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A technical framework for human-like motion generation with
autonomous anthropomorphic redundant manipulators

Giuseppe Avertal'>3, Danilo Caporale!, Cosimo Della Santina*, Antonio Bicchi'*3, and Matteo Bianchi'?

Abstract— The need for users’ safety and technology accept-
ability has incredibly increased with the deployment of co-bots
physically interacting with humans in industrial settings, and
for people assistance. A well-studied approach to meet these
requirements is to ensure human-like robot motions. Classic
solutions for anthropomorphic movement generation usually
rely on optimization procedures, which build upon hypotheses
devised from neuroscientific literature, or capitalize on learning
methods. However, these approaches come with limitations, e.g.
limited motion variability or the need for high dimensional
datasets. In this work, we present a technique to directly
embed human upper limb principal motion modes computed
through functional analysis in the robot trajectory optimization.
We report on the implementation with manipulators with
redundant anthropomorphic kinematic architectures - although
dissimilar with respect to the human model used for functional
mode extraction - via Cartesian impedance control. In our
experiments, we show how human trajectories mapped onto
a robotic manipulator still exhibit the main characteristics of
human-likeness, e.g. low jerk values. We discuss the results
with respect to the state of the art, and their implications for
advanced human-robot interaction in industrial co-botics and
for human assistance.

I. INTRODUCTION

Recent advancements in robotic design and control have
opened promising opportunities in the field of Human-Robot
Interaction (HRI), enabling for novel forms of assistance
and collaborations e.g. in industrial co-botics or for personal
assistance [1]. This perspective change has come with new
challenges, e.g. the need for generating meaningful robot
actions, simultaneously ensuring human ergonomics and
safety, production quality, and users’ acceptance.

One of the most studied solutions in literature to success-
fully tackle the aforementioned points is to guarantee the
Human-Likeness (HL) of robot motions [2], [3], [4], [5],
[6], [7]. This has been commonly pursued moving from the
analysis of a large neuroscience and kinesiology literature,
with the goal of devising suitable cost functions, whose opti-
mization can likely ensure human-like characteristics in the
planned motion [8]. In the state of the art, different descriptors
for anthropomorphic movements have been proposed; for
example, the presence of a single peak in the velocity profile
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Fig. 1. A Kuka LWR+ 7 DoFs robot “drinking” water from a bottle.

was identified as a recurrent characterizing feature in point-to-
point human arm motions [9]. In [10], Flash et al. theorized
that a good approximation of human motion can be achieved
through jerk minimization, and different robotic planning
algorithms have been devised accordingly, see e.g. [11]. In
[12], the author extended the minimum jerk and the minimum
torque-change methods to account also for self- or external-
imposed endpoint constraints, i.e. in terms of orientation and
velocity. Another approach, presented in [13], proposed to
use an arbitrary basis of discrete sine transformations, and
expansion- function series, to generate complex movements
via combination of basis elements.

Observations of human movements have been also used
with learning methods, e.g. to train Neural Networks [14],
[15], [16], [17], or to compute a set of parameters for
non-linear dynamical systems [18], with specific focus on
locomotion and whole-body characters animation[19], [16].

However, all the previously discussed methods come with
some disadvantages. Model-based approaches, e.g. minimum
jerk minimization, rely on the optimization of cost functions
that are only a rough approximations of the real phenomenon
[20]; this may limit the variability of the planned movement.
On the other side, the efficiency and reliability of learning
techniques is highly dependent on the quality and the
dimensionality of the dataset used to train the network(s).



To overcome these limitations for the generation of
anthropomorphic robotic manipulative actions, we propose
to directly embed human principal motion modes in the
optimization algorithm. This principal modes are computed by
applying functional analysis (functional Principal Component
Analysis, fPCA) at the joint level, on a set of human recorded
motions [21]. This approach comes with several advantages,
since no hypothesis (or large dataset) is required to ensure
HL, which is intrinsically guaranteed. Furthermore, this
methodology comes with a significant perspective shift: from
the search for optimal paths to the identification of a reduced
number of scalars weighting the functional components. This
could enable to rapidly achieve a solution for the planner,
which is by definition human-like.

However, this method, theoretically introduced in [22],
faces important translational changes, when it comes to
be applied to robotic anthropomorphic manipulators, whose
kinematic structure is dissimilar with respect to the model
used for extracting human principal modes.

