
Harrisburg University of Science and Technology Harrisburg University of Science and Technology

Digital Commons at Harrisburg University Digital Commons at Harrisburg University

Other Student Works Computer and Information Sciences,
Undergraduate (CISC)

Spring 5-23-2022

Blockchain Storage – Drive Configurations and Performance Blockchain Storage – Drive Configurations and Performance

Analysis Analysis

Jesse Garner
Harrisburg University of Science and Technology, jgarner@my.harrisburgu.edu

Aditya A. Syal
Harrisburg University of Science and Technology, asyal1@harrisburgu.edu

Ronald C. Jones
Harrisburg University of Science and Technology, rcjones@harrisburgu.edu

Follow this and additional works at: https://digitalcommons.harrisburgu.edu/cisc_student-coursework

 Part of the Computer Sciences Commons, Data Storage Systems Commons, and the Other Computer

Engineering Commons

Recommended Citation Recommended Citation
Garner, J., Syal, A. A., & Jones, R. C. (2022). Blockchain Storage – Drive Configurations and Performance
Analysis. Retrieved from https://digitalcommons.harrisburgu.edu/cisc_student-coursework/4

This Student Coursework is brought to you for free and open access by the Computer and Information Sciences,
Undergraduate (CISC) at Digital Commons at Harrisburg University. It has been accepted for inclusion in Other
Student Works by an authorized administrator of Digital Commons at Harrisburg University. For more information,
please contact library@harrisburgu.edu.

https://digitalcommons.harrisburgu.edu/
https://digitalcommons.harrisburgu.edu/cisc_student-coursework
https://digitalcommons.harrisburgu.edu/cisc
https://digitalcommons.harrisburgu.edu/cisc
https://digitalcommons.harrisburgu.edu/cisc_student-coursework?utm_source=digitalcommons.harrisburgu.edu%2Fcisc_student-coursework%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.harrisburgu.edu%2Fcisc_student-coursework%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=digitalcommons.harrisburgu.edu%2Fcisc_student-coursework%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.harrisburgu.edu%2Fcisc_student-coursework%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.harrisburgu.edu%2Fcisc_student-coursework%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.harrisburgu.edu/cisc_student-coursework/4?utm_source=digitalcommons.harrisburgu.edu%2Fcisc_student-coursework%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library@harrisburgu.edu

Blockchain Storage –

Drive Configurations and Performance Analysis
 Jesse L. Garner, Aditya A. Syal, Ronald C. Jones

Department of Computer and Information Science: Harrisburg University of Science and Technology

Abstract: This project will analyze the results of trials implementing various storage methods on Geth

nodes to synchronize and maintain a full-archive state of the Ethereum blockchain. The purpose of these

trials is to gain deeper insight to the process of lowering cost and increasing efficiency of blockchain

storage using available technologies, analyzing results of various storage drives under similar conditions.

It provides performance analysis and describes performance of each trial in relation to the others.

I. Introduction
Blockchain technology introduces a

decentralized approach to data verification and

retrieval [1]. Growing amounts of data bring

concerns regarding privacy and security on how

data is stored and may be leaked [2]. Because of

this, it is in the best interest of individuals and

organizations that participate in such a network

to invest in a machine which will function as a

trustworthy peer on the network [2].

This project compares the performance of

several trials which implement different tiers of

storage and storage configurations for

maintaining a full archive blockchain state,

using a drive to performance analysis of results

obtained. Standardization is ensured by running

each trial as a Geth node within the Ethereum

network. Additionally, each trial is performed on

a Debian based distributions on Linux.

Harrisburg University’s High-Performance

Computing (HPC) Research Lab (HPCRL)

facilitated the trials for this project through

funding and partnerships with organizations with

mutual interest in performance results. HPCRL

resources were utilized for the purposes of this

research, including hardware, network

connection, and monitoring through the use of

Grafana – a metric visualization tool hosted on

a VM within the HPC oVirt cluster.

The following sections will begin by

providing the steps taken to allow for

reproducible results. The actions taken will vary

depending on the setup and versions of services

available compared to those used at the time of

this writing. Afterwards, a breakdown of

performance with comparative analysis of the

critical elements within each trial; the sections

maintain a linear flow of the actions/analysis of

each trial.

