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Abstract—Approximate Computing (AxC) techniques allow
trade-off accuracy for performance, energy, and area reduction
gains. One of the applications suitable for using AxC techniques
are the Spiking Neural Networks (SNNs). SNNs are the new
frontier for artificial intelligence since they allow for a more
reliable hardware design. Unfortunately, this design requires
some area minimization strategies when the target hardware
reaches the edge of computing. In this work, we first extract the
computation flow of an SNN, then employ Interval Arithmetic
(IA) to model the propagation of the approximation error. This
enables a quick evaluation of the impact of approximation.
Experimental results confirm the model’s adherence and the
capability of reducing the exploration time.

Index Terms—approximate computing, spiking neural net-
works, interval arithmetic

I. INTRODUCTION

Approximate Computing (AxC) techniques trad-off the
computation accuracy for performance gains, e.g., reductions
in power consumption, memory utilization, and execution
time [1]]. Hence, applications intrinsically tolerant to some
loss in computation accuracy, like Artificial Neural Networks
(ANNSs), are good targets for employing AxC techniques [2].
Running ANNs demands executing billions of arithmetic op-
erations and storing millions of weights. So, applying AxC
techniques to ANNs seems promising in terms of gains in
performance, targeting a low-power device [3[]-[5].

What makes choosing among different AxC techniques
difficult is that all of them can be employed together, requiring
the evaluation of the impact of each combination of AxC
techniques on the overall computation accuracy. The two main
approaches for evaluating this impact, comprise running the
application several times with different configurations [|6], [7]]
or devising modeling techniques to consider them in a time-
optimized fashion [8], [9]. The first approach’s disadvantage
is that the evaluation time increases when the exploration
reaches an exhaustive search. Applying pruning techniques
to the exploration space, reduces the exploration time to the
application’s execution time at best. Conversely, the second
approach is more suitable for estimating the impact of AxC
techniques on the application computation accuracy because
it is faster than the first approach, even though it costs an
error margin in the computation accuracy evaluation. Hence,
we chose the modeling approach over the first approach since
it gives a quicker estimation.

Spiking Neural Networks (SNNs) are Artificial Neural Net-
works that, like Deep Neural Networks (DNNs), can benefit

from employing AxC techniques [10]]. In SNNs, the informa-
tion is exchanged between neurons as binary spikes [11].
While SNNs have shown a great potential for achieving high
accuracy, they require a small area footprint, thus potentially
limiting the power/energy consumption due to their sparse
spike-based operations [[12]]. Moreover, SNNs support unsu-
pervised learning with unlabeled data using the Spike-Timing-
Dependent Plasticity (STDP) [13]]. Each neuron’s computation
flow in an SNN comprises arithmetic operations and necessary
weights and thresholds to operate. Therefore, when deploying
SNNs into FPGA devices, employing AxC techniques can help
decrease the storage required for weights and thresholds and
the complexity of the arithmetic components.

It is noteworthy that, in this paper, we refer to two different
terms using the word accuracy: computation accuracy and
network accuracy. Computation accuracy refers to the extent
to which the result of an arithmetic operation is accurate,
providing that the operator or the operand(s) of the arithmetic
operation are approximated. The same definition applies to
a complex computation comprising several arithmetic opera-
tions. While network accuracy refers to the extent to which
the neural network result is accurate. For example, if the
neural network is performing an image classification task, the
probability of the event that the network can classify the image
in the right class is defined as its accuracy.

In this work, we resorted to Interval Arithmetic (IA) [14]
concepts to explore the impact of employing AxC techniques
on spiking neural networks. The exploration aimed to evaluate
the effect of data reduction approximation techniques in fixed-
point quantization of all weights and thresholds. Some pre-
vious works [15]], [16] exploit interval arithmetic concepts to
analyze neural network computations in general. Nevertheless,
in these works, every single value propagating during the
calculation does not allow to distinguish the introduced error.
On the contrary, we aimed to define a representation to report
the approximation-induced error range and provide further
tuning optimization opportunities. In fact, unlike previous
works [15], [16], we exploit interval arithmetic concepts to
model the errors introduced by approximation to each network
parameter and propagate it through network computations to
observe the impact of approximation-induced errors on the
final computation accuracy. Then, we conducted experiments
on a trained spiking neural network [17]], exploring the param-
eters’ size reduction to find the most significant reduction to
let the SNN better fit into the FPGA. To evaluate the quality of



