POLITECNICO DI TORINO
Repository ISTITUZIONALE

Efficient partitioning of conforming virtual element discretizations for large scale discrete fracture network
flow parallel solvers

Original

Efficient partitioning of conforming virtual element discretizations for large scale discrete fracture network flow parallel
solvers / Berrone, S.; Raeli, A.. - In: ENGINEERING GEOLOGY. - ISSN 0013-7952. - 306:(2022), pp. 106747-106762.
[10.1016/j.engge0.2022.106747]

Availability:
This version is available at: 11583/2970108 since: 2022-09-12T12:15:57Z

Publisher:
Elsevier

Published
DOI:10.1016/j.engge0.2022.106747

Terms of use:
openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
Elsevier postprint/Author's Accepted Manuscript

© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.engge0.2022.106747

(Article begins on next page)

18 October 2022

Mathematical Geoscience manuscript No.
(will be inserted by the editor)

Efficient partitioning and reordering of conforming virtual
element discretizations for large scale Discrete Fracture
Network flow parallel solvers

Stefano Berrone - Alice Raeli

Received: date / Accepted: date

Abstract Discrete Fracture Network models are largely used for very large scale ge-
ological flow simulations. For this reason numerical methods require an investigation
of tools for efficient parallel solutions on High Performance Computing systems. In
this paper we discuss and compare several partitioning and reordering strategies, that
result to be highly efficient and scalable, overperforming the classical mesh partition-
ing approach used to partition a conforming mesh among several processes.

Keywords Partitioning strategies - Parallel solvers - Virtual Element Methods -
Discrete Fracture Networks - Geological Problems

Mathematics Subject Classification (2000) [2020] 65N30 - 65N50 - 65Y05 -
68U20 - 68W10 - 86-08

1 Introduction

The flow in fractured media is a relevant topic in several engineering applications
such as aquifers monitoring, disposal and geological storage of nuclear wastes, pre-
vention of accidental dispersion of contaminants, oil and gas enhanced production
and many other applications (Lei et al. 2017), (Council et al. 1996). When the rock
matrix of the geological formation has a very small porosity, the contribution of the
rock matrix surrounding fractures can have a marginal impact on the flow pattern.
Intensity and direction of flow often depend almost uniquely on the distribution of
fractures and on their hydraulic properties. Discrete Fracture Network models, DFN
in the following, simulate transport and flow within fractured material (usually rocks)

S. Berrone (X)
E-mail: stefano.berrone @polito.it

A. Raeli (X))

E-mail: alice.raeli@polito.it

Politecnico di Torino

Dipartimento di Scienze Matematiche,

Corso Duca degli Abruzzi 24, 10129 Torino, Italy

2 Stefano Berrone, Alice Raeli

using discrete computational strategies to approach the real solution (Neuman 2005),
(Jaffré and Roberts 2012).

In Section 2 we briefly introduce the DFN flow formulation in an impervious
rock matrix, following (Cacas et al. 1990), (Nordqvist et al. 1992), (Dershowitz and
Fidelibus 1999), (Fidelibus 2007), (Berrone et al. 2017), modeling fractures as planar
polygons. Brief information concerning the mesh creation and the degrees of freedom
handling are given in Subsections 2.1 and 2.3 respectively.

Due to the stochastic nature of the DFN model generated starting from proba-
bilistic distribution of fracture position, orientation, size and of hydraulic parame-
ters, several large simulations are needed in order to perform uncertainty quantifi-
cation for flow quantities of interest (Berrone et al. 2015a), (Berrone et al. 2018),
(Canuto et al. 2019), (Pieraccini 2020). As a consequence of the stochastic genera-
tion of the networks, DFNs for practical applications are usually very complex. In
fact, DFNs count a large number of fracture intersections with some critical prop-
erties, such as very narrow angles or multiple intersection zones. The generation of
a mesh conforming to fracture intersections in a DFN is often a complicated and
challenging process, so different numerical approaches possibly circumventing the
problem could be applied: standard or mixed Finite Element Methods (Vohralik et al.
2007), (Hyman et al. 2014), (Sentis and Gable 2017), hybrid mortar methods (Pichot
et al. 2010), (Benedetto et al. 2016a), optimization methods (Mustapha and Mustapha
2007),(Berrone et al. 2015b), and others (Neetinger and Jarrige 2012). This work
focuses on a Virtual Element discretization with a conforming polygonal mesh ap-
proach (Benedetto et al. 2016b) following the strategy presented in (Berrone et al.
2021) for the generation of the conforming mesh, nevertheless the implementation
presented in this work is independent of the element geometry and can be easily
extended to other approaches.

The number of mesh cells required for a DFN simulation depends on the number
and the size of fractures, the density of the network, the range of scale-lengths gen-
erated by the network and on the accuracy of the approximation sought. Despite the
large scale of realistic 3D DFN geological formations, an efficient parallel High Per-
formance Computing approach enables flow and transport simulations. In (Berrone
et al. 2015b),(Berrone et al. 2019) is presented a parallel master/slaves approach
associated with an PDE (Partial Differential Equation) constrained optimization ap-
proach: this choice guarantees scalability and accuracy on the solution requiring a
non-standard solver for the linear systems. The method used in this work is based on
a more standard conforming discretization approach and proposes a parallelization
of the global problem, based on an equitable distribution of the work load, that min-
imizes communications and may resorts to common solvers and preconditioners for
the linear systems.

An efficient parallel DFN simulation necessitate a high-quality partitioning of the
degrees of freedom, such that the computations are well-balanced with minimal com-
munications between processes. A multi-level approach is proposed in (Ushijima-
Mwesigwa et al. 2021) where the advantages of a DFN-based partitioning are pre-
sented in comparison with a classical mesh-partitioning approach. In Section 3 dif-
ferent partitioning strategies of the DFN among the processes are presented resorting
to different types of DFN based graphs representation; the chosen tool for problem

Title Suppressed Due to Excessive Length 3

partitioning is the graph partitioning library METIS (Karypis and Kumar 1999). To
each parallel process is assigned a subset of fractures such that these subsets are dis-
joint and all the fractures in the DFN are assigned only to one process. Once the DFN
is partitioned among processes, in Section 4, we present a method to number the de-
grees of freedom with respect to the partitioned DFN. The objective of this ordering
is to minimize the communications of the iterative method used to solve the linear
system by PETSc (Balay et al. 2019) toolkit. The resolution method used in our con-
text is a preconditioned conjugate gradient with a Jacobi preconditioner, other, more
efficient, approaches can be used but are not tested in this paper, as we focus on the
effect of the MPI parallel communications not on the efficiency of the linear solver.

Although in this work we refer to the specific case of DFNs, the methods pre-
sented are compatible with other problems on networks and graphs with a relevant
cost of computational operations on nodes and edges; the same approach can be ap-
plied to other numerical methods possibly changing the structure of the mesh. In Sec-
tion 5 we conclude with numerical tests that investigate the partitioning/reordering
methods mentioned above.

2 The Discrete Fracture Network Discretization

In this section, we briefly introduce the notation used in the following. We assume
a Darcy flow model inside the fractures and an impervious surrounding rock matrix.
Moreover, we assume continuity of the hydraulic head and conservation of the flux at
the fracture intersections. We do not provide deeper details of the flow model, as they
are not relevant for the focus of the paper and the proposed methods very weakly
depend on these modeling choices. Full details concerning the model used for the
numerical tests can be found in (Berrone et al. 2017) and references therein.

Fig. 1: A simple DFN with four planar rectangular fractures and four intersections.