II. Overview of Trials

 Storage methods in each trial vary by quality

and configurations of drives – each organized

though Logical Volume Manager (LVM) to

form main storage [3]. These trials represent

various tiers of storage quality for individuals

looking into setting up their own Geth node to

verify transactions on the blockchain. These

incremental tiers include SSDs to serve as cache

for HDDs, standard SSDs, Scaleflux

compression NVMe drives, and standard NVMe

drives. Additionally, a GCP cloud instance with

SSDs is used as a separate comparison point.

 In addition, each trial uses Go to run an

Ethereum client (Geth), synchronizing the state

of the Ethereum blockchain, becoming a Geth

node in the Ethereum network [4]. Due to the

use of LVM, logical drives mounted on each

Geth node serve as the destination for all

blockchain data, specified through the command

given to launch Geth.

 Metric collection is performed with Node

Exporter and Prometheus running on each

server, forwarding this data to a Grafana VM to

analyze the performance results [5]. The

collection of data is analyzed for several things –

CPU activity, memory cache utilization, network

transfer speeds, and the performance of drives

trialed in terms of I/O operations. Additionally,

the progress of each trial is recorded regularly to

compare the speed over time in comparison with

other trials.

 The first trial employs a 2TB SSD as a

writeback cache for a 12TB HDD used as main

storage. An 8-core CPU and 16GB of RAM is

used within a Dell XPS desktop running Debian

11, this replicates a personal machine closer than

a server. Since a Geth node can be run on any

machine, this trial simulates the commodity

option for standing a Geth node, because of its

price. This will uncover performance results of

caching blockchain data to slow, affordable,

more available storage.

 Next, a Supermicro server running Debian

11 represents the next tier of trials which utilizes

two SSDs combined through LVM, producing a

logical volume of 16TB. It’s equipped with a 48-

core CPU and 128GB of RAM, this steps into

the realm of an enterprise’s budget and

expectations for performance. It serves as a

middle-ground for comparison between the

former and upcoming trials.

 The following trial features a Dell server

with compression NVMe drives from ScaleFlux.

This server runs Ubuntu 20.04 instead of Debian

due to driver dependencies which are needed

specific to the Ubuntu OS. In this case there are

two 8TB compression NVMe drives organized

as a single logical drive through the use of

LVM. It is equipped with a 48-core CPU and

256GB of RAM. The compression drives allow

for higher I/O operations since writes to the

drive are able to be processed faster due to

hardware compression. This trial serves to

explore the capabilities of compression drives

storing blockchain data in terms of read/write

operations in comparison to other trials. Trial

four is run on the same server, with a change to

the operating system and storage drives used.

 Table 1 shows a comparison of each trial as

it relates to the resources each will be using.

III. Combining Drives – LVM

 The first step to begin each trial is

combining drives together to form a single

logical drive which is used to store the Geth

data. This can be done on the main storage itself,

but for this project the operating system was

held on dedicated physical storage, separate

from the drives used for testing of blockchain

storage performance. The GCP trial, while

useful for comparative analysis, is a cloud

instance which did not follow the same steps of

organizing storage through LVM; the remainder

of this section will exclude the GCP trial from

its scope.

 Out of the four trials evaluated, three trials

combine two drives of equal size and speed into

one logical volume. The other uses a smaller

SSD as a writeback cache for a larger HDD; this

trial involves all of the steps to set LVM as the

other trials, with the addition of several

commands needed to initiate a caching

relationship between the two drives. In Figure 1

it identifies the steps taken to organize logical

volumes on each trial, along with the additional

steps needed for the trial caching storage.

On Debian, LVM must be installed

manually. Issuing the lsblk command from the

CLI exposes the characteristics of physical

drives mounted to the server, this will indicate

the path the drive is mounted i.e. -

/dev/$drivename. From within the LVM

Table 1 – Trial attribute comparison

configuration console the physical volumes are

created from physical storage drives currently

mounted to Linux system, as the last command

described. The physical volumes in LVM are

combined to create a virtual group, this virtual

group will be formed into a logical volume.

