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ABSTRACT 

To identify a peculiar genetic combination predisposing to differentiated thyroid carcinoma (DTC), 

we selected a set of single-nucleotide polymorphisms (SNPs) associated with DTC risk, considering 

polygenic risk score (PRS), Bayesian statistics, and a machine learning (ML) classifier to describe 

cases and controls in 3 different datasets. 

Dataset 1 (649 DTC, 431 controls) has been previously genotyped in a genome-wide association 

study (GWAS) on Italian DTC. Dataset 2 (234 DTC, 101 controls) and dataset 3 (404 DTC, 392 

controls) were genotyped. Associations of 171 SNPs reported to predispose to DTC in candidate 

studies were extracted from the GWAS of dataset 1, followed by replication of SNPs associated with 

DTC risk (P<0.05) in dataset 2. The reliability of the identified SNPs was confirmed by PRS and 

Bayesian statistics after merging the three datasets. SNPs were used to describe the case/control state 

of individuals by ML classifier.

Starting from 171 SNPs associated with DTC, 15 were positive in both the datasets 1 and 2. Using 

these markers, PRS revealed that individuals in the fifth quintile had a 7-fold increased risk of DTC 

than those in the first. Bayesian inference confirmed that the selected 15 SNPs differentiate cases 

from controls. Results were corroborated by ML, finding a maximum AUC of about 0.7. 

A restricted selection of only 15 DTC-associated SNPs is able to describe the inner genetic structure 

of Italian individuals and ML allows a fair prediction of case or control status based solely on the 

individual genetic background. 
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INTRODUCTION

Thyroid cancer is the most common endocrine neoplasia with a worldwide estimated age-

standardized incidence rate of 6.7 per 100000 in 2018 [1]. Differentiated thyroid carcinoma (DTC) is 

the most frequent sub-type of thyroid cancer with increasing incidence in the last 20 years, likely 

because of the increased knowledge of associated risk factors and ameliorated diagnostic procedures 

[2]. However, most DTC have a favourable prognosis [3] and the diagnostic-therapeutic procedures 

should aim to avoid both delayed diagnosis and overmedication.

To date, the management of thyroid nodules suspected to be DTC is mainly guided by the sonographic 

risk pattern and the coexistence of other risk factors [3]. Genetics could play a role in helping the 

diagnostic process, assuming the possibility to stratify patients according to a personalized risk profile 

[4]. This stems from the observation that blood relatives of patients diagnosed with DTC show highly 

increased risk for the disease, implying the existence of an important genetic component [5,6]. The 

role of genes in the aetiology of DTC has been studied in populations and most of the risk alleles 

have been identified by case-control and genome-wide association studies (GWAS) [7-15]. However, 

it is still difficult to predict the individual risk of DTC based on the existing data, likely because of a 

complex interaction among multiple co-inherited low/moderate penetrant alleles. In fact, one single 

common variant per se is weakly associated with increased DTC risk, which could instead emerge as 

a cumulative effect of several single nucleotide polymorphisms (SNPs) with individual low impact. 

Thus, the overall risk could be the result of complex gene-gene and gene-environment interactions.

In order to take into account multiple alleles, the measure of disease susceptibility could be provided 

by calculating the polygenic risk score (PRS), where each variant allele is treated as an individual, 

independent, risk factor and subjects are stratified according to the number of risk alleles, in additive 

or weighted models. The so calculated cancer risk may achieve relatively high odd ratio (OR) values 

[16] [17-22]. For DTC, it has been shown that people carrying ≥14 risk alleles have an about 8-fold 

increased risk compared to people carrying ≤7 risk alleles [23,24]. Therefore, the PRS is a promising 
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method for risk prediction. However, gene-gene interactions are likely too complex to be explained 

by simple additive or weighted models and alternative methods are under exploration.

Machine learning (ML) is increasingly used for predicting individuals' inherited genomic 

susceptibility to cancer [25]. Another interesting approach is represented by Bayesian statistics for 

population genetics, in which individuals are assigned to ethnic sub-groups or phenotypes according 

to their underlying genetic structure [26,27]. Genetic data may serve to run ML diagnostic analyses 

aimed at stratifying individuals into disease risk categories [28]. However, these methods have not 

been fully exploited for dissecting complex traits, such as the susceptibility to cancer, assuming it as 

a phenotype information. To the best of our knowledge, ML has never been applied before to the 

study of genetic predisposition to DTC.

In this replication study, we aimed to assess the genetic signatures associated with the predisposition 

to DTC. For this purpose, a small number of single nucleotide polymorphisms (SNPs) descriptive of 

a DTC-related genotype were selected in three independent genetic datasets and confirmed by 

Bayesian statistics. The diagnostic performance of the selected markers in categorizing the 

case/control state of subjects was evaluated by ML techniques.
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METHODS

Study design

Briefly, we identified a relatively low number of SNPs highly associated with DTC by sequential 

association analyses in three independent case/control series. These SNPs served as a genetic 

information to describe the case/control status of Italian individuals by ML methods. Firstly, a 

selection of 171 candidate DTC-associated SNPs was obtained from the literature (see paragraph 

“SNPs selection”). The SNP list was further reduced after testing for SNPs association with the 

disease. To this purpose, genetic data from two of the available datasets (dataset 1 and 2; Figure 1a), 

each comprising Italian DTC subjects and healthy controls, were used. Briefly, 34 SNPs considered 

significantly associated with DTC in dataset 1 were genotyped ad hoc and checked for relevance in 

the independent dataset 2. SNP selection criteria are reported in detail in the paragraph “Statistical 

analysis”. Finally, a total of 15 SNPs highly associated with DTC in both datasets were obtained and 

further genotyped ad hoc in the independent dataset 3. Their potential of describing DTC signature 

was confirmed by a control Bayesian clustering in the merged three datasets (see paragraph “Bayesian 

statistics for population genetics”). ML methods were run to confirm the case/control state of 

individuals, using the selected 15 SNPs as input variables. To this purpose, an extended dataset was 

built by merging the two largest datasets (1 and 3), to obtain a pool of randomly chosen “training” 

(80% of the merged dataset) and “testing data” (20%).  After finding the most effective ML 

algorithms, a replication analysis was set on the dataset 2. The whole procedure is summarized in 

Figure 1b.

[FIGURE 1]

Subjects

Dataset 1 has been previously described in a GWAS on DTC [12]. It included Italian DTC cases and 

controls recruited consecutively from the Department of Endocrinology, University Hospital of Pisa, 

Italy in the period January 2009-August 2011 [12]. Overall, the genotypes of 649 DTC patients and 

431 healthy controls were considered. Dataset 2 included 234 Italian DTC patients and 101 healthy 
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controls recruited at the Unit of Endocrinology, University Hospital of Modena, Italy, between 2008 

and 2012. These individuals were genotyped for 34 DTC-associated SNPs (“SNP selection” section) 

after DNA extraction from blood samples (Supplementary text). Dataset 3 included 404 DTC subjects 

and 392 controls recruited at the Department of Endocrinology, University Hospital of Pisa, Italy, 

between September 2011 and December 2012, and subjected to genotyping for 15 DTC-associated 

SNPs (“SNP selection” section) after extraction of DNA from blood. All the DTC diagnoses have 

been histologically confirmed after thyroidectomy. Controls were recruited among healthy volunteers 

without known thyroid disease and/or with negative thyroid ultrasound. In details, controls of Dataset 

1 and 3 comprised healthy individuals without known thyroid disease recruited during a routine health 

screening, or blood donor volunteers. Controls of Dataset 2 were volunteers recruited by local 

advertisement as the control group for an ongoing case-control study on thyroid cancer; one of the 

participants had a personal history of thyroid disease and they had never undergone any thyroid 

ultrasound scan before; they performed thyroid ultrasound and thyroid resulted to be normal for size, 

position and echogenicity, without cystic or nodular lesions.

All the subjects enrolled in the three independent datasets were unrelated.

Information about sex, age at diagnosis of DTC for cases and age at recruitment for controls, 

anthropometric measurements (height and weight) were collected. Body-mass index (BMI) was also 

calculated as the weight (kg)/height (m)2 ratio. Individuals underwent peripheral blood withdrawn 

and samples were stored at -20°C until analysis. DNA was extracted from EDTA-venous blood 

samples using standard methodologies. In dataset 1, SNPs missing in the GWAS were obtained by 

imputation by exploiting the linkage disequilibrium (LD) blocks [29]. SNP genotyping in datasets 2 

and 3 was performed with the iPLEX® assay (Life & Brain GmbH, Bonn, Germany) (Supplementary 

text).

The local Ethics Committees of Modena and Pisa (Italy) approved the study (Protocol Nr. 122/08, 

Nr. 7116/09 and Nr. 2359/14) and all participants signed a written informed consent.

SNP selection
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We considered all the SNPs associated with DTC on the PubMed database using the following 

keywords alone and/or in different combinations: papillary thyroid cancer, thyroid cancer, thyroid 

tumour, DTC, PTC, GWAS, association. A total of 171 SNPs were initially selected from 156 studies, 

including both candidate gene studies and GWAS, demonstrating an association with DTC (P<0.05) 

(Supplementary table S1). These SNPs were evaluated for their association with DTC risk in the 

dataset 1 (Supplementary text; Supplementary table S2). A subset of 34 selected SNPs successfully 

passed the test and they were genotyped in the dataset 2. 15 SNPs were considered positive 

(Supplementary table S3) and genotyped in the dataset 3. These SNPs were used for the Bayesian 

analysis of population genetic structure and assessment of genetics disease risk using ML algorithms. 

The selection criteria are shown (Figure 2) and further explained in the “Statistical analysis” section.
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[FIGURE 2]

Statistical analysis

Each genotype was evaluated by the chi-square test for the Hardy-Weinberg equilibrium (HWE) in 

controls, employing the Bonferroni’s correction (P threshold=1.47x10-3). The association between 

the health state and genotypes was evaluated with a multivariate logistic regression analysis (MLRA). 

The model returns the odds ratio adjusted (ORadj) for covariates (e.g. sex and age) and their 95% 

confidence intervals (CI) with a statistical P-value of the association. The most likely mode of 

inheritance was evaluated performing an extended MAX test [30] based on multiplicity-adjusted P-

values for the Cochran–Armitage trend test of the dominant, additive and recessive models.

 In order to select SNPs robustly associated with the DTC risk, among the 171 candidates, we carried 

out a two-stage case-control association study. The first step was performed by evaluating the extent 

of association of the candidate SNPs with DTC risk obtained in dataset 1 [12]. For each SNP, the 

additive, recessive and dominant model of inheritance were evaluated and SNPs showing a 

statistically significant association (p<0.05) were passed to the second step, performed on dataset 2.

The selected SNPs served for PRS and weighted PRS (wPRS) calculation, in the three merged 

datasets. The PRS was built by summing the total number of risk alleles for each subject (attributing 

the value of 1 to each risk allele). The wPRS was built by assigning to each genotype the relative OR 

obtained in the GWAS. Then, the ORs were multiplied. For PRS, we assessed the cumulative effect 

of the independent significant SNPs with an additive model. For each SNP the genotypes were coded 

as 0, 1 or 2, indicating the number of risk alleles in the genotype. Then, individuals were grouped 

according to the total number of risk alleles into quintiles with the lowest group used as the reference. 

For wPRS, as previously reported [31], the number of risk alleles for each genotype was multiplied 

for its relative weight, based on the association of the allele with the health state, as: PRS=β1 x1+ β2 

x2 + [⋯] + βk xk +⋯+ βn xn; where βk is the per-allele log OR for the disease associated with SNP 

k, xk is the allele dosage for SNP k, and n is the total number of SNPs included in the PRS.

Bayesian statistics for population genetics
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We tested the capability of the 15 selected SNPs to provide a DTC genetic signature in the merged 

datasets 1, 2 and 3. The genetic structure of DTC patients and healthy controls was explored according 

to methods of Bayesian statistics for population genetics implemented in the STRUCTURE 2.3.4 

software [27], as previously described [32]. The case/control state of individuals was unknown to the 

software, which inferred genetic structures using only SNP data. Bayesian analysis and software 

settings are detailed in the supplementary online material (Supplementary text).

Machine Learning-based analysis

In the preliminary phase of ML algorithm selection, different approaches were tested, namely k-

Nearest Neighbors (kNN), Naïve Bayes (NB) [33], Random Forest (RF), Gradient Boosting (GB) 

[34], AdaBoost (AB) [35] and Support Vector Machine (SVM) algorithms, as implemented in the 

SciKit-Learn [36] library for Python. The AdaBoost classifier [37] was selected as the best overall 

algorithm (Supplementary text; Supplementary figure S1). We used the SciKit-Learn implementation 

of the AdaBoost classifier, where the base learner is a Decision Tree classifier with a maximum depth 

of 1, sometimes referred to as “decision stump”. The total number of base estimators was tuned in 

the range 1-100 (with a step of 1), to maximize ROC-AUC on the test set. The classifier was run on 

three datasets (Table 1): (1) a training set, used for the training of the algorithm, composed of a 

randomly extracted 80% of the merged dataset 1+3; (2) a test set, for an initial performance evaluation 

and hyperparameter tuning, composed of the remaining 20% of the merged 1+3 dataset; (3) a 

validation set, corresponding to dataset 2 after pruning missing values, which constitutes a third, 

unseen dataset used for external validation.