the model, the outputs of all approximated versions of the SNN
were compared to those obtained from the IA-based model.
Our goal was the design space exploration, and our approach
can help find the best reduction of the data precision such that
the network accuracy is still acceptable, before FPGA-based
design. If the FPGA-based design is flexible and allows to
set the data precision, analyzing the impact of the precision
reduction techniques requires changing the design, and re-
synthesizing, for each reduction of a specific number of bits.
So, it would be more time-consuming to study the impact
of AxC techniques on the computation accuracy by directly
performing inference on the FPGA. Furthermore, the proposed
IA model can be generalized for other applications with
complex computations, for example, NN designs, as long as
we can model the network computation flow. For instance,
our model can be generalized to help in accelerator design for
convolutional SNNss, like those in previous works [18], [[19].
The rest of this paper is organized as follows:
describes the methodology, including an overview of a single
neuron and the SNN architecture. The experimental results
are provided and analyzed in section Eventually,

draws conclusions and possible future works.
II. METHODS

In this section, first, the spiking neural network is described,
followed by a description of the data quantization and preci-
sion reduction and how it was applied to the trained SNN.
Finally, the TA modeling is explained.

A. Spike Neuron Model and Network Description
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Fig. 1: An excitatory and an inhibitory layer of an SNN

depicts the general organization of an SNN,
showing the behavior of each single spiking neuron concerning

the others in the layer. Each neuron is composed of two
computational steps: the excitatory step and the inhibitory
step. Spikes are generated by an input layer transforming
data, i.e., pixels of an image, into a sequence of spikes. Each
spike is represented as a single bit set to 1 and enters the
neuron through the excitatory step (green arrows from the
input layer). This step is responsible for accumulating a value,
the membrane potential (Vy in [Figure 2), based on the spikes

at its inputs. It also generates an output spike when that
value reaches a specific threshold (the green arrows out the
excitatory step). Those spikes serve as input for the inhibitory
step (the red arrow) and any other neurons’ layer connected
to it (the connection to the next layers). The inhibitory step
models the interaction with all other neurons in the layer, and
it acts by decreasing the neuron’s membrane potential when
they generate spikes. Eventually, the final layer is connected
to an output layer that receives spikes and transforms them
into useful information to assess the network’s response. To
appreciate the computation flow more clearly, [Figure 2| shows
the organization of a single layer.

The increment of Vj is based on a weight value elaborated
during the training phase and associated with each connection
to the neuron (wy ; for the first neuron in . Each time
spikes enter the neuron, Vj increases by the sum of all weights
where active spikes are detected in the input connections. This
can be generalized as shown in Where n is the
number of input connections of the neuron, and inp; is a
binary value that shows the presence of an active spike when
set to 1, otherwise 0. Here, w; ; shows the value of each weight

for neuron j (as it happens for the 0 one in [Figure 2).

n—1
sum; = Z np; - Wj; (1)
=0
The membrane potential (Vy in behaves like an

“electrical charge.”: when it reaches its maximum (V5 >

Vihresn in[Figure 2)), the neuron fires a spike and it is reset to a
special reset value (V,..s¢+ as it can be seen following the “yes”

branch in [Figure 2). Vipresh is computed at training time. The
membrane potential falls at each step if no active spike is
detected in the input using an exponential decay approach
(Vo > €xpgecay in[Figure 2). The decay is a far more complex
operation involving multiplication for an exponential time-
related term, but, to occupy less area on an FPGA, the work
in [17]] proposes a transformation of the exponential term into
the closest power of two to replace the multiplication with a
shift. Since the exponent is negative, the actual shift is a right
shift.

Finally, in [17]], each neuron is associated with a counter to
keep track of the output spikes generated by its excitatory layer
and define the output of the SNN. The presence of counters
is not mandatory and is particular to the SNN exploited in
this work. For more detailed information about the model and
implementation, the reader may refer to [[17].

B. Data Quantization and precision reduction

The weights, thresholds, and reset values are computed
during the training phase. Since most training tools available
calculate these values in a floating-point fashion [20], an extra
step is required to deliver the network to edge devices provided
by some FPGA accelerators. To do so, in [[17] all values were
quantized to reduce the memory occupation.