In this paper, we tackle the problem of mapping these
modes on a generic anthropomorphic robotic manipulator.
This problem is not trivial, since we cannot rely on joint-
based one-by-one mapping and, at the same time, we must
guarantee that the mapped trajectories still maintain the
human-likeliness. Classic mapping algorithms implement
optimization-based methods to maximise the similarity be-
tween the human and robot kinematic chain motions, see e.g.
[23] and [24]. These methods can map human movements
onto robotic structures, but these can be hardly used on-line.
Here we propose a control-based approach that allows to im-
plement onto a redundant robotic arm with a given kinematic
architecture the trajectories obtained using the functional
approach reported in [22], overcoming the limitations of the
optimization methods described above. This approach relies
on two Cartesian impedance controllers, which also allow to
manage the redundancy problem: the first controller ensures
that the robot end effector trajectories follow the ones of the
human end-effector, while the second controller implemented
at the elbow level projects in the null-space of the end-
effector Jacobian. This implementation enables to keep the
robot elbow as close as possible to the reference-human
elbow trajectory - which is crucial for increasing HL [25],
[26]- with no influence on the trajectory tracking at the end-
effector level - controlled by the first control law. We report
the details of this approach and show the implementation
on an anthropomorphic robotic manipulator KUKA LWR+
platform, whose kinematic architecture is different from the
kinematic model used to extract human functional modes. We
discuss the experimental outcomes in terms of HL as well as
the implications for collaborative robotics.

II. BACKGROUND
A. Problem Definition

In [21] and [22] we presented a mathematical model to
characterize human upper limb movements, introducing a
new method to generate human-inspired motions.

In this section we will briefly recall the main concepts of
this idea. Our starting point is the coding of the main modes of
variation of upper limb motions through functional Principal
Component Analysis, namely (fPCA). From a dataset of

Algorithm 1 Procedure of human-like Motion Generation

1: procedure INITIALIZATION
2: Load fPCs basis set;

3 Load Obstacles set;
4 Set initial and final pose;
5: M+ 1;
6: rg < oo,
7 i<+ 0;
8 Initialize @, as in (3);
9: Initialize gj, as in (3);
10: procedure OPTIMIZATION
11: i—i+1;
12 [Otopt, Gopt) < InteriorPoint( Gy, Gin );
13: Calculate residual cost r; via Eq. (4);
14: if i —ri_1 <Ry or M = Sy then
15: Break;
16: else
17: Oin < Oopts
18: Gin < @)pt;
19: M<—M+1;
20: Go to Step 10;
end
end

recorded joint movements, we extract a basis of functions
whose combination can reconstruct any movement at the
joint level. One of the properties of this basis is that the
elements are associated with a specific cardinality, i.e. the
first is the function that accounts for the higher percentage
of motion variability, and so far. The larger is the number
of the basis elements recruited, the higher is the accuracy of
the reconstructed motion.

Leveraging on this, it is possible to devise a motion-
generation algorithm. More specifically, instead of searching
for a solution in a generic infinite dimensional space C1[0, 5,),
where 7 is the number of degrees of freedom of the considered
model (in our case n = 7), we define the possible arm
movement as the finite dimensional family of functions

M
4(1) = G+So <t>+2a,-os,~ (t> (1)
Ifin i=1 tfin

where ¢ is the time coordinate, #7;, is the final time frame,
g € R" is the average posture of the recorded dataset, S;(¢) €
R" is the i-th element of the basis set, ¢; € RK is a vector
of weights, Sp: R — R is the zero-order synergy, calculated
as the average movement, n is the number of joints in the
kinematic chain and M the number of enrolled basis elements.
The operator o defines the Hadamard product, i.e. an element-
wise product. Any movement can be generated by solving

the following general optimization problem:

ganin, Jiask ()
. t M t
subject to gty =g+So| — |+ ) oS — ),
tfin i=1 Ifin

(2)
where Jisk(g) is a task-dependent cost function. This
approach reduces the search space - since it targets the



computation of a reduced number of scalar weights for the
functional components - and intrinsically ensures HL.

B. Point-to-Point and constrained motions

We demonstrated in [22] that the generation of free point-
to-point movements results in a closed form solution. In
particular, we can generate a zero-error point-to-point free
motion with only one synergy using the following parameters:

=0 = [(gin —g0) — (So(1) = So(0))] o (S1 (1) — $1(0))°~"
=4 = q0— [[(9fin — 90) — (So(1) — S0(0))]
o (S1(1) =51(0))* 0 S$1(0) , X
3)

where go and gy, are the desired initial and final poses,
respectively, o and g are the optimal parameters of a signal
in the form given in Eq. 1, and °~' is the Hadamart inverse as
defined in [27]. Our solution proposes an implementation in
which a combination of potential functions is used to describe
the obstacles in the environment and the optimization problem
is used to plan the motion while avoiding the obstacles. The
cost function can be written as:

q(0) — g0 ?
min +pP(q,P
G0 ,...,0 H [q(tﬁn) — ‘Iﬁn] 5 p (q/ 0)
. t M t
subject to q(t)=q+So <) + Z Q;0S; <> 7
tﬁn i=1 tﬁn

“)
in which the first contribution guarantees that the desired
initial and final poses are achieved, as for the free motion
case reported in Eq. 3. The second term takes into account
the distance, weighted by a suitable scaling scalar coefficient
p, with respect to (w.r.t.) the obstacles.