[TABLE 1]
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RESULTS 

Population characteristics

Characteristics of subjects enrolled in the study are summarized (Table 2).

[TABLE 2]

SNPs associated with DTC 

The overall workflow for identification of SNPs associated with the risk of DTC (Figure 2) is 

extensively descripted and results provided as an online supplementary material (Supplementary 

text). We selected 171 SNPs associated with DTC with a P < 0.05 from the online literature database 

(Supplementary table S1) and SNPs associated with the risk of DTC in dataset 1 with a P < 0.05 were 

considered as positive (Supplementary table S2), then were genotyped in dataset 2. All SNPs were in 

HWE in controls. Among these SNPs, four were robustly associated with the risk of DTC (rs965513, 

rs3758249, rs7048394, rs944289), as they accomplished the Bonferroni’s threshold of statistical 

significance in the combined dataset 1 and 2 (Supplementary table S3). Three SNPs (rs6759952, 

rs966423, and rs1203952) were considered highly likely DTC risk markers as they were positive in 

both datasets at the nominal P-value of 0.05. Eight SNPs (rs10238549, rs7800391, rs1799814, 

rs7617304, rs4808708, rs10781500, rs1061758, and rs10877887) were considered as possible DTC 

risk markers, as they were statistically significant at the level of 0.05 in the combined datasets. Thus, 

we finally selected 15 SNPs strongly associated with DTC in datasets 1 and 2 (Table 3). None of 

them was in linkage disequilibrium with each other (r2<0.8).

[TABLE 3]

These 15 SNPs were then genotyped in dataset 3, while the remaining 156 SNPs were considered not 

associated with the risk of DTCs in our study populations.

Calculation of polygenic risk scores

The 15 positive SNPs were used for the calculation of PRS and wPRS in the merged data of all three 

datasets. Subjects were divided in quintiles based on the number of risk alleles and the lowest quintile 

was used as the reference. The risk increased progressively with the increasing number of risk alleles, 
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up to the value of ORadj = 6.87 (95% CI = 4.9-9.64) for the fifth quintile in the wPRS. All the 

differences were highly statistically significant both in the PRS and the wPRS, already from the 

second and third quintile (Table 4; Supplementary figure S2).

[TABLE 4]

Exploration of individual’s genetic structures according to DTC-related SNPs

The association between risk of DTC and individual genetic profile was explored by the application 

of Bayesian inference. The 15 SNPs used for the PRS were also employed as an input for the 

STRUCTURE software, run on the merged datasets 1, 2 and 3. STRUCTURE returned the relative 

weight of each component in the genetic background of each subject shown as a bar plot (Figure 3). 

Five (k=5) possible genetic structures (components) were found as the most representative of the 

datasets [26] (Supplementary text). The pattern, calculated using 15 SNPs, reflects at a glance the 

different DTC-related genetic profile between cases (DTC) and controls.
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[FIGURE 3]

Output data representing the DTC-related genetic background were analysed to evaluate the quality 

of Bayesian inference by multiple regression analysis. We identified two components strongly 

associated with the case/control state: the component 2 (k2) had a F-ratio of 327.66 and the 

component 3 (k3) had a F-ratio of 106.26 (both p<10-6). Results were confirmed by multivariate 

logistic regression analysis using the two components as continuous variables. In this case, we found 

that they were strongly associated with DTC risk, with ORs of 143.4 (95% CI= 52.7- 390.2) and 12.2 

(95% CI=5.72-26.1). 

ML-based DTC description using SNP information

The AdaBoost algorithm was found to be the most effective and well-calibrated in classifying 

individuals (Supplementary text; Supplementary figure S3). The classifier was further tuned in terms 

of the number of base estimators hyperparameter, in a range of 1 to 100. We found 25 to be an optimal 

number of base estimators, providing an optimal balance between computational cost and model 

accuracy (Supplementary text; Supplementary figure S4 and S5). Additionally, predicted probability 

calibration was implemented using Platt’s method [38]. The detailed metrics of the AdaBoost 

classifier are reported (Table 5), as well as ROC curves and AUC of all datasets (Figure 4A).

[TABLE 5]

Results clearly highlight that there is no significant overfitting on the training set (Table 5; Figure 

4A), given the reduced differences between the training and test set performance in terms of AUC 

(0.04), accuracy (0.6%), sensitivity (0.01) and specificity (0.02). This is also confirmed by the 10-

fold cross-validation on the train/test splits, which resulted in an average ROC AUC of 0.65 ± 0.03 

(SD). In addition, when classifying the samples from the external validation set, which again showed 

comparable classification performance, the model’s ability to generalize on unseen data noticeably 

emerges. Analysis of the predicted probabilities revealed that they fairly match the real distribution 

of DTC risk both in the test and validation sets (Supplementary text; Supplementary figure S5). The 
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performance of other classifiers was weaker than that of the AdaBoost algorithm (Supplementary 

figure S3, S6 and S7).

[FIGURE 4]

Finally, the importance of each individual SNP allele in the classification by the trained AdaBoost 

model was evaluated with the aim of exploring the weight of each individual SNP in the identification 

of the DTC state (Figure 4B). The most important SNPs, with a relative feature importance greater 

than 0.6, were rs966423, rs6759952, rs966513, rs7617304, rs3758249, rs10238549, rs4808708, and 

rs1799814. Interestingly, the top two SNPs, namely rs966423 and rs6759952 were both considered 

as highly likely to be predictive in the SNP selection phase (see paragraph “SNPs associated with 

DTC”).

It is worth mentioning how some of the SNPs which were deemed “robustly associated with the risk 

of DTC” or “highly likely DTC risk markers” in the association analysis, such as rs7048394, rs944289 

and rs1203952, respectively, are not among the top-ranking in terms of importance in the ML model. 

This is due to the fact that the prediction of the AdaBoost model is based on the given constellation 

of all the selected SNPs rather than on the SNPs taken individually. Thus, in this specific classification 

task the combination of the top-ranking SNPs in Figure 4 might contain enough information, so that 

some of the SNPs which were strongly associated to DTC risk in the initial association analysis 

become progressively less important, or even redundant, and do not improve the overall predictive 

performance further.
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DISCUSSION

The present study outlined the potential of a minimal selection of 15 DTC-associated SNPs to confirm 

the disease predisposition. We re-evaluated the candidate risk loci described in the literature as 

individually associated with DTC. Candidates were verified for their association by consulting the 

results obtained in a previous GWAS [12]. The most strongly associated SNPs were ad hoc genotyped 

in two independent datasets, accounting for a total of 1131 individuals. The 15 best-performing SNPs 

were used for the calculation of PRS and wPRS and employed for reconstructing the genetic structure 

of individuals. Most importantly, we used these SNPs to describe the DTC and healthy control state 

of individuals using ML. Interestingly, the classification using the AdaBoost algorithm showed fair 

performance in the test set, with accuracies as high as 64%, as well as in the external validation set, 

settling at 67% (Table 5). Considering that the ROC AUC is a performance measurement for the 

classification [39], we may assume to have detected a minimal pool of SNPs consistently contributing 

to the risk of developing DTC in our Italian dataset, as an example of polygenic disease. This has 

been further confirmed by the fair confidence of the AdaBoost in classifying the disease state, as 

highlighted by the PPV value of up to 0.7 on the external validation set. Our results provide a 

substantial improvement in understanding the impact of genetics on DTC, which until now could be 

estimated by PRS and could explain only the 11% of the total genetic variability linked to the disease 

[24,23]. Moreover, the 15 selected SNPs describe the inner genetic structure of sampled individuals 

when assessed using Bayesian inference from population genetics. We evaluated whether this method 

would decipher differences between cases and controls, assigning a phenotype-specific genetic 

footprint to individuals, with a quantitative approach. Individuals were distributed among two 

subpopulations with different genetic patterns, following the DTC or healthy control state, although 

a certain degree of admixture was found. This analysis confirmed that the selected SNPs are 

representative of the genetic signature linked to the disease. When using these SNPs for a ML-based 

analysis of DTC, we obtained a fair classification power.
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Overall, we found six SNPs within the FOXE1, PTCSC3-LINC00609, FOXA2 and DIRC3 genes 

robustly associated with the risk of DTC or categorized as highly likely risk factors, confirming they 

are well-established predisposing factors for DTC [8,11,12,14,40,41,13]. SNPs in the DIRC3 

(rs966423, rs6759952) and FOXE1 (rs3758249) genes were also highly relevant features for DTC 

risk. Other eight SNPs, such as those falling within the CYP1A1, NIS-SLC5A5, IL11RA and let-

7i/LINC01465 genes [42-60], did not replicate formally in the second stage of the study, although 

they maintained or reinforced the statistical significance of the GWAS in the combined analysis. One 

SNP falling within the CYP1A1 gene (rs1799814) was also highly relevant for DTC predisposition. 

Interestingly, there is relative lack of knowledge on the role of the remaining three genes, i.e. 

IMMP2L, RARRES1 and CARD9-SNAPC4 in thyroid cancer. However, since the selected SNPs were 

associated with DTC in the combined analysis, they could be reasonably involved in the aetiology of 

the disease. They have been previously involved in the regulation of cell metabolism, estrogen 

physiology, tumour suppression or progression and autoimmune diseases [61-66]. These three genes 

are certainly interesting for future studies in connection with DTC in the future. The remaining 137 

SNPs were not confirmed in dataset 1, while other 19 SNPs positive in the GWAS were not confirmed 

in dataset 2. They could have been detected as the consequence of chance findings in underpowered 

studies published in literature, resulting as false or weakly positive signals. An extensive discussion 

of these gene SNPs is provided as a supplementary material (Supplementary text).

Considering the 15 most associated SNPs, we also calculated PRS and wPRS, confirming that 

the disease risk increases together with the number of risk alleles. An OR of 6.9 (95% CI = 5.4-8.8) 

for the top 10th decile was found based on a 10-SNPs model, including SNPs falling within PCNX2, 

DIRC3, LRRC34, EPB41L4A, NRG1, PTCSC2, STN1-SLK, PTCSC3 LINC00609, MBIP, and SMAD3 

genes. Our result are in agreement with previous studies concluding that the genetic predisposition to 

PTC may be resumed by only 10 SNPs, found by wPRS analysis and accounting for between 8 and 

11% of the total variability [24,23]. In particular, that study had only three markers in linkage 

disequilibrium with SNPs found herein and lacking the requisites for being selected and run on ML 
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analysis (Supplementary text). It is correct to specify that previous studies only studied PTC and not 

DTC. However, we believe the comparison is feasible as PTC accounts for at least 85% of all thyroid 

cancers. Similar OR values were found in a previous GWAS performed using a 11-SNPs signature 

[13], that shared only the DIRC3 gene region with our proposed signature. Taken together, these data 

indicate that unknown, low-penetrance SNPs contributing to genetic predisposition to DTC may be 

discovered using different approaches. A recent study on Korean population, found lower ORs (1.46 

and 1.56 for unweighted and weighted PRS), but considering only six SNP associated to thyroid 

cancer [67]. 

Obviously, our study is limited by the fact of not having considered all the possible SNPs associated 

with DTC in the literature but only those associated with the DTC risk in the GWAS enrolling subjects 

of dataset 1. Therefore, classification algorithms relied on the genetic information alone. Data about 

the exposure to important risk factors, such as ionizing radiation and family history of DTC, were 

only available for a subset of the study population (not shown). Therefore, they could not be 

considered in the statistical analyses and for the construction of ML models. Another issue may 

consist in the ethnicity of datasets used herein, which consists in Italian individuals. The association 

between these SNPs and the disease would be explored in individuals of different ethnicity. Finally, 

in case-control studies, proper sample selection is crucial to attain robust disease prediction: 

individuals recorded as healthy controls might develop DTC even in older age, even if subjects had 

no thyroid abnormalities at the time of ultrasound analysis. Such individuals should be considered as 

spurious negatives. Similarly, young DTC individuals might have seen the development of the disease 

following causes beyond the genetic predisposition, such as exposure to ionizing radiation, and might 

thus represent spurious positives. These aspects represent confounding factors when attempting to 

extrapolate the genetic footprint of the disease used to build ML models. For the reasons listed above, 

the direct clinical impact of our result is limited. It has yet to be clarified which other genetic markers 

cover the remaining slice of heritability or predisposition. Then it is necessary to analyze genetics 
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together with other environmental risk factors, some of which are difficult to measure, such as 

exposure to radiation or pollutants.