Let Q be the DFN, given by the union of planar polygonal fractures F,,r =
1,...,#7, intersecting each other to form traces 7,,,m = 1,...,#.7, see Figure 1. We
refer to fractures and traces as domains and interfaces. A multiple domains network
will represent the DFN Q :=J,_; s Fr.

Let .Z be the set of the fractures and .7 the set of traces; we assume that each trace
T, form=1,... #7,is given by the intersection of two fractures T, = F, N F;. This
assumption induce a map between each trace index and a couple of fracture indexes,

4 Stefano Berrone, Alice Raeli

IT (m) = (r,s) with r <, such that F. N Fy = T,,. We define 627 the set of cross points
of the DFN; we assume that a cross point is a multiple intersection point between
three traces, they so belong to three fractures as well. The induced intersection map
is defined such that ICP(t) = (r,s,q)with r < s < g, and F, NF;NF, = CP, Vt =
1,...#67.

In Figure 1 an example with four fractures is given, so we have % :=J,_; 4 F.
This network contains four traces and we can list the following induced maps: IT (1) =
(1,2), IT(2) = (1,3), IT(3) = (2,3) and IT(4) = (1,4). Moreover, the point CP,
given by the intersection of Fi, F> and F3, such that ICP(1) = (1,2,3), or by the in-
tersection of traces 71,7, and T3, is a cross point.

In Figure 2 a DFN with six fractures is represented that will be often used in the
following as example. We will refer to it as Frac6 for the sake of simplicity.

(a) Six Fractures Network (b) Cross point, intersection among three frac-
tures.

Fig. 2: Frac6. A simple DFN with six fractures and six traces.

2.1 The Mesh

In this section we briefly recall the approach described in (Berrone et al. 2021) to
get a polygonal conforming mesh on a DFN. Let us consider for sake of simplicity
two intersecting fractures (Figure 3) and let us consider each fracture as a convex
cell of a temporary mesh. These cells partially or totally crossed by the trace are split
in polygonal convex sub-cells by the trace segments or its possible extensions (see
Figure 2a and Figure 3b). This cutting process involves the minimum number of cells
on the fracture and is repeated iteratively for all the traces and all the fractures. Full
details of this approach can be found in (Berrone et al. 2021). The mesh obtained
by this process is called (almost) minimal mesh (Figure 4a). The minimal mesh can

Title Suppressed Due to Excessive Length 5

be then refined using, for example, a uniform refinement or an a posteriori mesh
refinement as described in (Berrone et al. 2021).

In the following we denote by E, € &, e = 1,...,#& a generic cell, and by N, the
set of its nodes.

—

/>

(a) Two intersecting fractures. (b) Polygonal mesh on the two fractures in-
duced by trace T.

Fig. 3: Polygonal minimal mesh creation.

2.2 The VEM Discretization

(a) Minimal mesh induced by traces. (b) Mesh after 22 adaptive refinements (by mo-
mentum cut direction).

Fig. 4: Frac1000: Minimal and refined mesh for a VEM resolution. The mesh is
refined each iteration by and adaptive mesh refinement algorithm.

The discretization approach applied here is the order 1 Virtual Element Method
that allows the discretization of a second order partial differential equation on a con-
forming polygonal mesh, (Ahmad et al. 2013 Beirdo da Veiga et al. 2013 Beirdo da
Veiga et al. 2014 Beirdo da Veiga et al. 2015). The mesh generation and refinement
process here considered yields to convex elements and all the tests proposed are pro-
vided on such kind of meshes. Due to the stochastic nature of the DFN the conforming

6 Stefano Berrone, Alice Raeli

polygonal mesh may contain elements characterized by a low quality due, for exam-
ple, to a large aspect ratio or the coexistence in the same cell of short and long edges.
Although badly shaped elements may affect the quality of a VEM solution, when low
polynomial order elements are considered this property is not relevant as shown in
(Berrone and Borio 2017a).

In order to test the proposed methods on large suitable meshes, in the last Subsec-
tion 5.5, we apply the proposed methods on a polygonal mesh obtained applying an a
posteriori mesh refinement. In this context the problem is solved on progressively re-
fined meshes, being the refinement based on information provided by an a posteriori
error estimator (Fig. 4b).

2.3 The DOFs Handler

A node is a point in space, defined by its coordinates to which we associate a degree
of freedom. A degree of freedom (Dof) can be defined in many different ways, in
the following it will be the point-wise value of the discrete solution on the node
considered, and the solution to our problem is written as a linear combination of
Lagrangian basis functions ¢;:

nDofs—1

uy= Y, Dofio, ey
i=0

where ¢; is the basis function related to the i-th Dof, and nDofs is the total number
of degrees of freedom. In Figure 5a is reported the minimal mesh for two intersecting
fractures with four cells E,, e = 1,2, 3,4 and in Figure 5b the nodes of the cell E; are
highlighted with blue bullets.

(a) Minimal mesh for two intersect- (b) Nodes (blue dots) induced on cell
ing fractures. E;.

Fig. 5: Minimal mesh for two intersecting fractures.

Using a conforming mesh, the degrees of freedom on the DFN include the degrees
of freedom at the cross points in 622, the remaining degrees of freedom on the traces
in .7, and the remaining degrees of freedom inside the fractures in .%. Let [.] be

Title Suppressed Due to Excessive Length 7

F5

T6 F6
(a) Frac6 partition between 2 processes. (b) Graph partitioning among 2 processes.
Red fractures are assigned to P, Local and local communicating networks

blue ones are assigned to P».

Fig. 6: Frac6 - 2 processes partition.

the operator such that [€27] is the number of degrees of freedom in €% ([¢7] =
#%7), 7] is the number of degrees of freedom of the traces (including the degrees
of freedom at the cross points), and [.#] = nDofs is the number of degrees of freedom
on the fractures (total number of degrees of freedom).

In the following each degree of freedom is uniquely related to an integer index
i=0,...,nDofs— 1 and we refer to a possible permutation of this index set as a
reordering. For sake of simplicity, let us assume we are dealing with a problem with
homogeneous Dirichlet boundary conditions. For each node x, not on the boundary
of the DFN, let i be the corresponding Dof index, ¢; the corresponding Lagrangian
basis function and & = {E € & | ENx # 0} its support, i.e. the set of cells intersecting
the node x; we define Neigh; the set of the Dofs indices corresponding to the vertices
of the cells in & called neighborhood of the i-th Do f. Most of the Dofs on fractures
have a neighborhood within the fracture, but Dofs on traces and cross points have
adjacent cells on different fractures. The neighborhoods of the degrees of freedom of
traces and cross points are relevant during the partitioning strategies presented in the
following, and, when the connected fractures lie on different MPI processes, they are
related to the part of the solution that requires communications between processes.

3 Parallel Partitioning

The discrete structure of a DFN (union of polygonal fractures) naturally implies sev-
eral graph representations, (Hendrickson and Leland 1995), (Karypis and Kumar
1999), (Ushijima-Mwesigwa et al. 2021). In order to balance the computations in
DFN flow simulations two main partitioning strategies are possible: the mesh-based

8 Stefano Berrone, Alice Raeli

partitioning, i.e. the partitioning of the Dofs of the full DFN based on the mesh con-
nectivity, and the DFN-based ones, i.e. the partitioning of the geometrical objects
(fractures, traces, cross points) and the corresponding Dofs based on objects connec-
tivity.

