
18 October 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Damage detection in composites by AI and high-order modelling surface-strain-displacement analysis / Enea, M.;
Pagani, A.; Carrera, E.. - (2022). ((Intervento presentato al convegno 10th European Workshop on Structural Health
Monitoring (EWSHM) tenutosi a Palermo, Italy nel July 4-7, 2022.

Original

Damage detection in composites by AI and high-order modelling surface-strain-displacement analysis

Publisher:

Published
DOI:

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2970435 since: 2022-08-03T09:26:19Z

EWSHM



Damage detection in composites by AI and
high-order modelling surface-strain-displacement

analysis
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Mul 2 Group
Department of Mechanical and Aerospace Engineering, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

Abstract. In the recent years, machine learning algorithms have been
widely employed for structural health monitoring applications. As an ex-
ample, Artificial Neural Networks (ANN) could be useful in giving a pre-
cise and complete mapping of damage distribution in a structure, includ-
ing low-intensity or localized defects, which could be difficult to detect
via traditional testing techniques. In this domain, Convolutional Neural
Network (CNN) are employed in this work along with one-dimensional
refined models based on the Carrera Unified formulation (CUF) for sur-
face strain/displacement based damage detection in composite laminates.
A layer-wise kinematic is adopted, while an isotropic damage formula-
tion is implemented. In detail, CUF-based finite element models have
been exploited in combination with Monte Carlo simulations for the cre-
ation of a dataset of damage scenarios used for the training of the CNN.
Therefore, the latter is fed with images of the strain or displacement
field in a region of particular interest for each sample, which are sub-
jected to the same boundary conditions. The trained CNN, given the
strain/displacement mapping of an unknown structure, is therefore able
to detect and classify all the damages within the structure, solving the
so-called inverse problem.

Keywords: Damage detection · Artificial intelligence · Higher-order fi-
nite elements · Carrera Unified Formulation.

1 Introduction

In recent years, the use of artificial intelligence (AI) for structural health monitor-
ing purposes in the aerospace industry is rapidly increasing. The implementation
of these methods could result in a partial or full replacement of Non-Destructive
Tests (NDT), which are usually performed in the framework of an aircraft main-
tenance program. The main limitation of these test is the necessity to know in
advance the location of the damage to be investigated, which can obviously lead
to a misjudgment of the damage distribution in the structure.

One of the most used AI method for structural health monitoring is the
Convolutional Neural Network (CNN). CNNs have been first proposed by LeCun
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et al. in [1], where this method was used for handwritten digit recognition.
In the present work, CNNs are fed with images of strain and/or displacement
field measurements , which can be a direct indicator of failure in the structure.
In real applications, these images are taken through an optic technique called
Digital Image correlation (DIC) [2]. Here, the capability of the Carrera Unified
Formulation (CUF) [3] to provide very accurate 3D-like solutions with a very low
computational demand is exploited in order to create a large database of images
for the training of the CNN. Once the network is well trained, the inverse problem
is solved: given the strain/displacement mapping of an unknown structure, the
network is able to detect and classify the damages within the structure.

The manuscript is organized as follows: Section 2 describes the finite element
models employed. Then, Section 3 presents the layer-wise damage modelling;
Section 4 illustrates the CNNs training process. Afterward, the results are shown
in Section 5. Finally, conclusions are drawn in Section 6.

2 Refined 1D models

In the framework of CUF, the 3D field of displacements can be expressed as
a summation of arbitrary expansion functions Fτ (x, z) and the vector of the
generalized displacements uτ (y). In the case of one-dimensional beam theories,
as in the case of this work, the displacements field is expressed as:

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2, ....,M (1)

where u(x, y, z) is the displacement vector; Fτ indicates the functions of the
cross-section coordinates x and z; uτ is the generalized displacement vector; M
indicates the number of terms in the expansion. In this work, Lagrange polynomi-
als are used for the expansion of the displacement across the beam cross-section.
Furthermore, the finite element method (FEM) is employed to discretize the
structure along it longitudinal axis. Thus, the generalized displacement reads:

uτ (y) = Ni(y)uτi, i = 1, ..., p+ 1 (2)

where p is the number of nodes for each element, Ni the shape functions and
uτi the nodal unknowns. The stiffness matrix is obtained through the applica-
tion of the virtual displacement principle. After some manipulations, the virtual
variation of te internal work will be written as follows:

δLint = δuT
sjK

ijτsuτi (3)

where Kijτs is the stiffness matrix in terms of fundamental nucleus. Note that no
assumption about the approximation order are made for the matrix formulation.
Thus, any refined beam model can be obtained with this procedure. The assem-
bled global stiffness matrix is obtained by looping through the indices i,j,τ ,s.
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3 Damage formulation

In this work, Lagrange expansions have been employed in the CUF framework
to build a component-wise approach. The latter allows to model separately each
component and/or layer of the structure. Thus, a different degree of detail could
be used for the modelling of any component, according to the accuracy required
from our model. Moreover, this approach also allows the introduction of different
damage intensity for each component, allowing a more localized damage distri-
bution in the laminate, if necessary. In this work, an isotropic damage modelling
approach has been implemented, as in [4]. The damage is simulated as reduc-
tion of the component stiffness, with no influence on its mass. Thus, the Young
moduli E along all three directions are degraded by the same damage parameter
d :

Edii = d× Eii, with 0 ≤ d ≤ 1 (4)

where Edii and Eii are the Young moduli in the three directions for the damaged
and undamaged structure, respectively, and d is the damage coefficient. A value
of d equal to 1 will result in an undamaged structure, while, if lower, a damage
of intensity equal to (1 − d) will be assigned. This parameter will be assigned
randomly to create a large database of structures, covering the largest number
possible of damage scenarios. Further explanation will be given in the following
section.

