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Blockchain Storage – 

Drive Configurations and Performance Analysis 
 Jesse L. Garner, Aditya A. Syal, Ronald C. Jones  

Department of Computer and Information Science: Harrisburg University of Science and Technology 

Abstract: This project will analyze the results of trials implementing various storage methods on Geth 

nodes to synchronize and maintain a full-archive state of the Ethereum blockchain. The purpose of these 

trials is to gain deeper insight to the process of lowering cost and increasing efficiency of blockchain 

storage using available technologies, analyzing results of various storage drives under similar conditions. 

It provides performance analysis and describes performance of each trial in relation to the others.

I. Introduction 
Blockchain technology introduces a 

decentralized approach to data verification and 

retrieval [1]. Growing amounts of data bring 

concerns regarding privacy and security on how 

data is stored and may be leaked [2]. Because of 

this, it is in the best interest of individuals and 

organizations that participate in such a network 

to invest in a machine which will function as a 

trustworthy peer on the network [2].  

This project compares the performance of 

several trials which implement different tiers of 

storage and storage configurations for 

maintaining a full archive blockchain state, 

using a drive to performance analysis of results 

obtained. Standardization is ensured by running 

each trial as a Geth node within the Ethereum 

network. Additionally, each trial is performed on 

a Debian based distributions on Linux.  

Harrisburg University’s High-Performance 

Computing (HPC) Research Lab (HPCRL) 

facilitated the trials for this project through 

funding and partnerships with organizations with 

mutual interest in performance results. HPCRL 

resources were utilized for the purposes of this 

research, including hardware, network 

connection, and monitoring through the use of 

Grafana –  a metric visualization tool hosted on 

a VM within the HPC oVirt cluster. 

The following sections will begin by 

providing the steps taken to allow for 

reproducible results. The actions taken will vary 

depending on the setup and versions of services 

available compared to those used at the time of 

this writing. Afterwards, a breakdown of 

performance with comparative analysis of the 

critical elements within each trial; the sections 

maintain a linear flow of the actions/analysis of 

each trial. 

II. Overview of Trials 

 Storage methods in each trial vary by quality 

and configurations of drives – each organized 

though Logical Volume Manager (LVM) to 

form main storage [3]. These trials represent 

various tiers of storage quality for individuals 

looking into setting up their own Geth node to 

verify transactions on the blockchain. These 

incremental tiers include SSDs to serve as cache 

for HDDs, standard SSDs, Scaleflux 

compression NVMe drives, and standard NVMe 

drives. Additionally, a GCP cloud instance with 

SSDs is used as a separate comparison point. 

 In addition, each trial uses Go to run an 

Ethereum client (Geth), synchronizing the state 

of the Ethereum blockchain, becoming a Geth 

node in the Ethereum network [4]. Due to the 

use of LVM, logical drives mounted on each 

Geth node serve as the destination for all 

blockchain data, specified through the command 

given to launch Geth. 

 Metric collection is performed with Node 

Exporter and Prometheus running on each 



server, forwarding this data to a Grafana VM to 

analyze the performance results [5]. The 

collection of data is analyzed for several things – 

CPU activity, memory cache utilization, network 

transfer speeds, and the performance of drives 

trialed in terms of I/O operations. Additionally, 

the progress of each trial is recorded regularly to 

compare the speed over time in comparison with 

other trials.  

 The first trial employs a 2TB SSD as a 

writeback cache for a 12TB HDD used as main 

storage. An 8-core CPU and 16GB of RAM is 

used within a Dell XPS desktop running Debian 

11, this replicates a personal machine closer than 

a server. Since a Geth node can be run on any 

machine, this trial simulates the commodity 

option for standing a Geth node, because of its 

price. This will uncover performance results of 

caching blockchain data to slow, affordable, 

more available storage. 

 Next, a Supermicro server running Debian 

11 represents the next tier of trials which utilizes 

two SSDs combined through LVM, producing a 

logical volume of 16TB. It’s equipped with a 48-

core CPU and 128GB of RAM, this steps into 

the realm of an enterprise’s budget and 

expectations for performance. It serves as a 

middle-ground for comparison between the 

former and upcoming trials. 

 The following trial features a Dell server 

with compression NVMe drives from ScaleFlux. 