In the following we present three different DFN-based graph partitioning strate-
gies among all MPI processes (Prs). Let &2 = UﬁrlsPi be a partition of fractures,
where P; is the set of fracture assigned to i-th process of our parallel environment
with B,NP; = 0,Vi # j. Once the DEN fractures are divided among the processes,
auxiliary sub-networks are created in order to suitably manage the communications
between processes.

The local network _Z; of the i-th process is an ordered set containing the set of
fractures P; and the set of internal traces Jp, = {T,, € 7 |IT (m) = (r,s), F;, F; € B},
ie. &= (P, Ip).

The local communicating network .£%’; is an ordered set containing a set of
fractures and a set of traces that are involved in communications during resolution.
Let Zicp = {F;, € P|3T,, € J : IT(m) = (r,s), F. ¢ B} be the fractures in P, that
share a trace with a fracture not belonging to P, having a fracture index smaller than
the one of the fracture in P.. Moreover, let J;cp = {T, € T |IT(m) = (1,5), F; €
P, F; ¢ P;} be the set of traces shared by a fracture of P; and a fracture not belonging
to P; with a fracture index larger than the one in . We define €’ = (Zrc.p, Ticp)-
Furthermore, the process that owns a trace in its local communicating network is the
one that handles its corresponding Dofs.

We explore in detail the Frac6 example in Figure 6a for a two processes partition:
red highlighted fractures lie on .Z7, light blue ones belong to .%5. In Figure 6b £} and
2, are disjointed in their graph representation (highlighted two disjointed zones).
The traces T5 and Ty lie on process 1 and they are totally local, so they belong to
. Analogously Ty, Tz € .%. The traces T, and T are not local as long they rely
two fractures in different processes. Following the construction strategy (IT(2) =
(2,3),IT(4) = (2,6)) in both cases the two traces are handled by process 2: their
Dofs are indexed with the Dofs of fracture F,, whereas the process 1 set up the two
fractures F3 and Fg to receive Dof indices on these traces from the process 2 (pink
subset in Figure 6b). We have €| = {F3, Fs}, and L6, = {1, T4 }.

We define the cut C of a network partition &2 as the number of traces that connect
fractures belonging to different processes:

C=|¢|, €={T,ec T|IT(m)=(rs),F €P,F,cPji#j}. 2)

We note that C is the sum of the number of all the traces contained in local commu-
nicating networks of the partitioning.

Let D; be the number of degrees of freedom of the sub-network associated to the
partition P, € &, we define the imbalance of a partition & as:

mlnl’ieﬂDi _ Dyin

1= = .
maxp.ec D; Diax

3)

Closer the quantity / is to one, more balanced is the partitioning.
The METIS library (Karypis and Kumar 1999) used to partition the graph requires
the graph stored in its adjacency format. METIS toolkit also requires a partitioning

Title Suppressed Due to Excessive Length 9

objective to be chosen between edge-cut minimization and communication volume
minimization. By adding weights to the nodes of a graph we quantify the amount
of the computations entrusted to each process of the partition managing those nodes
also if an edge-cut minimization is applied, whereas the weights on edges quantify
the amount of communication between processes.

3.1 Partitioning Strategies
In this section we focus on the partition of the DFN among the computational pro-
cesses aiming at maximizing data locality in order to minimize communications and

at balancing the computational load among the processes. Six partitioning strategies
are presented and analyzed in the following.

3.1.1 Partition Graph Pg and Partition Weighted Graph W g

Fig. 7: Frac6, adjacency graph representation. F stands for fractures and T for traces.
Red numbers are the weights on nodes and blue ones the weights on edges.

In the simplest graph representation of a DFN the fractures are graph-nodes
and the traces are graph-edges (see Figure 7), (Berrone et al. 2015b), (Ushijima-
Mwesigwa et al. 2021); weights on nodes and edges are set to 1. We denote this
partitioning as Pg (Partition Graph); this approach aims at minimizing the number
of the cut traces (cut-minimization), so the number of communicating traces, but the
chosen traces to be cut does not necessarily minimize the amount of data communi-
cation during the resolution process. Moreover, we do not consider in the partitioning
the amount of computations required by each process.

In order to avoid this problem we can resort to a weighted partition (Wg) of the
graph attaching weights to nodes and edges in the following way:

- VF, € # the associated node weight is [F];
- VT, € 7 the associated edge weight is [T;,].

By an edge-cut minimization this weighted graph we limit the amount of data com-
munication, whereas the node-weights balance the workload of the processes.

10 Stefano Berrone, Alice Raeli

We will present in numerical results that the partition time of the weighted version
is almost preserved with respect to the non-weighted version, but the imbalance value
1 is significantly improved in front of a negligible deterioration of the cut C.

(a) Pg cut minimization partitioning strategy (b) Wg weighted partitioning strategy among
among two processes. two processes.

Fig. 8: Frac6 partitioning strategies comparison. Nodes in the dotted region lie in P,
dashed ones in Ps.

In Figure 8 an example of the two partitions for Frac6 is presented. We note
differences on local networks . and .Z] . Increasing the number of the fractures the
weighting effect becomes more evident.

3.1.2 Partition Bipartite Graph Pb and Partition Bipartite Weighted Graph Wb

T6 Fé

Fig. 9: Frac6 bipartite graph representation. F stands for fractures and T for traces.

Most of the amount of data communication between processes depend on the
number of degrees of freedom on the traces in . In order to increase the impact
of the degrees of freedom on the traces on the partitioning process, we introduce
a bipartite graph representing the DFEN. In the bipartite graph there are two sets of
nodes, the first set representing the fractures and the second one representing the

Title Suppressed Due to Excessive Length 11

traces. Each element of the first set is only connected with elements of the second
one and other way round. The edges correspond to connections between traces and
fractures.

When a cut occurs on an edge connecting a trace 7T,,, with IT (m) = (r,s), and
a fracture Fy, the trace T, is associated to .£%’; and the fracture F; is associated to
Z%€ jwith i # j. In Figure 9 we provide the bipartite graph corresponding to the DFN
Frac6. We denote this partitioning as Pb (Partition Bipartite). As before we also ex-
plore the advantages of a weighted version when we provide weights on nodes and
edges (Wb Weighted Bipartite). We assume that the number of degrees of freedom
[T,n] on traces is proportional to the number of connections between the trace and
the fractures which intersects. We set the edges weights as [T;,], VT, € 7. In this
approach we increase the possibility of the partitioning to entrust traces to different
processes and in the weighted version we can distinguish the amount of communi-
cation related to the connectivity of the Dofs on the trace and the two connected
fractures that can be very different when the size of the elements on the two fractures
is different. This may happen, for example, when the two fractures have a strong gap
in the transmissivity.

Fig. 10: Frac6, Pb (left) and Wb (right) partitionings. Nodes in the dotted region are
assigned to P, dashed ones are assigned to P.

In Figure 10 Pb and Wb partitionings are represented for the Frac6 example. We
observe that both strategies for this very small test produce the same local networks
£ and £, however the METIS assignment of the nodes differs on 75.

3.1.3 Partition Tripartite Graph Pt and Partition Tripartite Weighted Graph Wt

In this approach we set as nodes of the graph the fractures, the traces and the cross
points: they are respectively managed as two, one and zero dimensional domains. We
call tripartite graph the new induced graph on which the edges correspond to connec-
tions between traces and cross points, traces and fractures, cross points and fractures.
This approach has a larger number of nodes and further increase the possibility to
distribute nodes among processes, moreover the number of edges generated by this
graph representation is larger and can change the Dofs distribution among processes

12 Stefano Berrone, Alice Raeli

F1

Fig. 11: Frac6. Tripartite graph. F denotes fractures, T stands for traces and P corre-
sponds to cross points with multiple intersection. The adjacency matrix considers as
connections the green, pink and black edges.

if a partition that minimizes the edges-cut is applied. We notice on the example given
in Figure 11 that a cross point is connected with fractures and traces. We denote this
partitioning as Pt (Partition Tripartite) in the following.