In conclusion, we described a procedure based on a combined PRS and ML approach that allows a 

fair description of the case or control state based solely on the individual genetic background. This 

analysis provided evidence for a new, restricted selection of 15 SNPs associated with the risk of DTC, 

extending the series previously found using different approaches [24] and further delineating the 

genetic signature of the disease in our Italian dataset. Further developments might aim to implement 

and refine the reported methodology with more covariates and might improve the overall accuracy.
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FIGURE LEGENDS

Figure 1. Datasets and project’s pipeline. A) Summary of dataset composition, highlighting the 

progressive refinement of the SNP selection process. Dataset 1 SNPs were extracted from a GWAS 

[12], while datasets 2 and 3 SNPs were genotyped ad hoc for potentially informative SNPs. The 34 

SNPs significantly associated with DTC in dataset 1 were genotyped ad hoc and checked for 

relevance in the independent dataset 2. Then, 15 SNPs highly associated with DTC in both datasets 

1 and 2 were further genotyped ad hoc in the independent dataset 3. B) Procedure for statistical SNP 

discovery and subsequent ML implementation. After SNPs selection, we tested the capability of the 

15 selected SNPs to provide a DTC genetic signature in the merged datasets 1, 2 and 3 with Bayesian 

statistics for population genetics. Then, Machine Learning methods were run to confirm the 

case/control state of individuals, using the selected 15 SNPs as input variables. An extended dataset 

was built by merging the two largest datasets (1 and 3), to obtain a pool of randomly chosen “training” 

(80% of the merged dataset) and “testing data” (20%).  After finding the most effective ML 

algorithms, a validation analysis was set on the dataset 2. Shaded colours highlight involved datasets. 

Yellow = dataset 1; green = dataset 2; light-blue = dataset 3.

Figure 2. SNP selection. A) Criteria used for SNP selection. B) SNP subsets. Among the 171 SNPs 

selected from the literature (Supplementary table S1), only 34 were associated with DTC in the 

dataset 1 (p<0.05; Supplementary table S2) and genotyped in the dataset 2. 15 SNPs were finally 

selected from datasets 2 as variables for ML analysis and genotyped in the dataset 3 (bold). Panels A 

and B have matched colours and letters.

Figure 3. DTC-associated genetic structure of cases and healthy controls. Bar plot was calculated by 

the STRUCTURE software in the merged datasets 1, 2 and 3. Each individual is represented by a 

vertical line, in which colours indicate the contribution of each of the k=5 components to the 

individual genetic background. Cases and controls were ordered for graphical reasons, showing 

different genetic profiles at a glance, although indicating a certain degree of admixture.

Page 31 of 93 Accepted Manuscript published as ETJ-22-0058.R2. Accepted for publication: 17-Aug-2022

Copyright © 2022 the authors Downloaded from Bioscientifica.com at 08/18/2022 10:21:25AM
via free access



32

Figure 4. Results from the ML-based DTC prediction and SNP relative importance. A) ROC curves 

obtained on all datasets with the AdaBoost model. Dashed line represents random choice. B) Relative 

feature importance of all variables (SNPs) in the AdaBoost model. Data normalized to most important 

feature. Suffix “_2” indicates the second allele. Feature importance is calculated as an average over 

the individual classifiers used for probability calibration.

TABLE LEGENDS

Table 1. Summary of training, testing and validation ML datasets.

Table 2. Characteristics of study population.

Table 3. List of the 15 SNPs associated with DTC in datasets 1 and 2.

Table 4. Odds ratio estimates for the 15-SNPs PRS quintiles. DTC state obtained in the three merged 

datasets was considered, using the bottom quintile (0 to 20%) as the reference group. The multivariate 

logistic regression model included the adjustment of ORs for age, BMI, and gender. wPRS: weighted 

polygenic risk score; PRS: unweighted polygenic risk score.

Table 5. Classification metrics of AdaBoost classifier on all datasets.
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ML dataset Origin of dataset* # Individuals Cases (%) Controls (%)
Training 80% datasets 1 + 3 1086 58.2 41.8
Testing 20% datasets 1 + 3 272 62.1 37.9

Validation 100% dataset 2 201 65.7 34.3
* Summary of datasets after removing individuals with missing data in the genotype (% cases; % 
controls): dataset 1 = 949 (59.5; 40.5); dataset 2 = 201 (65.7; 34.3); dataset 3 = 409 (57.7; 42.3)

Table 1. Summary of training, testing and validation ML datasets.
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Dataset 1 Dataset 2 Dataset 3
Cases Controls Cases Controls Cases Controls

 (n=649) (n=431)  (n=234) (n=101) (n=404) (n=392)
Females (%) 507 (78%) 320 (74%) 167 (71%) 61 (60%) 287 (71%) 243 (62%)
Age (years) 37.8±0.85 46.8±0.97 49.7±14.0  43.7±11.4 44.8±12.7 43.8±9.6
Weight (Kg) 71.0±1.31 70.4±1.37 74.5±15.0  71.3±16.1 79.3±17.9 69.2±14.5
BMI (Kg/m2) 25.3±0.39 25.2±0.38 26.9±4.9  26.1±5.0 27.5±4.7 23.9±3.7

Values are expressed as number and percentages (%) or average and standard error. BMI = body mass index.

Table 2. Characteristics of study population.
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SNP ID Genomic location Gene Description
rs965513 chr9:97793827 PTCSC2/FOXE1 Papillary thyroid carcinoma susceptibility 

candidate 2/Forkhead box E1
rs375824

9
chr9:97851858 PTCSC2/FOXE1 Papillary thyroid carcinoma susceptibility 

candidate 2/Forkhead box E1
rs704839

4
chr9:97843151 PTCSC2/FOXE1 Papillary thyroid carcinoma susceptibility 

candidate 2/Forkhead box E1
rs944289 chr14:36180040 PTCSC3/LINC00

609
Papillary thyroid carcinoma susceptibility 

candidate 3
rs675995

2
chr2:217406996 DIRC3 Disrupted in renal carcinoma 3

rs966423 chr2:217445617 DIRC3 Disrupted in renal carcinoma 3
rs120395

2
chr20:22633494 FOXA2 Forkhead box A2

rs102385
49

chr7:110540965 IMMP2L Inner mitochondrial membrane peptidase 
subunit 2

rs780039
1

chr7:110568186 IMMP2L Inner mitochondrial membrane peptidase 
subunit 2

rs179981
4

chr15:74720646 CYP1A1 Aryl hydrocarbon hydroxylase

rs761730
4

chr3:158745312 RARRES1 Retinoic acid receptor responder 1

rs480870
8

chr19:17890877 NIS/SLC5A5 Solute carrier family 5 member 5

rs107815
00

chr9:136374886 CARD9/SNAPC4 Caspase recruitment domain-containing 
protein 9

rs106175
8

chr9:34652333 IL11RA Interleukin 11 receptor subunit alpha

rs108778
87

chr12:62603400 LINC01465/MIR
LET7I

Long intergenic non-protein coding RNA 
1465/microRNA Let-7i

Table 3. List of the 15 SNPs associated with DTC in datasets 1 and 2.
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wPRS PRS
Quintile OR(adj) 95% confidence 

interval
P OR(adj) 95% confidence 

interval
P

I Reference Reference
II 2.12 1.55 – 2.91 2.92x10-6 1.43 1.04  – 1.97 0.0282
III 2.52 1.84 – 3.44 7.02x10-9 2.55 1.90  – 3.40 2.87x10-10

IV 3.15 2.30 – 4.32 9.65x10-13 3.04 2.26  – 4.09 2.02x10-13

V 6.87 4.90 – 9.64 6.12x10-29 5.84 4.18  – 8.15 3.75x10-25

Table 4. Odds ratio estimates for the 15-SNPs PRS quintiles. DTC state obtained in the three merged 

datasets was considered, using the bottom quintile (0 to 20%) as the reference group. The multivariate 

logistic regression model included the adjustment of ORs for age, BMI, and gender. wPRS: weighted 

polygenic risk score; PRS: unweighted polygenic risk score.
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Metric Training set Test set Validation set
NPV 0.65 0.56 0.52
PPV 0.64 0.66 0.70

Sensitivity 0.88 0.87 0.85
Specificity 0.29 0.27 0.32
Accuracy 64% 64% 67%
F1-score 0.74 0.75 0.77

F0.5-score 0.67 0.70 0.73
F2-score 0.82 0.82 0.82

Notes to Table 5: NPV = Negative Predictive Value = TN/(TN+FN); PPV = Positive Predictive Value = 
TP/(TP+FP). Fβ scores are defined as:

Fβ =∗
(1 + β2) ∗ 𝑇𝑃

(1 + β2) ∗ 𝑇𝑃 + β2 ∗ 𝐹𝑁 + 𝐹𝑃

Table 5. Classification metrics of AdaBoost classifier on all datasets.
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SUPPLEMENTARY TEXT AND FIGURES

SUPPLEMENTARY METHODS

DNA extraction

Genomic DNA was extracted from blood samples by the automated extractor EZ1 Advanced XL 

using the EZ1 DNA Blood Kit (Qiagen, Hilden, Germany). DNA concentrations and purity were 

determined by the NanoDrop™ 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, 

USA). Samples from datasets 2 and 3 were shipped in dry ice for SNP genotyping, which was 

performed by iPLEX® assay (Life & Brain GmbH, Bonn, Germany) as an on-demand service 

including primer probes design and validation.

SNP selection for association in the dataset 1

The list of 171 SNPs selected from literature was evaluated for their statistical association with the 

risk of DTC in the dataset 1 (Supplementary table S1). In Supplementary Table S1 significant SNPs 

are ranked in ascending order of the P-values of the association tests referring to the best model of 

inheritance (r=recessive; d=dominant; a=additive). The non-significant SNPs are reported in 

alphabetical order of the gene names. SNPs within the same block of linkage disequilibrium (LD) are 

reported consecutively. Within each gene, the blocks of LD are numbered progressively. For each 

SNP, the parameter r2 is showed as measure of LD and it is referred to the pair-wise distance to the 

first listed SNP within the block. SNPs associated at nominal level of <0.05 were further genotyped 

in a replication set (second stage, last column), with the exception of rs1048943 because the low 

minor allele frequency (MAF=0.021) could not provide the adequate statistical power.

Bayesian statistics for population genetics

In the “assisted” analysis, the STRUCTURE software runs using genetic data of 15 SNPs found to 

be associated with DTC after the selection procedure. The case/control status of all individuals was 
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known to the software and used to assist inference using the LOCPRIOR model. The Bayesian 

inference was launched using Markov chain Monte Carlo (MCMC) simulations after burn-in periods. 

The number of possible subpopulations (K) ranged from 1 to 10, for a total of 20 iterations. The most 

probable K number was calculated using the online tool STRUCTURE Harvester [1] applying the 

ΔK method [2]. Results from the 20 iterations were packaged by the Cluster Markov Packager Across 

K (CLUMPAK) online tool [3] using the default settings. Separate runs on unmerged datasets were 

also performed.

To test if this method was suitable for diverse datasets, we repeated the same protocol using dataset 

3 (Table 1) as input, consisting of a balanced pool of 796 individuals, and report results using the 

same metrics.

Machine Learning-based disease analysis

The performance of a Machine Learning (ML) model in describing the patient/control state was 

evaluated. To evaluate the performance of different ML methods, an extended dataset was built by 

merging the two largest datasets (1 and 3), to obtain a highly informative and balanced pool of training 

data: randomly chosen 80% of this extended set was used to train ML models, with the case or control 

state known to the classifier, and the remaining 20% of the subjects was used for an initial 

performance evaluation, with the original labels hidden. After finding the most effective ML 

algorithms for the present scenario, i.e using the 15 SNPs as input variables, their predictive capability 

was validated on the dataset 2, to quantitatively assess their generalization capabilities. The whole 

procedure is summarized in the main article (Figure 1).

ML methodologies were applied to predict the patients’ disease state based solely on the information 

coming from the previously selected 15 SNPs. Thus, we used the three datasets (Figure 1A) as inputs 

for different types of classifiers. To prepare the data and increase ML performance and robustness, 

any individual with missing data in the genotype was pruned from all datasets, to avoid that ML 

algorithms interpret missing data as a genetic information. SNP variables were encoded as follows: 
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firstly, each SNP genotype was split into its two alleles, thus yielding a total of 30 variables, for which 

ordinal variable encoding was used, to convert the four-letter genetic code (A-T-G-C) to numerical 

values (1-2-3-4). Since individuals with missing values were pruned from the datasets, no other 

numerical value was present in the training data. The final composition of the three datasets after the 

pruning of missing values is summarised (Table 1).

For the subsequent ML implementation, three datasets were extracted: (1) a training set, used for the 

training of the algorithm, composed of a randomly extracted 80% of the merged dataset 1+3; (2) a 

test set, for an initial performance evaluation and hyperparameter tuning, composed of the remaining 

20% of the merged 1+3 dataset; (3) a validation set, corresponding to dataset 2 after pruning missing 

values, which constitutes a third, unseen dataset used for external validation. Indeed, it should be 

noted that the earlier discovery of potentially informative SNPs to genotype (see paragraph “SNP 

selection”) did not involve any ML algorithm: since the selection was not performed based on ML 

performance outcome, the validation set has never been fed to the algorithm at any earlier stage. 

Conversely, the rationale behind merging datasets 1 and 3 to obtain a large training set lies in the 

uniformity of sampling location and the goal to obtain a large pool of data for improved ML training. 