 If arranging caching through LVM,

additional steps must be taken at this time before

creating the logical volume from the virtual

group. The physical volume which will function

as the cache is given two partitions – metadata

and cache. The metadata partition should be

about one percent of the logical volume’s

practical capacity, the remainder is used for the

purposes of caching. These two partitions are

converted into a cache pool with a writeback

policy, prioritizing high throughput of writes to

cache. There is now a logical volume for the

cache drive; another logical volume is created

for other drive and then combined with the

cache drive with the final command in caching

section.

 The work of LVM is now complete and the

logical volumes are now visible from the /dev/

directory; they are a representation of the

physical drives seen by LVM. A filesystem is

created for the logical volume, and it is mounted

within the /mnt/ directory. A few commands are

left at the end of Figure 2 to evaluate the

function of a logical volume using cache with

the sysbench tool.

IV. Preparing Monitoring Services

 Each trial collects metrics of performance

through the use of Node Exporter and

Prometheus which are installed onto the local

storage; these packages are found on

https://prometheus.io/download/ [5].

Prometheus will then pass along those metrics to

a data visualization tool – Grafana, which will

connect to Prometheus through the host’s

private IP address and port number. Figure 3

describes the steps taken to install the

Prometheus service.

 Node Exporter and Prometheus are installed

within the same /mnt/lv path to the logical

volume which was created in the previous

section. Consider the time period for data

retention before running the command to start

the Prometheus process; by default, it will delete

metrics that are older than 15 days. This may be

changed by appending a flag to the end of the

command. For example, to run Prometheus with

a data retention period of one year, issue the

Figure 1 – Steps to setup LVM, additional

steps for cache drive highlighted

Figure 2 – Commands to install sysbench

and test cache setup through LVM

https://prometheus.io/download/

following command: sudo ./prometheus --

storage.tsdb.retention.time=1y.

 Grafana is installed on a separate machine,

in this case it is on a VM in the HPCRL’s oVirt

cluster, on the same private network. The steps

to install Grafana can be followed from

https://grafana.com/docs/grafana/latest/installati

on/c, which will vary depending on the

operating system [6]. Figure 4 shows that steps

taken after setup to login to Grafana and add the

Prometheus data source. Afterwards, the ‘Node

Exporter Full’ dashboard is imported as the

specified method of visualizing collected

metrics.

 For the purposes of these trials, only a

handful of metrics collected will be the point of

focus for comparative analysis. These include

CPU use, memory utilization, disk performance

(in terms of IOps and data collected in

timeframe), and network traffic speed (packets

per second). The 15-day mark of each trial is

used as the point of comparison for overall

speed of blockchain synchronization.

V. Installing Geth

 Once metric collection and analysis services

are setup and verified it is time to begin the

installation of Geth (Go-Ethereum) which uses

the Go language to initiate and maintain the

server to function as an Ethereum peer. The

steps of this process will vary depending on the

version of Linux used but should work for

Debian 11 and Ubuntu 20.04.

 Figure 5 displays the steps taken to install

Geth on each trial, with notes for commands that

are relevant to the time of this writing, like the

current version of Go for example. In this

example, Go and Go-Ethereum are installed in

the home directory of the server, but this can be

changed to the preferred directory of installation

so long as the exported variable paths are altered

to match this change [7]-[8].

To install Go, the most recent version is

installed from the source specified in the figure.

The GOROOT variable is set to the path that Go

is installed to, as well as the PATH variable

while in the ~/go directory. Next, Go-Ethereum

is downloaded from its GitHub repository and

Figure 3 – Commands to run Prometheus

Figure 4 – Instructions to setup Grafana Figure 5 – Commands to install Geth

https://grafana.com/docs/grafana/latest/installation/c
https://grafana.com/docs/grafana/latest/installation/c

stored in the home directory. Once completed,

the build-essential repository is installed, and

path variables changed and confirmed in the

/etc/profile/ directory.

Geth is prepared with the make command

before finally starting the process. There are

multiple flags issued with the command to start

the Geth node, several of these are particularly

important with respect to the testing of storage

drives mounted to the server. Each trial also

reserves 16GB of RAM to function as a cache

for the main storage.