Its weighted counterpart Wr (Weighted Tripartite) is built such that:

- VF, € # the associated node weight is [F];

- VT,, € 7 the corresponding node weight is [7,];

— VCP, € 627 the associated node weights are set to 1;

— for each edge of the graph connecting a trace to a fracture the corresponding
weight is [T;,], the number of Dofs on the trace;

— for each edge of the graph connecting a cross point to a fracture, or to a trace,
the associated edge weight is [CP;] xdegree(CP;); [CP;] = 1 is the number of Dofs
on cross point, and degree(CP,) is the degree of the node CP, in the graph; for
example in Figure 11 degree(CF,) = 6 as it intersects three fractures and three
traces of the DFN.

Fig. 12: Frac6, Pt (left) and Wt (right) partitionings. Nodes in the dotted region lie in
Py, dashed ones in P».

Title Suppressed Due to Excessive Length 13

In Figure 12 we present the Frac6 partitioning example, the unweighted and
weighted versions differ in their local networks %5 and .%].

4 Indexing Dofs

In this section we focus on global indexing strategies of the degrees of freedom,
unique among all the processes. We present a first serial strategy to enumerate the
Dofs of the DFN in Algorithm 1. This strategy is among the simplest to be applied
to a DFN, and by changing slightly this approach we provide a parallel efficient
global indexing. These algorithms first set indices on domain interfaces of increasing
geometrical dimension, then they fill the remaining degrees of freedom with a simple
incremental order on fractures.

1: foreach CP, € 27 do
| Assign dof index d. d + +
end
2: foreach T,, € 7 do
foreach node on T,, without index do
| Assign dof index to d. d + +
end
end
3: foreach F, € .Z do
foreach node on F, without index do
| Assign dof index to d. d + +
end

end
Algorithm 1: Degrees of Freedom: Serial Assignment.

40

E .. .
5 10 15 20 25 30 35 40 45 458 s, %
(a) Outline structure: the yellow line refers to cross ° 10 i”z o 30 40
point test functions, the blue stripe to traces and the
green one to fractures internal Dofs. (b) Matrix sparsity pattern.

Fig. 13: Frac6,46 degrees of freedom distribution for regular DofHandler.

14 Stefano Berrone, Alice Raeli

Given [7] — [6¢%”] = M the number of degrees of freedom on traces that are not
connected to cross points and [.#] —M — [6%?] = K the internal degrees of freedom
on fractures; the resulting sparse matrix has the first [¢27] rows concerning the cross
points interactions, then M rows concerning the remaining traces Dofs and the last
K rows concerning the remaining fracture Dofs. This strategy agglomerates the most
communicating rows in the higher part of the matrix, see Figure 13. This approach
is not convenient for a PETSc parallelization (unless different restrictions are im-
posed) because PETSc subdivides the matrix among the processes in horizontal con-
tiguous stripes. In order to perform the matrix-vector products needed by the PCG
method each process requires updating components of the vector that were computed
by other processes at the previous iteration. The elements of the vector that are in-
volved in communications are the elements whose indices are outside the diagonal
block of the stripe assigned to the process. In Figure 13b the sparsity pattern of the
matrix highlights the presence of many nonzero elements outside the diagonal blocks
for all the processes. The matrix partition resulting in this case overloads the first
process of data communications with almost all the other processes highlighting the
negative effect of the latency. The SpeedUp of Krylov subspace methods depends on
the global synchronization during the matrix-vector product communication (Saad
2003), (Ghysels et al. 2013), (Kaya et al. 2013).

4.1 The Reordered DofHandler

We propose a reordering for degrees of freedom in order to enumerate consecutively
the Dofs of the geometrical objects contained in the local network of each process.
Moreover the degrees of freedom on local communicating traces (including Dofs at
cross points) are handled by the process that owns them.

"eeie ss se esvene

1

15

20

25

30

35

40

5 10 15 20 25 30 35 40 45 45

o

(a) Outline structure: the yellow line refers to cross
point test functions, the blue stripe to traces and the ;)
green one to fractures internal Dofs. (b) Matrix sparsity pattern.

Fig. 14: Frac6,46 degrees of freedom distribution for reordered DofHandler. 3 pro-
cesses partition.

Title Suppressed Due to Excessive Length 15

In Algorithm 2, each process numbers its Dofs with a local numbering, then the
local numberings are concatenated in the global indexing. Interfaces indices at traces
and cross points are set by the process owning the lowest index fracture and are
skipped by the other processes that will inherits the global numbering later. Recalling
that VCP, € F. N F; N F, the intersection map ICP(t) = (r,s,q) is such that r < s < g,
and for a trace T,, € F, N F; we have IT (m) = (r,s) with r < s, the algorithm can be
sketched in the following way:

Data: Each Process i Call
foreach CP, € €2, compute ICP(t) do
if F, € % then
| Assign dof index to djpears diocal + +;
end
foreach 7,, € 7, compute IT (m) do
if F, € % then
foreach node on T, without index do
| Assign dof index to djpears diocar + +;
end

end
foreach F;, € % do
foreach node on F without index do

if Fj € £%; then

| Prepare Fj to receive.

end

Assign dof index to djycar; diocar + +;
end

end
Algorithm 2: Pre-communicating phase, degrees of freedom local assignment.

The global indices are then computed from local ones adding to them an offset
corresponding to the sum of indices counted on the previous processes. Each process
determines the global indices for the degrees of freedom previously set, then indices
of Dofs not managed by the process will be received by a different one containing the
interface in the local communicating network.

This approach ensures a communicating part of the matrix to each process, bal-
ancing the communications required by the solver at each iteration.

In Figure 14 we provide a representation of the matrix previously seen in Fig-
ure 13 partitioned among 3 processes by this algorithm, the communicating data
(Figure 14a) are sketched in the first part of each horizontal stripe. Moreover, in
Figure 14b, the sparsity pattern is presented; we remark that the Frac6 is a small
test on which the advantages of partitioning and reordering strategies are not evident,
however the third processes highlights a larger diagonal local block. Further details
are presented for a larger DFN in Section 5.

16 Stefano Berrone, Alice Raeli

(a) Frac512: Minimal mesh. (b) Frac512: refined mesh n=100.

Fig. 15: Frac512: initial minimal mesh (left) uniformly refined until the number of
degrees of freedom reaches [.%#] > nx 512 (right).

Table 1: DFN Numerical notations.

7] Total number of degrees of freedom

#7 Cardinality of the set .

n Average number of degrees of freedom required on each fracture
C Cut

1 Imbalance

Part.Time(s) | Partitioning time, in seconds

Res.Time(s) Solution time, in seconds

5 Numerical Results

The tests presented in this section concern DFNs with different number of frac-
tures: 512, 1000, 2000 and 4000. We denote the corresponding DFNs as Frac512,
Frac1000, and so on. The linear systems of the tests presented are solved using the
PETSc preconditioned conjugate gradient iterative method (KSPCG) with a Jacobi
diagonal preconditioner. This choice exploits the symmetry and coercivity of the
Darcy problem and the corresponding symmetric positive definiteness of the VEM
discretization matrix, nevertheless we remark that the partitioning and renumbering
methods discussed do not rely on this properties.