Without any loss of generality, we assume here No spherical
obstacles. Let assume Py = {Pol,...,PoNo} being the set
containing the Cartesian coordinates of all the centers of
the obstacles: we can hence define P(q,Pp) as a potential-
based function [28] that sums up, for all the obstacles, a
term inversely proportional to the minimum distance between
the center of the obstacle and the closest generated joint
trajectory, i.e.

N() 1

Pla:o) = L i, 1) P P
where m; is the minimum distance between the links of
the robotic architecture and the i — th obstacle, defined
as mi(q([0,1]).Po,) = ming{d(u(q([0,1])),70,)} - q([0.1])
represents the trajectory of the joints from time zero to
time 1 (recall that in Eq. 1 the whole trajectory depends
on the variable t/tz;,). The distance between the k —th point
of the rigid link of the manipulator defined by the forward
kinematics function /, and the i —th sphere is

(||Po,-—x||z,Ro,-)} ,

(6)
with Rg, being the radius of the obstacle sphere. The opti-
mization procedure incrementally enrolls functional modes
until the trajectory is planned with a satisfactory residual error.

(&)

min

dh 071 7Pi = max
(7 (q([0,1])). Fo;) {mmw@ﬂn

This choice is driven by the fact that a higher cardinality
of the enrolled basis elements improves the accuracy of the
reconstructed motion but also produces larger computational
cost and increases the overall complexity of the problem
(leading to a higher number of local minima [22], [29]). The
general implementation of this algorithm is reported in Alg.
1.

III. MAPPING BETWEEN KINEMATICS VIA IMPEDANCE
CONTROL

The framework introduced in the previous section enables
the efficient and effective generation of human-inspired
movements. However, the generated trajectory is defined
in the joint space and, thus, is strictly related to the specific
manipulator kinematic definition. In other terms, it can work
only for robots with the same kinematic architecture as the one
used for describing human motions. In the following, we will
refer to this architecture as to the paradigmatic human arm.
To overcome this limitation and generalize to any kinematic
chain the approach reported in Alg. 1, we need to solve a
mapping problem. This has been usually achieved in literature
via optimization, minimizing the distance between the robot
and the paradigmatic human arm: i.e. given the definition
of an end effector (EE), a shoulder and an elbow - which
can be easily identified in an anthropomorphic architecture
[23], the goal is to minimize a cost function proportional
to the sum of the area of the triangles between these points
(for additional details the interested reader may refer to [23]).
Another approach, namely Virtual Object Method introduced
in [24], maps postures of hands with dissimilar kinematics,
considering reference points on the two kinematic structures,
and then mapping the movement of these reference points in
the velocity domain. However, to the best of our knowledge,
all the methods presented so far rely on time consuming
optimization procedures, which need to be executed offline.
To overcome this issue, we decided to map the movements
using a different control-based approach. Since the mapping
must preserve the main HL characteristics of the original
planned movement, i.e. bell shaped velocity profiles, low jerk
values etc, the control law needs to be transparent w.r.t. the
motion dynamic characteristics. To this aim, we decided to
implement a Cartesian Impedance Control (IC) [31]. More
specifically, given the trajectory of the planned motion as it

Fig. 2. Right plot. Kinematic model of the paradigmatic human arm. Left
plot. Kinematic model of the Kuka LWR antrophomorphic manipulator.
Figure partially adapted from [30] and [22]



results from Alg. 1 and computed via forward-kinematics at
the end-effector level, the following control law is adopted:

T=M(q)j+c(q,q)+Ji(q)" (Kier +Diér),  (7)

where 7 represents the joint torques, M(q) is the inertia
matrix of the manipulator, ¢(gq,q) takes into account the
Coriolis term and the gravity of the manipulator, e; = x° —x
is the Cartesian pose error at the EE, ¢é; is the error time
derivative, and J;(g) is the Jacobian for the EE task. K| and
D, are positive definite gain matrices.

In addition, since the majority of the anthropomorphic
manipulators is redundant, i.e. the number of controllable
joints is higher than the dimensionality of the end effector
space, an additional Cartesian IC at the elbow level is
introduced.