The quantization technique requires converting each
floating-point value into a 32-bit wise fixed-point value, with
the fractional part of 16 bits, as in
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Then a precision reduction of the fractional part is intro-
duced to provide an approximated version for all values. The
precision reduction ranges from 15 to 1 single bit. Since the
integer part is not altered, each time the fractional part is
reduced, the produced error ¢ follows where k
is the number of bits removed from the fractional part and b;
is the value of the original bit removed.

k
€= b-271070 (3)
=0

For a value undergoing a precision reduction of % bits, the
minimum and maximum errors are defined in
Depending on k, the maximum error is when all removed
b; were equal to 1. While, the minimum error is O when all
removed b; were equal to 0.

k 1— ok
0 <e< ) 27060 — _ 4
- == ; 32768 @)
Vb; =0
Vb;=1

Looking at[Equation 2] the v value can be expressed as v—e

as € represents a value subtracted from the fractional part. The
goal of applying such reduction is to deliver smaller numbers
without compromising the computation accuracy too much.

C. The Interval Arithmetic Error Propagation Model

Using the error computed in Section [[I-B] it was possible
to devise an Interval Arithmetic (IA) error propagation model.
The foundation of TA is the ability to define mathematical

operations over intervals. Intervals are supported by all basic
mathematical operations, such as addition and multiplica-
tion [14]. Using the brackets notation, an interval is defined
as in |[Equation 5| where v,,;, and v,,., represent the two
boundaries of the interval. The interval includes all values
between the boundaries (them included) in the defined field,
i.e., fixed-point values.

[’U] = [vminavmaz] (5)

Since expresses the errors introduced by the

precision reduction as a range of errors, each number can be
described as v — [¢]. The v value can also become an interval
when a range of values undergoing approximation is modeled.
Thus, we defined a single interval arithmetic number (|ian|),
expressing the potential values and the errors associated, as a
pair of intervals {[v], [¢]}. When [v] and [€] represent a single
value or a single k reduction, the two boundaries of the interval
are the same.

Moreover, based on it can be claimed that
lian| ~ [v] — [e], showing that the approximated value of an
interval arithmetic number can be obtained from subtracting
the range of errors that the precision reduction may produce
([¢]) modeled as an always positive range in from
the range of the original values ([v]).

It is crucial to notice that:

1) the errors come from thus they are strictly
monotonic, i.e., [€] = [€min, Emaz)- The same applies to
[v].
2) due to the nature of the precision reduction operation,
the relationship between [v] and [e] is subtractive.
These considerations are critical to defining the mathemat-
ical operations required to translate all approximated values,



i.e., weights, thresholds, and reset values, into {[v], [¢]} inter-
vals and being able to model the same operations as in the
original model. The notation allows keeping the error sepa-
rated from the value itself. This is a considerable difference
from previous works such as [[16] and supports the exploration
capabilities of the modeling even further.

The following subsection applies the IA theory to model all
mathematical operations required by

1) Addition / Subtraction: The addition and the subtraction
among two values, i.e., |iani| and |iany| can be defined
using the linearity of the two mathematical operations and
the monotonic shape of the ranges as in and
Equation 7| resorting to basic interval operations among the
two intervals in |ian|.

lian:| + lians| = {[V1,,,, + V2,105 Vlnar T V2000.]5

[v]
[€1min T €2pins €1pnar T €211 (6)
[e]

min

liani| — [iana| = {[v1,.:, = V2imens Vlinaw — V20in s

e
[v]

[€1pin — €2pmaws Elmase — 2pninlt (1)

(€]

2) Multiplication: The multiplication is a particular case in
which the common IA operation does not suit our modeling

and is based on |ian| ~ [v] — [¢] as in

liani| - lians| = ([v1] — [e1]) - ([v2] — [e2]) =
[v1] - [v2] —=([v1] - [e2] + [v2] - [e1]) + [ea] - [e2] =
—_— Y Y= ——
A B c D
[min(A), maz(A)],
[v]
[min (D — (B+C)),max (D — (B+C))] (8)
[e]

The four components A, B, C' and D are fully developed
in and demonstrate how the multiplication will see

the influence of [v] into [e].

min max

A— {’Ul
B — {vlmin €2, in> Vlimaw€2mins Vlmin €2maz? Vlmas Egmaz}
C = {02,010 €lmnin s V200 ELmin s V2imin Elimas s V2imas Elmas |