In this case the datadir flag indicates the

path to the directory which will contain the

blockchain data, it is set to the logical volume

with a subdirectory named Ethereum inside,

which has not been created before running the

command. The syncmode and gcmode flags

specify the server to act as a full archive node,

downloading all blocks (headers, transactions,

receipts) that are a part of the mainnet

blockchain. The cache flag indicated the amount

of MB to use as cache.

The Geth process is started with the last

command seen in figure and is executed from

the ~/go-ethereum/ directory. This will begin the

synchronization of the blockchain state. To

make this process run in the background, issue

the following three commands: Ctrl+Z, bg, and

disown -h. These are the same actions taken to

background the Node Exporter and Prometheus

processes.

VI. Synchronization Progress

 The trials, while starting at different times,

were measured by the total amount of blocks

synchronized 15 days after the sync began.

Table 2 shows the amount of blocks each trial

synchronized by the 15-day mark.

Figure 6 shows a comparison of the trials,

with respect to the blocks pulled after the 15-day

mark. The reason the status of each trial is

shown after the 15-day mark is due to the

change in block structure that occurs after the

first few million blocks have been synchronized.

This will ensure that the daily average from each

trial is based on the same block structure. The

dotted lines are projections of trial progress, due

to the separate startup time of each trial.

 There are more variables at play then just

drive performance, however, since each server

varies in its capabilities of processing and

memory, mentioned in Table 1 in the Overview

of Trials section. Because of this there is some

variance to be expected with relation to the

results reflecting drive performance alone.

VII. Other Metrics of Interest

 For the purposes of comparing particular

metrics, a week-long sample after the 15-day

mark will be used as a gauge between trials.

There are two reasons for this, the first is that the

progress of each trial is represented by the

progress it makes within the first 15 days after

beginning the sync, the second has to do with

the structure of blocks later on in the chain – by

day 15 in each trial the block structure had

stabilized.

 The variables across trials vary with respect

to CPU power, size of memory, and storage

drives, of course; this is important to keep in

mind since the trials are not entirely

standardized. The metrics measured are CPU

utilization, Memory use and cache writeback,

Table 2 – 15-day mark of trials

Figure 6 – Progress of trials after 15-day mark

Disk performance (I/Ops and Read/Write Data),

and network traffic (by packets).

CPU

 Processing does not seem to be a critical

component to the speed of blockchain

synchronization. While the size of the CPU

varied on these trials, even the trial with the

weakest CPU did not have issues with keeping

up. Figure 7 shows the trial pairing a cache with

storage and an 8-core CPU, which hovered

under 50% CPU utilization. The other trials with

stronger 48-core CPUs were stable at around

10% utilization, as shown in Figure 8.

Memory Utilization

 Memory does seem to have a considerable

impact on the speed of synchronization, as it has

a direct correlation regarding each trial’s

performance. The command used to run each

server as a Geth node specifies that there be

16GB of the memory set aside to be used as

cache for the sync (including the cache trial

which implements an SSD cache to HDD main

storage). For each trial there is a correlation to

the amount of RAM provided and the amount of

RAM used. Figure 9, Figure 10, and Figure 11

show the performance of trials from least to

most memory to illustrate this point,

respectively.

 This does indicate the importance of

plentiful RAM when beginning the

synchronization. Even in the trials with 256GB

of memory available, there was still greater

utilization with respect to its overall size. Of

each metric measured throughout this portion

the differences in this section are the most

notable.

Figure 7 – 8 Core CPU below 50% utilization

Figure 8 – 48 Core CPU at about 10%

utilization

Figure 9 – Trial 1 at average 7.58GB

memory utilization (16GB)

Figure 10 – Trial 2 at average

29.32GB memory utilization (128GB)

Figure 11 – Trials 3/4 at average

39.36GB memory utilization (256GB)

Network Traffic

 To synchronize blocks, the Geth node must

connect to other peers within the Ethereum

network. For this reason, it is important to test

and verify the network speeds on each trial to

verify that the speeds are comparable. The

network speeds are measured in packets per

second, and each trial was measured

approximately equal to 320 p/s average and 500

p/s max (packets per second). Figure 12 shows

the metrics recorded from Trial 1, but they are

similar for each trial.

 This portion is mostly used as a control to

ensure that network speeds to not differ among

trials. Because of the consistency of this metric

across trials, it is not considered a metric of

interest for determining optimal setup with

regard to collection of metrics examined.