A graphical summary of the ML pipeline is reported (Supplementary figure S1).

The performance of the tested ML algorithms was evaluated both on the internal test set and on the 

external validation set, to ensure the generalization ability of the trained algorithms and to assess the 

tendency towards overfitting. More in detail, the following metrics were calculated and reported: 

Receiver Operating Characteristic area under the curve (ROC-AUC), Accuracy, Positive Predictive 

Value (PPV), Negative Predictive Value (NPV), Sensitivity, Specificity, F1-Score, F0.5-score, F2-

score.

In the preliminary phase of ML algorithm selection, different approaches were tested, namely k-

Nearest Neighbors (kNN), Naïve Bayes (NB) [4], Random Forest (RF), Gradient Boosting (GB) [5], 

AdaBoost (AB) [6] and Support Vector Machine (SVM) algorithms, as implemented in the SciKit-

Page 44 of 93Accepted Manuscript published as ETJ-22-0058.R2. Accepted for publication: 17-Aug-2022

Copyright © 2022 the authors Downloaded from Bioscientifica.com at 08/18/2022 10:21:25AM
via free access



Learn [7] library for Python. The best methodology was initially chosen based on the ROC AUC 

value, and subsequently further optimised for optimal performance in a hyperparameter tuning stage 

(Supplementary figure S1). A ROC curve describes the relationship between the sensitivity and 

specificity of a test by plotting the two against one another while varying the evaluation threshold, 

which determines the outcome of a test. Sensitivity and specificity are inversely related: as one 

increases the other decreases. Conventionally, since both values range between 0 and 1, the sensitivity 

(true positive rate) is plotted against 1 minus the specificity (false positive rate). The plot is, therefore, 

in essence, a representation of the trade-off between detecting true and false positive cases.

Supplementary figure S1. Pipeline of ML data analysis. Randomly chosen 80% of the merged datasets 1 and 

3 served for training the ML algorithm, while the remaining, 20% was the test set. The dataset 2 was used as 

an external validation set. Individuals with missing SNP data were excluded from the ML analysis.

Supervised ML approaches was applied here to classify the case/control state of the individuals. Three 

datasets were used for the training, testing and external validation of ML algorithms, constituted 

respectively by 80% of merged datasets 1+3, 20% of merged datasets 1+3, and dataset 2. Among the 

tested algorithms, namely kNN, NB, RF, GB, AB and SVM, the most suitable was chosen based on 

the ROC-AUC, Sensitivity, Specificity, Accuracy and prediction probability calibration on both the 

test and validation sets (Table 5).

After analysing the performances of the different classifiers (Supplementary Figure S1 and S3), the 

Naïve Bayes classifier and the Adaptive Boosting (AdaBoost) classifier were chosen for further 

performance tuning and evaluation. 
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The Naïve Bayes classifier is a supervised learning algorithm relying on Bayes’ theorem and 

assuming naïve conditional independence between features. In detail, in this study a Gaussian Naïve 

Bayes algorithm was used, as implemented in the SciKit-Learn library for Python.

The AdaBoost algorithm was implemented using decision stumps, i.e. decision trees with depth of 1, 

as base estimators, and the number of the latter was tuned to obtain the best AUC while at the same 

time optimising the computational effort. The performance of both classifiers was first evaluated on 

the test set, and subsequently on dataset 3 used as an external validation set, to further check the 

performance of classification of unseen data. Furthermore, the individual metrics including PPV, 

NPV, specificity, sensitivity and accuracy were analysed along with the prediction probability 

calibration to choose the final model, reported in the main text. Finally, the AdaBoost algorithm was 

found to be the most effective and well-calibrated in classifying individuals (Supplementary figure 

S3).

SUPPLEMENTARY RESULTS

SNPs associated with DTC

Considering that the candidate SNPs were associated with the risk of DTC in previous studies and 

that, in the present work, a further validation step was carried out, we considered positive the SNPs 

associated with the risk of DTC with a P-value below the classical statistical significance level of 

0.05. Thus, 34 candidate SNPs were associated with the risk of DTC in the dataset 1 and were further 

evaluated in the dataset 2. The results of genotyping of this series were evaluated alone and combining 

the populations. Some of the SNPs were clearly associated with the risk of DTC in the dataset 2, also 

accomplishing the more stringent statistical significance threshold following Bonferroni’s correction. 

Other SNPs were less clearly associated with the risk. For example, some were associated in both 

populations at the level of 0.05 (e.g. rs6759952), others were associated only when the two 

populations were combined (e.g. rs10238549). We were aware that setting a stringent threshold could 
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lead to discharge truly positive SNPs. Thus, we relaxed the selection, by applying the criteria reported 

in the flowchart (Figure 2) and we drew the following conclusions: 

(a) 4 SNPs (rs965513, rs3758249, rs7048394, rs944289) were robustly associated with the risk of 

DTC, as they accomplished the Bonferroni’s threshold of the statistical significance in dataset 2;

(b) 3 SNPs (rs6759952, rs966423, and rs1203952) were considered highly likely markers of risk of 

DTC as they were positive in both datasets at the nominal P-value of 0.05;

(c) 8 SNPs (rs10238549, rs7800391, rs1799814, rs7617304, rs4808708, rs10781500, rs1061758, and 

rs10877887) were considered as possible marker risk of DTC, as they were statistically significant at 

the level of 0.05 in the GWAS and in the merged dataset;

(d) the remaining 156 SNPs were considered not associated (at least in our Italian populations) with 

the risk of DTC: 137 were negative in the GWAS, 19 were classed as “likely negative” according to 

the results of the dataset 2. 

Considering the number of risk alleles, and weighing each allele based on the measured OR, the ROC 

curve analysis demonstrated an AUC of 0.65, with 10 alleles as the cut-off to better predict the risk 

of having DTC.

Polygenic risk score: OR calculation

OR was calculated in each quintile under both additive and weighted models, in the three merged 

datasets (Table 4; Supplementary figure S2).
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Supplementary figure S2. ORs calculated for each quintile. A) Multiplicative model. B) Additive model. The 

quintile number is indicated in the x-axis. Dots are adjusted ORs, while bars are the 95% CIs.

Choice of ML model

The ROC curve of different types of classifiers (kNN, NB, RF, GB, AB, SVM) on both the test and 

external validation sets are reported (Supplementary figure S3).

Internal Test Set External Validation Set

Supplementary figure S3: ROC curves of different types of classifiers. Inset reports the legend and AUC values 

in brackets.

Based on the initial AUC value, the AdaBoost classifier was chosen for further performance 

assessments and optimization. For the AdaBoost classifier, we tuned the hyperparameter regarding 

the number of base estimators, in a range from 1 to 100 (Supplementary figure S4).
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Supplementary figure S4. Tuning of number of base estimators of AdaBoost classifier based on ROC-AUC 

maximization. Red dashed line represents optimal value of 25.

 As shown (Supplementary figure S4), we found 25 base estimators to be an optimal compromise 

between ROC-AUC maximization and computational cost. Further details and results regarding the 

optimized AdaBoost classifier are reported in the main text.

Calibration of the AdaBoost classifier

A drawback of the classifier appears related to the weak identification of the negative class (i.e. 

controls), as emerges from the comparably low specificity on all datasets, which has a detrimental 

effect also on the ROC AUC, on the negative predictive value and on overall accuracy, which 

however also depends on the underlying class balance of the dataset being classified. Conversely, 

when factoring in the class distribution (DTC vs. controls) of the underlying datasets being classified, 

the algorithm shows a fair confidence in predicting the DTC status (PPV = 0.7 on the external 

validation), at the cost of a comparably poorer specificity. By using Platt scaling on the predicted 
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probabilities, the distribution of the latter fairly matches the real distribution of DTC risk both in the 

test set and in the external validation set (Supplementary figure S5). This was not the case for the 

Naïve Bayes classifier. 

Supplementary figure S5. Calibration plot of the AdaBoost classifier on the test set (left) and the external 

validation set (right). Blue bars represent the mean predicted probability of DTC in each risk decile. Red bars 

represent the actual probability of observing DTC in each decile.

Naïve Bayes classifier

The Naïve Bayes classifier represents the second tested ML model to predict the case/control status 

using only SNP data, relying on Bayesian statistics. After training the Gaussian Naïve Bayes classifier 

on the dataset described in the Methods section, we deployed the classifier on the test set and obtained 

an AUC value of 0.65, with an overall classification accuracy of 57% and an F1 score of 0.57 

(Supplementary table S4). The AUC of the precision-recall curve was 0.74, and a further 10-fold 

cross-validation yielded an average ROC AUC of 0.64 ± 0.02 (SD).

We again assessed the ability of the model to generalize to a further dataset containing unseen data 

by deploying the trained NB classifier on dataset 2 (Supplementary figure S6). Here, an AUC value 

of 0.67 was obtained, with an overall accuracy of 56% and an F1 score of 0.56. 
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Supplementary figure S6. ROC curves obtained on all datasets. Dashed line represents random choice. A 10-

fold cross-validation ROC AUC of 0.65 ± 0.03 (SD) was found. 

Again, metrics from the classification of the test and validation datasets highlight no significant 

overfitting on the training set, with the AUC on the validation being slightly higher than the AUC 

obtained on both the training and test sets. In contrast to what was found for the AdaBoost classifier, 

this classifier appears to have a tendency towards classifying individuals into the negative class (i.e. 

controls), as highlighted by the higher specificity (0.76 and 0.81 on the test and validation sets, 

respectively). However, when factoring in the prevalence of each class in the datasets – i.e. when 

considering NPV and PPV values instead of specificity and sensitivity – the confidence in the positive 

prediction is higher (PPV is 0.76 on the test set, 0.81 on the validation set) if compared to the negative 

prediction (NPV values are 0.46 and 0.43 on the test and validation datasets respectively) 

(Supplementary figure S7). 
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Supplementary Figure S7. Calibration plot of the trained Naïve Bayes classifier on the test set. Blue bars 

represent the mean predicted probability of DTC in each risk decile. Red bars represent the actual probability 

of observing DTC in each decile (ground truth).

While the Naïve Bayes classifier showed comparable performance to the AdaBoost classifier in terms 

of raw AUC values, the calibration of the predicted probability turned out comparably poor 

(Supplementary figure S6). Specifically, this translates into a classifier which is overconfident in 

predicting the negative class, as highlighted by the skewed predicted probability towards higher 

deciles (Supplementary figure S7) and by the comparably high specificity and low NPV. These 

considerations justify the eventual choice of the AdaBoost algorithm in the light of its better 

probability calibration and thus increased robustness when facing imbalanced classification tasks.

SUPPLEMENTARY DISCUSSION

Three SNPs within the FOXE1 gene (rs965513, rs3758249, rs7048394) and one in PTCSC3- 

LINC00609 (rs944289) robustly associated with the risk of DTC. Moreover, other two SNPs within 

DIRC3 (rs6759952 and rs966423) and one in FOXA2 (rs1203952) were categorized as highly likely 

risk factors for DTC. Indeed, there is plenty of literature about the role of FOXE1, PTCSC3, DIRC3, 
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and FOXA2 in affecting the individual susceptibility to thyroid cancer [8-14], revealing they are well-

established predisposing factors for DTC. Other eight SNPs, falling within seven genes and known 

as possible risk factors for DTC, did not replicate formally in the second stage of the study. However, 

they maintained or reinforced the statistical significance of the GWAS in the combined analysis. For 

4 of these genes there is convincing evidence from literature for their role in thyroid tumorigenesis: 

SNPs within CYP1A1 (rs1799814), NIS-SLC5A5 (rs4808708), IL11RA (rs1061758), and let-

7i/LINC01465 (rs10877887) are highly likely to be true markers of individual predisposition to DTC, 

as well as to other cancers [15-33]. 

Interestingly, there is relative lack of knowledge on the role of the remaining three genes, i.e. IMMP2L 

(rs10238549, rs7800391), RARRES1 (rs7617304), and CARD9-SNAPC4 (rs10781500) in thyroid 

cancer. However, since the selected SNPs were associated with DTC in the combined analysis, they 

could be reasonably involved in the aetiology of the disease. IMMP2L encodes for the inner 

mitochondrial membrane peptidase subunit 2 and it is a key-molecule linking cellular senescence to 

metabolism and cell death signalling pathways [34]. It could be hypothesized that polymorphic 

variants within IMMP2L might affect thyrocyte ability to undergo senescence, therefore sustaining 

immortalization. RARRES1, also known as TIG1 (tazarotene-induced gene 1), encodes for a retinoic 

acid regulated carboxypeptidase inhibitor. According to the function of a tumor suppressor, RARRES1 

is hypermethylated in multiple cancers [35,36] and its expression is modulated by estrogens [37], 

suggesting a possible role in the known gender difference of DTC incidence. Finally, CARD9 encodes 

for the caspase recruitment domain-containing protein 9 and it is a central adaptor protein of innate 

immune responses to extracellular pathogens via releasing of active cytokines from the immune cells. 