D — {e €2mins €lman€2mant (9

3) Right Shift: The right shift is especially useful in the
operation involving the ezpgecay- summarizes its

modeling for a |ian|.

mins Ulinin V2mas> Vlimas Y2mins Vlmar U2an |

V2

min

min €2min ’ 617n7'n 62nzam ? Glnzam

liani| > n = {[v1,,,, > n,vs

[v]
[Elmin > n, ex

[e]

> 1),

min mazx

>nl} (10)

max

4) Comparison: One of the non-re-usable parts of the
IA theory is the definition of the comparison between in-
tervals. The model implements the decision-making of the
liani| > |iang| operator, by rewriting each comparison as
liany| — |iang| > 0, thus resorting to the subtraction between
two |ian)|. reports the evaluation of such compar-
ison in the IA modeling. Note that the same approach can be
applied to all comparison operators.

liani| — |ians| > 0
= |ian,| >0
= €rpan) = Urpin = €rpin) >0 (A1)

Thanks to the monotonic property, once the difference
is evaluated, we calculate a single interval using the |ian|
equivalence. If the difference between the minimum and the
maximum (including the errors) is positive, the comparison
is true (or elsewhere if different comparison operators are
modeled). Thus the comparison results in a majority voting
that allows a fast model evaluation, but it might introduce
some errors. In fact if (v, . —e€, . ) and (v, —¢€r )
have opposite signs, they model a scenario where the real
comparison might be either true or false depending on the
value in the interval.

(Vr 1o

III. EXPERIMENTAL RESULTS

The trained SNN from [17] is used in this paper. The
original network was trained using the MNIST dataset [21]].
The MNIST dataset comprises 60,000 training images and
10,000 testing images of handwritten digits. The 784 pixels
of each image (28x28 pixels) are converted into a sequence of
spikes using a random Poisson process [22] with an average
frequency corresponding to the numeric value in the pixel,
resulting in 3500 spikes per image.

The complete SNN structure includes one layer with 400
neurons. The membrane potential of each neuron is reset to
its rest potential at the end of each image. The network’s
outputs include: (i) the associated spike counter and (ii) the
classification decision made by the final decision layer. Since
we aim to assess the quality of the IA error-based modeling
in this work, the final classification is not the main focus.

depicts the experimental workflow, for each k value
of precision reduction. All data from the original SNN network
are extracted and stored for further use. The red part of the
workflow represents the original approximated network. All
data undergo precision reduction for each k value, and the
approximated SNN can run. The counting of the output spikes
is then stored to be compared with the output of the IA model.
The green blocks in describe the IA error-based
modeling. Based on the network data (that feed the [v] part of a
|ian|), for each k, an automated procedure derives the [¢] part
of each value to produce the |ian| versions of each network
data adequately. The process relies on [3| to estimate the [e]
for every network data undergoing the approximation. This
process is faster than the approximation one in the red part of
the figure because it is purely mathematical. Then the model



runs following the computational flow depicted in to
compute the spike counter for each neuron. To allow a fair
comparison of the final results, the sequence of input spikes
used for the IA model should be in the same order as the
sequence of input spikes used for the original SNN.

The experimental setup has been applied to 520 images
of the test set, and results are reported in For each
precision reduction (k), the table displays the range of errors in
the counters and the percentage of wrong counters. Eventually,
the last column considers the classification done using the
counters computed from the model compared with the one
performed by the original network.

counters, and the classification is made by selecting the group
showing the highest number of counts. In this context, the
percentage of wrong counters is not altering the classification
significantly.

Once the model’s correctness for single errors is verified,
we investigate the opportunity of predicting the impact of ap-
proximation for a range of k., to k4, precision reductions.
This reduces the time of exploration by considering more
reductions per time. The results for a statistically meaningful
set of 30 images are shown on The definitions of
columns follow except the wrong counters percentage.
The reason is that this exploration has been compared with
the original network outputs when applied the high reduction

TABLE I: IA Model single k results on spike counters and
related network accuracy in prediction

It is important to note that the error columns in show
the minimum, maximum, and average error between the output
spike count obtained by the IA-based model and the output
spike count obtained by executing the original approximated
network. Therefore, a negative value indicates that the model
is producing (hence counting) fewer spikes in the IA model,
while a positive value indicates otherwise.