5.1 Reordering Analysis

In this section we investigate the performances of the solver coupled to the partition-
ing strategies introduced in Subsection 5.2 (Table 2) applied to a VEM discretization

Title Suppressed Due to Excessive Length 17

Table 2: DFN Partitioning strategies notations.

Pg Partitioning induced graph. The weights on nodes and edges are 1.

Fractures as nodes, traces as edges

Wg | Weighted partitioning induced graph

Fractures as nodes, traces as edges.

The weights are [F,| and [T;,] on the associated nodes and edges.

Pb Partitioning bipartite graph. The weights on nodes and edges are 1.

Fractures and traces as nodes, connections between fractures and traces are edges

Wb | Weighted partitioning bipartite graph

Fractures and traces as nodes, connections between fractures and traces are edges.

The weights are [F,] and [T,,] on the nodes associated to fractures and traces respectively,
[T,] on the edges connecting traces to fractures.

Pt Partitioning tripartite graph. The weights on nodes and edges are 1.

Fractures, traces and cross points as nodes, connections between these objects are edges

Wt | Weighted partitioning tripartite graph

Fractures, traces and cross points as nodes, connections between these objects are edges.
The weights are: [F,] on fracture nodes;

[T, on trace nodes and on edges connecting trace nodes and fracture nodes;

6 on edges connecting cross points to fractures and traces;

1 on nodes representing cross points.

Frac512 SpeedUp n=500 Frac512 SpeedUp n=1000
1 e —wg senal 14 e W serial
= © = Wg Reordered = © = Wg Reordered
W Serial wt Serial
12 F 1= & - Wt Reordered £ 121 |- & - wtReordered
—E5— Wt Serial -7 —&— Wt Serial
Wt Reordered T Wt Reordered

4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Prs Prs

(a) Frac512n = 500: SpeedUp. (b) Frac512n = 1000: SpeedUp.

Fig. 16: SpeedUp: Frac512, weighted partitioning strategies base, bipartite and tri-
partite. Comparison of reordered and serial DofHandler numbering strategies. n =
500, left, n = 1000, right.

to the Darcy problem on fractures. In particular we focus on the different perfor-
mances when the numbering of the Dofs is performed by the simple Algorithm 1
and by the Algorithm 2. The mesh on which the partition is applied is the minimal
mesh (Berrone et al. 2021) on which we refine uniformly until the number of degrees
of freedom satisfies [.Z] > #.% *n, where n = 500, 1000. This approach provides a
number of degrees of freedom high enough to justify a parallel approach with few
processes. In Figure 15 is depicted the final mesh for Frac512 with n = 100. For
this analysis we use the weighted versions of the partitioning strategies aiming at
balancing the computational load and minimizing communications among processes.

18 Stefano Berrone, Alice Raeli

Frac2000 SpeedUp n=500 Frac2000 SpeedUp n=1000
14 1 6= Wq Serial 14 —e—=wg serial -?
= © = Wg Reordered = © = wg Reordered P
I wt Serial Wt serial -7
- & - Wt Reordered 12 1|~ & - wt Reordered - %
—&—we serial “ —&— Wt Serial -7 S
Wi Reordered -8 Wt Reordered PES STl

(a) Frac2000n = 500: SpeedUp. (b) Frac2000n = 1000: SpeedUp.

Fig. 17: SpeedUp: Frac2000, weighted partitioning strategies base, bipartite and tri-
partite. Comparison of reordered and serial dofhandler numbering strategies. n = 500,
left, n = 1000, right.

The Dofs are numbered by the basic sequential Algorithm 1 and by the reordered
Algorithm 2, then the resolution times are compared.

Given 1, the resolution time required by p processes, we define the SpeedUp for
our parallel resolution as S, = %

In Figures 16 and 17 we report the SpeedUp for the cases Frac512 and Frac2000.
As expected the reordered dofhandler displays a clear improved behavior. Figures 16
and 17 clearly highlights a loss of parallel performances for the case with 16 pro-
cesses due to the overloading of shared resources on the CPU. In order to investigate
this phenomenon we will present results obtained using different sockets in Subsec-
tion 5.3. The tests are performed on Intel Xeon CPUs with 16 cores !, the 16 processes
tests are performed using all the cores of the CPU.

Once the efficiency of reordering strategy is proved in terms of SpeedUp, in the
following sections the reordered DofHandler is used. The matrix sparsity pattern is

presented in Figure 22.

5.2 Partitioning Analysis

In this section we compare the performances of the six partitioning strategies pre-
sented in Section 3 for different DFNs on a mesh with approximately [%#] > #.% xn,
with n = 100 degrees of freedom. Here we only consider the reordered version of the
Dofs indices.

In Table 3 we report the resolution times for the serial problems. In Tables 4, 5
and 6 we report the results comparing the three partitioning strategies in their un-
weighted and weighted versions. In the tables the second column reports the number
of processes involved for each test case specified on first column. The columns 3

! https://ark.intel.com/content/www/it/it/ark/products/120492/
intel-xeon-gold-6130-processor-22m-cache-2-10-ghz.html

Title Suppressed Due to Excessive Length 19

Table 3: Serial resolution times.

DFN | Res. Time(s)
512 5.24397
1000 15.2265
2000 13.1338
4000 57.7411

Table 4: Partition results for graph partitioning Pg and the weighted one Wg.

DFN | Prs C 1 Part. Time(s) Res. Time(s)
Pg | Wg | Pg Wg Pg Wg Pg Wg
512 2 38 50 | 0.827 | 0.970 | 0.020 | 0.022 2.676 2.645
512 4 90 | 125 | 0.642 | 0.973 | 0.023 | 0.026 1.818 1.403
512 8 149 | 166 | 0.549 | 0918 | 0.025 | 0.025 0.903 0.730
512 16 360 | 275 | 0.534 | 0.884 | 0.054 | 0.028 0.479 0.420
1000 | 2 34 45 | 0.639 | 0.944 | 0.036 | 0.038 8.849 7.976
1000 | 4 78 | 112 | 0.599 | 0.933 | 0.041 | 0.050 4.840 3.991
1000 | 8 130 | 169 | 0.512 | 0.910 | 0.058 | 0.071 2.820 2.129
1000 | 16 213 | 296 | 0.385 | 0.812 | 0.081 | 0.102 1.372 1.191
2000 | 2 88 93 | 0.969 | 0.955 | 0.057 | 0.058 6.726 6.794
2000 | 4 152 | 227 | 0.884 | 0.945 | 0.060 | 0.067 3.482 3.618
2000 | 8 293 | 339 | 0.760 | 0.941 | 0.067 | 0.068 1.979 1.857
2000 | 16 455 | 551 | 0.608 | 0.890 | 0.084 | 0.076 1.092 1.000
4000 | 2 86 | 101 | 0.901 | 0965 | 0.118 | 0.155 | 28.971 | 28.583
4000 | 4 177 | 204 | 0.827 | 0.970 | 0.120 | 0.128 | 15.022 | 14.141
4000 | 8 372 | 501 | 0.731 | 0.930 | 0.136 | 0.144 8.200 7.608
4000 | 16 556 | 652 | 0.537 | 0.950 | 0.137 | 0.141 5.427 4.629

and 4 report the cut C for unweighted and weighted partitioning, respectively. The
columns 5 and 6 the imbalance I. Part.Time(s) on columns 7 and 8 is the partitioning
time employed by METIS, the last two columns report the resolution time employed
by the PETSc.