VIII. Disk Performance

 Disk Performance is measured in Inputs and

Outputs per second (IOps) and amount of

Read/Write data (R/W Data). This section will

outline the performance of each trial’s drives

used with respect to read and write performance

of each drive. A one-week time frame after each

trials 15-day mark is used as a sample for drive

performance analysis. Each section will relate to

a single trial, and the final portion will contain a

table comparison of each trial’s drive

performance.

Trial 1: SSD Cache to HDD Storage

 The Dell XPS running as a server and

utilizing a 2TB SSD as cache for a 12TB HDD

measured with the overall slowest drive speeds

of all trials measured. In terms of reads from

disk, IOps for main storage revealed about 160

io/s and 6.21 io/s for the drive acting as cache.

Additionally, in terms of writes per second the

main storage averages about 9.64 io/s and 9.51

io/s for the drive acting as cache.

 In terms of R/W data reads from disk, main

storage averages 55.1 MB/s and 36.7 kB/s for

the drive acting as cache. Measuring the R/W

data in write performance of each drive, the

main storage averages 3.86MB/s, the drive

acting as cache averages at 43 kB/s. The IOps

and R/W metrics can be visualized in Figure 13

and Figure 14.

Figure 12 – Average network speeds

of about 320 p/s recorded for all trials

Figure 13 – Trial 1 read performance

Figure 14 – Trial 1 write performance

Trial 2: SSD Storage

 The second-tier trial combines two 8TB

SSDs through LVM to observe the speed of

blockchain synchronization to SSD storage. The

drives perform considerably faster than those of

the previous trial. The sdb and sdc drives seen in

the following figures map to the SSD drives

combined together into a single logical volume.

 The measured IOps for this trial result in an

average of 485 io/s and 226 io/s for each drive

performing reads; writes were recorded slower

at 119 io/s and 34.9 io/s, respectively. R/W data

puts into perspective the amount of data pulled

by each drive, again higher than the previous

trial. The drives average 13.5 MB/s and 6.59

MB/s in terms of read speeds, and 17.5 MB/s

and 9.12 MB/s in writes. Figure 15 and Figure

16 visualizes the read and write metrics of these

drives, respectively.

Trial 3: Compression NVMe Drives

 The third trial measures with better

performance than the previous two trials. Again,

two 8TB compression NVMe drives are

combined through the use of LVM to create a

single logical volume. IOps read performance

are measured at an average of 450 io/s and 490

io/s, respectively; writes are measured at an

average of 123 io/s and 141 io/s per drive. R/W

data shows the amount of data pulled per

second. In this case reads are measured at an

average of 12.8 MB/s and 12.9 MB/s for each

drive and writes average to be about 17.9 and

19.2 MB/s. Figure 17 and Figure 18 visualizes

the read and write metrics of these drives,

respectively.

Figure 15 – Trial 2 read performance

Figure 16 – Trial 2 write performance

Figure 17 – Trial 3 read performance

 These results appear to indicate the benefit

of compression drives, however when compared

with other variables such as available RAM used

by the server, for example, it is difficult to

attribute drive performance to the drives

inherent ability to store data. After the first few

days of initializing the sync the compression

ratio of these drive decreased to 101% (1%

compression). This is due to the change in block

structure as the sync continues along since

blocks have become more complex throughout

the Ethereum network’s lifespan. It is for this

reason the upcoming trial was performed on the

same server, to narrow down the effect of

compression drives for storing blockchain data.

Trial 4: Standard NVMe Drives

 The performance of the standard NVMe is

very similar to the drives in the previous trial,

which use compression. The metric data varied

with respect to those measured, the reads and

writes measured by IOps and R/W data. With

focus on the write metrics, the recorded R/W

data of trial 3 and 4 are quite different when

considering how similar their performance is.

The recorded R/W for this trial was about seven

times higher than that of the previous trial –

18MB compared to 133MB.

Trial 5: GCP Trial

 Write statistics appear much lower for the

GCP trial with respect the amount of write IOps

performed, about 20i/o for write speed compared

to the other trials which were much higher. This

GCP trial became synchronized at about 9.5 TB

approximately seven weeks after beginning the

synchronization. Figure 21 shows the percent of

disk used for the GCP trial over time, on January

29th the curve changes – at this point the node is

fully synchronized.