In fact, suppression of T lymphocyte functioning was found in CARD9-knockout mice and was linked 

to lung cancer progression [38]. A role of CARD9 in autoimmunity could be also evoked. Since it is 

involved in autoantibody-induced autoimmune disease [39], it could be hypothesized that the 

association with rs10781500 reflects a low-grade chronic state of autoimmunity against thyroid, 

predisposing carriers of the risk alleles to DTC. 
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The remaining 137 SNPs were not confirmed in the dataset 1, while other 19 SNPs positive 

in the GWAS were not confirmed in the dataset 2, at least in Italian individuals. They could have 

been detected as the consequence of chance findings in previously published underpowered studies, 

resulting as false or weakly positive signals.

A previous study evaluating PRS found 10 SNPs describing genetic predisposition to DTC for 8-11% 

of the total variability [40]. Among those SNPs, only three (rs2466076, rs1588635 and rs116909374) 

are in linkage disequilibrium with markers evaluated in our analysis (rs2439302, rs7028661 and 

rs925489, respectively) but discarded during the selection procedure. The rs1588635 falls within the 

PTCSC2 gene, suggesting it as being a hot spot for genetic predisposition to DTC risk, while the 

others belong to genomic regions not represented by our 15-SNPs signature. Therefore, we may 

suppose that a number of unknown, low-penetrance SNPs contribute to DTC genetic predisposition 

and they may be discovered using different approaches and populations.
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Supplementary table S1. List of SNPs associated to DTC in different world populations (p<0.05).

Gene SNP ID Article
Autors

MET rs1621 Ning et al.
IL18R1 rs1420106 Chung et al.
IL-18 rs549908

rs360717
rs187238

Chung et al.

MIRLET7F1 promoter rs10877887 Wang et al.
miR-34b/c rs4938723 Chen et al.
TP53 rs1042522 Wang et al.

Wu et al.
Akulevich et al.

FOXE1 rs894673
 rs1867277
rs3758249
rs907577
rs3021526
rs907580
rs10119760
rs704839
rs1443434

Somuncu et al.
Bullock et al.
Kang et al.
Landa et al.

BRAF rs3748093
rs17161747
rs1042179

Jiang et al.
Zhang et al.

FAS rs1571013
rs1800682
rs1468063

Eun et al.

FADD rs10898853 Eun et al.
mir-149-5p rs2292832  Wei et al.
ATM rs373759

rs664143
rs4585
rs1801516

Song et al.
Gu et al.
Damiola et al.

CHEK2
BRCA1

rs17879961
rs16941

Wójcicka et al.

IL10 rs1800896 Çil et al.
Erdogan et al.

CCL5 rs2107538 Kwon et al.
OPN rs11730582 Mu et al.
PTCSC3/FOXE1 rs965513

rs944289
rs966423
rs2439302

Wang et al.
Penna-Martinez et al.
Liyanarachchi et al.
Jones et al.
Gudmundsson et al.

SERPINA5  rs6115
rs6112

Brenner et al.

IL22 rs2227485 Eun et al.
BIRC5 rs2071214 Wang et al.
IL1B rs1143627

rs3136558
rs1143633
rs1143643

Ban et al.
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TLR10 rs11466653  Kim et al.
TLR2 rs3804099

rs3804100
Kim et al.

CAPZB rs12045440 Feng et al.
NFKB1 rs28362491 Wang et al.
XRCC3 rs861539 Wenying et al.
CASC8/CCAT2 rs6983267 Li et al.
ERBB2 rs1136201 Riaz et al.

Rebaï
TERT rs2736100 Ge et al.
MTHFR rs1801133 Zara-Lopes et al.

Yang et al.
AXIN2 rs11655966

rs3923086
rs7591

Liu et al.

HABP2 rs7080536 Bohórquez et al.
Sahasrabudhe et al.

miR-146a
miR-680
miR-933
miR-149

rs2910164
rs4919510
rs79402775
rs2292832

Dong et al.
Jazdzewski et al.

MSH3 rs26279 Miao et al.
promoter regions of let-7 rs10877887

rs13293512
Wang et al.

FTO rs8050136 Zhao et al.
locus 8q24 rs6983267 Sahasrabudhe et al.
sodium iodide symporter (NIS) rs4808708

rs4808709
rs7250346

Al-Rasheed et al.

IL-18 rs360717 Abdolahi et al.
IL-27 rs153109 Zhang et al.
FOXE1 rs71369530 Pereda et al.
FOXE1 rs7028661

rs7037324
rs2997312
rs10788123
rs1254167
rs4075570

Mancikova et al.
Zhu et al.

FOXE1  rs965513 Maillard et al.

He et al.
TP53 rs1042522 Khan et al.
FAS rs1571013

rs1800682
rs1468063

Eun et al.

MTHFR rs1801133 Niu et al.
GALNTL
FOXA2

rs7935113
rs1203952

Figlioli et al.

POU5F1B rs6983267 Rogounovitch et al.
GNB3 rs5443 Wang and Zhang

Sheu et al.

IL1B rs1143627
rs3136558
rs1143633
rs1143643

Ban et al.
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IL17A
IL17RA
IL17RB

rs2275913
rs4819554
 rs1025689

Lee et al.

ATM rs189037
rs1800057
rs1800054
rs4986761
rs228589
rs664677
rs609429

Gu et al.
Xu et al.
Akulevich et al.

mir-3144
mir-608
mir-933
mir-449b
mir-933
mir-608

rs67106263
rs4919510
rs10061133
rs79402775

Wei et al.

RET rs1800861
rs1800862
rs1800863
rs3026782
rs1799939
rs1800858
rs74799832
rs77724903

Khan et al.
Santos et al.
Huang and Yang
Lantieri et al.
Elisei et al.
Ceolin et al.
Vaclavikova
Rotondi et al.
Fugazzola et al.KRAS rs712 Jin et al.

CCND1 rs603965 Aytekin et al.
BATF
DHX35
ARSB
SPATA13

rs10136427
rs7267944
rs13184587
rs1220597

Figlioli et al.

XKR4
FOXE1

rs2622590
rs925489

Zhan et al.

BRAF/RET rs116909374
rs113488022
rs121913364

Guo et al.
Gudmundsson et al.
Fugazzola et al.
Castro et al.

FOSL-2 promoter rs925255 Kim et al.
XRCC1 rs25489

rs25487
rs1799782

Wang and Ai
Hu et al.
Qian et al.
Ho et al.

IL1A rs3783553 Gao et al.
NKX2-1 rs944289 Ai et al.
IL-21 rs12508721 Xiao et al.
PAX8
STK17B

rs4848323
rs1378624

Landa et al.

genomic region 8q24 rs10808556
rs1447295

Cipollini et al.

CCNH
ERCC5
XPC

rs2230641
rs2227869
rs2228001

Santos et al.
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DIRC3
IMMP2L
IMMP2L
RARRES1
SNAPC4/CARD9

rs6759952
rs10238549
rs7800391
rs7617304
rs10781500

Köhler et al.

OPN rs28357094
rs11439060 (rs11439060)

Mu et al.

ABCB1 (MDR1) rs1045642 Ozdemir et al.
TPO rs2048722

rs732609
Cipollini et al.

IL32 rs28372698 Plantinga et al.
ITGB2 rs2070946 Eun et al.
MDM2
p14(ARF)

rs2279744
rs3731217

Zhang et al.

XRCC7 rs7830743 Rahimi et al.
HRAS rs12628 Khan et al.
RET rs2565206 Figlioli et al.
miR-196a2 rs11614913 Wang et al.
MUTYH rs3219489 Santos et al.
12-LOX rs1126667 Prasad and Padma
CYP24A1 rs927650

rs2248137
rs2296241

Penna-Martinez et al.

IL1R1 promoter rs2192752 Park et al.

IGFBP-3 rs2132571
rs2132572
rs2854744
rs13241830

Xu et al.

BIRC5 rs9904341 Yazdani et al.
locus 8q24 rs4733616 Neta et al.
OSMR rs2278329 Hong et al.
CDH1 rs35606263 Wang et al.
BRCA1 rs799917

rs1799950
Xu et al.

CASP8
CASP9
BCL2

rs3834129
rs4645978
rs2279115

Wang et al.

IL11RA rs1061758 Eun et al.
WWOX rs3764340 Cancemi et al.
CDK1NB rs2066827 Pasquali et al.

Hakova et al.
PTPRJ rs4752904 Iuliano et al.
CYP1A1
FTO
FOXE1

rs1799814
rs1121980
rs7048394

Figlioli et al.

ESR1 rs2228480 Rebaï et al.
GPX3 rs8177412

rs3828599
rs3805435

Lin et al.

TGFB1 rs1800472 Sigurdson et al.
P2X7 rs3751143 Dardano et al.
ADPRT (PARP1) rs1136410 Chiang et al.
CYP1A1 rs1048943 Siraj et al.
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/
WDR3

rs2145418
rs4658973

Baida et al.

BCL2
STAT1

rs1462129
rs10173099

Ruiz-Llorente et al.

HOX rs920778 Zhu et al.
XRCC1 rs3213245 Halkova et al.
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Population Geographic area

Chinese China
Korean Korea
Korean Korea

Chinese China
Chinese China
Chinese
Meta-analysis (several ethnic groups)
Caucasians

China
Various
Ukraine

Wellcome Trust Case Control Consortium samples

Spanish

China
UK
Meta-analysis
Spain

Chinese
Chinese

China
China

Korean Korea

Korean Korea
China

korean Korea

Belarus

Polish Poland

Turkish
Turkish

Turkey
Turkey

Korea Korea
Chinese China
Chinese
German-Caucasian
American, Polish
Several ethnic groups
Icelandic, Dutch, Americans, Spanish

China
Germany
Ohio (USA), Poland
Various
Iceland, Holland, USA, Spain

Korea
China China
Korean Korea
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Korean Korea
Korean Korea

Chinese China
Chinese China
Mata-analysis (several ethnic groups) Various
Mata-analysis (several ethnic groups) Various
African-American, Caucasian
Tunisian

Various
Tunisia

Various Various
Various
Chinese

Various
China

Chinese China

Caucasian (but not Hispanics) British Isles

Han Chinese
Finnish, Polish, Americans

China
Finland, Poland, USA

Mata-analysis (several ethnic groups) Various
Asian

Meta-analysis (several ethnic groups) Various
British Isles, Colombia and Japan

Iranian (protective effect from PTC) Iran
Chinese China
Cuban (confirmed in Japanese and European) Cuba
Southern European
Various Various

French Polynesian population

Chinese

Polinesia

China
Kashmir Valley people Kashmir Valley

Mata-analysis (several ethnic groups) Various
Italians Italy

Japanese Japan
Mata-analysis (several ethnic groups)
German

Various
Germany

Korean Korea
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Korean Korea

Chinese
Several ethnic groups
Caucasians

Northern China
Brazil, Texas (USA)
Ukraine

Chinese China

Northern Indian
Portuguese
Chinese
Meta-analysis (several ethnic groups)
Italians
Review paper
Czech
Italians
Italians

North India
Portugal
China
Various
Italy
Review paper
Czech Republic
Italy
ItalyChinese China

Turkish Turkey
Italian, Polish, Spanish Italy, Poland, Spain

Chinese China

Various
Icelandic, Dutch, Americans, Spanish
Italians

Various
Iceland, Holland, USA, Spain
Italy

Korean Korea
Meta-analysis (several ethnic groups)
Meta-analysis (several ethnic groups)
Meta-analysis (several ethnic groups)

Various
Various
Various
USA

Chinese China
Han Chinese Northern China
Chinese China
Spanish Spain

Central-Southern Italian Italy

Portuguese-Caucasian Portugal

Page 71 of 93 Accepted Manuscript published as ETJ-22-0058.R2. Accepted for publication: 17-Aug-2022

Copyright © 2022 the authors Downloaded from Bioscientifica.com at 08/18/2022 10:21:25AM
via free access



Italian Italy

Chinese China

Italian, Spanish Italy, Spain

Korean Korea
Mixed ethnic groups USA

Iranian Iran
Kashmiri Kashmir Valley
Meta-analysis (several ethnic groups) Various
Meta-analysis (several ethnic groups) Various
Portuguese Portugal

German Germany

Korean Korea

Caucasian Americans Texas (USA)

Iranian Iran
Several ethnic groups USA
Korean Korea
Han Chinese China
Several ethnic groups USA

Han Chinese China

Korean Korea
Italians Italy
Italians
Caucasians

Italy
Russia

Finnish, French, Italians (Caucasians) Europe
Meta-analysis (several ethnic groups) Various

Tunisian Tunisia
Chinese China

Kazakh or Russian Kazakhstan
Italians Italy
Chinese China
Saudi Arabian Saudi Arabia
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Spanish Spain