Imbalance

Fig. 18: Frac2000: imbalance (left) and cut (right) increasing the number of pro-
cesses, n = 100.

20 Stefano Berrone, Alice Raeli

Table 5: Partition results for bipartite partitioning Pb and the weighted one Wb.

DFN | Prs C 1 Part. Time(s) Res. Time(s)
Pb | Wb | Pb Wb Pb Wb Pb Wb
512 2 40 60 | 0.864 | 0.988 | 0.020 | 0.022 2.682 2.648
512 4 80 | 151 | 0.783 | 0.937 | 0.022 | 0.028 1.612 1.412
512 8 145 | 219 | 0.701 | 0.887 | 0.024 | 0.030 0.816 0.748
512 16 211 | 290 | 0.500 | 0.836 | 0.026 | 0.032 0.474 0.452
1000 | 2 45 50 | 0.888 | 0.980 | 0.039 | 0.039 8.122 7.959
1000 | 4 90 | 102 | 0.786 | 0.943 | 0.041 | 0.053 4.090 4.001
1000 | 8 140 | 180 | 0.711 | 0.896 | 0.053 | 0.052 2.389 2.144
1000 | 16 239 | 315 | 0.553 | 0.863 | 0.062 | 0.070 1.399 1.245
2000 | 2 76 93 | 0.967 | 0.962 | 0.056 | 0.057 7.006 6.782
2000 | 4 157 | 226 | 0954 | 0.952 | 0.061 | 0.065 3.336 3.379
2000 | 8 335 | 420 | 0.775 | 0.914 | 0.063 | 0.073 1.821 1.837
2000 | 16 497 | 611 | 0.743 | 0.867 | 0.079 | 0.080 1.060 1.008
4000 | 2 83 92 | 0992 | 0986 | 0.118 | 0.119 | 28.428 | 28.045
4000 | 4 176 | 195 | 0.859 | 0.936 | 0.121 | 0.124 | 14.781 | 14.699
4000 | 8 348 | 494 | 0.820 | 0.929 | 0.130 | 0.138 7.512 7.303
4000 | 16 603 | 767 | 0.676 | 0.902 | 0.135 | 0.155 5.070 4.663

Table 6: Partition results for tripartite partitioning Pt and the weighted one Wt.

DFN | Prs C 1 Part. Time(s) Res. Time(s)
Pt Wt | Pt Wt Pt Wt Pt Wt
512 2 50 70 | 0.872 | 0.986 | 0.021 | 0.024 2.752 2.645
512 4 93 | 143 | 0.801 | 0.963 | 0.022 | 0.026 1.579 1.368
512 8 136 | 136 | 0.864 | 0.864 | 0.025 | 0.025 0.816 0.741
512 16 219 | 290 | 0.466 | 0.836 | 0.027 | 0.032 0.478 0.452
1000 | 2 45 45 | 0.886 | 0.961 | 0.037 | 0.039 8.004 8.192
1000 | 4 87 | 112 | 0.805 | 0.947 | 0.040 | 0.057 4.448 4.018
1000 | 8 140 | 189 | 0.760 | 0.896 | 0.053 | 0.064 2.402 2.203
1000 | 16 232 | 308 | 0.594 | 0.863 | 0.063 | 0.058 1.360 1.132
2000 | 2 79 | 165 | 0961 | 0.974 | 0.055 | 0.065 6.628 6.922
2000 | 4 166 | 192 | 0.924 | 0.958 | 0.062 | 0.064 3.361 3.501
2000 | 8 312 | 356 | 0.796 | 0.929 | 0.066 | 0.069 2.029 1.827
2000 | 16 472 | 547 | 0.761 | 0.919 | 0.073 | 0.080 1.091 0.962
4000 | 2 83 98 | 0973 | 0979 | 0.117 | 0.118 | 30.125 | 31.120
4000 | 4 175 | 282 | 0934 | 0.951 | 0.121 | 0.134 | 14.415 | 13.857
4000 | 8 358 | 453 | 0.826 | 0.927 | 0.129 | 0.138 7.543 7.215
4000 | 16 577 | 728 | 0.743 | 0.880 | 0.138 | 0.149 5.225 5.106

For each partitioning strategy, comparing the results of the unweighted and weighted
versions we can see that the cut C is increasing for the weighted versions because the
partitioner aims at minimizing the number of degrees of freedom on the cut traces
instead of the number of the cut traces. The cut C represents the number of commu-
nicating traces of the DFN, that are edges of the graph representing the DFN only
for the Pg and Wg strategies. In the weighted version the cuts concentrate on more
shorter traces. We note that an increased number of communicating traces arises in
the bipartite and tripartite case, as long as they focus on the data load and not on the
quantity of the cut edges.

Title Suppressed Due to Excessive Length

Induced Graph

Bipartite Graph

—6—pg 512 Q —6—rb 512)
—&— Pg 1000 Lk ~—&—Pb 1000 - ™
12 Pg 2000 L= 12 Pb 2000 .
—%¥— Pg 4000 52 —¥—Pb 4000 L2
28 g om0 % 28 Wm0 -
10 7e—wgzmm o® 0 - 8 - Wb 2000
- % - Wq 4000 - - % — Wb 4000
aQ 9 o
=] =]
T 8 o 8
o} @
g s
L2l C2

—E— Pt 512
—&— Pt 1000

Pt 2000

—k— Pt 4000
- ©=wt512
Wt 1000
- 8 - wt 2000
- % - wra000

SpeedUp

Fig. 19: SpeedUp comparison among partitioning strategies. The average number of
degrees of freedom on each fracture is n = 100.

Concerning the imbalance I, we see that the weighted versions have an imbalance
closer to one and less dependent on the number of processes, that denotes a more
uniform distribution of the workload among the processes. In Figure 18 we report
for Frac2000 plots of imbalance for all the partitioning strategies, the advantages in
terms of Dofs imbalance is evident for base graph and tripartite graph in front of a
negligible loss for the cut C.

From columns 7 — 8 (Part.Time(s)) we can see that the partitioning time is almost
equal for all the partitioning strategies.

In Figure 19 we compare the SpeedUp for the weighted and non-weighted strate-
gies, we can observe that they are quite similar and the weighted version behaves
slightly better. In this particular case the total number of Dofs is not so large to over-
load the shared resources of the CPU and the degradation seen in Figure 17 is slightly
appreciable for the Frac4000.

5.3 Multi-Sockets Analysis

As already noted in the previous sections when the number of partitions is higher than
8 and the number of Dofs is quite large our tests clearly highlight a loss of SpeedUp.
This phenomenon can be attributed to an overloading of the common resources of the
CPUs. In order to confirm this interpretation we repeat the same tests entrusting only
a process to each CPU. Being the communications between different sockets more
expensive (Balay et al. 2019) we focus on a larger problem that is the Frac4000 on

22 Stefano Berrone, Alice Raeli

SpeedUp Frac4000 n=100 SpeedUp Frac4000 n=250
o
14+ |—©—Pa 14} [—©—"a .
—&—p —&—rb P
Pt Pt -
-©-wg -9 =-wg 7
-6 -wo 2118 —wo -
we
10
=R
jun}
°
W 8
v
o
wv
6
4
Z
y 0 -
#
2"./' -7
2 4
14| |—9—Pa
—H—rp 14 | |—€—Fa e
Pt o —G—rb s
12 [~9-wgy P o . -8
-9 -wb 27 129w . -
z -6 -wb ’ E

Fig. 20: Multi-socket SpeedUp for Frac4000, [.#]: 332174, 1260833 , 1889468 and
2789051. The average number of degrees of freedom on each fracture is n; partition-
ing strategies comparison for their weighted and unweighted versions.

which we increase the number of degrees of freedom [F] > #.% % n from n = 100
to n = 250, n = 500 and n = 750. In Figure 20 we report the SpeedUp results, that
highlight better performances increasing the number of degrees of freedom due to
the increased workload of the processes with respect to the cost of communications.
In this case the degeneration of performances passing from 8 to 16 processes is less
relevant because there is not competition between processes in the use of the shared
resources of the CPU.