4 CNN for damage detection

A convolutional neural networks is a particular architecture of deep learning al-
gorithm. Its features makes CNN a very suitable method for image processing.
In fact, the main architectural frameworks of CNNs are [5]: local receptive fields,
shared weights and spatial subsampling. The combination of these features al-
lows a significant reduction of the number of parameters involved and, at the
same time, CNNs have no invariance with respect to input translations and/or
distortions.

4.1 CNN architecture

The architecture of a CNN can be built by using three different types of layers.
Convolution layers have two-dimensional learnable filters as parameters, which
are made slide over the input layer. The convolutional layer computes the dot
product between these filters and the current small region of the input, creating
the so-called feature maps. These maps will be used as input for the following
layers. Then, the pooling layer performs a downsampling operation using maxi-
mum or average operations. Finally, the fully-connected layer will compute the
weighted sum of input as in classical feedforward neural network. An example
of CNN architecture is shown in Fig. 1.
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Fig. 1. Example of CNN architecture.

4.2 CNN training process

A large training database is needed for the quantification and localization of
damage. In this work, the database has been created through CUF-based Monte
Carlo simulations. Damage intensity was assigned randomly to each component,
following a Gaussian distribution, with mean and standard deviation equal to
0.1. Then, a linear static analysis is performed for each sample, adopting the same
boundary conditions. Thus, the only variable will be the damage distribution.
The strain/displacement surface fields images are extracted from the solution
files and employed as input for the CNN training.

Once the CNN is well trained, the inverse problem could be solved: given
the image of the strain/displacement field, the network will give as output the
location and intensity of each damage in the structure. In Fig. 2, the flowchart
representing the entire process is shown.

5 Numerical results

The proposed case study is a four-layer composite plate with lamination [0/45]s.
The plies are of equal thickness and they are made of an orthotropic material.
Four cubic 4-node elements (B4) are employed for the longitudinal discretization,
while quadratic Lagrange polynomials (L9) are adopted in the cross-section. The
boundary conditions consist of a pressure load applied on the top surface, at the
center of the plate. The edges are in clamped conditions.

An isotropic damage is then introduced in four components of the structure,
identified along the beam axis (Fig. 3). Each component contains all four layers
of the plate. The damage d is assigned through Monte Carlo simulation, with
both mean and deviation standard equal to 0.1. A database of 6000 samples has
been built, with 5300 samples used for the training set, 600 for validation and
100 as test set. The images employed were the vertical displacement field of the
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Fig. 2. Flowchart representing the entire process for damage detection.

bottom surface, with resolution of 1012× 1012 pixels. An example of images for
two different damage scenarios are represented in Fig. 4.
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Fig. 3. Component’s numbering in the composite plate.

Thereafter, some results are presented for the current case. A significant number
of unknown structure has been fed into the trained neural network to verify if the
latter was able to retrieve location and intensity of each damage in the structure.
The regression curve is shown in Fig. 5. The regression coefficient R has a value
near the unity, demonstrating a very high accuracy in predicting the correct value
of the CNN targets (i.e. damage). Figures 6 and 7 show a comparison between
the target value of damage intensity (red bars) and the CNN prediction in each
component of the structure (blue bars). In the vertical axis, the intensity of the
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Undamaged structure Damaged structure

Fig. 4. Vertical displacement fields of an undamaged and damaged structure, respec-
tively.
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Fig. 6. Comparison between target value and ANN prediction in structures with all
components damaged.
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Fig. 7. Comparison between target value and ANN prediction in structures with two
and three components damaged.

damage is represented. In the horizontal axis, the numbering of the components
is displayed, following the repartition reported in Fig. 3. Note that the CNN is
also able to predict with great accuracy even when structures have only some
components with damage.

6 Conclusions

In this manuscript, a displacement-based damage detection method is proposed.
The features of Convolutional Neural Networks (CNN) are combined with refined
1D models in the framework of the Carrera Unified Formulation (CUF). In fact,
several linear static analysis have been carried out for the creation of a database
covering the largest number of possible damage scenarios. This database has
been used for the training of the CNN. The proposed model provided good
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results for a four-layer plate in which an isotropic damage has been introduced.
After the network’s training is completed, the latter is able to predict location
and intensity of damages in unknown structures.

Note that in the proposed numerical example, only displacement field images
were employed for CNN training. In future research, the authors will propose
examples of damage detection through strain images and through a combination
of displacement and strain mapping. Moreover, the authors will introduce a
new damage model, which takes into account the difference between damages in
longitudinal and transversal directions.
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