Spanish Spain

Shandong, Jiangsu and Jilin Chinese China
Caucasians Russia
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Supplementary table 2. List of 171 SNPs selected from literature and evaluated for their statistical association with the risk of DTC in the dataset 1. Querid SNPs g= directly genotyped; i= imputed from
1000Genomes database (www.internationalgenome.org); Best P-value (model) a=additive, when the model tests whether heterozygotes have intermediate risk between common and rare homozygotes;
d=dominant, when heterozygotes are lumped together with rare homozygotes and these are compared versus common homozygotes; r= recessive, when rare homozygotes are compared versus
heterozygotes lumped together with common homozygotes.
Gene region Queried SNPs A1 A2 Chr r2 LD 

block

PTCSC2-FOXE1 rs965513g G A 9 1
rs925489i T C 9 0.98
rs7028661i G A 9 0.94
rs3758249i A T 9 2
rs12348691i A G 9 1
rs1443435g G A 9 1
rs3021526i T C 9 1
rs1443434i T G 9 1
rs907577i A G 9 0.99
rs1867277i G A 9 0.94
rs10119760i C G 9 0.83
rs925487g A G 9 0.80
rs7048394i C T 9 3
rs907580i G A 9 0.99
rs10759960g A G 9 0.99
rs7037324i G A 9 0.79

IMMP2L (LOC105375451) rs10238549g C T 7 1
rs7800391g C T 7 2

ARSB rs13184587g G A 5 1
BATF (LOC105370572) rs10136427g G A 14 1
DIRC3 rs6759952g T C 2 1

rs966423g C T 2 2
DHX35-LINC01734 rs7267944g T C 20 1
SPATA13 rs1220597g A G 13 1
FOXA2-LINC01384-LINC01747 rs1203952g A G 20 1
GALNT18 rs7935113g A G 11 1
CYP1A1 rs1799814g C A 15 1

rs1048943i T C 15 2
TLR10 rs11466653g T C 4 1
FTO rs1121980g C T 16 1

rs8050136g C A 16 0.88
RARRES1 (LOC100287290) rs7617304g G A 3
NIS- SLC5A5 rs35036312i G A 19 1

rs12327843g T C 19 0.99
rs4808709i A G 19 0.92
rs4808708g G A 19 0.86

CARD9-SNAPC4 rs10781500g C T 9 1
WDR-SPAG17 rs4658973i T G 1 1

rs1321665g A C 1 0.87
CDKN1B rs2066827g A C 12 1
MET rs1621g A G 7 1
IL10 rs1800896i T C 1 1

rs3024502g C T 1 0.98
AXIN2 rs11655966i A T 17 1

rs7591g A T 17 2
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rs3923086g A C 17 3
PTCSC3-LINC00609 rs944289g G A 14 1
STAT1 rs10173099i C T 2 1

rs2030171g G A 2 1
IL17RB rs1025689i C G 3 1

rs4687751g A G 3 0.99
IL11RA rs1061758g G A 9 1
HABP2 rs7080536i G A 10 1
ESR1 rs2228480g G A 6 1
ALOX12 rs1126667g G A 17 1
LINC01465 rs10877887i T C 12 1

rs11174538g A C 12 0.94
rs12357g G A 12 2

ABCB1 rs1045642g G A 7 1
CASC11 (AC104370) rs4733616g C T 8 1
ATF2 rs79402775i G A 2 1
ATM rs1800054i C G 11 1

rs1800057i C G 11 2
rs1801516i G A 11 3
rs189037i G A 11 4
rs228589i T A 11 0.99
rs664677i T C 11 0.89
rs609429i G C 11 0.80
rs609429i G C 11 5
rs664143g G A 11 0.95
rs4585g C A 11 0.93
rs373759i C T 11 6
rs4986761i T C 11 7

BCL2 rs1462129i T C 18 1
rs2279115i A C 18 0.98

BIRC5 rs2071214i A G 17 1
rs9904341i G C 17 2

BRAF rs17161747i G C 7 1
BRCA1 rs16941i T C 17 1

rs799917g G A 17 0.90
rs1799950g A G 17 2

BTG4 rs4938723i T C 11 1
CAPZB rs12045440i T G 1 1
CASC8 rs6983267g C A 8 1

rs3834129i delAGTAAG2 2
CASP9 rs4645978i G A 1 1
CCL5 rs2107538i C T 1 1
CCND1 rs603965g G A 11 1
CCNH rs2230641i T C 5 1
CDC20B rs10061133i A G 5 1
CDKN2A rs3731217g A C 9 1
CYP24A1 rs2248137i G C 20 1

rs2296241g G A 20 2
rs927650g G A 20 3
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ERCC5 rs2227869i G C 13 1
FADD rs10898853i T C 11 1
FAS rs1468063g A G 10 1

rs1800682g G A 10 2
rs1571013i A G 10 3

FOSL2 rs925255g A G 2 1
GNB3 rs5443g A G 12 1
GPC1 rs2292832g A G 2 1
GPX3 rs3805435g G A 5 1

rs3828599g A G 5 2
rs8177412g G A 5 3

HOTAIR rs920778i G A 12 1
HOXC5 rs11614913g A G 12 1
IGFBP3 rs13241830i G A 7 1

rs2132571i T C 7 0.97
rs2132572i C T 7 2
rs2854744i G T 7 3

IL17A rs2275913i G A 6 1
IL17RA rs4819554g G A 22 1
IL18 rs187238i C G 11 1

rs360717g A G 11 1
rs549908g C A 11 0.84

IL18RAP rs1420106g A G 2 1
IL1A rs3783553i dupTGAA 2 1
IL1B rs1143633g A G 2 1

rs1143643i C T 2 0.99
rs3136558g G A 2 2
rs1143627g G A 2 3

IL1R1 rs2192752i G T 2 1
IL21 rs12508721i C T 4 1
IL22 rs2227485g A G 12 1
IL27 rs153109g G A 16 1
IL32 rs28372698i T A 16 1
ITGB2 rs2070946g G A 21 1
KLC1 rs861539g A G 14 1
KRAS rs712i A C 12 1
LOC101928570 rs4075570i A G 6 1
LRRC56 rs12628i A G 11 1
MBIP rs116909374i C 7 14 1
MDM2 rs2279744i T G 12 1
MIR3144 rs67106263i G A 6 1
MIRLET7A1 rs13293512i G A 6 1
MSH3 rs26279g A G 5 1
MTHFR rs1801133g G A 1 1
MUTYH rs3219489i C G 1 1
NFKB1 rs28362491i delATTG 4 1
NRG1 rs2439302i C G 8 1
OSMR rs2278329i G A 5 1
P2RX7 rs3751143g A C 12 1
PARP1 rs1136410g A G 1 1
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PAX8 rs4848323g G A 2 1
PRKDC rs7830743g A G 8 1
PTPRJ rs4752904g C G 11 1
RET rs1799939g G A 10 1

rs1800863i C G 10 0.97
rs3026782i G A 10 0.96
rs1800858i G A 10 2
rs1800861i A C 10 3
rs1800862i C T 10 4
rs2565206i C A 10 5
rs77724903i A T 10 6

RP11-323P17.1 rs10788123g G A 10 1
RP11-382A18.1 rs10808556g A G 8 2

rs1447295g C A 8 3
SEMA4G rs4919510g C G 10 1
SERPINA5 rs6112g G A 14 1

rs6115i A G 14 0.94
SPP1 rs11439060i dupG 4 1

rs11730582g A G 4 2
rs28357094i T G 4 3

STK17B rs1378624i G A 4 1
TERT rs2736100g A C 5 1
TGFB1 rs1800472g G A 19 1
TLR2 rs3804099g A G 4 1

rs3804100g A G 4 2
TP53 rs1042522g G C 17 1
TPO rs2048722g G A 2 1

rs732609g A C 2 0.80
WDR11-AS1 rs1254167i C G 10 1

rs2997312g G A 10 1
WDR3-TBX15 rs2145418i G A 10 1
WWOX rs3764340i C G 16 1
XKR4 rs2622590i G A 8  1
XPC rs2228001g A C 3 1
XRCC1 rs1799782g G A 19 1

rs25487i C T 19 2
rs25489g G A 19 3
rs3213245i A G 19 4
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Controls Cases Best P-value Second stage
(model)

+/+ +/- -/- +/+ +/- -/-
199 185 47 191 319 139 5.05x10-10 (a) Yes
197 187 47 189 321 139
197 187 47 189 321 139
139 226 65 137 325 187 1.01x10-8 (a) Yes
139 226 65 137 325 187
139 226 65 137 325 187
139 226 65 137 325 187
139 226 65 137 325 187
139 226 65 137 325 187
139 226 65 137 325 187
162 215 53 168 319 162
162 215 53 168 319 162
206 192 33 236 306 105 2.30x10-6 (a) Yes
206 192 33 236 306 105
206 192 33 236 306 105
158 219 54 165 320 164
169 207 55 335 261 53 3.16x10-5 (a) Yes
183 201 46 220 303 126 6.22x10-5 (a) Yes
208 183 40 386 233 30 3.36x10-5 (a) Yes
286 128 17 497 142 10 6.75x10-5 (a) Yes
166 202 63 196 297 156 7.61x10-5 (a) Yes
151 219 61 208 295 146 6.47x10-4 (r) Yes
285 133 13 361 241 47 7.69x10-5 (a) Yes
160 205 66 187 304 158 1.02x10-4 (a) Yes
267 147 15 333 267 47 1.12x10-4 (a) Yes
306 110 15 386 230 31 1.43x10-4 (d) Yes
389 41 1 541 101 7 8.57x10-4 (a) Yes
394 17 0 576 21 0 0.0176 (d) No
402 28 0 567 80 2 8.83x10-4 (a) Yes
214 182 34 320 280 47 1.15x10-3 (a) Yes
130 205 96 234 313 102 Yes
241 165 24 305 284 60 1.23x10-3 (a) Yes
265 150 15 351 251 47 2.63x10-3 (a) Yes
265 150 15 351 251 47
264 149 18 348 248 53
264 149 18 348 248 53 Yes
164 196 71 297 278 74 2.85x10-3 (a) Yes
116 229 86 229 294 126 3.86x10-3 (d) Yes
116 227 88 229 293 127
216 188 27 315 242 68 9.99x10-3 (r) Yes
169 215 46 265 280 104 0.0133 (r) Yes
176 189 66 262 320 67 0.0145 (r) Yes
176 189 66 262 320 67
236 110 9 337 166 32 0.0163 (r) Yes
151 216 64 234 295 118 0.140 (r)

Supplementary table 2. List of 171 SNPs selected from literature and evaluated for their statistical association with the risk of DTC in the dataset 1. Querid SNPs g= directly genotyped; i= imputed from
1000Genomes database (www.internationalgenome.org); Best P-value (model) a=additive, when the model tests whether heterozygotes have intermediate risk between common and rare homozygotes;
d=dominant, when heterozygotes are lumped together with rare homozygotes and these are compared versus common homozygotes; r= recessive, when rare homozygotes are compared versus
heterozygotes lumped together with common homozygotes.
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97 232 102 172 313 164 0.130 (d)
142 200 89 259 280 110 0.0174 (a) Yes
158 195 49 218 329 102 0.031 (a) Yes
158 195 49 218 329 102
138 209 84 247 298 104 0.0301 (a) Yes
138 209 84 247 298 104
313 108 10 436 187 26 0.0350 (a) Yes
405 22 0 626 18 0 0.0460 (d) Yes
308 112 11 495 145 9 0.0480 (a) Yes
164 188 79 220 338 90 0.0493 (r) Yes
167 207 55 222 309 112 0.0363 (a) Yes
167 207 55 222 309 112
202 185 44 278 289 82 0.123 (a)