This server runs Ubuntu 20.04 instead of Debian 

due to driver dependencies which are needed 

specific to the Ubuntu OS. In this case there are 

two 8TB compression NVMe drives organized 

as a single logical drive through the use of 

LVM. It is equipped with a 48-core CPU and 

256GB of RAM. The compression drives allow 

for higher I/O operations since writes to the 

drive are able to be processed faster due to 

hardware compression. This trial serves to 

explore the capabilities of compression drives 

storing blockchain data in terms of read/write 

operations in comparison to other trials. Trial 

four is run on the same server, with a change to 

the operating system and storage drives used. 

 Table 1 shows a comparison of each trial as 

it relates to the resources each will be using. 

III. Combining Drives – LVM 

 The first step to begin each trial is 

combining drives together to form a single 

logical drive which is used to store the Geth 

data. This can be done on the main storage itself, 

but for this project the operating system was 

held on dedicated physical storage, separate 

from the drives used for testing of blockchain 

storage performance. The GCP trial, while 

useful for comparative analysis, is a cloud 

instance which did not follow the same steps of 

organizing storage through LVM; the remainder 

of this section will exclude the GCP trial from 

its scope. 

 Out of the four trials evaluated, three trials 

combine two drives of equal size and speed into 

one logical volume. The other uses a smaller 

SSD as a writeback cache for a larger HDD; this 

trial involves all of the steps to set LVM as the 

other trials, with the addition of several 

commands needed to initiate a caching 

relationship between the two drives. In Figure 1 

it identifies the steps taken to organize logical 

volumes on each trial, along with the additional 

steps needed for the trial caching storage. 

On Debian, LVM must be installed 

manually. Issuing the lsblk command from the 

CLI exposes the characteristics of physical 

drives mounted to the server, this will indicate 

the path the drive is mounted i.e. - 

/dev/$drivename. From within the LVM 

Table 1 – Trial attribute comparison 



configuration console the physical volumes are 

created from physical storage drives currently 

mounted to Linux system, as the last command 

described. The physical volumes in LVM are 

combined to create a virtual group, this virtual 

group will be formed into a logical volume. 

 If arranging caching through LVM, 

additional steps must be taken at this time before 

creating the logical volume from the virtual 

group. The physical volume which will function 

as the cache is given two partitions – metadata 

and cache. The metadata partition should be 

about one percent of the logical volume’s 

practical capacity, the remainder is used for the 

purposes of caching. These two partitions are 

converted into a cache pool with a writeback 

policy, prioritizing high throughput of writes to 

cache. There is now a logical volume for the 

cache drive; another logical volume is created 

for other drive and then combined with the 

cache drive with the final command in caching 

section. 

 The work of LVM is now complete and the 

logical volumes are now visible from the /dev/ 

directory; they are a representation of the 

physical drives seen by LVM. A filesystem is 

created for the logical volume, and it is mounted 

within the /mnt/ directory. A few commands are 

left at the end of Figure 2 to evaluate the 

function of a logical volume using cache with 

the sysbench tool. 

IV. Preparing Monitoring Services 

 Each trial collects metrics of performance 

through the use of Node Exporter and 

Prometheus which are installed onto the local 

storage; these packages are found on 

https://prometheus.io/download/ [5]. 

Prometheus will then pass along those metrics to 

a data visualization tool – Grafana, which will 

connect to Prometheus through the host’s 

private IP address and port number. Figure 3 

describes the steps taken to install the 

Prometheus service. 

 Node Exporter and Prometheus are installed 

within the same /mnt/lv path to the logical 

volume which was created in the previous 

section. Consider the time period for data 

retention before running the command to start 

the Prometheus process; by default, it will delete 

metrics that are older than 15 days. This may be 

changed by appending a flag to the end of the 

command. For example, to run Prometheus with 

a data retention period of one year, issue the 

Figure 1 – Steps to setup LVM, additional 

steps for cache drive highlighted 

Figure 2 – Commands to install sysbench 

and test cache setup through LVM 

https://prometheus.io/download/


following command: sudo ./prometheus --

storage.tsdb.retention.time=1y. 

 Grafana is installed on a separate machine, 

in this case it is on a VM in the HPCRL’s oVirt 

cluster, on the same private network. The steps 

to install Grafana can be followed from 

https://grafana.com/docs/grafana/latest/installati

on/c, which will vary depending on the 

operating system [6]. Figure 4 shows that steps 

taken after setup to login to Grafana and add the 

Prometheus data source. Afterwards, the ‘Node 

Exporter Full’ dashboard is imported as the 

specified method of visualizing collected 

metrics. 