5.4 Mesh Partitioning

In this section we consider the standard partitioning of the Dofs based on the connec-
tivity of the mesh. In particular we construct the adjacency matrix of the graph of the
degrees of freedom, i.e., we have one graph-node for each mesh-node (Dof) and one
graph-edge for each mesh-edge. We apply a partitioning of this graph using a cut-
edge minimization strategy; with this approach the amount of data communicated at
each iteration among the processes should be minimized.

The partitioning of the Dofs is handled by METIS. Then the resulting set of in-
dices on each process is numbered in a contiguous way (see Figures 22a, 22b).

Title Suppressed Due to Excessive Length 23

The partitioning time employed by METIS for this approach is much higher with
respect to the ones of the previously presented partitioning strategies due to the larger
graph to be partitioned, see Figure 21a. Nevertheless, the solver SpeedUp is quite
similar, see Figure 21b. When the number of processes increases the DFN-based
graph partitionings present a clear better overall behavior, (Ushijima-Mwesigwa et al.
2021). In Table 7 we report the partitioning time and the resolution time for the same
mesh (n = 100) used for the test cases of Tables 4, 5 and 6. We can observe that the
resolution time for the mesh partitioning is always larger with respect to the proposed
partitioning strategies. This behavior can be explained observing the sparsity pattern
of the matrix. In Figure 22 we report the spy for the serial DofHandler, for the mesh
partitioning and for the weighted graph partitionings proposed. The large number of
off-diagonal block elements of the mesh partitioning approach is responsible for a
lower efficiency of the matrix vector products, whereas in the reordered weighted
versions we have similar structures with marginal differences and a higher clustering
of the nonzeros elements on the rows that helps improving the matrix vector product.

Table 7: Mesh Partitioning.

DFN | Prs | Part. Time(s) | Res.Time(s)
512 1 0 5.025
512 2 0.052 3.564
512 4 0.055 1.836
512 8 0.060 1.010
512 16 0.068 0.570
1000 | 1 0 14.789
1000 | 2 0.102 10.239
1000 | 4 0.105 5.363
1000 | 8 0.112 2.789
1000 | 16 0.135 1.577
2000 | 1 0 12.648
2000 | 2 0.133 8.517
2000 | 4 0.146 4.638
2000 | 8 0.146 2.360
2000 | 16 0.170 1.299
4000 | 1 0 56.103
4000 | 2 0.298 39.084
4000 | 4 0.302 21.548
4000 | 8 0.328 10.316
4000 | 16 0.365 5.382

5.5 An adaptive VEM mesh refinement test

In this last section we investigate the interplay between partitioning and mesh re-
finement, and, in particular, the degeneration of the performances of the proposed
partitioning strategies when the partitioning is performed on a starting mesh that is

24 Stefano Berrone, Alice Raeli

Partitioning Times Solver SpeedUp
0.4
—&—MeshP 512 - 'g
* 12 | [=€—Mesnp 1000 P
035 — MeshP 2000 A
—¥— MeshP 4000 22
10 k|- ©-Was12 %
0.3%— Wg 1000 e®
—¥— MeshP Frac4000 -8 -Wg 2000 _2®
— % —Wq Frac4000 a — % —Wg 2000 %
w 0.25 Wb Fracd000 3 8
a —K— Wt Fracd000 S
£ o
F o2 S
femmmmmm——— === — =k wn
0.15 -~Z I,
* = -
~ -
0.1 *
E

Prs

(a) Frac4000: Partitioning times employed by (b) Mesh partition SpeedUp. Comparison with
METIS comparison. weighted graph partition.

Fig. 21: Induced mesh partitioning results for partitioning times and solver SpeedUp.

subject to an iterative mesh refinement based on a posteriori error estimates, (Berrone
and Borio 2017b). In Figure 23 the convergence curves of the relative error are re-
ported on the left; on the right the growth of Dofs number due to the mesh refinement,
(Berrone et al. 2021). As long as it is not possible to provide the adaptive refinement
a priori, a computationally costly, but performing approach would apply a partition-
ing of the DFN during each refinement step. Another approach is to partition the
DEN every fixed predefined refinement steps (for example each five refinements).
However we aim at observing the behavior of our partitioning strategies without a
re-partitioning phase to see how rapidly the initial partitioning degenerate. We apply
the partitioning strategies on the minimal mesh at the beginning of the computation.
We do not expect, as long as the refining is not uniform, that the imbalance can re-
main constant during the resolution. Curves presented in Figure 24 suggest to apply
a re-partitioning each five refinement iterations.

6 Conclusions

In this article we present three partitioning strategies for the DFN flow simulations.
For each of them, we analyze several performances parameters, among them the cut,
the imbalance, the partitioning time and the resolution time. The weighted partition-
ing strategies in general perform better, moreover they have similar behavior, with in
general slight loss in performances for the bipartite graph partitioning. The proposed
partitioning strategies are computationally cheaper than the classical mesh induced
one in partitioning time and perform better in resolution time.

The reordering aims at avoiding that one or few processes are overloaded of com-
munications with respect to the other processes, trying to equally distribute the com-
munication among all the processes as presented in Section 4.

For problems with a large number of degrees of freedom we also compare the
SpeedUp on processes running on the same socket and on different CPUs clearly
highlighting a degradation of the SpeedUp when the CPU and memory access re-

Title Suppressed Due to Excessive Length

25

<104

0

5 10 15
nz = 2273752 «10*

(a) Serial DofHandler matrix structure.

0 <104

10 o

N &
B Y
. . Ty
Bin
15 e - i
D 5 10 15
nz = 2273752 %104
(c) Wg partitioning.
104
0
e
‘4 ||I7'l_
= o T
1wt .
5 10 15
nz = 2273752 %104

(e) Wt partitioning.

10

15 E - wbe b i -3 T
[4] 5 10 15
nz = 2273752 «10%

(b) MeshP partitioning.

10
nz = 2273752 w104

(d) Wb partitioning.

Fig. 22: Frac2000: Sparsity pattern. Partitioning among 4 processes

sources are overloaded. The proposed methods preserve the SpeedUp with a higher

dimension of the DFN problem.

26 Stefano Berrone, Alice Raeli

; — . - - - - - - - -

—F—Frac2000 3 !

—© —Frac1000 !
Fracsi2 | /

—+ —Frac395 25¢ WA

—¥—Frac2000 &
— © —Frac1000 o

2+ Fracs12
— + —Frac395

Relative Error
Degrees of Freedom

2 4 6 8 10 12 14 16 18 20 22
Refinement Step Refinement Step

Fig. 23: Relative error (left) and increasing degrees of freedom (right) during an adap-
tive mesh refinement.

Dofs il curves

— 3% - 2procs Graph
0.5 |—©—2Procs Bipartite
2rocs Tripartite
- % - 4procs Graph
0.4 |~ 4Procs Bipartite
4Procs Tripartite
- % - 8Procs Graph
0.3 [—6—gProcs Bipartite
- & - procs Tripartite
16°rocs Graph
16°rocs Bipartite
169rocs Tripartite

Imbalance

o 2 4 6 8 10 12 14 16 18 20
Iteration

Fig. 24: Frac2000: imbalance curves during VEM resolution.