105 207 119 187 302 160 0.100 (a)
286 130 15 434 191 24 0.850 (a)
406 19 0 606 32 1 0.600 (d)
414 2 0 629 3 0 0.988 (d)
400 12 0 595 19 0 0.867 (d)
307 112 7 484 140 14 0.165 (d)
217 180 34 309 279 61 0.289 (a)
223 177 31 318 271 60 0.234 (r)
223 177 31 318 271 60 0.229 (a)
216 179 34 309 278 60 0.326 (a)
216 179 34 309 278 60 0.326 (a)
225 175 31 319 272 58 0.227 (a)
216 179 35 308 271 58 0.479 (a)
136 207 88 212 316 121 0.470 (r)
414 6 0 623 10 0 0.844 (d)
133 210 88 202 321 126 0.685 (r)
133 210 88 202 321 126 0.685 (r)
391 33 1 603 36 1 0.158 (a)
189 186 56 301 287 61 0.063 (r)
382 21 1 569 32 1 0.776 (r)
206 181 43 306 275 64 0.881 (d)
198 185 48 291 282 76 0.689 (a)
344 81 6 541 104 3 0.720 (a)
157 198 76 254 299 94 0.171 (r)
178 199 54 305 278 66 0.052 (a)
117 212 102 163 339 147 0.456 (d)
129 225 77 211 294 144 0.085 (r)
134 196 101 172 325 152 0.101 (d)
294 128 8 443 182 24 0.082 (r)
109 208 114 162 331 156 0.370 (r)
234 176 21 374 237 38 0.279 (d)
331 94 5 490 150 9 0.555 (a)
318 104 9 484 151 14 0.770 (d)
141 201 89 177 317 155 0.052 (a)
125 203 103 197 305 147 0.560 (a)
112 223 96 185 310 154 0.360 (d)
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377 51 1 586 61 1 0.182 (a)
202 186 43 289 281 79 0.264 (r)
356 69 6 508 133 7 0.090 (d)
128 216 87 181 339 129 0.510 (d)
149 206 76 219 319 111 0.778 (d)
175 200 56 254 318 77 0.580 (r)
190 191 50 273 301 75 0.512 (d)
218 177 36 325 279 45 0.386 (r)
344 84 3 497 138 13 0.120 (r)
228 171 32 315 279 55 0.160 (r)
319 101 11 479 156 14 0.673 (r)
149 213 69 250 311 88 0.131 (a)
176 210 45 292 267 71 0.076 (d)
207 190 34 307 272 70 0.114 (r)
207 190 34 307 272 70 0.114 (r)
305 118 8 478 155 15 0.279 (d)
124 227 80 192 331 126 0.727 (r)
187 161 43 273 258 51 0.247 (r)
281 137 13 434 194 21 0.569 (d)
235 171 25 382 232 34 0.150 (d)
235 171 25 382 232 34 0.150 (d)
221 174 35 354 256 39 0.172 (a)
265 149 17 398 222 27 0.853 (r)
213 183 30 330 364 49 0.065 (d)
188 186 57 272 296 79 0.608 (d)
188 186 57 272 296 79 0.608 (d)
270 148 13 414 202 33 0.099 (r)
173 209 49 261 299 88 0.285 (r)
201 180 50 310 274 65 0.408 (r)
178 199 54 296 289 64 0.091 (a)
114 223 94 185 337 127 0.316 (a)
175 205 50 271 304 74 0.730 (d)
68 78 22 94 110 26 0.588 (r)
242 155 33 366 237 41 0.407 (r)
146 208 77 199 328 122 0.268 (d)
136 220 75 187 326 136 0.145 (a)
187 183 61 277 294 78 0.305 (r)
272 140 19 420 204 22 0.399 (r)
388 15 1 553 29 1 0.385 (d)
173 196 62 254 273 108 0.251 (r)
266 148 17 418 210 21 0.327 (a)
216 187 28 350 253 45 0.209 (d)
179 205 47 288 288 73 0.355 (d)
131 203 96 173 321 154 0.178 (d)
263 146 22 398 216 35 0.835 (r)
190 200 36 300 279 67 0.296 (r)
135 219 77 185 329 135 0.183 (a)
429 2 0 647 2 0 0.700 (a)
256 157 18 370 241 38 0.223 (r)
314 108 9 480 158 10 0.505 (r)

Page 80 of 93Accepted Manuscript published as ETJ-22-0058.R2. Accepted for publication: 17-Aug-2022

Copyright © 2022 the authors Downloaded from Bioscientifica.com at 08/18/2022 10:21:25AM
via free access



151 209 71 256 294 99 0.143 (d)
361 67 3 537 107 5 0.660 (a)
121 233 77 180 333 136 0.211 (r)
277 133 21 384 237 27 0.098 (d)
277 133 21 384 237 27 0.098 (d)
277 133 21 384 237 27 0.098 (d)
238 162 31 385 229 35 0.119 (a)
248 158 25 381 231 37 0.704 (d)
379 49 2 573 67 6 0.385 (r)
199 193 39 302 277 69 0.391 (r)
435 0 0 645 0 0 -
230 168 33 329 273 47 0.390 (d)
178 186 67 236 332 80 0.106 (d)
376 51 4 560 89 0 0.991 (a)
280 136 15 425 202 22 0.859 (a)
210 174 46 307 276 66 0.622 (d)
210 174 46 307 276 66 0.622 (d)
184 200 42 306 270 67 0.158 (d)
104 232 95 172 307 170 0.120 (r)
249 160 17 402 217 26 0.204 (d)
211 168 36 326 239 53 0.407 (r)
131 215 85 213 327 109 0.213 (a)
377 54 0 560 84 5 0.378 (a)
140 205 86 202 320 127 0.639 (d)
379 51 1 555 94 0 0.309 (a)
239 157 34 366 243 40 0.267 (r)
136 214 79 206 329 114 0.722 (r)
141 219 71 226 325 97 0.586 (d)
296 130 5 465 172 10 0.260 (d)
296 130 5 465 172 10 0.260 (d)
271 146 14 419 205 25 0.573 (d)
387 41 3 567 79 2 0.249 (d)
348 74 9 496 148 5 0.061 (r)
123 217 91 176 309 150 0.337 (r)
364 64 2 545 98 6 0.640 (a)
186 200 45 317 262 70 0.066 (d)
359 69 3 556 91 2 0.238 (a)
160 206 64 233 300 116 0.197 (r)
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Table 2. Association analyses for 34 SNPs genotyped in the dataset 2 set alone (r) and combined (c) with the dataset 1.
SNPs are listed as reported in table 1. Odd Ratios (adjusted for sex, age, smoking habit, body mass index) are provided with their 95% confidence intervals (ORadj; 95% CI). Associations are underlined when statistically
significant at nominal level of 0.05 and evaluated for the Bonferroni’s correction (p-threshold=1.47x10exp-3).

Heterozygote Homozygote
PTCSC2-FOXE1 ORadj (95% CI) Pass ORadj (95% CI)

rs965513 r 1.27 (0.84-1.91) 0.25 2.57 (1.48-4.47)
c 1.76 (1.41-2.20) 8.35x10-7 3.23 (2.35-4.43)

rs3758249 r 1.51 (0.99-2.29) 0.056 2.05 (1.27-3.31)
c 1.62 (1.27-2.06) 8.80x10-5 2.62 (1.95-3.50)

rs7048394 r 1.31 (0.90-1.91) 0.15 1.81 (0.96-3.41)
c 1.45 (1.17-1.79) 7.06x10-4 2.92 (1.99-4.29)

IMMP2L
rs10238549 r 1.07 (0.74-1.55) 0.73 0.78 (0.41-1.46)

c 0.80 (0.65-0.99) 0.044 0.53 (0.37-0.76)
rs7800391 r 1.06 (0.73-1.55) 0.76 1.13 (0.67-1.91)

c 1.23 (0.99-1.53) 0.064 1.72 (1.27-2.33)
ARSB

rs13184587 r 0.86 (0.58-1.27) 0.45 1.75 (0.89-3.47)
c 0.76 (0.61-0.94) 0.013 0.69 (0.46-1.05)

BATF
rs10136427 r 0.71 (0.47-1.06) 0.092 1.5 (0.34-6.61)

c 0.70 (0.56-0.88) 2.63x10-3 0.71 (0.35-1.47)
DIRC3

rs6759952 r 0.97 (0.65-1.45) 0.88 1.77 (1.09-2.86)
c 1.09 (0.87-1.37) 0.47 1.69 (1.27-2.25)

rs966423 r 1.04 (0.69-1.56) 0.85 1.76 (1.05-2.95)
c 0.91 (0.73-1.14) 0.42 1.50 (1.12-2.02)

DHX35-LINC01734
rs7267944 r 0.91 (0.63-1.32) 0.61 1.17 (0.51-2.68)

c 1.21 (0.97-1.49) 0.087 2.31 (1.45-3.70)
SPATA13
rs1220597 r 1.23 (0.82-1.83) 0.32 1.02 (0.63-1.66)

c 1.19 (0.95-1.50) 0.14 1.38 (1.04-1.83)
FOXA2

rs1203952 r 1.14 (0.79-1.65) 0.49 1.88 (0.99-3.55)
c 1.37 (1.11-1.69) 3.35x10-3 1.90 (1.24-2.90)

GALNT18
rs7935113 r 0.48 (0.26-0.87) 0.016 0.53 (0.10-2.75)

c 1.27 (0.98-1.64) 0.067 1.27 (0.68-2.38)
CYP1A1

rs1799814 r 1.07 (0.6-1.93) 0.81 2.17 (0.34-13.7)
c 1.38 (1.01-1.89) 0.046 2.53 (0.64-10.1)

TLR10
rs11466653 r 0.78 (0.32-1.93) 0.60 -

c 1.53 (1.01-2.31) 0.043 1.23 (0.08-19.0)
FTO

rs1121980 r 1.15 (0.76-1.73) 0.52 1.31 (0.81-2.10)
c 0.98 (0.78-1.23) 0.86 0.73 (0.55-0.96)

rs8050136 r 1.36 (0.74-2.49) 0.32 1.12 (0.53-2.39)
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c 0.97 (0.74-1.26) 0.80 0.70 (0.50-0.97)
RARRES1
rs7617304 r 0.78 (0.54-1.12) 0.17 1.12 (0.56-2.24)

c 1.24 (1.00-1.52) 0.045 1.67 (1.13-2.48)
NIS- SLC5A5
rs35036312 r 0.77 (0.38-1.54) 0.45 1.20 (0.36-4.03)

c 1.18 (0.93-1.50) 0.18 1.62 (0.99-2.67)
rs4808708 r 1.31 (0.86-1.99) 0.21 1.95 (0.76-5.05)

c 1.39 (1.10-1.76) 6.45x10-3 1.93 (1.14-3.27)
CARD9-SNAPC4

rs10781500 r 0.97 (0.67-1.40) 0.88 0.90 (0.52-1.56)
c 0.97 (0.79-1.21) 0.80 0.71 (0.52-0.97)

WDR-SPAG17
rs4658973 r 1.8 (0.98-3.29) 0.056 1.16 (0.54-2.50)

c 0.84 (0.65-1.08) 0.18 0.93 (0.66-1.31)
CDKN1B
rs2066827 r 1.04 (0.59-1.84) 0.88 1.33 (0.47-3.75)

c 0.96 (0.76-1.23) 0.77 1.78 (0.96-2.96)
MET

rs1621 r 0.89 (0.49-1.63) 0.72 1.09 (0.46-2.61)
c 0.84 (0.66-1.08) 0.19 1.43 (0.98-2.09)

IL10
rs1800896 r 1.16 (0.62-2.17) 0.64 0.75 (0.3-1.86)

c 1.12 (0.87-1.45) 0.39 0.72 (0.49-1.05)
AXIN2

rs11655966 r 0.81 (0.44-1.49) 0.50 1.06 (0.33-3.45)
c 0.97 (0.74-1.27) 0.81 1.76 (0.91-3.39)

PTCSC3-
LINC00609rs944289 r 0.63 (0.43-0.93) 0.019 0.41 (0.24-0.69)

c 0.75 (0.60-0.94) 0.014 0.60 (0.45-0.80)
STAT1

rs10173099 r 1.05 (0.55-1.98) 0.89 1.24 (0.59-2.61)
c 1.13 (0.87-1.46) 0.37 1.45 (1.02-2.07)

IL17RB
rs1025689 r 0.85 (0.58-1.23) 0.38 1.2 (0.72-2.02)

c 0.86 (0.69-1.08) 0.20 0.84 (0.62-1.13)
IL11RA

rs1061758 r 1.21 (0.82-1.79) 0.34 2.93 (1.00-8.54)
c 1.21 (0.97-1.51) 0.095 2.18 (1.17-4.07)

HABP2
rs7080536 r 1.21 (0.36-4.04) 0.76 -

c 0.80 (0.45-1.41) 0.43 -
ESR1

rs2228480 r 0.84 (0.55-1.28) 0.41 0.51 (0.18-1.50)
c 0.87 (0.68-1.10) 0.24 0.52 (0.25-1.07)

ALOX12
rs1126667 r 0.89 (0.48-1.63) 0.70 0.65 (0.29-1.49)

c 1.14 (0.88-1.47) 0.31 0.69 (0.46-1.01)
LINC01465
rs10877887 r 1.18 (0.80-1.76) 0.40 1.25 (0.75-2.09)
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c 1.25 (1.00-1.56) 0.046 1.34 (1.00-1.81)
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Dominant Pass Recessive
Pass ORadj (95% CI) ORadj (95% CI) Pass

7.76x10-4 1.53 (1.05-2.22) 0.027 2.30 (1.37-3.84) 1.51x10-3

4.45x10-13 2.05 (1.66-2.53) 3.02x10-11 2.39 (1.78-3.20) 5.37x10-9

3.29x10-3 1.69 (1.15-2.47) 7.25x10-3 1.65 (1.08-2.51) 0.019
9.98x10-11 1.89 (1.50-2.37) 3.72x10-8 1.94 (1.51-2.49) 1.79x10-7

0.067 1.40 (0.99-1.99) 0.060 1.63 (0.88-3.03) 0.12
4.52x10-8 1.64 (1.34-2.01) 1.72x10-6 2.48 (1.71-3.60) 1.71x10-6

0.43 1.01 (0.71-1.43) 0.97 0.75 (0.41-1.38) 0.36
5.87.0x10-4 0.75 (0.61-0.91) 4.33x10-3 0.59 (0.42-0.84) 2.83x10-3

0.64 1.08 (0.75-1.54) 0.68 1.09 (0.68-1.76) 0.71
4.93x10-4 1.34 (1.09-1.64) 6.27x10-3 1.53 (1.16-2.02) 2.76x10-3

