus SNR with the following parameters: g =
g =1,n = 30,50,& = 0.1. The curves report the Gaussian and Saddlepoint
approximations, the Exact analytic evaluation, and the Chernoff bound.

RCU bound

=
5]
&

—6— Gaussian app. (n=30)
o+ Saddlepoint app. (n=30)

Exact (n=30)

—0— Chernoff bound (n=30)

—&— Gaussian app. (n=50)
Saddlepoint app. (n=50)

—»— Exact (n=50)

—~0— Chernoff bound (n=50)

-10 -9 -8 -7 -6

107 F

s -
SNR (dB)

Fig. 2. Same as Fig. 1 but & = 0.2.
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Fig. 3. Same as Fig. 1 but § = 1.3 (mismatched).
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Fig. 4. Plot of the RCUB versus SNR with the following parameters: g =
g=1,n=>50,&=0.1,0.2,0.3,0.4,0.5.

A. Complexity

We notice that both the Gaussian and the Saddlepoint
approximations require the calculation of one or more @
functions, contrary to the Chernoff bound and the Chebyshev
approximation of the exact value. The complexity of the
proposed method stands in the minimization of ®_(¢) over
the real part of Ra,, yielding the optimum value of ¢, and
on a number of additional calculations of ®a_(c(1 + j7)).
In the above numerical results we used v = 64. Summarizing,
the exact calculation requires more elementary operations but
doesn’t involve the calculation of any () functions.

APPENDIX A
EVALUATION OF P(A < 0)

These results have been derived in [9], [10] and are reported
here for easy reference. Let the MGF of A be defined as

Ba(C) 2 Efexp(—CA)] = / T e Fde. (34

We assume that the pdf fa(z) has no masses and admits the
Laplace transform in a certain convergence region. Then,

P(A<0)= fa(@)u(—z)dz

[Fa (@) * u(@)]eo
_ 1 MR IN(§)
j2m

d 35
i € ¢ 35)

where u(z) = 1 for z > 0 and 0 otherwise, with Laplace
transform 1/¢ (for ®(¢) > 0), and we applied the standard
properties of Laplace transforms [11]. The real number c is in
the convergence region of CDAT(O, which is the intersection of

the convergence region of ® A (¢) with the convergence region



of 1/¢, ie., {¢ : R({) > 0}. Expanding the integral in (35)
we get

p(A<0):L/°° Paletjw)

27 J_o ct+jw
_ 1 /°° R{PA(c+ jw)} +w%{¢A(c+jw)}dw
2 J_ o 2+ w?
(36)

Applying the change of variables w = ¢v1 — 22/x to (36)
yields

P <ok [ {foa(cr 10/5)]

V1 — 22 V1 —a? dx
4+ ——3 | Palc+ jc
X xX V1 — 1‘2
Finally, applying the Gauss-Chebyshev quadrature rule [12,
25.4.38] with v nodes, we get:

(37)

v

PA<0) =5 " {R@a(C(+ 7))
k=1

+ SRl + i)} + R G9)

where 7, = tan((k—1/2)7/v) and R, — 0 as v — co. More
precisely, [12, 25.4.38], we have

s

R, = Wf@y) ()

(39)

with £ € (—1,1) and

12 2o (e 1= 2)]

1 — 2 _ 2
+13:”"%{¢>A(c+jclxx)]. (40)

The error term can also be derived as a contour integral and
bounded by the method described in [13].

APPENDIX B
EXAMPLE OF CALCULATION OF ercyg(s)

We provide in this appendix a simple computational exam-
ple with the following parameters:
s=1p=19g=¢g=1n=>50,a=0.1.

It is immediate to obtain a; = 3,81 = 3,71 =

exp(—31.223372¢)
P, (¢) =
' (1= —5¢2)»
From eq. (25), we get (1 + = ++/2, so that the ROC in (31)
becomes Ra, = {¢ : —v2 < R(¢) < 1}. The ROC of
®a,(¢)/¢ must be sought over ¢ € (0,1) and is found at

¢ = 0.508789. Next, we calculate the ®a,(c(1 + j7i)) for
k=1,...,v =25 and the expression in (38) to obtain

1
-5 and

ercups(1) = 2.1899 - 1075,

Notice that this is not the RCUB reported in Fig. 1 since it
has not been minimized over s but is specific for s = 1.
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