 For the purposes of these trials, only a 

handful of metrics collected will be the point of 

focus for comparative analysis. These include 

CPU use, memory utilization, disk performance 

(in terms of IOps and data collected in 

timeframe), and network traffic speed (packets 

per second). The 15-day mark of each trial is 

used as the point of comparison for overall 

speed of blockchain synchronization.  

V. Installing Geth 

 Once metric collection and analysis services 

are setup and verified it is time to begin the 

installation of Geth (Go-Ethereum) which uses 

the Go language to initiate and maintain the 

server to function as an Ethereum peer. The 

steps of this process will vary depending on the 

version of Linux used but should work for 

Debian 11 and Ubuntu 20.04.  

 Figure 5 displays the steps taken to install 

Geth on each trial, with notes for commands that 

are relevant to the time of this writing, like the 

current version of Go for example. In this 

example, Go and Go-Ethereum are installed in 

the home directory of the server, but this can be 

changed to the preferred directory of installation 

so long as the exported variable paths are altered 

to match this change [7]-[8].  

To install Go, the most recent version is 

installed from the source specified in the figure. 

The GOROOT variable is set to the path that Go 

is installed to, as well as the PATH variable 

while in the ~/go directory. Next, Go-Ethereum 

is downloaded from its GitHub repository and 

Figure 3 – Commands to run Prometheus 

Figure 4 – Instructions to setup Grafana Figure 5 – Commands to install Geth 

https://grafana.com/docs/grafana/latest/installation/c
https://grafana.com/docs/grafana/latest/installation/c


stored in the home directory. Once completed, 

the build-essential repository is installed, and 

path variables changed and confirmed in the 

/etc/profile/ directory.  

Geth is prepared with the make command 

before finally starting the process. There are 

multiple flags issued with the command to start 

the Geth node, several of these are particularly 

important with respect to the testing of storage 

drives mounted to the server. Each trial also 

reserves 16GB of RAM to function as a cache 

for the main storage. 

In this case the datadir flag indicates the 

path to the directory which will contain the 

blockchain data, it is set to the logical volume 

with a subdirectory named Ethereum inside, 

which has not been created before running the 

command. The syncmode and gcmode flags 

specify the server to act as a full archive node, 

downloading all blocks (headers, transactions, 

receipts) that are a part of the mainnet 

blockchain. The cache flag indicated the amount 

of MB to use as cache. 

The Geth process is started with the last 

command seen in figure and is executed from 

the ~/go-ethereum/ directory. This will begin the 

synchronization of the blockchain state. To 

make this process run in the background, issue 

the following three commands: Ctrl+Z, bg, and 

disown -h. These are the same actions taken to 

background the Node Exporter and Prometheus 

processes. 

VI. Synchronization Progress 

 The trials, while starting at different times, 

were measured by the total amount of blocks 

synchronized 15 days after the sync began.  

Table 2 shows the amount of blocks each trial 

synchronized by the 15-day mark. 

Figure 6 shows a comparison of the trials, 

with respect to the blocks pulled after the 15-day 

mark. The reason the status of each trial is 

shown after the 15-day mark is due to the 

change in block structure that occurs after the 

first few million blocks have been synchronized. 

This will ensure that the daily average from each 

trial is based on the same block structure. The 

dotted lines are projections of trial progress, due 

to the separate startup time of each trial.  

 There are more variables at play then just 

drive performance, however, since each server 

varies in its capabilities of processing and 

memory, mentioned in Table 1 in the Overview 

of Trials section. Because of this there is some 

variance to be expected with relation to the 

results reflecting drive performance alone. 

VII. Other Metrics of Interest 

 For the purposes of comparing particular 

metrics, a week-long sample after the 15-day 

mark will be used as a gauge between trials. 

There are two reasons for this, the first is that the 

progress of each trial is represented by the 

progress it makes within the first 15 days after 

beginning the sync, the second has to do with 

the structure of blocks later on in the chain – by 

day 15 in each trial the block structure had 

stabilized.  

 The variables across trials vary with respect 

to CPU power, size of memory, and storage 

drives, of course; this is important to keep in 

mind since the trials are not entirely 

standardized. The metrics measured are CPU 

utilization, Memory use and cache writeback, 

Table 2 – 15-day mark of trials 

Figure 6 – Progress of trials after 15-day mark 



Disk performance (I/Ops and Read/Write Data), 

and network traffic (by packets).  