Implementing a control at the elbow is important not only
to solve the redundacy problem [32], [33], [34] but also
for increasing motion functional anthropomorphis. Indeed, it
was proven that making the pose of the elbow of the slave
robot as close as possible to the pose of the paradigmatic
human arm enhances the HL of the commanded trajectories.
Another aspect that increases functional anthropomorphism
is the alignment of the end-effector of the robot with the
paradigmatic human arm EE [23]. Note that, since the
references of the end-effector and the elbow controllers are
different, this may result in steady state error at the EE w.r.t.
the reference trajectory. To have an exact mapping, i.e. zero
tracking error, a null-space projection of torques produced by
the second impedance controller is hence needed [32], [33],
[34]. Our implementation of the second Cartesian IC can be
achieved trough the following control law:

v=104(q)" (Kze2 4+ D2é2), 3)

where J»(g) is the elbow Jacobian, e, is the Cartesian
position error (no orientation is considered) for the elbow, é;
its time derivative and K;, D, positive definite gain matrices.
This control action projects in the null space of the robotic
manipulator EE. This is achieved with the projector P;(g) =
1-Ji(9)" 1 (q).

The total control strategy can be hence written as:

T=M(q)+c(q,9)+J1(q)" (Kie1 +Dyér) + Py (Q)Jz(Q)TV9-
©)]

IV. EXPERIMENTS

To prove the effectiveness of our planning and mapping
framework, we carried out a set of experiments on a real
platform, i.e. a 7 Degrees of Freedom (DoFs) Kuka LWR+.
The main difference between the paradigmatic human arm
(see [21]) and the Kuka kinematics is that, in the latter case,
the joint defining the shoulder, elbow and wrist degrees of
freedom are not coincident. Note that our implementation
can be applied to any robotic manipulator with redundant
kinematic architecture (see Fig. 2).

Taking inspiration from [22], we identified four differ-
ent sample movements that span the upper limb motion
workspace, referred a first person view: T.1) is a translation
from right to left side of the body in the transverse plane, a

Fig. 3. Two different Kuka configurations. Figure A, robot in anthropo-
morphic dual arm configuration. Figure B, robot in industrial configuration,
typically used to pick and maneuver objects from pallets. Note that in both
cases only one arm (the right arm) is used.

typical movement used to manipulate objects on a table; T.2)
is a movement towards a pose in front of the robot, in the
sagittal plane; T.3) is an arm elevation mimicking a human
motion towards a point upon the head; T.4) is a reaching
movement reproducing a human motion towards the face,
e.g. for self-feeding tasks. Numerical values of the initial
and final joint configurations on the paradigmatic human arm
kinematics are listed in Tab. 1.

Each task was planned in different conditions, i.e. with and
without the presence of obstacles along the trajectory. The
trajectories are then mapped on the Kuka kinematics in two
different configurations: i) anthropomorphic configuration;
i) industrial configuration (see Fig. 3). Indeed, also in the
latter case it is important to ensure HL to favour robot action
predictability by the human operator [35]. Reference end-
effector position defined on the human kinematics is scaled
by a factor L,/Ly, where L, and L, are the robot and human
arm total arm length, respectively, when all the joints are
set to zero, i.e. total arm extension. In Fig. 4 we show the
end-effector commanded and real robotic EE pose in two
sample cases. More specifically, we report the motion in
the transverse plane (T.1) with two obstacles on the table
(20 x 30 cm cylinder - height equal to 20; and 20 x 30
x 40 cm paralleliped - height equal to 40, at a center-to-
center distance of approx. 10 cm), and one movement in the
medial plane (T.4) for the free-movement case (see also Fig.
5). Results show a good approximation of the commanded
end-effector motion, with a mean error between the reference
and real EE position lower than 5 % 1072 m, and an EE
average orientation error lower than 10!, All the other
tested movements presented similar performances, details
are not reported here for sake of space. The corresponding

TABLE 1
INITIAL (¢gg) AND FINAL (ggn) JOINT POSTURE FOR THE FOUR
TASKS. ANGLES ARE EXPRESSED IN RADIANTS AND DEFINED
FOR THE PARADIGMATIC HUMAN ARM KINEMATICS.