As displayed by the Errors columns, the model does not
show many discrepancies from the original SNN. In most
cases, the minimum and maximum errors stay closer to 2
or 3. The worst case happens when the precision is down
to 14 bits removed where a -4 is shown. From a stability
perspective, the AVG column suggests that the error amount is
generally less than the minimum and maximum, most of them
generating a few spikes less in the IA model (the negative sign
on most averages). It is also interesting that a few counters are
wrong at the end of the IA model elaboration. The percentage
increases while increasing the k reduction, confirming the
hypothesis made in that the model simplifies
the comparison by preventing some spikes from being fired.
The apparent improvement at £ = 14 is only due to the fact
that the original network accuracy is already lost at £ = 10,
as reported in [17].

Eventually, the network accuracy comparison always shows
the same results because of the structure of the network
decision model: the 400 counters are split into groups of 40

Reduction ____ Emors Wrong SNN Accuracy | k. Since ranges of errors are considered, we do not seek
(k-bits) Min Max AVG Counters (%) Comparison .

i <00 T 1.00 T 0.0009 078 Same exact correspondence of counters number but the capability
5 71,00 | 1,00 | 0,0011 0.33 Same of predicting the correct behavior. Though the average error
3 -2,00 | 1,00 | 0,0003 0,58 Same in calculating the counters is higher than before, still the
4 -2,00 | 1,00 | -0,0010 0.86 Same time required to run the evaluation is tth before, since each
5 -3,00 | 2,00 0,0000 1,60 Same . . ©
6 3.00 T 1.00 1 =0.0010 733 Same run considers 5 k values per time. However, the network
7 2,00 | 2,00 | -0,0030 3,44 Same classification accuracy is untouched.
8 -2,00 | 2,00 | -0,0031 4,77 Same
9 -2,00 | 2,00 | -0,0070 5,31 Same Reduction Errors SNN Accuracy
10 -2,00 | 2,00 | -0,0074 6,16 Same (kmin 10 Kmaz-bits) | Min | Max AVG Comparison
11 -2,00 | 2,00 | -0,0107 6,86 Same 1to5 0 10 3,1777 Same
12 -2,00 | 2,00 | -0,0299 7,34 Same 6 to 10 0 10 3,1950 Same
13 -3,00 | 3,00 | -0,0415 7,12 Same 11 to 15 0 10 3,2776 Same
14 -4,00 | 2,00 | -0,0431 5,38 Same
15 33,00 | 2,00 | -0.0256 2.49 Same TABLE II: IA Model results on ranges of k,,in tO kpaq

reductions. The time required to run the evaluation is %th
before, since each run considers 5 k values per time.

Concluding from [Table 1] and [Table 11| and the fact that
the original network accuracy is already lost at £k = 10, as
reported in [[17]], the most aggressive approximation while not
sacrificing the SNN accuracy can be considered as k = 10.

IV. CONCLUSION

We introduced a model for exploring different approximated
versions of a spiking neural network and predicting the impact
of approximation on the accuracy of the computation results.
For this purpose, we modeled the computation flow of the
SNN using Interval Arithmetic to quickly evaluate the impact
of approximation in terms of loss in computation accuracy
without executing the network each time.

We conducted the experiments for a trained SNN executed
in inference mode to find whether the predicted network
classification accuracy for each approximated version remains
the same as the network classification accuracy obtained by
running the original approximated version. Then, we also
verified that some less refined exploration could be carried
out, saving time without losing sight of the quality of the
application. Experimental results comparing our model to the
original networks confirm the quality of the approach.

For future work, we plan to extend the model to other neural
networks using different data sets other than MNIST and
employ different AxC techniques to investigate this approach’s
opportunities further. However, it is important to note that
our goal was to quickly analyze the impact of approximation
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Fig. 3: Experimental workflow. For each image and k precision reduction, the red part evaluates the real values running the
full network, while the green part depicts the model where only errors are computed for each k.

on SNN computations accuracy, not proving the benefits of
applying AxC techniques on the gains in performance. It
would be nice to utilize our approach to compare the impact
of different AxC techniques on the computation accuracy as
well as their impact on gains in performance, and finally weigh
these against each other to choose the best AxC techniques.
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