Acknowledgements This work is supported by the MIUR project “Dipartimenti di Eccellenza 2018-
2022” (CUP E11G18000350001), PRIN project “Virtual Element Methods: Analysis and Applications”
(201744KLJL_004) and by INJAM-GNCS. Computational resources supported by HPC @polito.it and
SmartData@polito.

References

Ahmad B, Alsaedi A, Brezzi F, Marini L D, Russo A (2013) Equivalent projectors for virtual element
methods. Computers & Mathematics with Applications 66:376-391

Balay S, Abhyankar S, Adams M, Brown J, Brune P, Buschelman K, Dalcin L, Dener A, Eijkhout V, Gropp
W, et al. (2019) Petsc users manual

Beirdo da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini L D, Russo A (2013) Basic principles of
virtual element methods. Mathematical Models and Methods in Applied Sciences 23(01):199-214

Beirdo da Veiga L, Brezzi F, Marini L D, Russo A (2014) The hitchhiker’s guide to the virtual element
method. Mathematical Models and Methods in Applied Sciences 24(08):1541-1573

Beirdo da Veiga L, Brezzi F, Marini L D, Russo A (2015) Virtual element methods for general second
order elliptic problems on polygonal meshes. Mathematical Models and Methods in Applied Sciences
26(04):729-750

Benedetto M F, Berrone S, Borio A, Pieraccini S, Sciald S (2016a) A hybrid mortar virtual element method
for discrete fracture network simulations. Journal of Computational Physics 306:148-166

Benedetto M F, Berrone S, Scialdo S (2016b) A globally conforming method for solving flow in discrete
fracture networks using the virtual element method. Finite Elements in Analysis and Design 109:23-36

Berrone S, Borio A (2017a) Orthogonal polynomials in badly shaped polygonal elements for the Virtual
Element Method. Finite Elements in Analysis & Design 129:14-31, ISSN 0168-874X

Title Suppressed Due to Excessive Length 27

Berrone S, Borio A (2017b) A residual a posteriori error estimate for the Virtual Element Method. Math
Models Methods Appl Sci 27(8):1423-1458, ISSN 0218-2025

Berrone S, Borio A, D’Auria A (2021) Refinement strategies for polygonal meshes applied to adaptive
vem discretization. Finite Elements in Analysis and Design 186:103502, ISSN 0168-874X

Berrone S, Canuto C, Pieraccini S, Scialo S (2015a) Uncertainty quantification in discrete fracture network
models: Stochastic fracture transmissivity. Computers & Mathematics with Applications 70(4):603—
623, ISSN 0898-1221

Berrone S, Canuto C, Pieraccini S, Sciald S (2018) Uncertainty quantification in discrete fracture network
models: Stochastic geometry. Water Resources Research 54(2):1338-1352

Berrone S, Pieraccini S, Scialo S (2017) Non-stationary transport phenomena in networks of fractures: ef-
fective simulations and stochastic analysis. Computer Methods in Applied Mechanics and Engineering
315:1098-1112

Berrone S, Pieraccini S, Scialo S, Vicini F (2015b) A parallel solver for large scale dfn flow simulations.
SIAM Journal on Scientific Computing 37(3):C285-C306

Berrone S, Scial6 S, Vicini F (2019) Parallel meshing, discretization, and computation of flow in massive
discrete fracture networks. SIAM Journal on Scientific Computing 41(4):C317-C338

Cacas M C, Ledoux E, de Marsily G, Tillie B, Barbreau A, Durand E, Feuga B, Peaudecerf P (1990)
Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. the
flow model. Water Resources Research 26(3):479-489

Canuto C, Pieraccini S, Xiu D (2019) Uncertainty quantification of discontinuous outputs via a non-
intrusive bifidelity strategy. Journal of Computational Physics 398:108885

Council N R, et al. (1996) Rock fractures and fluid flow: contemporary understanding and applications.
National Academies Press

Dershowitz W, Fidelibus C (1999) Derivation of equivalent pipe network analogues for three-dimensional
discrete fracture networks by the boundary element method. Water Resources Research 35(9):2685—
2691

Fidelibus C (2007) The 2d hydro-mechanically coupled response of a rock mass with fractures via a
mixed bem—fem technique. International journal for numerical and analytical methods in geomechanics
31(11):1329-1348

Ghysels P, Ashby T J, Meerbergen K, Vanroose W (2013) Hiding global communication latency in the
gmres algorithm on massively parallel machines. SIAM Journal on Scientific Computing 35(1):C48—
C71

Hendrickson B, Leland R W (1995) A multi-level algorithm for partitioning graphs. SC 95(28):1-14

Hyman J D, Gable C W, Painter S L, Makedonska N (2014) Conforming delaunay triangulation of stochas-
tically generated three dimensional discrete fracture networks: A feature rejection algorithm for mesh-
ing strategy. STAM Journal on Scientific Computing 36(4):A1871-A1894

Jaffré J, Roberts J E (2012) Modeling flow in porous media with fractures; discrete fracture models with
matrix-fracture exchange. Numerical Analysis and Applications 5(2):162-167

Karypis G, Kumar V (1999) A fast and highly quality multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing 20(1):359-392

Kaya K, Ucar B, Catalyiirek U V (2013) Analysis of partitioning models and metrics in parallel sparse
matrix-vector multiplication. In International Conference on Parallel Processing and Applied Mathe-
matics, Springer, 174-184

Lei Q, Latham J P, Tsang C F (2017) The use of discrete fracture networks for modelling coupled geome-
chanical and hydrological behaviour of fractured rocks. Computers and Geotechnics 85:151-176

Mustapha H, Mustapha K (2007) A new approach to simulating flow in discrete fracture networks with an
optimized mesh. SIAM Journal on Scientific Computing 29(4):1439-1459

Neuman S P (2005) Trends, prospects and challenges in quantifying flow and transport through fractured
rocks. Hydrogeology Journal 13(1):124-147

Neetinger B, Jarrige N (2012) A quasi steady state method for solving transient darcy flow in complex 3d
fractured networks. Journal of Computational Physics 231(1):23-38

Nordqvist A W, Tsang Y, Tsang C, Dverstorp B, Andersson J (1992) A variable aperture fracture network
model for flow and transport in fractured rocks. Water Resources Research 28(6):1703-1713

Pichot G, Erhel J, de Dreuzy J R (2010) A mixed hybrid mortar method for solving flow in discrete fracture
networks. Applicable Analysis 89(10):1629-1643

Pieraccini S (2020) Uncertainty quantification analysis in discrete fracture network flow simulations.
GEM-International Journal on Geomathematics 11(1):1-21

Saad Y (2003) Iterative methods for sparse linear systems. SIAM

28 Stefano Berrone, Alice Raeli

Sentis M L, Gable C W (2017) Coupling lagrit unstructured mesh generation and model setup with tough2
flow and transport: a case study. Computers & Geosciences 108:42-49

Ushijima-Mwesigwa H, Hyman J D, Hagberg A, Safro I, Karra S, Gable C W, Sweeney M R, Srinivasan G
(2021) Multilevel graph partitioning for three-dimensional discrete fracture network flow simulations.
Mathematical Geosciences :1-26

Vohralik M, Maryska J, Severyn O (2007) Mixed and nonconforming finite element methods on a system
of polygons. Applied numerical mathematics 57(2):176-193