Figure 18 – Trial 3 write performance

Figure 19 – Trial 4 read performance

Figure 20 – Trial 4 write performance

Figure 21 – GCP occupied disk space timeline

IX. Analysis of Results

 From the trials tested there is a correlation

between the memory available for each trial as

well as the type of drive-in use – in both cases

the higher-grade drives have more available

memory, giving them an extra advantage. The

network speeds among trials were measured to

be within the margin of error and considered

equal, so this variable can be safely disregarded.

 Compression of blockchain data is not

effective due to the already compressed nature

of the blocks themselves – structured in a

Merkle-tree [1]. The compression ratio

measured in Trial 3 was at 101 percent (or one

percent), displaying only slightly improved

performance over the standard NVMe trial. For

this reason, it is not cost-effective to run a full

archive Geth node with compression NVMe

drives.

X. Conclusion

 Results from trial 1 likely are due to the

insufficient resources outside of the disk

configuration, however it is plain to see that

using a cache does not help with syncing the

node because there are likely no requests to read

data until the node is fully synchronized. It is

reasonable to conclude that caching is not an

effective means of reaching a full point of

synchronization.

 Trial 2 demonstrates the use of SSDs to

synchronize a node to the blockchain state much

more effectively than the previous trial, but not

as well as the following two. This likely is

partially due to the decreased resources available

to this trial particularly with respect to memory.

 Trials 3 and 4 and similar since they were

performed on the same server and have identical

factors, apart from the disk type in use and the

operating system. From the trials conducted it

can be seen that compression drives have a

slight advantage of standard NVMe, but likely

not enough to justify the extra cost of

compression drives. The 15-day mark and

projection of synchronization show the

compression trial slightly ahead of the standard

NVMe trial for its entire duration.

References

[1] P. Frauenthaler, M. Sigwart, C. Spanring, M.

Sober and S. Schulte, "ETH Relay: A Cost-efficient

Relay for Ethereum-based Blockchains," 2020 IEEE

International Conference on Blockchain

(Blockchain), 2020, pp. 204-213, doi:

10.1109/Blockchain50366.2020.00032.

[2] P. V. Klaine, L. Zhang and M. A. Imran, "An

Implementation of a Blockchain-based Data

Marketplace using Geth," 2021 3rd Conference on

Blockchain Research & Applications for Innovative

Networks and Services (BRAINS), 2021, pp. 15-16,

doi: 10.1109/BRAINS52497.2021.9569838.

[3] G. A. Ananthadevan, “Instructions to create an

LVM cache for root in Debian,” Gist-GitHub, 15-

Mar-2020. [Online]. Available:

https://gist.github.com/ntn888/b4d3817cb688e100ab

0045ece218363e. [Accessed: 07-May-2022].

[4] “Ethereum/Go-Ethereum at GH-Pages,” GitHub.

[Online]. Available: https://github.com/ethereum/go-

ethereum/tree/gh-pages. [Accessed: 07-May-2022].

[5] “Prometheus - Monitoring System & Time

Series Database,” Prometheus Blog. [Online].

Available: https://prometheus.io/. [Accessed: 07-

May-2022].

[6] “Grafana: The Open Observability Platform,”

Grafana Labs. [Online]. Available:

https://grafana.com/. [Accessed: 07-May-2022].

[7] W. Schwab, “Run an Ethereum node on debian on

an external SSD,” Medium, 04-Feb-2020. [Online].

Available: https://betterprogramming.pub/run-an-

ethereum-node-on-linux-late-2019-b37a1d35800e.

[Accessed: 08-May-2022].

[8] B. Warrior, “How to set up an Ethereum geth

node on linux,” EtherWorld.co, 08-Jul-2020.

[Online]. Available:

https://etherworld.co/2019/12/31/how-to-set-up-an-

ethereum-geth-node-on-linux/. [Accessed: 08-May-

2022].

	Blockchain Storage – Drive Configurations and Performance Analysis
	Recommended Citation

	tmp.1653336811.pdf.54eJh