CPU 

 Processing does not seem to be a critical 

component to the speed of blockchain 

synchronization. While the size of the CPU 

varied on these trials, even the trial with the 

weakest CPU did not have issues with keeping 

up. Figure 7 shows the trial pairing a cache with 

storage and an 8-core CPU, which hovered 

under 50% CPU utilization. The other trials with 

stronger 48-core CPUs were stable at around 

10% utilization, as shown in Figure 8.  

Memory Utilization 

 Memory does seem to have a considerable 

impact on the speed of synchronization, as it has 

a direct correlation regarding each trial’s 

performance. The command used to run each 

server as a Geth node specifies that there be 

16GB of the memory set aside to be used as 

cache for the sync (including the cache trial 

which implements an SSD cache to HDD main 

storage). For each trial there is a correlation to 

the amount of RAM provided and the amount of 

RAM used. Figure 9, Figure 10, and Figure 11 

show the performance of trials from least to 

most memory to illustrate this point, 

respectively.  

 This does indicate the importance of 

plentiful RAM when beginning the 

synchronization. Even in the trials with 256GB 

of memory available, there was still greater 

utilization with respect to its overall size. Of 

each metric measured throughout this portion 

the differences in this section are the most 

notable.  

 

 

 

 

 

 

Figure 7 – 8 Core CPU below 50% utilization 

Figure 8 – 48 Core CPU at about 10% 

utilization 

Figure 9 – Trial 1 at average 7.58GB 

memory utilization (16GB) 

Figure 10 – Trial 2 at average 

29.32GB memory utilization (128GB) 

Figure 11 – Trials 3/4 at average 

39.36GB memory utilization (256GB) 



Network Traffic 

 To synchronize blocks, the Geth node must 

connect to other peers within the Ethereum 

network. For this reason, it is important to test 

and verify the network speeds on each trial to 

verify that the speeds are comparable. The 

network speeds are measured in packets per 

second, and each trial was measured 

approximately equal to 320 p/s average and 500 

p/s max (packets per second). Figure 12 shows 

the metrics recorded from Trial 1, but they are 

similar for each trial.  

 This portion is mostly used as a control to 

ensure that network speeds to not differ among 

trials. Because of the consistency of this metric 

across trials, it is not considered a metric of 

interest for determining optimal setup with 

regard to collection of metrics examined. 

VIII. Disk Performance 

 Disk Performance is measured in Inputs and 

Outputs per second (IOps) and amount of 

Read/Write data (R/W Data). This section will 

outline the performance of each trial’s drives 

used with respect to read and write performance 

of each drive. A one-week time frame after each 

trials 15-day mark is used as a sample for drive 

performance analysis. Each section will relate to 

a single trial, and the final portion will contain a 

table comparison of each trial’s drive 

performance. 

Trial 1: SSD Cache to HDD Storage  

 The Dell XPS running as a server and 

utilizing a 2TB SSD as cache for a 12TB HDD 

measured with the overall slowest drive speeds 

of all trials measured. In terms of reads from 

disk, IOps for main storage revealed about 160 

io/s and 6.21 io/s for the drive acting as cache. 

Additionally, in terms of writes per second the 

main storage averages about 9.64 io/s and 9.51 

io/s for the drive acting as cache. 

 In terms of R/W data reads from disk, main 

storage averages 55.1 MB/s and 36.7 kB/s for 

the drive acting as cache. Measuring the R/W 

data in write performance of each drive, the 

main storage averages 3.86MB/s, the drive 

acting as cache averages at 43 kB/s. The IOps 

and R/W metrics can be visualized in Figure 13 

and Figure 14.  

 

 

Figure 12 – Average network speeds 

of about 320 p/s recorded for all trials 

Figure 13 – Trial 1 read performance 

Figure 14 – Trial 1 write performance 



Trial 2: SSD Storage 

 The second-tier trial combines two 8TB 

SSDs through LVM to observe the speed of 

blockchain synchronization to SSD storage. The 

drives perform considerably faster than those of 

the previous trial. The sdb and sdc drives seen in 

the following figures map to the SSD drives 

combined together into a single logical volume.  

 The measured IOps for this trial result in an 

average of 485 io/s and 226 io/s for each drive 

performing reads; writes were recorded slower 

at 119 io/s and 34.9 io/s, respectively. R/W data 

puts into perspective the amount of data pulled 

by each drive, again higher than the previous 

trial. The drives average 13.5 MB/s and 6.59 

MB/s in terms of read speeds, and 17.5 MB/s 

and 9.12 MB/s in writes. Figure 15 and Figure 

16 visualizes the read and write metrics of these 

drives, respectively. 