0.11 0.98 (0.68-1.41) 0.90 1.86 (0.96-3.62) 0.066
0.087 0.75 (0.61-0.92) 6.16x10-3 0.77 (0.51-1.17) 0.22

0.59 0.73 (0.49-1.09) 0.12 1.62 (0.37-7.14) 0.52
0.36 0.70 (0.56-0.88) 2.06x10-3 0.78 (0.38-1.61) 0.51

0.020 1.18 (0.81-1.70) 0.39 1.8 (1.18-2.75) 6.6x10-3

2.83x10-4 1.24 (1.01-1.54) 0.044 1.61 (1.25-2.08) 2.01x10-4

0.033 1.19 (0.81-1.74) 0.37 1.72 (1.09-2.69) 0.019
6.55x10-3 1.04 (0.84-1.29) 0.70 1.59 (1.23-2.06) 4.70x10-4

0.71 0.94 (0.66-1.34) 0.72 1.21 (0.54-2.74) 0.65
4.64x10-4 1.31 (1.07-1.61) 8.65x10-3 2.16 (1.36-3.44) 1.09x10-3

0.93 1.16 (0.79-1.69) 0.45 0.9 (0.6-1.37) 0.63
0.025 1.25 (1.00-1.54) 0.046 1.24 (0.97-1.59) 0.081

0.052 1.25 (0.89-1.77) 0.20 1.79 (0.96-3.34) 0.066
3.12x10-3 1.44 (1.17-1.76) 4.16x10-4 1.68 (1.11-2.54) 0.015

0.45 0.48 (0.27-0.86) 0.014 0.64 (0.13-3.27) 0.59
0.45 1.27 (0.99-1.62) 0.056 1.18 (0.64-2.20) 0.59

0.41 1.14 (0.65-2.00) 0.64 2.16 (0.34-13.62) 0.41
0.19 1.42 (1.04-1.93) 0.026 2.44 (0.61-9.69) 0.21

- 0.68 (0.28-1.62) 0.38 - -
0.88 1.52 (1.01-2.29) 0.043 1.18 (0.08-inf) 0.91

0.27 1.20 (0.82-1.75) 0.35 1.20 (0.80-1.80) 0.37
0.027 0.89 (0.72-1.11) 0.30 0.74 (0.58-0.94) 0.014
0.76 1.28 (0.73-2.24) 0.38 0.96 (0.48-1.91) 0.90

Table 2. Association analyses for 34 SNPs genotyped in the dataset 2 set alone (r) and combined (c) with the dataset 1.
SNPs are listed as reported in table 1. Odd Ratios (adjusted for sex, age, smoking habit, body mass index) are provided with their 95% confidence intervals (ORadj; 95% CI). Associations are underlined when statistically
significant at nominal level of 0.05 and evaluated for the Bonferroni’s correction (p-threshold=1.47x10exp-3).
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0.034 0.88 (0.69-1.13) 0.31 0.71 (0.53-0.96) 0.024

0.75 0.82 (0.58-1.16) 0.26 1.23 (0.62-2.44) 0.55
0.011 1.30 (1.06-1.58) 0.011 1.53 (1.04-2.24) 0.032

0.76 0.83 (0.43-1.59) 0.57 1.33 (0.41-4.33) 0.64
0.056 1.23 (0.98-1.55) 0.077 1.52 (0.94-2.48) 0.091
0.17 1.37 (0.92-2.06) 0.12 1.78 (0.70-4.56) 0.23
0.015 1.45 (1.15-1.82) 1.36x10-3 1.72 (1.02-2.89) 0.042

0.71 0.95 (0.68-1.35) 0.79 0.91 (0.54-1.54) 0.73
0.029 0.90 (0.74-1.10) 0.32 0.72 (0.53-0.96) 0.026

0.71 1.59 (0.91-2.78) 0.10 0.83 (0.41-1.67) 0.61
0.66 0.86 (0.67-1.10) 0.22 1.03 (0.76-1.40) 0.86

0.59 1.09 (0.63-1.86) 0.76 1.31 (0.48-3.56) 0.60
0.054 1.07 (0.85-1.35) 0.56 1.75 (0.98-2.98) 0.051

0.83 0.94 (0.53-1.65) 0.83 1.16 (0.51-2.61) 0.72
0.061 0.95 (0.75-1.21) 0.68 1.53 (0.91-2.23) 0.054

0.54 1.06 (0.59-1.91) 0.85 0.69 (0.30-1.59) 0.39
0.089 1.02 (0.80-1.30) 0.88 0.68 (0.47-1.01) 0.051

0.92 0.85 (0.48-1.5) 0.58 1.13 (0.35-3.62) 0.84
0.091 1.04 (0.80-1.35) 0.76 1.78 (0.93-3.40) 0.082

8.00x10-4 0.56 (0.39-0.80) 1.7x10-3 0.53 (0.33-0.85) 9.00x10-3
5.33x10-4 0.71 (0.57-0.87) 1.11x10-3 0.71 (0.55-0.91) 8.04x10-3

0.58 1.11 (0.62-1.99) 0.72 1.21 (0.62-2.33) 0.58
0.041 1.20 (0.94-1.53) 0.14 1.36 (0.98-1.88) 0.066

0.49 0.92 (0.64-1.31) 0.64 1.32 (0.82-2.12) 0.25
0.24 0.86 (0.70-1.06) 0.15 0.91 (0.69-1.19) 0.49

0.049 1.31 (0.90-1.90) 0.16 2.77 (0.96-8.03) 0.060
0.015 1.28 (1.03-1.59) 0.027 2.06 (1.11-3.84) 0.022

- 1.21 (0.36-4.04) 0.76 - -
- 0.80 (0.45-1.41) 0.43 - -

0.22 0.79 (0.53-1.18) 0.25 0.53 (0.18-1.55) 0.25
0.076 0.83 (0.66-1.04) 0.11 0.54 (0.26-1.11) 0.091

0.31 0.82 (0.46-1.46) 0.51 0.70 (0.34-1.47) 0.35
0.051 1.01 (0.79-1.28) 0.96 0.67 (0.42-1.02) 0.052

0.39 1.20 (0.83-1.74) 0.33 1.14 (0.72-1.81) 0.58
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0.052 1.28 (1.04-1.57) 0.022 1.19 (0.90-1.56) 0.22
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Chi-sq P-trend
28.0 1.20x10-7

68.4 <10-15

15.2 9.71x10-5

18.1 2.07x10-5

12.05 5.19x10-4

38.5 5.37x10-10

2.17 0.14
15.7 7.35x10-5

0.69 0.41
11.8 5.88x10-4

0.29 0.59
6.77 9.27x10-3

0.076 0.78
9.15 2.49x10-3

4.09 0.043
17.7 2.62x10-5

3.98 0.046
10.1 1.48x10-3

0.27 0.60
10.7 1.09x10-3

0.003 0.95
7.00 8.14x10-3

6.42 0.011
20.3 6.49x10-6

4.12 0.042
4.95 0.0261

1.00 0.32
10.3 1.36x10-3

0.60 0.44
6.51 0.0107

1.67 0.20
1.95 0.162
0.72 0.40

SNPs are listed as reported in table 1. Odd Ratios (adjusted for sex, age, smoking habit, body mass index) are provided with their 95% confidence intervals (ORadj; 95% CI). Associations are underlined when statistically
significant at nominal level of 0.05 and evaluated for the Bonferroni’s correction (p-threshold=1.47x10exp-3).
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4.52 0.0336

1.75 0.19
10.6 1.14x10-3

0.62 0.43
3.17 0.0749
1.82 0.18
7.33 6.78x10-3

0.15 0.70
3.16 0.0757

0.30 0.58
2.08 0.150

0.63 0.42
1.78 0.182

0.014 0.91
0.446 0.504

0.22 0.64
0.816 0.366

0.57 0.45
1.30 0.254

18.06 2.14x10-5

21.9 2.81x10-6

1.03 0.31
3.73 0.066

0.10 0.75
3.94 0.0473

2.32 0.13
6.82 9.02x10-3

- -
- -

0.063 0.80
1.36 0.243

0.36 0.24
0.367 0.544

1.42 0.23
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5.31 0.0212
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Supplementary table S4. Classification metrics of Gaussian Naïve Bayes classifier on all datasets.
Metric Training Set Test Set Validation Set
NPV 0.51 0.46 0.43
PPV 0.74 0.76 0.81

Sensitivity 0.46 0.46 0.43
Specificity 0.77 0.76 0.81
Accuracy 59% 57% 56%
F1-score 0.57 0.57 0.56

F0.5-score 0.66 0.67 0.69
F2-score 0.50 0.50 0.48
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Supplementary table S4. Classification metrics of Gaussian Naïve Bayes classifier on all datasets.
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Supplementary Table S5: method of calculation of unweighted and weighted polygenic risk score 
(PRS). The unweighted PRS was built by summing the total number of risk alleles for each subject 
(attributing the value of 1 to each risk allele). In the weighted PRS, all the SNPs contribute to the 
total PRS according to their association with the risk. It was built by assigning to each genotype the 
relative OR obtained in the GWAS. Then the ORs were multiplied.

Genetic locus 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21

Risk allele T C T T T A A T T C C A G T A A G G A
Subject

1 CC CC TT CC AG CC AA AT CC CC CT GA GA GT AA AG GG AA AA
2 TT TC TT CC AA CC GA AT CC CC CC GG GG GT AG AG GA AA AT
3 CC CC TC CC AA CC GG AA CC CA CC GA GG TT AA GG GG AA AA
4 CT TC TT CC AA CC GA AA CT CC CC GG GA GT AG GG GA AA AA
5 CT TT TT CC AA CC GA AA CC CA TT GA GG GT AA AA GG AA AT
6 TT TC TC CC AA CC GG AT CC CA CT GG GG GT AA GG GG AA AA
7 CT TC TC CT AA CC AA AA CC CA CC GG GG GT AG AG AA AA AA
8 CT TC TT CC AG CC GA AA CC CA CC GG GA GG GG AA GG AG AA
9 CT TC TC CC AA CC GA AT CC CC CC GA GA GT AA AA GG AA AA

Unweighted PRS PRS (is the summ)
Subject

1 0 2 2 0 0 0 2 1 0 2 1 1 1 1 2 1 2 0 2 20
2 2 1 2 0 0 0 1 1 0 2 2 0 2 1 1 1 1 0 1 18
3 0 2 1 0 0 0 0 0 0 1 2 1 2 2 2 0 2 0 2 17
4 1 1 2 0 0 0 1 0 1 2 2 0 1 1 1 0 1 0 2 16
5 1 0 2 0 0 0 1 0 0 1 0 1 2 1 2 2 2 0 1 16
6 2 1 1 0 0 0 0 1 0 1 1 0 2 1 2 0 2 0 2 16
7 1 1 1 1 0 0 2 0 0 1 2 0 2 1 1 1 0 0 2 16
8 1 1 2 0 0 0 1 0 0 1 2 0 1 0 0 2 2 1 2 16
9 1 1 1 0 0 0 1 1 0 2 2 1 1 1 2 2 2 0 2 20

Weighted PRS
OR a 1.20 1.18 1.20 1.12 1.17 1.26 0.95 1.12 1.25 1.03 1.13 1.02 1.13 0.97 1.29 1.05 1.07 1.34 0.91
OR b 1.31 1.43 1.24 1.28 1.41 1.67 1.17 1.40 1.60 1.37 1.56 1.21 1.24 1.21 1.31 1.27 1.31 1.95 1.91

Subject PRS (is the product)
1 1 1.43 1.24 1 1 1 1.17 1.12 1 1.37 1.13 1.02 1.13 0.97 1.31 1.05 1.31 1 1.91 13.84
2 1.31 1.18 1.24 1 1 1 0.95 1.12 1 1.37 1.56 1 1.24 0.97 1.29 1.05 1.07 1 0.91 6.91
3 1 1.43 1.2 1 1 1 1 1 1 1.03 1.56 1.02 1.24 1.21 1.31 1 1.31 1 1.91 13.83
4 1.2 1.18 1.24 1 1 1 0.95 1 1.25 1.37 1.56 1 1.13 0.97 1.29 1 1.07 1 1.91 12.88
5 1.2 1 1.24 1 1 1 0.95 1 1 1.03 1 1.02 1.24 0.97 1.31 1.27 1.31 1 0.91 3.54
6 1.31 1.18 1.2 1 1 1 1 1.12 1 1.03 1.13 1 1.24 0.97 1.31 1 1.31 1 1.91 9.53
7 1.2 1.18 1.2 1.12 1 1 1.17 1 1 1.03 1.56 1 1.24 0.97 1.29 1.05 1 1 1.91 11.13
8 1.2 1.18 1.24 1 1 1 0.95 1 1 1.03 1.56 1 1.13 1 1 1.27 1.31 1.34 1.91 12.90
9 1.2 1.18 1.2 1 1 1 0.95 1.12 1 1.37 1.56 1.02 1.13 0.97 1.31 1.27 1.31 1 1.91 17.98

a= heterozygotes vs common homozygotes
b= rare homozygotes vs common homozygotes
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