Task dof 1 dof 2 dof 3 dof 4 dof 5 dof 6 dof 7
T.1 qo —0.31 —0.58 —0.8 047  —1.23 0.22 0.65
qin | —0.33 034 039 0.44  —0.69 0.36 0.15

T2 qo 0.09 —-0.79  —-0.62 0.65 —1.50 0.06 0.76
Gfin 0.65 —0.40 0.07 079 —1.32 0.87 0.63

T3 qo -0.48 —-0.07 -0.71 0.03  —0.86 0.52 0.47
g | —1.67 068 033 —0.21 —-0.09 —0.26 0.52

T4 qo —-028 —0.86 —0.92 086 —1.52 —-0.12 0.77
qfin 0.65 —0.78  —0.12 218 —1.52 0.57 0.59
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Fig. 4. Mapped motions. Subplot A Position (first row) and velocity (second row) of the reference (green line) and the real (red line) end-effector position
for task T.1 with two obstacles. Subplot B Position (first row) and velocity (second row) of the reference (green line) and the real (red line) end-effector
orientation for task T.1 with two obstacles. Subplot C Position (first row) and velocity (second row) of the reference (green line) and the real (red line)
end-effector position for task T.4 with no obstacle. Subplot D Position (first row) and velocity (second row) of the reference (green line) and the real (red

line) end-effector otientation for task T.4 with no obstacle.

velocities are depicted in Fig. 4. Notwithstanding the presence
of oscillations due to vibrations of the manipulator not related
to our control law, the robot movement shows bell-shaped
velocity profiles with jerk values always lower than 1072, in
line with the observations in [36].

The overall movement is depicted in Fig. 5 for two
sample actions (T.1 and T.4), i.e. for the free motion and
the two-obstacle case. See also the attached video (https:
//youtu.be/FHOSVVXBV74).

V. DISCUSSIONS AND CONCLUSIONS

In this paper we propose a novel technical framework for
human-like motion generation for anthropomorphic robots.
The goal is achieved through two main building blocks. First,
we discussed a motion generation algorithm based on the
optimal combination of human data-driven functional modes
[21]. This method was preliminarily theorized in [22] and
is here extended for its usability with generic redundant
anthropomorphic manipulators, whose kinematic architecture
differs from the one used to extract human functional modes.
This is achieved through a mapping algorithm, which exploits
torque control of the manipulator. More specifically, we
implemented a Cartesian impedance control at the end-effector
level. Functional anthropomorphism of the overall motion
is preserved via a second Cartesian impedance controller at
the elbow level. This applies an additional torque in the null-
space of the end-effector Cartesian controller to keep the robot
elbow as close as possible to the reference of the human elbow.
The reference pose commanded is the movement planned on
the human kinematics, scaled by a proportionality factor. Our
experiments show that such control strategy is able to on-line
map the desired trajectory of the paradigmatic human arm

at the robot end-effector level. Robot trajectories appear to
maintain the basic characteristics of human-likeliness of the
commanded poses, i.e. low jerk values, bell-shaped velocity
profile. Note that - due to kinematic constraints - the second
controller is not meant to achieve zero error, while the end-
effector is expected to follow with a good approximation the
desired trajectory (position and orientation).

In the future developments, the approach described in this
paper will be tested with other manipulators and configura-
tions and will be integrated in a more general framework
together with a vision based target and obstacle identifier.
It is important to underline here that the aim of this work
is not to solve planning problems but instead to propose a
new method for intrinsically embedding human-likeness in
motion generation. Future work will encompass the evaluation
with sophisticated planning problems and state of the art
planning benchmarks. The outcomes of this paper could
successfully inform the next developments for the control of
redundant anthropomorphic co-bots in industrial settings and
for human assistance. Indeed, thank to the human-likeness of
the robot trajectories, the robot interaction with the humans
in collaborative tasks, e.g. for synergistic action completion,
or during robot-assisted actions, e.g. self feeding, will be
performed in a predictable, ergonomic and safe manner.
This will finally and likely increase the acceptability of
robotic technology by the human user. Under this regard, the
analysis of the ergonomy of humans interacting with robotic
manipulators implementing the control strategies reported in
this paper (see e.g. [37] ), and the evaluation of the perceived
human-likeliness via experiments with human participants
are already envisioned.



Fig. 5. From top to bottom, snapshots of human reference and real robot execution of T.1 free motion, T.1 with two obstacles; T.4 free motion; T.4 with
two obstacles. First controller param: K, = 100; K, = 100; K, = 100; K,, = 1.5; K}, = 1.5; K,; = 1.5; D, =2.0; D, =2.0; D, =2.0; D;, = 1.0; D,y = 1.0;
D,, = 1.0. Second controller param: K, =5.0; K, =5.0; K; =5.0; K;» =0; K, =0; K;; =0; Dy =0; Dy =0; D, =0; Dy, =0; Dy =0; D;; =0.
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