Trial 3: Compression NVMe Drives 

 The third trial measures with better 

performance than the previous two trials. Again, 

two 8TB compression NVMe drives are 

combined through the use of LVM to create a 

single logical volume. IOps read performance 

are measured at an average of 450 io/s and 490 

io/s, respectively; writes are measured at an 

average of 123 io/s and 141 io/s per drive. R/W 

data shows the amount of data pulled per 

second. In this case reads are measured at an 

average of 12.8 MB/s and 12.9 MB/s for each 

drive and writes average to be about 17.9 and 

19.2 MB/s. Figure 17 and Figure 18 visualizes 

the read and write metrics of these drives, 

respectively. 

Figure 15 – Trial 2 read performance 

Figure 16 – Trial 2 write performance 

Figure 17 – Trial 3 read performance 



 These results appear to indicate the benefit 

of compression drives, however when compared 

with other variables such as available RAM used 

by the server, for example, it is difficult to 

attribute drive performance to the drives 

inherent ability to store data. After the first few 

days of initializing the sync the compression 

ratio of these drive decreased to 101% (1% 

compression). This is due to the change in block 

structure as the sync continues along since 

blocks have become more complex throughout 

the Ethereum network’s lifespan. It is for this 

reason the upcoming trial was performed on the 

same server, to narrow down the effect of 

compression drives for storing blockchain data. 

Trial 4: Standard NVMe Drives 

 The performance of the standard NVMe is 

very similar to the drives in the previous trial, 

which use compression. The metric data varied 

with respect to those measured, the reads and 

writes measured by IOps and R/W data. With 

focus on the write metrics, the recorded R/W 

data of trial 3 and 4 are quite different when 

considering how similar their performance is. 

The recorded R/W for this trial was about seven 

times higher than that of the previous trial – 

18MB compared to 133MB. 

  

 

 

 

Trial 5: GCP Trial 

 Write statistics appear much lower for the 

GCP trial with respect the amount of write IOps 

performed, about 20i/o for write speed compared 

to the other trials which were much higher. This 

GCP trial became synchronized at about 9.5 TB 

approximately seven weeks after beginning the 

synchronization. Figure 21 shows the percent of 

disk used for the GCP trial over time, on January 

29th the curve changes – at this point the node is 

fully synchronized.  

 

Figure 18 – Trial 3 write performance 

Figure 19 – Trial 4 read performance 

Figure 20 – Trial 4 write performance 

Figure 21 – GCP occupied disk space timeline 



IX. Analysis of Results 

 From the trials tested there is a correlation 

between the memory available for each trial as 

well as the type of drive-in use – in both cases 

the higher-grade drives have more available 

memory, giving them an extra advantage. The 

network speeds among trials were measured to 

be within the margin of error and considered 

equal, so this variable can be safely disregarded. 

 Compression of blockchain data is not 

effective due to the already compressed nature 

of the blocks themselves – structured in a 

Merkle-tree [1]. The compression ratio 

measured in Trial 3 was at 101 percent (or one 

percent), displaying only slightly improved 

performance over the standard NVMe trial. For 

this reason, it is not cost-effective to run a full 

archive Geth node with compression NVMe 

drives. 

X. Conclusion 

 Results from trial 1 likely are due to the 

insufficient resources outside of the disk 

configuration, however it is plain to see that 

using a cache does not help with syncing the 

node because there are likely no requests to read 

data until the node is fully synchronized. It is 

reasonable to conclude that caching is not an 

effective means of reaching a full point of 

synchronization. 

 Trial 2 demonstrates the use of SSDs to 

synchronize a node to the blockchain state much 

more effectively than the previous trial, but not 

as well as the following two. This likely is 

partially due to the decreased resources available  

to this trial particularly with respect to memory. 

 Trials 3 and 4 and similar since they were 

performed on the same server and have identical 

factors, apart from the disk type in use and the 

operating system. From the trials conducted it 

can be seen that compression drives have a 

slight advantage of standard NVMe, but likely 

not enough to justify the extra cost of 

compression drives. The 15-day mark and 

projection of synchronization show the 

compression trial slightly ahead of the standard 

NVMe trial for its entire duration. 
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